
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2022, No. 3, pp. 217–238. DOI:10.46586/tosc.v2022.i3.217-238

Breaking HALFLOOP-24
Marcus Dansarie1,2, Patrick Derbez3, Gregor Leander4 and Lukas Stennes4

1 Swedish Defence University, Stockholm, Sweden
marcus.dansarie@fhs.se

2 University of Skövde, Skövde, Sweden
3 Univ Rennes, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en

Informatique et Systèmes Aléatoires (IRISA), Rennes, France
patrick.derbez@irisa.fr

4 Ruhr University Bochum, Bochum, Germany
gregor.leander@rub.de, lukas.stennes@rub.de

Abstract. HALFLOOP-24 is a tweakable block cipher that is used to protect auto-
matic link establishment messages in high frequency radio, a technology commonly
used by government agencies and industries that need highly robust long-distance
communications. We present the first public cryptanalysis of HALFLOOP-24 and
show that HALFLOOP-24, despite its key size of 128 bits, is far from providing 128
bit security. More precisely, we give attacks for ciphertext-only, known-plaintext,
chosen-plaintext and chosen-ciphertext scenarios. In terms of their complexities, most
of them can be considered practical. However, in the real world, the amount of
available data is too low for our attacks to work. Our strongest attack, a boomerang
key-recovery, finds the first round key with less than 210 encryption and decryption
queries. In conclusion, we strongly advise against using HALFLOOP-24.
Keywords: HF Radio · ALE · HALFLOOP · Boomerang

1 Introduction
Protocols for automatic link establishment (ALE) were developed during the 1980s to
simplify communications via high frequency (HF) radio. The current ALE protocols are
described in the US standards MIL-STD-188-141 and FED-STD-1045 and by NATO in
STANAG 4538. To prevent spoofing and to protect the transmitted data, ALE includes
an optional linking protection mode. Second (2G) and third generation (3G) ALE use
the same block cipher, named SoDark, which operates on 24- and 48-bit states under a
56-bit key [JKF+12]. In [Dan21], Dansarie described several practical key-recovery attacks
against the 8-round version of this cipher, corresponding to the exact number of rounds
standardized for 2G ALE. However, a key length of 56 bits is way too short to offer a
decent security level against modern computers and GPUs. For that reason, a replacement
for SoDark has been specified since 2017. This new block cipher, named HALFLOOP, has
been standardized in the latest revision of MIL-STD-188-141 with a key size of 128 bits
and block sizes of 24, 48 and 96 bits [DoD17].

A Brief Introduction to HF Radio and ALE Modern technologies such as wireless
networking, mobile telephony and satellite-based internet services make it possible to
transmit data quickly and easily from virtually any place on earth. Despite this, HF
radio, a century-old technology, is still in active use in many applications. HF radio, also
known as shortwave radio, uses frequencies between 3 and 30 MHz. These frequencies
enable skywave propagation, where the radio signals are reflected by electrically charged

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-06-01 Accepted: 2022-08-01 Published: 2022-09-09

https://doi.org/10.46586/tosc.v2022.i3.217-238
mailto:marcus.dansarie@fhs.se
mailto:patrick.derbez@irisa.fr
mailto:gregor.leander@rub.de
mailto:lukas.stennes@rub.de
http://creativecommons.org/licenses/by/4.0/

218 Breaking HALFLOOP-24

particles in the upper atmosphere. Through this effect, two radios can communicate across
very large distances without any external infrastructure. This makes HF radio attractive
to users who need communications to work even when conventional infrastructure is
unavailable, such as after disasters, in war and in the polar regions where geostationary
satellites can not be reached. Examples of users include the military, diplomatic services,
disaster management agencies, humanitarian non-governmental organizations, and the air
and maritime industries. Large HF antennas are a common sight on embassies throughout
the world.

Skywave propagation is heavily dependent on a number of constantly changing factors,
such as season, time of day and space weather. Additionally, transmitter and receiver
locations as well as technical characteristics of the radio equipment also affect propagation.
For that reason, HF radio has historically required trained and experienced operators. The
first attempts at reducing this dependence on operators were made during the 1980s, when
the first ALE systems were developed. Since different HF radio manufacturers developed
their own standards, they were not interoperable. This was solved with the introduction of
2G ALE, which became a US military standard in 1988. 3G ALE was introduced in 1999.
Recently, in 2017, a fourth generation, known as Wideband ALE, was introduced. Despite
the introduction of later generations, 2G ALE still remains in active use and, due to its age
and proliferation, is the de facto world standard for interoperable ALE communications.

An ALE-enabled radio establishes a link to another radio by selecting a suitable
frequency according to a propagation model and then transmitting a call frame. If
the frequency is good, the other radio receives the frame and the two radios perform
handshaking to set up a link. Once set up, the link can be used for voice communication
or data transmission. Radios that are not in active use continuously scan a list of assigned
frequencies in order to detect incoming calls. Apart from call frames, ALE radios can also
transmit and receive frames for other purposes. For example, radios can perform soundings,
whereby they regularly transmit frames on different frequencies so that other radios in the
network can measure and record the current propagation characteristics. There is also a
facility for orderwire communications, i.e. transmission of short text messages between
operators [JKF+12]. Section 4 contains a more in-depth description of the 2G ALE linking
process and the plaintexts involved that are of interest for the attacks presented here.

The encryption of ALE frames is known as linking protection. It only protects ALE
frames sent between two radios and not the established link itself. It is primarily meant to
protect unauthorized users from establishing links with radios in a network or interfering
with established links, for example by disconnecting them [Joh16]. While traditional
jamming can obtain the same results, it requires orders of magnitude more transmission
power than simply sending forged disconnection frames. Additionally, encryption of ALE
frames also protects the network from certain types of traffic analysis, which is the analysis
of operating data such as network structure, frequencies, callsigns and schedules [Cal89].
The first ALE standard did not specify a cipher, but specified how to integrate a stream
cipher with ALE [DoD88]. Later standards introduced the Lattice/SoDark cipher, which
is now recommended to be replaced with HALFLOOP whenever possible [DoD17].

Our contribution In this paper we present attacks on the full HALFLOOP-24 cipher.
The main weakness of HALFLOOP-24 comes from its key schedule. While it is common
that block ciphers have small internal states compared to their keys [DR02, BJK+16],
such constructions require special attention in the round-key generation process to ensure
that all the key bits of the master key are well mixed with the message. Otherwise the
security of the cipher can be much lower than expected. For instance, in [BK09], Biryukov
and Khovratovich described related-key attacks against the full versions of both AES-192
and AES-256, relying on the low diffusion of their respective key schedules. The 24-bit
version of HALFLOOP actually suffers from the exact same problem. Furthermore, since

Marcus Dansarie, Patrick Derbez, Gregor Leander and Lukas Stennes 219

Table 1: Summary of attacks on HALFLOOP-24 presented in this paper.

Setting Time Data Memory #Recovered Key Bits Section
Ciphertext only 287 238 263 128 4.4
Known-plaintext 256 237 216 128 3
Chosen-plaintext 256 218 216 128 3
Chosen-ciphertext 210 210 1 24 5

HALFLOOP is a tweakable block cipher and the tweak is simply xored to the key, there is
a generic related-tweak key-recovery attack. For HALFLOOP-24, this means that we can
recover the key with time, data and memory complexity 264. To do so, we would simply
query a message for all 264 tweaks, store the resulting ciphertexts in a table and then brute
force the 64 bits of key not influenced by the tweak. However, as we show in this work,
there are significantly more powerful attacks against HALFLOOP-24.

Our attacks rely on differential cryptanalysis which is one of the most powerful crypt-
analysis techniques. It was proposed by Biham and Shamir in [BS91] and has generated
much attention since then. The aim of differential cryptanalysis is to study the propa-
gation of differences through a cipher to highlight unexpected behaviors compared to a
random permutation. Typically it concerns the existence of a differential characteristic
with a high probability but we may also search for impossible transitions [BBS99]. In
particular, HALFLOOP-24 is very weak against boomerang attacks [Wag99] and there
exists a related-tweak boomerang distinguisher of probability 1 against its full version.

Results The attacks presented in this paper break HALFLOOP-24. However, because
the amount of data is extremely limited in the real world, we do not expect that these
attacks can be used in practice. Table 1 shows a summary of the attacks and their
complexities. Note that the complexity of our ciphertext-only attack heavily depends both
on how callsigns are assigned and on the traffic intensity in the attacked network. The
complexities we provide in Table 1 assume that callsigns are randomly assigned and that
the rate of traffic is very high. The complexities improve significantly as the randomness
of callsigns decreases. Ignoring the actual complexities, ciphertext-only attacks are the
most simple ones since an attacker only needs a radio to eavesdrop ciphertexts. In the
case of ALE, plaintexts consist mostly of callsigns which can be obtained with moderate
effort. Chosen-plaintext and chosen-ciphertext attacks require (temporary) access to a
radio that holds the desired key. All attacks are significantly more efficient than brute force.
Therefore, we strongly advise against the use of HALFLOOP-24. We implemented and
verified our chosen-plaintext and chosen-ciphertext attacks. The source code is available
at https://doi.org/10.5281/zenodo.7043329.

Structure of the paper The next section gives the HALFLOOP-24 specification and
clarifies related notation. In Section 3, we give an attack against HALFLOOP-24 in a
theoretical model and in Section 4 we describe how we can adapt this attack for the real
world. After that, Section 5 presents our boomerang key-recovery before we conclude the
paper in Section 6.

2 Description of HALFLOOP-24
Here, we briefly describe the tweakable block cipher HALFLOOP-24. HALFLOOP-
24 operates on 24-bit blocks and features a 128-bit key and 64-bit tweak. We write

https://doi.org/10.5281/zenodo.7043329

220 Breaking HALFLOOP-24

c = HL-24k(p, t) to denote the encryption of a plaintext p ∈ F24
2 under the key k ∈ F128

2
and the tweak t ∈ F64

2 which results in the ciphertext c ∈ F24
2 .

HALFLOOP-24 borrows many operations from AES. The state consists of three bytes,
arranged in a 3 × 1 matrix (instead of 4 × 4 for AES). The SBox is the same as for AES.
Instead of ShiftRows, the second byte is rotated by six and the third byte is rotated by
four bits to the left. This operation is called RotateRows. For MixColumns, we multiply
the state with c(x) = x2 + 2x + 9 modulo x3 + 1, which can be seen as a 3 × 3 MDS
matrix over F28 . Note that [DoD17] gives x4 + 1 as modulus which apparently is a typing
error since the test vectors indeed work for x3 + 1. Finally, as for AES-128, the number of
rounds is ten and the last round does not involve the MixColumns operation.

Key Schedule The key schedule is the same as for AES-128 with one crucial difference.
For HALFLOOP-24, there is a 64-bit tweak t (called seed) that is xored to the master
key k before the key schedule takes place. Furthermore, we only need 24-bit round keys
and hence a far shorter expansion. We depict the key schedule in Fig. 1. The internal
function g is the same as for AES, i.e. it applies the AES SBox to all four input bytes,
rotates the results by one byte and adds a round constant to the most significant byte. For
more details, we refer to [DR02]. Note that, if we consider two tweaks t1 and t2 for the
same key k, then we obtain different round keys. However, the differences in the round
keys depends only on the difference ∆t = t1 ⊕ t2 except for the last byte of rk10. Hence,
we often transform a round key for a tweak t to the round key we would obtain for the
all-zero tweak and call this a normalized round key r̂k.

K[0:64] ⊕ t K[64:128]

g

rk0 rk1 rk2 rk3 rk4

g

rk5 rk6 rk7 rk8 rk9 rk10

Figure 1: HALFLOOP-24 Key Schedule.

Example To make the notation, especially the ordering of bytes clear, we give a test
vector from [DoD17] as an example. Consider key k, tweak t and plaintext p as follows:

k = 0x2b7e151628aed2a6abf7158809cf4f3c

t = 0x543bd88000017550

p = 0x010203

The first round key is 0x7f45cd. When we arrange p into the state matrix, 0x01 is the
first, i.e. topmost entry. We often refer to it as p[0:8] or the most significant byte of p.

Marcus Dansarie, Patrick Derbez, Gregor Leander and Lukas Stennes 221

Analogously, p[8:16] = 0x02 and p[16:24] = 0x03. We use the same notation for (round)
keys and tweaks, i.e. we always count bits from the left-hand side, inspired by the notation
in the Python programming language. Below we give the first steps of HL-24k(p, t), i.e.
the encryption of plaintext p with key k and tweak t. For convenience, we combine the
RotateRows and MixColumns steps into a single linear layer L in the following.

01

02

03

7f45cd

⊕

⊕

⊕ 7e

47

ce S

S

S f3

a0

8b

≪ 6

≪ 4

L

f3

28

b8 M
ix

Co
lu

m
ns

69

36

ac

3 A Related-Tweak Attack
Our attack builds upon some simple observations. First, the state size of HALFLOOP-24
is only 24 bits. Therefore, it is not too unlikely that multiple round key differences cancel
each other. Second, except for the least significant byte of the last round key, a difference
in the tweak only has linear influence on the round key differences. Hence, we can easily
craft tweaks which skip multiple rounds in a differential attack. Lastly, 10 rounds seem
not adequate given that there is a simple meet-in-the-middle attack against the full cipher.
This is possible because guessing 5 round keys is easier than guessing the complete key.

We visualize the influence of the tweak difference on the round keys in Fig. 2. There,
an empty white block indicates that the round key is not influenced by this part of the
tweak. A gray block shows that the difference in the byte given in the box is given by the
byte of the tweak difference in the head of that column. When there is a light and a dark
gray block with the same byte number, the round key difference is the xor of both. Notice,
we can use Fig. 2 in two ways. On the one hand, we can see that e.g.

∆rk6 = ∆t[16:24]||∆t[24:32]||(∆t[32:40] ⊕ ∆t[0:8]).

On the other hand, the visualization makes clear that differences in the least significant byte
of the tweak only influence ∆rk2, ∆rk7, ∆rk9 and ∆rk10. But beware that the difference
in the least significant byte of rk10 is not visualized there. As depicted in Fig. 1, the last
byte of the round key is derived as the xor of the second byte of rk5 and the first output
byte of the g function applied to the bytes of rk9 and rk10. Hence, it does not only depend
on the difference in the tweak, but on the concrete values of the tweaks as well as on the
value of the ninth round key rk9[16:24]. Since this itself depends on the choice of the
tweak, to avoid ambiguity, we use r̂k9 to denote the ninth round key obtained by running
the key schedule with the all zero tweak. Then, for two tweaks t1, t2, we have

rk9,t1 [16:24] = r̂k9[16:24] ⊕ t1[8:16] ⊕ t1[40:48]

rk9,t2 [16:24] = r̂k9[16:24] ⊕ t2[8:16] ⊕ t2[40:48]
∆rk10[16:24] = ∆rk5[8:16] ⊕ S(rk9,t1 [16:24]) ⊕ S(rk9,t2 [16:24]). (1)

Now, more concretely, consider a plaintext x ∈ F24
2 , a tweak t ∈ F64

2 and a difference
δ ∈ F8

2. When we encrypt x with tweak t under a key k ∈ F128
2 and do the same for

x′ = x ⊕ 016||δ and t′ = t ⊕ 016||δ||040, we observe the following differences in the round

222 Breaking HALFLOOP-24

In
flu

en
ce

d
by

te
po

sit
io

n
pe

r
ro

un
d

ke
y

Position of tweak difference
0 1 2 3 4 5 6 7

i = 0 0 1 2

i = 1 0 1 2

i = 2 0 1

i = 3

i = 4

i = 5 1 2

i = 6 0 1 22

i = 7 0 1 2 0 1 2

i = 8 0 1 2 0 1 2

i = 9 0 1 21 2 0

i = 10 0 1 0 1

∆rki

=

⊕

0 1 2

0 1 2

Figure 2: Visualization of the round key differences as a function of the tweak difference.

keys.

∆rk0 = 016||δ ∆rk1 = 0 ∆rk2 = 0 ∆rk3 = 0
∆rk4 = 0 ∆rk5 = 0 ∆rk6 = δ||016 ∆rk7 = 08||δ||08

∆rk8 = 016||δ ∆rk9 = 0 ∆rk10 = δ||016

The differences in the plaintexts and in rk0 cancel and hence, there is no state difference
after the addition of rk0. It stays like this until we add rk6. Now, our hope is that the
differences in the state introduced by the difference in rk6 is canceled by the differences in
rk7 and rk8 so that after round eight there is no state difference again. The linear layer L
is MDS. Hence, the one-byte difference δ in rk6 is transitioned to a three-byte difference.
The same holds in the backward direction for the difference in rk8. Now, after the addition
of rk7 and the SBox layer those differences must be the same for the cancellation to
take place. Therefore, the probability for cancellation is about 2−24. Further notice, this
cancellation happens if and only if we observe the ciphertext difference δ||016 because there
is no difference in rk9 and difference δ||016 in rk10. Pairs that lead to such a cancellation
can only stem from a rather small set of middle states, which eventually allows us to
restore the last three round keys.

3.1 Overview of the Attack

We divide our attack into four steps, which we list below. Each step is then discussed
in more detail in the following subsections. Fig. 3 gives an overview of the attack. We
implemented our attack and executed it in a lab setting. We report the results in Section 3.6.

Marcus Dansarie, Patrick Derbez, Gregor Leander and Lukas Stennes 223

δσ
δσ

rk0

⊕

⊕

⊕

S

S

S

L

rk1

⊕

⊕

⊕

S

S

S

L

rk6

⊕

⊕

⊕

S

S

S

L−1rk7

⊕

⊕

⊕

L

S

S

S

L

rk8

⊕

⊕

⊕

S

S

S

L

rk9

⊕

⊕

⊕

S

S

S

rk10

⊕

⊕

⊕

pσ sσ qσ vσ wσ cσ

δσδσ

Figure 3: Overview of the attack.

1. Gather Data: Gather three tuples (pσ, tσ, δσ, cσ) ∈ F24
2 ×F64

2 ×F8
2×F24

2 , σ ∈ {x, y, z}
such that δσ ̸= 0 and the ciphertexts

cσ = HL-24(pσ, tσ)
c′

σ = HL-24(pσ ⊕ 016||δσ, tσ ⊕ 016||δσ||040)

fulfill
∆cσ = cσ ⊕ c′

σ = δσ||016.

2. Build Tables: We build two tables. TL stores all middle states (sx, sy, sz) that can
lead to a difference-less state after round eight and the corresponding candidates for
rk7. TR contains the two most significant bytes of the states (vx, vy, vz) immediately
before the last SBox layer together with corresponding choices of rk10[0:16].

3. First Enumeration: We enumerate all possible rk8 and (sx, sy, sz) ∈ TL to compute
forward to (qx, qy, qz). Then, we check for hits in TR to restore rk9 and rk10.

4. Second Enumeration: We brute force the remaining bits of the key.

3.2 Gathering Data
Our attack needs three tuples (px, tx, δx, cx), (py, ty, δy, cy) and (pz, tz, δz, cz). For each
σ ∈ x, y, z, this constitutes a plaintext pair (pσ, p′

σ), a tweak pair (tσ, t′
σ) and a ciphertext

pair (cσ, c′
σ) with corresponding differences

∆pσ = 016||δσ ∆tσ = 016||δσ||040 ∆cσ = δσ||016.

Depending on whether we are in a known-plaintext or chosen-plaintext setting, there
are different approaches to obtain these. Here, we give rough theoretical estimation for
the amount of data needed. In Section 4, we discuss what data we would use in practice
and how long it would take to obtain it.

In the known-plaintext setting, two random plaintexts fulfill the input difference 016||δ
with probability 2−16 since δ is arbitrary. The tweak difference is fulfilled with probability
2−64 but, as we discuss in more detail later, 30 bits of the tweak can be assumed to be
constant for a given frequency. As described above, the spontaneous cancellation happens
with probability roughly 2−24 and if and only if the ciphertexts have difference δ||016.
Hence, the overall probability that a random pair is good is 2−74. Therefore, considering
birthday effects, our attack needs about 237 random known plaintexts.

In the chosen-plaintext setting, we could simply query random plaintexts and tweaks
and then add the right input difference. Thereby, only the output difference must be

224 Breaking HALFLOOP-24

conformed which happens with probability 2−24 and hence we need around 3 · 224 queries
on average. Notice that we can improve this using birthday effects again. For a random
plaintext p and a random tweak t, we query (p⊕016||δ, t⊕016||δ||040) for all δ ∈ F8

2 to obtain
28 data and therefore 215 pairs that have good input differences. Hence, the probability to
obtain at least one pair that also has the correct output difference is approximately 2−9.
Repeating this process 210.42 times, i.e. 218.42 queries, the probability of obtaining at least
three good pairs is around 50%, assuming a binomial distribution.

3.3 Building Tables

Building the Left-Hand Table TL Recall, except for the first and last round, the only
round key differences are ∆rk6, ∆rk7 and ∆rk8. In particular, ∆rk9 = 0. Consequently,
the observed output difference ∆cσ = δσ||016 implies that there is no difference after the
addition of rk8. That is, the differences in rk6, rk7 and rk8 spontaneously canceled each
other. Now, consider Fig. 4. It is clear that there must be difference 016||δσ before we
add rk8 since this is the difference ∆rk8 for tσ and t′

σ. Further, we swap the addition
of rk7 and the linear layer and hence transform the round key difference accordingly as
L−1(08||δσ||08) which we refer to as ασ||βσ||γσ as depicted in Fig. 4. Observe that there
is no difference in the two least significant bytes of the input to round seven. Hence, when
we compute backward, βσ and γσ must cancel the differences induced by the difference
in the least significant byte of sσ. Similarly, L−1(rk7)[0:8] must be such that we obtain
difference δσ in front of the most significant SBox.

Now, to construct TL, we first construct three sub tables. For each pair σ ∈ {x, y, z},
we enumerate all middle states sσ ∈ F24

2 and check if the differences in round seven in
front of the two least significant SBoxes are canceled by βσ and γσ respectively. If so, we
compute all possible values of the most significant byte of L−1rk7 such that we obtain
difference δσ in front of the most significant SBox. We store these in a table [(r̃k7, s)]σ
where r̃k7 is the normalized most significant byte of L−1rk7. Here, normalized means that
we remove the influence of the tweak, i.e., we compute the value that we would obtain
with an all-zero tweak. We sort the table by r̃k7. All three tables are of size about 28

since we enumerate 224 middle states, check a 16-bit condition and on success store the
solutions of the equation

S−1(uσ ⊕ r̃k7) ⊕ S−1(uσ ⊕ r̃k7 ⊕ δ′
σ) = δσ

where uσ is the most significant state byte derived by computing sσ back and hence all
values but r̃k7 are given. S is the AES SBox, for which it is well-known that this equation
has either 0, 2 or 4 solutions. On average, there is one solution and hence the size of
roughly 28. Now, we combine the three sub tables into TL. To do so, we iterate all r̃k7 ∈ F8

2
and look up sx, sy and sz in the previously generated tables. For all hits, we add an entry
(sx, sy, sz, r̃k7) to the table TL. The table TL is also of size around 28. This is because we
are enumerating 28 values for r̃k7 and the average number of hits is roughly one, since we
check an 8-bit condition on 28 entries per small table.

Marcus Dansarie, Patrick Derbez, Gregor Leander and Lukas Stennes 225

rk6 L−1rk7 rk8

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

S

S

S

L

S

S

S

L

∆ = 0 sσ ∆ = 0

0

0

0
δσ

δσ

0

0

δ′
σ

ασ

βσ

γσ

0
δσ

Figure 4: Spontaneous cancellation of differences.

Building the Right-Hand Table TR The second table TR is generated as

TR = [((vx ⊕ vy)[0:16], (vy ⊕ vz)[0:16], r̂k10[0:16], vx[0:16]) | ∀r̂k10[0:16] ∈ F16
2].

TR is sorted by the first two components. Here, vσ is the state before the last round. Since
we are only interested in the two most significant bytes, and the round differences there do
only depend on the tweak differences, we only need to enumerate 216 candidates for r̂k10
to build TR:

vσ[0:8] = S−1(cσ[0:8] ⊕ r̂k10[0:8] ⊕ tσ[16:24] ⊕ tσ[48:56])

vσ[8:16] = S−1(ROR(cσ[8:16] ⊕ r̂k10[8:16] ⊕ tσ[24:32] ⊕ tσ[56:64], 6))

Here, ROR(a, b) denotes bitwise right rotation of a by b. Notice, we cannot compute
vσ[16:24] likewise, since there the round key difference depends also on the least significant
byte of rk9.

3.4 First Enumeration
Now, we connect TL and TR by enumerating rk8. More precisely, we enumerate all
(r̂k8, (sx, sy, sz, r̃k7)) ∈ F24

2 × TL. For each of those tuples, we compute qσ and search for
((qx ⊕ qy)[0:16], (qy ⊕ qz)[0:16]) in TR. For a hit, we restore the candidate for the two most
significant bytes of r̂k10 from TR and compute the candidate for r̂k9[0:16] as

r̂k9[0:16] = (qx ⊕ vx)[0:16] ⊕ tx[24:40] ⊕ (tx[56:64]||tx[0:8]).

Restoring the least significant byte of rk9 and rk10 is only slightly more complicated. Recall
that the difference in the least significant byte of rk10 depends on the tweak difference and
the value of the least significant byte of rk9. Hence, we enumerate all possible r̂k9[16:24]
and compute the corresponding differences in rk10[16:24]. We denote these as ∆xy and
∆yz. Then, we compute all qσ[16:24] forward to wσ and check

wx ⊕ wy
?= cx ⊕ cy ⊕ ∆xy

wy ⊕ wz
?= cy ⊕ cz ⊕ ∆yz.

If both equations are fulfilled, we restore the least significant byte of the candidate for
rk10 by normalizing wx ⊕ cx as in Eq. (1), i.e.

r̂k10[16:24] = wx ⊕ cx ⊕ tx[8:16] ⊕ S(r̂k9[16:24]) ⊕ S(r̂k9[16:24] ⊕ tx[8:16] ⊕ tx[40:48]).

226 Breaking HALFLOOP-24

Table 2: Average execution times and other metrics averaged over 10 runs on a 16-core
computer. The steps refer to the numbered list in Section 3.1. #Queries is the number of
chosen-plaintext queries in step 1. #Candidates is the number of key candidates generated
in step 3.

Step 1 Step 2 Step 3 Step 4 #Queries |TL| #Candidates
0.2 s 2.5 s 693 s 18766 s ≈ 5.2 hours 500506 ≈ 218.9 280 286

Now we store the candidate (r̃k7, r̂k8, r̂k9, r̂k10) in a list.
The total cost of this enumeration is |TL| · 224 ≈ 232. The table TR is of size 216 and we

check a 32-bit condition, i.e. we encounter about 224+8+16−32 = 216 hits in TR. For these,
we enumerate one more byte and then check a 16-bit condition. Therefore, we expect
216+8−16 = 28 candidates for 80 bits of the key. In other words, we learn 72 bits of the key
using time 232 and memory 216.

Note that we could run the same procedure, i.e. Steps 1-3 of our attack, with two
or four instead of three tuples. Then, the expected number of wrong key candidates is
28+24+16−16+8−8 = 232 for two and 28+24+16−48+8−24 = 2−16 for four tuples respectively.

3.5 Second Enumeration

We repeat this step for all candidates from the last step, i.e. around 28 for three tuples
(232 times for two tuples, and only once for four tuples). The least significant bytes of rk10
and rk9 allow us to compute rk5[8:16]. Hence, we are only missing 48 bits of the second
128-bit block of the key schedule. We simply enumerate all possibilities to find the correct
key. So, in total, the complexity of this step is 256 (280 and 248 respectively) and hence
dominates the costs of our attack.

Notice, a straightforward time-memory trade-off does not seem possible because the
missing key bits are, informally speaking, too scattered. Nevertheless, we leave it to
future work to find more clever ways to recover the remaining bits of the key. We do not,
since 256 is a reasonable complexity, especially for large-scale adversaries, and also this
approach does not require any more data. Notice that in total we use six plaintexts and
six ciphertexts (of course many more are simply ignored) which is nearly optimal since
each pair contains roughly 24 bits of information about the key.

3.6 Experimental Verification

We wrote a bitsliced [Bih97] implementation of the attack for processors with the AVX
instruction set and verified our chosen-ciphertext attack in a lab setting. The output of
one example run is given in Appendix A. We executed our attack 10 times, each time using
four randomly generated good plaintext–ciphertext–tweak tuples, on a 16-core computer
to obtain the averaged metrics presented in Table 2. Step 4 clearly dominates the overall
complexity. However, since that step is a simple brute force search, parallelization is trivial
and we expect it to be at least an order of magnitude faster when implemented on modern
GPUs. Hence, we conclude that the cost of the attack is practical even for a small-scale
adversary with access to four good tuples.

Marcus Dansarie, Patrick Derbez, Gregor Leander and Lukas Stennes 227

4 From Theory to Practice
4.1 Plaintexts in 2G ALE
Radio stations in 2G ALE can transmit a number of different frames between them. The
most fundamental of these are the frames involved in making a call, i.e. setting up a
transmission channel between two radios, since this is the primary purpose of the ALE
standards. An ALE network will typically have a number of different assigned frequencies
and the radios will scan them sequentially while listening for calls. The typical ALE call
scenario is illustrated in Fig. 7. An operator or computer that wishes to start a voice
call or transmit a message initiates the call (3). The calling radio then selects a suitable
frequency based on a radio propagation model (4) and transmits a three-word call frame
on the selected frequency (5). When the called radio receives the call frame, it transmits
an equivalent frame in return (6). The three-way handshake is completed by a second
frame from the calling radio (7). After this step, both radios will be in the linked state
and the radio channel is available for higher-level protocols to use. Either station can end
the call. This is done using a single three-word frame (11), after which both radios return
to the unlinked state and resume scanning frequencies. Notice that, in all frames, the
contents of the first and second words are identical.

All 2G ALE words are 24 bits long. The three words used in the typical calls shown
here are TO, TIS and TWAS. They all have the same structure, shown in Fig. 5, and start
with three bits that identify the word type. This is followed by three seven-bit characters
that represent a station callsign. Instead of the full ASCII character set, 2G ALE only
uses the BASIC 38 character set which consists of the uppercase characters A-Z, numbers
0-9, @ and ?. The latter two characters are the null and wildcard characters which are not
used in ordinary three-letter callsigns.

1 3 4 1011 1718 24
Type 7-bit char 7-bit char 7-bit char

Figure 5: Structure of 2G ALE TO, TIS and TWAS words. The type bits are 010 for TO,
101 for TIS and 011 for TWAS words.

The tweak used in the encryption of any ALE word is generated from the date, time,
message word number and transmission frequency, as shown in Fig. 6. All these properties
are immediately observable by anyone capable of intercepting frames. This is deliberate,
since the ALE standard does not have a method for transferring the tweak. The required
tweak differences for the attack described in Section 3 occur when two transmitted words
are encrypted with tweaks that differ only in the third byte, i.e. in bits 17–24. This
byte contains the four least significant bits of the coarse time (minutes since midnight)
and the four most significant bits of the fine time (seconds). This means that, in every
16-minute time window, any call frames that are sent during the same number of seconds
modulo 4 will provide three word pairs with the required tweak difference. For example,
the first word of a frame transmitted at 1755 kHz on May 8 at 15:57:34 will have the tweak
54 3b d8 80 00 01 75 50 and the first word of a frame transmitted at 1755 kHz on
May 8 at 15:59:58 will have the tweak 54 3b fe 80 00 01 75 50. Similarly, the second
and third words in the two frames will have the same differences.

4.2 Gathering Data
As mentioned in Section 3.2, the probability that a pair of words will have the required
ciphertext difference is 2−24. If all captured frames have three words, i.e. the lowest
possible number of words per frame, the probability that a pair of two frames with the

228 Breaking HALFLOOP-24

1 4 5 9 10 20 21 26 27
Month Day Coarse time Fine time Word

34 37 40 41 44 45 48 49 52 53 56 57 60 61 64
Zero 100 MHz 10 MHz 1 MHz 100 kHz 10 kHz 1 kHz 100 Hz

Figure 6: Tweak format for HALFLOOP as used in 2G and 3G ALE. The coarse time
field holds minutes since midnight and the fine time fields holds seconds in the current
minute. The four bit frequency fields are used to encode the frequency as a binary coded
decimal number. Bits 35 and 36 are always zero.

required tweak difference also has at least one pair of words with the required ciphertext
difference is

1 −
(
1 − 2−24)3 ≈ 2−22.4.

We assume that the lower two bits of the second a radio transmits a message is uniformly
random. Then, the number of frames with each of the four possible numbers of seconds
modulo 4 will follow a multinomial distribution. An approximation of the expected number
of pairs in a 16-minute time window with n captured frames that have the required tweak
difference is ⌊

4 ·
(

n
4

) (
n
4 − 1

)
2

⌋
=

⌊
n2

8 − n

2

⌋
,

each with probability 2−22.4 of having the required ciphertext difference in at least one of
the three words. A day has 90 such 16-minute bins.

For example, a 16-minute bin with 96 captured frames (one every 10 seconds), cor-
responding to very high intensity traffic, is expected to have about 1104 pairs with the
required tweak difference. The probability that at least one of those pairs has the required
ciphertext difference is 1 −

(
1 − 2−22.4)1104 ≈ 2−12.3.

4.3 Plaintext differences
Having the required difference in ciphertext and tweak is not enough. The two callsigns in
the plaintext must also have the same difference in the last eight bits of the word, i.e. in
the last character and the least significant bit of the middle character, as in the ciphertexts
and tweaks. The callsigns must be identical in the other 13 bits. The probability of
this ultimately depends on how callsigns are assigned in the particular radio network. A
network could have no callsigns that differ only in the last eight bits. This would mean
that the required plaintext difference can never appear. This would however significantly
limit the number of possible callsigns in a network. In the case of randomly assigned
callsigns, the probability of a plaintext pair with the same difference as the tweak is
36−1 · 18−1 · 2−8 ≈ 2−17.3. In practice, the probability may actually be higher for a number
of reasons. For example, the number of stations in a given network are often not close to
the maximum number of possible callsigns, callsigns may be assigned sequentially according
to organizational structure (as opposed to randomly), and stations that are close to each
other organizationally are more likely to communicate with each other [Cal89].

A document available online [ALE21] contains, among other things, a large list of
observed callsigns in a number of unencrypted ALE networks, mostly belonging to gov-
ernment agencies in the United States and Europe. While the data is of uncertain origin,
it is the only source available that provides any insight in how callsigns are assigned in
ALE networks. We sorted all valid three letter callsigns from the list by network name
and enumerated all possible pairs of three-character callsigns for each network. We then
calculated how many possible pairs in each network that differed only in the least significant

Marcus Dansarie, Patrick Derbez, Gregor Leander and Lukas Stennes 229

User 1

Radio 1
(AAA)

Radio 2
(AAB) User 2

Loop [until called]

1Scan frequencies 2 Scan frequencies

3 Initiate call to AAB

4 Select frequency

5 TO AAB, TO AAB, TIS AAA

6 TO AAA, TO AAA, TIS AAB

7 TO AAB, TO AAB, TIS AAA

8 Notify user 9 Notify user

Voice or data transmission [loop until transmission completed]

10 End call

11TO AAB, TO AAB, TWAS AAA

12 Notify user

Loop [until called]

13 Scan frequencies 14 Scan frequencies

Figure 7: Sequence diagram of a typical 2G ALE call between two radio stations with
callsigns AAA and AAB. The users can be either humans or computers, depending on the
application.

230 Breaking HALFLOOP-24

Table 3: Possible call sign pairs in networks with more than 20 observed three-letter
callsigns. The data is adapted from the list provided in [ALE21]. It is of uncertain origin
and the names assigned to the networks may not reflect their actual operators. (LSB =
Least Significant Byte)

Observed Observed Fraction of pairs
callsigns 3-character with difference

Network name in network callsigns only in LSB
USCG 269 262 2.5 %
FBI 82 68 0.9 %
CBP 72 68 3.3 %
Sweden 64 64 21.5 %
Romania 56 54 1.7 %
US 3-Letter Net 46 45 0.6 %
USAF 73 38 1.1 %
COTHEN 46 31 0.2 %
Saudi Arabia 29 28 9.0 %
UK 22 22 10.8 %
Venezuelan Navy 52 21 7.6 %
US Army National Guard 50 21 0.5 %

byte. The results for the networks in the list with more than 20 observed callsigns are
presented in Table 3. All but one of the networks have significantly more possible pairs of
callsigns that differ in only the least significant byte than what would be expected if the
callsigns were randomly assigned using all 36 available characters.

Combining the assumption of 96 messages per 16-minute window and with the highest
observed fraction of plaintext pairs that differ only in the LSB from Table 3 results in a
probability of

1 −
(
1 − 2−22.4 · 0.215 · 2−8)⌊

962
8 − 96

2

⌋
= 2−22.5

that a given 16-minute window contains at least one ALE word with good plaintext,
ciphertext and tweak differences. This can be considered the best-case scenario for an
attacker only capable of recording transmitted frames and their corresponding plaintexts.
Since three good pairs are needed to mount the attack, an attacker would have to collect
frames for

3 · 222.5

90 · 365.25 ≈ 541 years

to have a 50% probability of success. (Two pairs can be leveraged for a complexity 280

attack. This would lower the expected time by one third.)
In other words, although getting pairs of messages with a good tweak difference is

fairly easy, the low probability of getting the same difference in ciphertext and plaintext,
even under favorable conditions, makes the attack unlikely to work in practice. Fig. 8
shows the probability of success as a function of time for three different traffic intensities,
representing high to very high network usage. In the high-traffic scenarios, the probability
of success after a year may still be higher than what is acceptable for some users. In the
worst case presented, it is 1.5% after a year.

4.4 A Ciphertext-only Attack
By leveraging knowledge of the structure of the plaintexts, the attack described in Section 3
can be adapted into a ciphertext-only attack that is performed as follows.

Marcus Dansarie, Patrick Derbez, Gregor Leander and Lukas Stennes 231

100 101 102 103

Time [years]

0.0

0.2

0.4

0.6

0.8

1.0
Pr
ob

ab
ili
ty

of
su

cc
es

s
10 messages / min
6 messages / min
1 message / min

Figure 8: Probability of finding three pairs with good differences in plaintexts, ciphertexts
and tweaks as a function of time in a best-case scenario.

1. Gather Data: In each 16-minute window, we collect all observed ciphertexts and
store all pairs that have the required ciphertext and tweak differences. We do this
until we have a sufficiently high probability of having collected four pairs with good
plaintexts. The probability pP T that a stored pair will have the required plaintext
difference varies between networks as described in Section 4. The probability of
having found at least four good pairs after n collected ciphertexts is

1 −
3∑

k=0

(
n

k

)
(1 − p)n−k

pk,

where p = 2−8 · pP T is the probability that the plaintexts have the correct difference
(see Section 4.3).

2. Enumerate candidate keys: For each possible combination of three collected
pairs, we build the left and right tables as described in Section 3.3 and perform the
first enumeration as described Section 3.4. We store all candidate keys in a sorted
list. For n ciphertext pairs with the required ciphertext and tweak differences, this
means performing the enumeration step for

(
n
3
)

choices of three ciphertext pairs.
Each search for candidate keys has a time complexity proportional to 232 and will
yield approximately 28 random 80-bit candidate keys, meaning that approximately
m =

(
n
3
)

· 28 candidate keys will be generated in total. The correct candidate appears
at least four times since there are four combinations of three good pairs whereas the
number of wrong key candidates appearing four times is roughly m4 ·2−240, assuming
they are distributed randomly. Thus, it is easy to identify the correct key candidate.
With a time complexity of

(
n
3
)

· 232, this step dominates the overall time complexity
of the attack.

3. Full key search: We run the full key search as described in Section 3.5. Instead
of known plaintexts, we verify that the computed plaintexts have the correct type

232 Breaking HALFLOOP-24

0.00 0.05 0.10 0.15 0.20 0.25
pPT

104

105

Re
qu

ire
d
nu

m
be

ro
fc

ip
he

rt
ex

tp
ai
rs

Figure 9: Required number of good ciphertext pairs for 50% probability of success in the
ciphertext-only attack as a function of the probability pP T that two plaintexts differ only
in the least significant eight bits.

Table 4: Time, data and memory complexities of the ciphertext-only attack for some
values of pP T . The data complexity values are dependent on traffic intensity. Here, 6
messages per minute are assumed.

pP T n Time Data Memory
2−9.3 609151 ≈ 219.2 287.1 238.2 263.1

0.02 47003 ≈ 215.5 276.0 234.5 252.0

0.215 4372 ≈ 212.1 265.7 231.1 241.7

bits, contain only allowed callsign characters, that words one and two of each frame
are identical, and that the plaintext pairs have the expected differences. The time
complexity of this step is 248.

Fig. 9 shows the number of required good ciphertext pairs that are required for a 50%
probability of success as a function of pP T . We list the time, data and memory complexity
for some values of pP T in Table 4.

A Note on 3G ALE In addition to its use in 2G ALE, HALFLOOP-24 is also used for
encrypting 26-bit robust link setup (RLSU) frames, called protocol data units (PDU),
in 3G ALE. This is achieved by transmitting the two most significant bits unencrypted
and encrypting only the least significant 24 bits. There are five types of RLSU PDUs.
All have linear checksums in the least significant bits. In three cases, the checksums are
eight bits long, meaning that plaintexts that differ in only the least significant byte are
impossible. The other two, the call PDU and notification PDU, have four bit checksums.
The notification PDU is, among other things, used for regular sounding calls [JKF+12]. In
those cases, ten of the 24 bits will be known with certainty to an outside observer. Since

Marcus Dansarie, Patrick Derbez, Gregor Leander and Lukas Stennes 233

four of the remaining bits are a checksum, the transmitter’s ten-bit identity is the only
uncertain part of an intercepted 3G ALE RLSU sounding. Three of those bits are in the
least significant byte, meaning that a pair of intercepted such PDUs will have probability
2−7 of differing only in that byte, if the identities are distributed uniformly random. This
could be leveraged for ciphertext-only attacks against 3G ALE RLSU networks with
complexities similar to those for 2G ALE.

5 A boomerang Attack
In this section, we describe a boomerang attack, i.e. a chosen-ciphertext attack, against
HALFLOOP-24. This requires an encryption and also decryption oracle which for example
could be achieved by gaining physical (but only temporary) access to a radio that stores
the desired key.

Regard Fig. 10 where we restore the first key byte. To do so, we utilize a boomerang
that returns with probability one if the plaintext difference δ cancels the tweak-induced
difference β in the first round key. More specifically, consider two plaintexts p0, p1 with
p0 ⊕ p1 = δ||016 and two corresponding tweaks t0, t1 with t0 ⊕ t1 = 024||β̃||016 where β̃ is
such that L−1β̃ = β||016. For convenience, we assume t0 = 0 in the following, so that we
can omit the normalization. We swap the first linear layer with the addition of rk1. Then,
the only state difference after the addition of L−1rk1 is in the most significant byte and
its value is

S(p0[0:8] ⊕ rk0[0:8]) ⊕ S(p0[0:8] ⊕ rk0[0:8] ⊕ δ) ⊕ β. (2)
Detecting that this difference is zero for specific values of δ and β enables us to restore
rk0. Now recall Fig. 2 and notice that there is no round key difference until rk6. Hence,
if Eq. (2) is zero, then the state difference before adding rk6 is zero too. After adding
rk6, the difference of the middle state s, is therefore 0||β̃[8:16]. Now consider the resulting
ciphertexts c0 and c1. For the backward part of our boomerang, we do not change these,
i.e. we have c′

0 = c0 and c′
1 = c1. The tweaks are changed as follows:

t′
0 = t0 ⊕ 016||γ||024||γ||08

t′
1 = t1 ⊕ 016||γ||024||γ||08

where γ ∈ Fn
2 \ {0} is arbitrary. Now, we decrypt (c′

0, t′
0) and (c′

1, t′
1). The difference

of t0 and t′
0 is chosen such that it does not influence the last four round keys and since

c0 = c′
0, we obtain the same middle state s′

0 = s0. The same holds for s′
1 = s1. Hence, the

difference s′
0 ⊕ s′

1 is again 0||β̃[8:16] and therefore canceled by the addition of rk6 which
has the same difference as before as t′

0 ⊕ t′
1 = t0 ⊕ t1. There is no difference for the round

keys rk5, rk4, rk3, rk2 and so we end up with the difference β induced by the addition of
L−1rk1 in the most significant byte again. Finally, we obtain two plaintexts p′

0 and p′
1

with p′
0 ⊕ p′

1 = δ′||016 such that Eq. (2) is also fulfilled if we replace δ with δ′.
Summing up, we need at most 28 encryption and decryption queries to find the first

key byte. In the same way, we can find the second and third key byte. Notice, for the third
key byte we have to add γ to the input of both SBoxes in Eq. (2) for the back direction.
This of course already breaks the security of 128 bits since only 104 unknown key bits
remain, but it is also not hard to see that one can recover these more efficiently than brute
force. We leave the details to future work.

Experimental Verification We implemented our boomerang attack and tested it in a
lab setting. The results are depicted in Appendix A. Executing our attack takes less
than a second on a modern laptop. In other words, the time needed to run the attack
essentially only depends on the rate of encryption and decryption queries. Therefore, we
only average the number of needed queries. For 1000 runs, we obtain an average number

234 Breaking HALFLOOP-24

encrypt

rk0

⊕

⊕

⊕

S

S

S

L−1rk1

⊕

⊕

⊕

L

S

S

S

L

rk6

⊕

⊕

⊕

S

S

S

rk10

⊕

⊕

⊕

∆rk = 0 for p0 and p1

δ
β

p0, p1 s0, s1 c0, c1

ch
an

ge
tw

ea
ks

decrypt

rk0

⊕

⊕

⊕

S

S

S

L−1rk1

⊕

⊕

⊕

L

S

S

S

L

rk6

⊕

⊕

⊕

S

S

S

rk10

⊕

⊕

⊕

∆rk = 0 for c′
0 and c′

1 ∆rk = 0 for ci and c′
i

δ′
β

p′
0, p′

1 s′
0, s′

1 c′
0, c′

1

Figure 10: Boomerang key recovery.

Marcus Dansarie, Patrick Derbez, Gregor Leander and Lukas Stennes 235

of 385 encryption plus 385 decryption queries to restore the first round key which is in line
with our theoretical estimation of a maximum of 3 · 28 = 768 needed queries per round key.

6 Conclusion
We have presented theoretical and practical attacks against the HALFLOOP-24 cipher
which is used to protect the automatic link establishment in HF radio. We revealed
that HALFLOOP-24 is far from providing 128 bits of security, although it is not known
whether that is indeed the intended security level. In fact, the design requirements for
HALFLOOP that have been published [Joh16] mostly focus on the requirement that
the encryption should not decrease ALE performance, along with a note that the US
government has considered the use of AES-128 in approved implementations sufficient to
protect classified information. In any case, it is apparent that HALFLOOP-24 was not
subjected to a thorough security analysis before its introduction. This, as well as the fact
that its predecessor SoDark is only a 56-bit cipher, leaves many open questions about the
design goals, decisions and the process of the authorities in charge.

Surely, one could try to mitigate the presented weakness, e.g. by increasing the number
of rounds as was done when the number of rounds in SoDark was increased from eight
in 2G ALE to sixteen in 3G ALE. Alternatively, one could avoid using the 2G ALE or
3G ALE RLSU modes which use HALFLOOP-24, instead using only modes that use
HALFLOOP-48 or HALFLOOP-96. However, the security of the latter has not yet been
studied and is therefore unknown. We leave this as future work. In the meantime, we
advise against the use of any HALFLOOP variant. Instead, security should rely on ciphers
that have undergone rigorous public security analysis.

Acknowledgments
We would like to thank Schloss Dagstuhl, as this work was discussed at Dagstuhl-Seminar
22141 (symmetric cryptography).

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972.

References
[ALE21] List of automatic link establishment agencies and frequencies, 2021.

http://www.ominous-valve.com/ale-list.txt.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack reduced
to 31 rounds using impossible differentials. In Jacques Stern, editor, Advances
in Cryptology - EUROCRYPT ’99, International Conference on the Theory
and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6,
1999, Proceeding, volume 1592 of Lecture Notes in Computer Science, pages
12–23. Springer, 1999.

[Bih97] Eli Biham. A fast new DES implementation in software. In Eli Biham, editor,
FSE’97, volume 1267 of LNCS, pages 260–272. Springer, Heidelberg, January
1997.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016

http://www.ominous-valve.com/ale-list.txt

236 Breaking HALFLOOP-24

- 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in
Computer Science, pages 123–153. Springer, 2016.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the full
AES-192 and AES-256. In Mitsuru Matsui, editor, Advances in Cryptology -
ASIACRYPT 2009, 15th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Tokyo, Japan, December 6-10,
2009. Proceedings, volume 5912 of Lecture Notes in Computer Science, pages
1–18. Springer, 2009.

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of CRYPTOLOGY, 4(1):3–72, 1991.

[Cal89] Lambros D. Callimahos. Traffic Analysis and the Zendian Problem : An Exercise
in Communications Intelligence Operations. Aegean Park Press, Laguna Hills,
CA, 1989.

[Dan21] Marcus Dansarie. Cryptanalysis of the SoDark cipher for HF radio automatic
link establishment. IACR Trans. Symmetric Cryptol., 2021(3):36–53, 2021.

[DoD88] Interoperability and performance standards for medium and high frequency
radio systems. United States Department of Defense Interface Standard MIL-
STD-188-141A, 1988.

[DoD17] Interoperability and performance standards for medium and high frequency
radio systems. United States Department of Defense Interface Standard MIL-
STD-188-141D, 2017.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

[JKF+12] Eric E Johnson, Erik Koski, William N Furman, Mark Jorgenson, and John
Nieto. Third-generation and Wideband HF Radio Communications. Artech
House, Norwood, MA, 2012.

[Joh16] Eric E. Johnson. Wideband ALE – the next generation of HF. In 2016 Nordic
HF Conference, HF 16, Fårö, Sweden, 2016.

[Wag99] David A. Wagner. The boomerang attack. In Lars R. Knudsen, editor, Fast
Software Encryption, 6th International Workshop, FSE ’99, Rome, Italy, March
24-26, 1999, Proceedings, volume 1636 of Lecture Notes in Computer Science,
pages 156–170. Springer, 1999.

Marcus Dansarie, Patrick Derbez, Gregor Leander and Lukas Stennes 237

A Example Output of Our Attack Implementations
Here, we give example outputs for our attacks described in Sections 3 and 5.

Listing 1: Generation of four chosen plaintext–ciphertext–tweak pairs as described in
Section 3.2.
Key : 71915 d837a45a05689e33d745c2b7b38
4 p a i r s generated in 0 .2 seconds .
Number o f chosen p l a i n t e x t q u e r i e s : 561152

Listing 2: Output of one run of the attack described in Section 3.
[0 6 : 0 2 : 4 9] I n i t i a l i z i n g HALFLOOP−24 l i b r a r y .
[0 6 : 0 2 : 4 9] Loading tu p l e s from data . txt .
[0 6 : 0 2 : 4 9] Loaded 8 tu p l e s .
[0 6 : 0 2 : 4 9] Found 4 good p a i r s .
[0 6 : 0 2 : 4 9] Search ing f o r 80− b i t candidate keys .
[0 6 : 0 2 : 5 1] Le f t t ab l e s i z e : 300
[0 6 : 0 8 : 5 2] Found 323 candidate keys .
[0 6 : 0 8 : 5 3] Le f t t ab l e s i z e : 266
[0 6 : 1 4 : 1 2] Found 282 candidate keys .
[0 6 : 1 4 : 1 2] 1 candidate key remaining .
[0 6 : 1 4 : 1 2] Time spent bu i l d i ng l e f t t a b l e s :

0 minutes and 2 .8 seconds .
[0 6 : 1 4 : 1 2] Time spent bu i l d i ng r i g h t t a b l e s :

0 minutes and 0 .0 seconds .
[0 6 : 1 4 : 1 2] Time spent enumerating candidate keys :

11 minutes and 20 .1 seconds .
[0 6 : 1 4 : 1 2] Search ing f o r remaining 48 b i t s f o r key

81 0 f 7216 c7eb2e3dbcd3 (1 / 1) .
[0 6 : 1 4 : 1 2] Spawning 16 threads .
[0 6 : 2 0 : 2 5] 1% done 7558585494 keys / second .
[0 6 : 2 6 : 3 5] 2% done 7607707818 keys / second .
[0 6 : 3 2 : 4 9] 3% done 7512880168 keys / second .
[0 6 : 3 8 : 5 9] 4% done 7604368012 keys / second .
[0 6 : 4 5 : 1 3] 5% done 7524366063 keys / second .
[0 6 : 5 1 : 2 6] 6% done 7560786600 keys / second .
[0 6 : 5 7 : 3 7] 7% done 7587583319 keys / second .
[0 7 : 0 3 : 5 1] 8% done 7511394037 keys / second .
[0 7 : 1 0 : 0 8] 9% done 7484862010 keys / second .
[0 7 : 1 6 : 1 8] 10% done 7602523998 keys / second .
[0 7 : 2 2 : 2 7] 11% done 7616353731 keys / second .
[0 7 : 2 8 : 4 0] 12% done 7560130350 keys / second .
[0 7 : 3 4 : 5 0] 13% done 7608953536 keys / second .
[0 7 : 4 0 : 5 9] 14% done 7608874360 keys / second .
[0 7 : 4 7 : 1 5] 15% done 7502177912 keys / second .
[0 7 : 5 3 : 2 5] 16% done 7607708047 keys / second .
[0 7 : 5 9 : 0 8] Found key : 71915 d837a45a05689e33d745c2b7b38
[0 7 : 5 9 : 1 9] Time spent s ea r ch ing f o r key :

1 hour , 45 minutes and 6 .5 seconds

238 Breaking HALFLOOP-24

Listing 3: Output of one run of the boomerang attack described in Section 5.
[1 0 : 2 8 : 1 1] I n i t i a l i z i n g HALFLOOP−24 l i b r a r y .
[1 0 : 2 8 : 1 1] Key : 89681 b1a281e9bd07851f91f7578dd5e
[1 0 : 2 8 : 1 1] Seed : 3 cbae7385a8b9626
[1 0 : 2 8 : 1 1] P l a in t ex t : dcb26a
[1 0 : 2 8 : 1 1] Ciphertext : cc6930
[1 0 : 2 8 : 1 1] Beta : c0
[1 0 : 2 8 : 1 1] Gamma: e f
[1 0 : 2 8 : 1 1] Key byte 0 : 89 (d = 32 d ’ = db) .
[1 0 : 2 8 : 1 1] Key byte 1 : 68 (d = 1c d ’ = d8) .
[1 0 : 2 8 : 1 1] Key byte 2 : 1b (d = fa d ’ = 2c) .
[1 0 : 2 8 : 1 1] Performed 329 encrypt i ons and 329 dec rypt i ons .

	Introduction
	Description of HALFLOOP-24
	A Related-Tweak Attack
	Overview of the Attack
	Gathering Data
	Building Tables
	First Enumeration
	Second Enumeration
	Experimental Verification

	From Theory to Practice
	Plaintexts in 2G ALE
	Gathering Data
	Plaintext differences
	A Ciphertext-only Attack

	A boomerang Attack
	Conclusion
	Example Output of Our Attack Implementations

