
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2022, No. 4, pp. 92–104. DOI:10.46586/tosc.v2022.i4.92-104

Cryptanalysis of Draco
Subhadeep Banik

Universita della Svizzera Italiana, Lugano, Switzerland
subhadeep.banik@usi.ch

Abstract. Draco is a lightweight stream cipher designed by Hamann et al. in IACR
ToSC 2022. It has a Grain-like structure with two state registers of size 95 and 33
bits. In addition, the cipher uses a 128-bit secret key and a 96-bit IV. The first 32
bits of the key and the IV forms a non-volatile internal state that does not change
during the time that the cipher produces keystream bits.
The authors claim that the cipher is provably secure against Time-Memory-Data
(TMD) Tradeoff attacks. However in this paper, we first present two TMD tradeoff
attacks against Draco. Both attacks leverage the fact that for certain judiciously chosen
IVs the state update function of the cipher depend on only a small fraction of the
non-volatile internal state. This makes the state update function in Draco essentially
a one way function over a much smaller domain and range. The first attack requires
around 2114.2 Draco iterations and requires that the adversary has access to 232

chosen IVs. The second attack is such that the attack parameters can be tuned as
per the requirements of the attacker. If the attacker prioritizes that the number of
different chosen IVs is limited to 220 say, then the attack can be done in around time
proportional to 2126 Draco rounds. However if the total attack complexity is to be
optimized, then the attack can be performed in 2107 time using around 240 chosen
IVs.
Keywords: Draco · Grain Family · Stream Cipher

1 Introduction
In FSE 2015, Armknecht and Mikhalev proposed the stream cipher Sprout [AM15] whose
internal state of was equal to the size of its key. This was counter-intuitive since after
[BS00], it was widely accepted that to be secure against generic TMD Tradeoff attacks,
the internal state of a stream cipher needed to be at least twice the size of the secret key.
However one novelty of the Sprout design ensured that the cipher remained secure against
generic TMD tradeoffs like the one in [BS00]. The state update function of Sprout required
additional input from the secret key and so the effective internal state still was double size
of the key.

Stream ciphers with internal state makes the cipher particularly attractive for compact
lightweight implementations. Hence, although Sprout was cryptanalyzed in subsequent
papers [Ban15, EK15, LNP15, ZG15], there have been lots of research into designing
secure stream ciphers with short internal states: Lizard [HKM17], Plantlet [MAM16],
Atom [BCI+21] are some of the constructions that have been recently designed.

In [HMKM22], the authors designed the stream cipher Draco which has a Grain like
structure. It uses two non linear registers of sizes 95 and 33 respectively. Additionally, it
uses a 128 bit secret key and a 96 bit IV: the first 32 bits of the key and the IV forms a
non-volatile 128-bit internal state that does not change during the operation of stream
cipher. This helps reduce the power consumption of the stream cipher, since a part of the
finite state machine is held at a constant value. The keystream and state update functions
are derived as Boolean functions of both the non-volatile and the volatile internal state (i.e.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-09-01 Accepted: 2022-11-01 Published: 2022-12-07

https://doi.org/10.46586/tosc.v2022.i4.92-104
mailto:subhadeep.banik@usi.ch
http://creativecommons.org/licenses/by/4.0/

Subhadeep Banik 93

⊕

⊕

k0, k1, . . . , k31

v0, v1, v2, v3, . . . , v95

Non-Volatile state

dt

NFSR 1 (95 bits) NFSR 2 (33 bits)

f1(·) f2(·)

h(·)

zt

Key-IV
Schedule

Figure 1: Block Diagram for Draco

the non-linear registers). The authors stipulate that the maximum amount of keystream
that a key-IV pair can produce is 232 bits.

1.1 Contributions and Organization
In this paper, we present a key recovery attack on Draco that requires a computational
complexity of around 2114.2 but requires access to 232 chosen IVs. We present a second
attack, the parameters of which can be tuned as per the requirements of the attacker: if
the attacker prioritizes the optimization of attack complexity then the 2nd attack can
be done in 2107 time using around 240 chosen IVs. Both attacks take advantage of the
fact for certain well chosen IVs the state update function of the cipher depends on only a
small fraction of the non-volatile internal state. This makes the state update function in
Draco essentially a one way function over a much smaller domain and range. This allows
the attacker to construct tables in the offline phase over a much smaller domain and range
which can be used in the online stage to look for collisions. The paper is organized in the
following manner.

a. In Section 2, we present the mathematical description of the Draco stream cipher.

b. In Sections 3 and 4 respectively, we present the first and second attacks.

c. Section 5, concludes the paper.

2 Description of Draco
The exact structure of Draco is explained in Figure 1. Draco uses a 128-bit key K =
k0, k1, . . . , k127 and a 96-bit initial vector IV = v0, v1, . . . , v95. It consists of two NFSRs
of size 95 and 33 bits each. Certain bits of both the shift registers are taken as inputs to a
combining Boolean function, whence the keystream is produced. The volatile 128-bit inner

94 Cryptanalysis of Draco

state of Draco is distributed over the two NFSRs, NFSR1 and NFSR2, whose contents at
time t = 0, 1, . . . is denoted by Bt = (bt

0, bt
1, . . . , bt

94) and St = (st
0, st

1, . . . , st
32) respectively.

The non-volatile state consists of the key-bits k0, k1, . . . , k31 and the IV. For each t, the
non volatile state produces a bit dt defined as follows: first define an augmented IV vector
of 97 bits defined thus x0 = 0 and xi = vi−1 for i ∈ [1, 96], then dt is defined thus:

dt =
{

xt mod 97 if t ≤ 255
xt mod 97 ⊕ kt mod 32 otherwise.

The keystream is produced after performing the following steps:

Phase 1: Key-IV loading: Let K = (k0, k1, . . . , k127) denote the 128-bit key and IV =
(v0, v1, . . . , v95) be the 96-bit public IV. The registers of the keystream generator are
initialized as follows:

b0
j =

{
kj ⊕ 1, for j = 0
kj , for j ∈ {1, 2, 3, . . . , 94}

The remaining key is loaded on to NFSR2, i.e. s0
i = ki+95, for i ∈ {0, 1, 2, . . . , 32}

Phase 2: Mixing: During this phase the cipher is clocked for 512 cycles without producing
any keystream bits. During this phase the registers are updated as follows. For
t = 0, 1, 2, . . . , 511, we compute:

bt+1
i = bt

i+1, for i ∈ {0, 1, . . . , 93}
bt+1

94 = zt ⊕ st
0 ⊕ f1(Bt)⊕ dt

st+1
i = st

i+1, for i ∈ {0, 1, . . . , 31}
st+1

32 = zt ⊕ f2(St)

where f1(St), f2(Bt) and zt are computed as follows:

f2(St) = st
0 ⊕ st

2 ⊕ st
7 ⊕ st

9 ⊕ st
10 ⊕ st

15 ⊕ st
23 ⊕ st

25 ⊕ st
30 ⊕ st

8 · st
15⊕

st
12 · st

16 ⊕ st
13 · st

15 ⊕ st
13 · st

25 ⊕ st
1 · st

8 · st
14 ⊕ st

1 · st
8 · st

18⊕
st

8 · st
12 · st

16 ⊕ st
8 · st

14 · st
18 ⊕ st

8 · st
15 · st

16 ⊕ st
8 · st

15 · st
17⊕

st
15 · st

17 · st
24 ⊕ st

1 · st
8 · st

14 · st
17 ⊕ st

1 · st
8 · st

17 · st
18⊕

st
1 · st

14 · st
17 · st

24 ⊕ st
1 · st

17 · st
18 · st

24 ⊕ st
8 · st

12 · st
16 · st

17⊕
st

8 · st
14 · st

17 · st
18 ⊕ st

8 · st
15 · st

16 · st
17 ⊕ st

12 · st
16 · st

17 · st
24⊕

st
14 · st

17 · st
18 · st

24 ⊕ st
15 · st

16 · st
17 · st

24 ⊕
32∏

i=1
(1⊕ st

i)

Subhadeep Banik 95

f1(Bt) = bt
0 ⊕ bt

26 ⊕ bt
56 ⊕ bt

89 ⊕ bt
94 ⊕ bt

3 · bt
67 ⊕ bt

11 · bt
13 ⊕ bt

17 · bt
18⊕

bt
27 · bt

59 ⊕ bt
36 · bt

39 ⊕ bt
40 · bt

48 ⊕ bt
50 · bt

79 ⊕ bt
54 · bt

71 ⊕ bt
58 · bt

63⊕
bt

61 · bt
65 ⊕ bt

68 · bt
84 ⊕ bt

8 · bt
46 · bt

87 ⊕ bt
22 · bt

24 · bt
25 ⊕ bt

70 · bt
78 · bt

82⊕
bt

86 · bt
90 · bt

91 · bt
93

Lt = bt
7 ⊕ bt

15 ⊕ bt
32 ⊕ bt

47 ⊕ bt
66 ⊕ bt

80 ⊕ bt
92

Qt = bt
5 · bt

85 ⊕ bt
12 · bt

74 ⊕ bt
20 · bt

69 ⊕ bt
34 · bt

57

T 1
t = bt

53 ⊕ bt
38 · bt

44 ⊕ bt
23 · bt

49 · bt
83 ⊕ bt

6 · bt
33 · bt

51 · bt
73⊕

bt
4 · bt

29 · bt
43 · bt

60 · bt
81 ⊕ bt

9 · bt
14 · bt

35 · bt
42 · bt

55 · bt
77⊕

bt
1 · bt

16 · bt
28 · bt

45 · bt
64 · bt

75 · bt
88

T 2
t = st

26 ⊕ st
5 · st

19 ⊕ st
11 · st

22 · st
31

T 3
t = bt

76 ⊕ st
3 · bt

10 ⊕ st
20 · bt

21 · bt
30 ⊕ st

6 · st
29 · bt

62 · bt
72

zt = Lt ⊕Qt ⊕ T 1
t ⊕ T 2

t ⊕ T 3
t

Phase 3: Keystream Generation: During this phase the feedback of the keystream bit
is discontinued, and the cipher starts producing keystream bits. Thus for t =
512, 513, 514, . . ., we compute:

bt+1
i = bt

i+1, for i ∈ {0, 1, . . . , 93}
bt+1

94 = st
0 ⊕ f1(Bt)⊕ dt

st+1
i = st

i+1, for i ∈ {0, 1, . . . , 31}
st+1

32 = f2(St)

The cipher produces the keystream bit zt using the expression given above. Note that the
authors stipulate that the maximum amount of keystream bits generated from any key-IV
pair is limited to 232.
Remark 1. Note that throughout the paper we use one Draco iteration/round interchange-
ably as a unit of time required for cryptanalysis. This unit refers to the set of operations
required to update the Draco volatile state by one clock cycle.

Security Claims: In [HMKM22, Sec 4.2], the designers of Draco, make a few claims
regarding the security of their construction vis-a-vis Time-Memory-Data tradeoff (TMD)
attacks. In general Draco belongs to a class of keystream generators called CIVK, in which
the IV is continuously accessed. The system is characterized by the following parameters:

1. Key length ℓk which for Draco is 128 bits.

2. Size of volatile state ℓv which also is 128 bits for Draco.

3. Size of non-volatile state ℓnv = ℓIV + log2(ℓp) which also is 128 bits for Draco.
ℓIV = 96 denotes the length of the IV in bits. ℓp = 232 bits is the maximum number
of keystream bits that can be generated by any key-IV pair. The total state size
ℓs = ℓv + ℓnv which is 256 for Draco.

The designers consider two types of TMD attacks. The first is a direct application of
the attack by Babbage [Bab95] and Golic [Gol97]. The attacker collects D keystream
blocks of length ℓs. The attacker generates a set of T internal state/keystream block
pairs for randomly chosen internal states. If DT = 2ℓs there will be a collision whp
according to the birthday paradox. In particular for D = T = 2ℓs/2 the security is

96 Cryptanalysis of Draco

capped at the birthday bound. The maximum amount of data D that can be obtained
is ℓp · 2ℓIV = 2log2(ℓp+ℓIV) = 2ℓnv . For this maximal D the tradeoff curve yields a time
complexity of T = 2ℓs−ℓnv = 2ℓv = 2128.

The second attack makes use of the fact that the IVs for the keystream packets
are known by the adversary. The adversary obtains p keystream packets (of length ℓp)
corresponding to p initial values which gives a data complexity of D = pℓp. For each IV,
the attacker generates s random key-prefixes and a corresponding random volatile internal
state zi ∈ {0, 1}ℓv . From this information, the attacker computes an output keystream
blocks of length ℓs. A collision in the volatile internal state occurs with high probability if
Ds = 2ℓv . Additionally, the adversary needs a correct non-volatile internal state. The IV
is known to the attacker and the key prefix can be guessed correctly with a probability
of ℓ−1

p . Hence, the probability that one out of the s generated key prefixes per IV one
correct, is s/ℓp. The attack is successful if D s

ℓp
= pℓp · s

ℓp
= ps = 2ℓv . Regardless of

how many keystream packets are observed, the attacker always has a time complexity
of T = ps = 2ℓv = 2128. Thus the designers claimed that Draco is secure against TMD
attacks. However what the designers missed is that there are some weak configurations of
this cipher in which the keystream generation can be seen as a function over a smaller
state space. This is what we will exploit in this paper.

3 First Attack
We begin this section by making a few observations about the algebraic structure of Draco.
The first is that given access to the non-volatile state, the state update routines during both
the initialization and keystream generation phase are one-to-one and invertible. Note that
update expressions of the two registers can be written as bt+1

94 = bt
0 ⊕ st

0 ⊕ dt ⊕ f ′
1(Bt)⊕ zt

and st+1
32 = st

0 ⊕ f ′
2(St) ⊕ zt, where B

t = [bt
1, bt

2 . . . , bt
94] and S

t = [st
1, st

2 . . . , st
32] are all

the trailing bits of St, Bt (for Phase 3, we just drop zt from the expressions). From the
analysis presented in [Fre82], this is both necessary and sufficient for the state update map
to be invertible. We present in Table 1 and 2 algorithms Init−1 and Update−1 which clocks
back the state registers by one round during the initialization and keystream generation
phases respectively. Note that during Phase 3, when the cipher starts producing
keystream bits the value dt is always calculated as kt mod 32 ⊕ xt mod 97. This sequence dt

plays a major role in updating the volatile 128-bit internal state of the stream cipher, i.e.
the state contained in the two NFSRs. We make the following observations:

Observation 1. The sequence dt is periodic with period equal to 3104. This is easy to see
since the key bits and augmented IV bits repeat in cycles of 32 and 97 respectively. Since
32 ∗ 97 = 3104, after 3104 cycles the key and IV bits get synced again. Consider some
τ ≡ 0 mod 3104. Then we have

dτ+i =


k0 if i = 0
ki ⊕ vi−1 if i ∈ {1, 2, 3, . . . , 31}
ki−32 ⊕ vi−1 if i ∈ {32, 33, 34, . . . , 63}
ki−64 ⊕ vi−1 if i ∈ {64, 65, 66, . . . , 95}
k0 ⊕ v95 if i = 96

Consider an initial vector IV ∗ of the form

IV ∗ = k1, k2, . . . , k31 || k0, k1, . . . , k31 || k0, k1, . . . , k31 || k0,

or in other words IV ∗ = (κ||κ||κ) ≪ 1, where κ = k0, k1, . . . , k31. For such an IV it is not
too difficult to see that the 96-bit sequence dτ+1, dτ+2, . . . , dτ+96 = 096, ∀τ ≡ 0 mod 3104.

The above observation is significant since it shows us that for every 32 bit key prefix
there exists one IV so that the contribution of the non-volatile state to the update function

Subhadeep Banik 97

Table 1: Algorithm Init−1 inverts one initialization round
Algorithm Init−1

1. Input: St, Bt: The NFSR states at time t

2. Input: k0, k1, . . . , k31, v0, v1, . . . , v95: The non-volatile state

3. Output: St−1, Bt−1: The NFSR states at time t− 1

• s← st
32, b← bt

94.

• Note that B
t−1 = (bt

0, bt
1 . . . , bt

93), S
t−1 = (st

0, st
1 . . . , st

31)
• Compute dt−1 from the non-volatile state.

• Compute ẑ from B
t−1

, S
t−1 .

• ŝ = s⊕ f ′
2(St−1)⊕ ẑ, b̂ = b⊕ f ′

1(Bt−1)⊕ ŝ⊕ ẑ ⊕ dt−1

• St−1 ← (ŝ, st
0, st

1 . . . , st
31), Bt−1 ← (b̂, bt

0, bt
1 . . . , bt

93)
• Return St−1, Bt−1

Table 2: Algorithm Update−1 inverts one round during keystream generation phase
Algorithm Update−1

1. Input: St, Bt: The NFSR states at time t

2. Input: k0, k1, . . . , k31, v0, v1, . . . , v95: The non-volatile state

3. Output: St−1, Bt−1: The NFSR states at time t− 1

• s← st
32, b← bt

94.

• Note that B
t−1 = (bt

0, bt
1 . . . , bt

93), S
t−1 = (st

0, st
1 . . . , st

31)
• Compute dt−1 from the non-volatile state.

• ŝ = s⊕ f ′
2(St−1), b̂ = b⊕ f ′

1(Bt−1)⊕ ŝ⊕ dt−1

• St−1 ← (ŝ, st
0, st

1 . . . , st
31), Bt−1 ← (b̂, bt

0, bt
1 . . . , bt

93)
• Return St−1, Bt−1

98 Cryptanalysis of Draco

of the volatile internal state is 0 for 96 consecutive cycles. Once this happens, (a) the state
update function and (b) the keystream produced by the cipher in these 96 consecutive
cycles, i.e. τ + 1 to τ + 96 is completely independent of the non-volatile state.

For the next three cycles τ + {97, 98, 99}, although the state update becomes once
again dependent on the non-volatile state, the keystream bits produced in these cycles are
still independent. This is because bt

92 is the highest tap location in NFSR1 that is input
to the output filter function. Since dτ+96 = 0, all state bits at τ + 97 are independent of
the non-volatile state and so is the keystream bit. At τ + {98, 99}, the non-volatile state
affects the register locations 94 and {93, 94} respectively of NFSR1, and so the keystream
bit is still independent of the non-volatile state.

This gives rise to a set of weak configurations in the cipher which can be exploited in
the following way.

3.1 Offline Stage
In the offline stage, the attacker tries to form a table containing tuples [State, Keystream]
for cipher states in the weak configuration described above. More formally the steps can
be described thus:

1. For i = 1 to N do the following:

• Select Statei
R←− {0, 1}128 randomly.

• Assume Statei is the volatile internal state of Draco with dt = 0 for 96 consecu-
tive cycles.

• Generate the 99 bit keystream vector Zi for Statei.
• Store Statei in a hash table Tab indexed by Zi.

2. End for

Note that if N > 299, then whp, there may be multiple state vectors that produce the
same 99 bit keystream segment. Hence the table cells should be equipped to accommodate
multiple state vectors. The total time complexity required to generate the table is around
P = 99 · N Draco rounds. This is typically less than N Draco encryptions. The total
memory complexity is 128 ·N bits. By standard randomness assumptions, we can assume
that the N states are distributed uniformly among the 299 table entries, and so each table
cell has on average J = N · 2−99 state vectors.

3.2 Online Stage
In the online stage, the attacker queries 232 IVs, where each IV is of the form (V ||V ||V) ≪ 1,
∀ V ∈ {0, 1}32. Note that when V = κ, then there will be several instances during the
keystream generation phase when dt = 0 for 96 consecutive cycles. In fact this will happen
whenever t = τ ≡ 0 mod 3104. Since we are allowed to extract 232 keystream bits from
every key-IV pair, such instances will occur around U = 232

3104 ≈ 220.4 times.
However the attacker naturally does not know the exact value of κ beforehand. So for

each IV of form (V ||V ||V) ≪ 1 the attacker does the following. For all τ ≡ 0 mod 3104,
the attacker takes the keystream vector Z = [zτ+1, zτ+2, . . . , zτ+99] and tries to locate the
corresponding entry in the table Tab. In other words he proceeds under the assumption
that the keystream was produced by the cipher in a weak configuration, i.e. he assumes
that the value of V is indeed equal to κ. For all the states Stj found in the Z entry of
Tab, the attacker takes the state vector and computes few more keystream bits ẑτ+100+w,
(for w = 0, 1, 2 . . .) using Stj and the assumed non-volatile state V, (V ||V ||V) ≪ 1, and
compares them with the keystream bits zτ+100+w obtained from the key-IV query. More

Subhadeep Banik 99

often than not after a few iterations some computed keystream bit and keystream bit
obtained from query will not match and the attacker can discard the state.

However when V = κ, then the attacker may actually find a state stored in Tab
after querying it with one of the keystream segments Z. When this happens, each
successive computed keystream bit and keystream bit obtained from query will be always
equal. The attacker then clocks the state back to the beginning of the key-IV loading
phase, i.e. he finds B0, S0 using repeated executions of the algorithms in tables 1 and 2,
using non-volatile internal state is V, (V ||V ||V) ≪ 1. Then it can be easily seen that
[b0

0 ⊕ 1, b0
1, b0

2, . . . , b0
94, s0

0, s0
1, . . . , s0

32] reveals the secret key K.
More formally the algorithm can be presented as follows. First the attacker queries all

232 IVs of the form (V ||V ||V) ≪ 1. For each IV he does the following:

1. Assume non-volatile state is A = (V, (V ||V ||V) ≪ 1)

2. For all τ ≡ 0 mod 3104 (there are U = 220.4 iterations here):

• Denote Z = [zτ+1, zτ+2, . . . , zτ+99]
• Find all the states stored in Tab[Z].
• For each such state Stj

→ Set w ← 0
→ Do the following
• Compute the keystream ẑτ+100+w using Stj , A

• If ẑτ+100+w ̸= zτ+100+w discard and exit the do loop.
• Else update w ← w + 1
• If w is sufficiently large, then St∗ = Stj is the correct candidate.
• If so exit the all loops and goto step 4.

3. End for

4. Clock back St∗ to get the state B0, S0 at the beginning of key-IV loading.

5. Return K = [b0
0 ⊕ 1, b0

1, b0
2, . . . , b0

94, s0
0, s0

1, . . . , s0
32]

The above algorithm is guaranteed to succeed whp, if when V = κ, there is a collision
between one of the register states encountered during the production of 232 keystream
bits and the states stored in Tab. We encounter around U ≈ 220.4 internal states during
the keystream generation, whereas N state vectors are stored in the table. By standard
birthday assumptions, we will get a collision with high probability when N · U = 2128, i.e.
we need N ≈ 2107.6.

The total complexity of the online phase is determined by the number of Draco rounds
required to eliminate all candidate states. Note that for each IV, we generate 220.4 · J =
220.4 ·N · 2−99 ≈ 220.4−99+107.6 = 229 internal states on average. And so the total number
of internal states extracted from the table, during the course of the entire online phase, is
around 229+32 = 261. By standard randomness assumptions, half of them get eliminated
after 1 iteration, 1

4 after 2 iterations, 1
8 after 3 iterations etc. Hence the total number of

iterations required to eliminate all incorrect candidate internal states is given by

61∑
i=1

i · 2−i · 261 ≈ 262

A correct internal state is therefore obtained, when it does not get eliminated af-
ter sufficiently many iterations (i.e. some integer higher than 61, say ≈ 100). After
recovering the correct state we have to clock the cipher back to the key-IV loading
stage. This requires a maximum of 232 + 512 inverse Draco iterations. Assuming that

100 Cryptanalysis of Draco

one forward and inverse iteration take the same time to compute, the total complexity
of the online stage is given as T = 262 (to eliminate candidate states) + 232 +
512 (to clock back to initial state) ≈ 262 Draco iterations. The total time com-
plexity of the online and offline stages is given by P + T = 99 ·N + T ≈ 2114.2 iterations
of Draco. The memory complexity is M = 128 ·N ≈ 2114.6 bits.

4 Second Attack
In the first attack we banked on the fact that if the attacker queried the correct IV, then
he would be able to encounter states which can update itself and produce keystream bits
without any contribution from the non-volatile internal state. In the second attack the
idea is to store more tables in the offline stage, ideally one for every 32-bit key prefix.

Before we look at the attack formally, let us look at some of the ideas that led to
it informally. Let’s say that the IV is fixed to 096. In that case the non-volatile state
effectively only contains the 32-bit key prefix. For all 32-bit key prefixes k, the attacker
could take around 296−D (for some integer D) randomly chosen internal states St and
generate 128 bit keystream bit vector Z from it. As before store Tabk[Z] = St. Thus
each table Tabk stores 296−D keystream vectors generated by randomly generated internal
states. The total time complexity of this phase 232 · 296−D · 128 = 2135−D Draco iterations,
and so is the total memory complexity.

In the online stage the attacker requests keystream for the all zero IV. For each 128-bit
keystream segment so obtained (there are a total of 232 − 128 + 1 of them), the attacker
will then try to locate the internal state in each of the 232 tables. Note that, as before,
each incorrect internal state so obtained can be eliminated by computing a few more
keystream bits and comparing with the keystream bits obtained from the oracle. Again,
as before, if the state does not get eliminated after sufficiently many iterations, it can be
considered to be correct. We then clock it back to the key-IV loading stage to recover
the key. For the attack to succeed whp, by standard randomness assumptions, we need
(232 − 128) · 296−D = 2128. In other words, we need D ≈ 0 for which the offline complexity
alone becomes 2135 Draco iterations. Although one Draco iteration takes time much less
than one encryption, 2135 Draco iterations is very close to the complexity of exhaustive
search.

4.1 Query more IVs
Although we did not compute the online complexity above, it is much less than the offline
complexity. This is easy to see since, for every keystream segment, we generate at most
232 states (one from each of the 232 tables) and so the total number of states generated is
232 · (232−128) ≈ 264. We have already seen that we need only around

∑64
i=1 i ·264−i ≈ 265

Draco iterations to eliminate all of them. Now if we generated more internal states in the
online stage, simply by querying more IVs, we may be able to make the attack work for
larger D, and at the same time not increase the online complexity too much.

Let us say we take 2E initial vectors of the form 096−E ||e, where e ∈ {0, 1}E , i.e. vi = 0
for all i < 96−E. Now consider the value of dt = kt mod 32⊕xi mod 97 during the keystream
generation phase in each cycle of 97 iterations. Consider some λ ≡ 0 mod 97. Then it can
be seen that the (97− E)-bit sequence dλ, dλ+1, . . . , dλ+96−E does not depend on the last
E bits of the IV. This is because (a) dλ = kλ mod 32⊕ x0 = kλ mod 32, and (b) for all other
i ∈ [1, 96− E], we have

dλ+i = kλ+i mod 32 ⊕ xλ+i mod 97 = kλ+i mod 32 ⊕ xi mod 97

= kλ+i mod 32 ⊕ vi−1 mod 97 = kλ+i mod 32

Subhadeep Banik 101

This implies that for all such IVs the state update function (and hence the keystream bit)
for 97 − E consecutive cycles depends only on the key-prefix. By arguments similar to
those presented in Section 3, we can deduce that the keystream bits in the next 3 cycles
are also independent of the last E bits of the initial vector and dependent only on the key
prefix and the register state. Therefore if the initial vectors are of the form 096−E ||e, then
in every cycle of 97 iterations, a total of min(97, 100−E) keystream bits depends only on
the key and register state. If E ≥ 3, then this figure is exactly 100− E. This again gives
rise to a set of weak configurations, which we exploit in the following way.

4.1.1 Offline Stage

In the offline stage, the attacker tries to form tables for each 32-bit key prefix k. So for
each k ∈ {0, 1}32 the attacker does the following:

1. Choose some integers D and E ≥ 3.

2. For i = 1 to 296−D do the following:

• Select Statei
R←− {0, 1}128 randomly.

• Assume Statei is the volatile internal state of Draco for some IV ∈ 096−E ||e.
• The non-volatile state is given as k||IV = 096−E ||e (note that actual value of e

is not necessary as we generate only 100− E keystream bits).
• Generate the (100− E)-bit keystream vector Zi for Statei.
• Store Statei in a hash table Tabk indexed by Zi.

3. End for

Again if 96−D > 100−E, each table cell may need to accommodate multiple internal
states, and each table cell will on average have J1 = 296−D−100+E = 2E−D−4 state vectors.
The total offline time complexity is P1 = 232 · 296−D · (100 − E) = (100 − E) · 2128−D

number of Draco rounds. The total memory complexity is M1 = 232 · 296−D · 128 = 2135−D

bits.

4.1.2 Online Stage

The algorithm in the online stage is similar to the previous attack. Now the attacker queries
2E IVs, where each IV is of the form 096−E ||e. For each IV, and for each λ ≡ 0 mod 97,
the attacker extracts the keystream vector Z = [zλ, zλ+1, . . . , zλ+99−E], the attacker tries
to locate Z in each of the 232 tables constructed in the offline phase. Since the number
of keystream bits per key-IV pair is limited to 232, there are U1 = 232

97 ≈ 225.4 keystream
segments for every IV.

Given any fixed IV, for each keystream segment Z the attacker gets J1 = 2E−D−4 states
from each table Tabk, and so around U1 · 232+E−D−4 = 253.4+E−D states are generated
from all the tables and from all the keystream segments. As before each incorrect internal
state so obtained can be eliminated by computing a few more keystream bits and comparing
with the keystream bits obtained from the oracle. If the state does not get eliminated after
sufficiently many iterations, it can be considered to be correct. We then clock it back to
the key-IV loading stage to recover the key. We state the algorithm formally here. First
the attacker queries all 2E IVs of the form 096−E ||e. For each IV he does the following:

1. For all λ ≡ 0 mod 97 (there are U1 = 225.4 iterations here):

• Denote Z = [zλ+1, zλ+2, . . . , zλ+99−E]
• For all k ∈ {0, 1}32

102 Cryptanalysis of Draco

A: Find all the states stored in Tabk[Z].
B: For each such state Stj

→ Set w ← 0
→ Do the following
• Non-volatile state is A1 = (k, 096−E ||e)
• Compute the keystream ẑλ+99−E+w using Stj , A1

• If ẑλ+99−E+w ̸= zλ+99−E+w discard and exit the do loop.
• Else update w ← w + 1
• If w is sufficiently large, St∗ = Stj is the correct candidate.
• If so exit the all loops and goto step 3.

2. End for

3. Clock back St∗ to get the state B0, S0 at the beginning of key-IV loading.

4. Return K = [b0
0 ⊕ 1, b0

1, b0
2, . . . , b0

94, s0
0, s0

1, . . . , s0
32]

4.1.3 Complexity Estimation

To estimate the complexity, let us look at a few details regarding the state update function of
Draco. We have already seen that when queried with an IV of the form 096−E ||e, at all λ ≡
0 mod 97 in the keystream phase, the state update depends on the dλ, dλ+1, . . . sequence
which happens to be kλ||kλ|| · · · where kλ := kλ mod 32, kλ+1 mod 32, . . . , kλ+31 mod 32 =
(k0, k1, . . . , k31) ≪ (λ mod 32). Thus during the course of keystream generation kλ can
take 32 values depending on the residue λ mod 32. In the offline phase we have constructed
tables for all possible keystream prefixes. In the online phase our goal is to find a collision
in one of these 32 tables Tabkλ

.
Remark 2. Given any unknown secret key, we have seen that kλ can only take 32 values
(k0, k1, . . . , k31) ≪ (λ mod 32) depending on the value of λ mod 32. It is also obvious that
it can not take any value other than these 32. Note that for some degenerate key prefixes
like 032, 132, (01)16, (10)16 etc, the number of distinct values kλ can take is even less. For
such key prefixes the attack is even faster, as it generates more candidates per table in the
online stage. In the following we deal with the non-degenerate cases for which the attack
takes longer.

Let us suppose we want a collision for some λ = λ∗. Whatever be the value of the
unknown 32-bit key prefix, the value of kλ equals kλ∗ exactly when the following system
of modular equations are simultaneously satisfied:

λ ≡ 0 mod 97
λ ≡ λ∗ mod 32

(1)

By the Chinese remainder theorem, we know that the above always has a unique solution
mod 3104. Thus for any single IV we would be encountering kλ∗ a total of U2 = 232

3104 ≈ 220.4

times. For 2E initial vectors, this figure is 2E · U2 = 220.4+E . Thus in the online phase we
generate 220.4+E states corresponding to the Tabkλ∗ table. Since Tabkλ∗ has 296−D states
stored in it, this algorithm is guaranteed to succeed whp, when 220.4+E · 296−D = 2128, i.e.
we need E −D > 11.6.

The total complexity of the online phase is determined by the number of Draco rounds
required to eliminate all candidate states. We have seen that for each IV, we generate
253.4+E−D internal states on average. And so the total number of internal states extracted
from the tables, during the course of the entire online phase (for all the 2E IVs), is around
253.4+E−D+E = 253.4+2E−D. By arguments introduced in the previous section, the total
number of iterations required to eliminate all incorrect candidate internal states is given by

Subhadeep Banik 103

⌈53.4+2E−D⌉∑
i=1

i · 2−i · 253.4+2E−D ≈ 254.4+2E−D

After recovering the correct state we have to clock the cipher back to the key-IV loading
stage. This requires a maximum of 232 + 512 inverse Draco iterations. Thus the total
complexity of the online stage is given as T1 = 254.4+2E−D + 232 + 512 Draco iterations.

We need to choose D, E judiciously to balance attack complexities. For example,
D = 28, E = 40 seems to balance the online and offline complexities: we get P1 =
2105.9, T1 = 2106.4 iterations of Draco and the memory complexity is M1 = 2107 bits. The
total attack complexity is therefore P1 + T1 ≈ 2107.1. However this requires keystream
bits from 240 IVs. If we want to limit the total number of different IVs to 220 say, we can
choose D = 8, E = 20 for which we get P1 = 2126.3, T1 = 286.4 iterations of Draco and the
memory complexity is M1 = 2127 bits.

The degenerate key-prefixes: Note what happens when the key prefix is 032. In this
case, kλ takes only one value regardless of λ mod 32. Thus for any single IV we would
be encountering kλ∗ a total of U2 = 232

97 ≈ 225.4 times. The condition for collision now
becomes when 225.4+E · 296−D = 2128, i.e. we need E −D > 6.6. Thus when D = 28, we
need E = 35 or more. In that case the online complexity becomes T1 ≈ 254.4+2E−D ≈ 296.4

which is much less than 2106.4 computed in the general case. In general, if kλ can take
2m distinct values for some m < 5, then λ = λ∗ is satisfied when the following system of
modular equations are satisfied:

λ ≡ 0 mod 97
λ ≡ λ∗ mod 2m (2)

By CRT, we have a unique solution modulo 97 · 2m. For any single IV, we would be
encountering kλ∗ a total of U2 = 232

97·2m ≈ 225.4−m times. The condition for collision is
225.4+E−m · 296−D = 2128, i.e. we need E−D > 6.6 + m = 11.6− (5−m). Since the online
complexity is proportional to 22E , for any fixed D, the online complexity is 210−2m times
smaller than in the non-degenerate case.

5 Conclusion
In this paper, we look at the security of the stream cipher Draco. Although an idealized
version of the cipher comes with provable security against TMD attacks, the specific
instantiation of the Draco design is shown to be insecure. We introduce two different
flavors of chosen IV attacks, both of which seem to disprove the security claims. Both
attacks leverage the fact that for certain judiciously chosen IVs the state update function
of the cipher depend on only a small fraction of the non-volatile internal state. In order to
be secure the design should probably correct these flaws.

References
[AM15] Frederik Armknecht and Vasily Mikhalev. On Lightweight Stream Ciphers

with Shorter Internal States. In Gregor Leander, editor, FSE, volume 9054 of
Lecture Notes in Computer Science, pages 451–470. Springer, 2015.

[Bab95] S. H. Babbage. Improved “exhaustive search” attacks on stream ciphers. In
European Convention on Security and Detection, 1995., pages 161–166, 1995.

104 Cryptanalysis of Draco

[Ban15] Subhadeep Banik. Some Results on Sprout. In Alex Biryukov and Vipul
Goyal, editors, INDOCRYPT, volume 9462 of Lecture Notes in Computer
Science, pages 124–139. Springer, 2015.

[BCI+21] Subhadeep Banik, Andrea Caforio, Takanori Isobe, Fukang Liu, Willi Meier,
Kosei Sakamoto, and Santanu Sarkar. Atom: A stream cipher with double
key filter. IACR Trans. Symmetric Cryptol., 2021(1):5–36, 2021.

[BS00] Alex Biryukov and Adi Shamir. Cryptanalytic Time/Memory/Data Tradeoffs
for Stream Ciphers. In Tatsuaki Okamoto, editor, ASIACRYPT, volume 1976
of Lecture Notes in Computer Science, pages 1–13. Springer, 2000.

[EK15] Muhammed F. Esgin and Orhun Kara. Practical Cryptanalysis of Full Sprout
with TMD Tradeoff Attacks. In Orr Dunkelman and Liam Keliher, editors,
SAC, volume 9566 of Lecture Notes in Computer Science, pages 67–85. Springer,
2015.

[Fre82] Harold Fredricksen. A survey of full length nonlinear shift register cycle
algorithms. SIAM Rev., 24:195–221, 1982.

[Gol97] Jovan Dj. Golic. Cryptanalysis of Alleged A5 Stream Cipher. In Advances in
Cryptology - EUROCRYPT ’97, International Conference on the Theory and
Application of Cryptographic Techniques, Konstanz, Germany, May 11-15,
1997, Proceeding, pages 239–255, 1997.

[HKM17] Matthias Hamann, Matthias Krause, and Willi Meier. LIZARD - A Lightweight
Stream Cipher for Power-constrained Devices. IACR Trans. Symmetric Cryp-
tol., 2017(1):45–79, 2017.

[HMKM22] Matthias Hamann, Alexander Moch, Matthias Krause, and Vasily Mikhalev.
The draco stream cipher: A power-efficient small-state stream cipher with full
provable security against tmdto attacks. IACR Transactions on Symmetric
Cryptology, 2022(2):1–42, Jun. 2022.

[LNP15] Virginie Lallemand and María Naya-Plasencia. Cryptanalysis of Full Sprout.
In Rosario Gennaro and Matthew Robshaw, editors, CRYPTO (1), volume
9215 of Lecture Notes in Computer Science, pages 663–682. Springer, 2015.

[MAM16] Vasily Mikhalev, Frederik Armknecht, and Christian Müller. On Ciphers that
Continuously Access the Non-Volatile Key. IACR Trans. Symmetric Cryptol.,
2016(2):52–79, 2016.

[ZG15] Bin Zhang and Xinxin Gong. Another Tradeoff Attack on Sprout-Like Stream
Ciphers. In Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT (2),
volume 9453 of Lecture Notes in Computer Science, pages 561–585. Springer,
2015.

	Introduction
	Contributions and Organization

	Description of Draco
	First Attack
	Offline Stage
	Online Stage

	Second Attack
	Query more IVs

	Conclusion

