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The LowMC Primitive

Proposed at Eurocrypt 2015

Designed to be MPC/FHE/ZK-friendly

Flexible parameters (affine layers, KSF, #S-boxes per round)

Key Addition

S-box

Affine Layer

Key Addition
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Figure: The round function of LowMC
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The Picnic Setting

Problem

Given 1 known plaintext-ciphertext pair denoted by (p, c), how to recover
the secret key k such that

c = LowMC(p, k)

■ Extreme case

• 1 S-box per round

■ Picnic2

• 10 S-boxes per round

■ Picnic3

• full S-box layer
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Cryptanalysis of LowMC

■ > 3 chosen plaintext-ciphertext pairs

• Higher-order differential attack (ICISC 2015)
• Interpolation attack (Asiacrypt 2015)

■ = 3 chosen plaintext-ciphertext pairs

• Difference enumeration attack (ToSC 2018)

■ = 2 chosen plaintext-ciphertext pairs (Security proof of Picnic)

• Difference enumeration + algebraic method (CRYPTO 2021)
• Algebraic MITM method (Asiacrypt 2022)

■ = 1 known plaintext-ciphertext pair (Security of Picnic)

• Guess-and-determine (GnD) attack (ToSC 2020, Asiacrypt 2021)
• Polynomial method (EUROCRYPT 2021)
• Polynomial method + GnD (ToSC 2022)
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On Möbius Transform

Recovering the ANF

Given the truth table for a function f (x) : Fu
2 7→ F2, we can recover the

Algebraic Norm Form (ANF) of

f (x) =
⊕

b=(b1,b2,...,bu)∈Fu
2

g(b)
u∏

i=1

xbii ,

i.e, recovering the truth table of (b, g(b)).
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Figure: Recovering the ANF
Fukang Liu et al. Low-Memory Algebraic Attacks on LowMC FSE 2023 5 / 31



On Möbius Transform

Evaluating f (x) over all x ∈ Fu
2

Given the ANF of f (x) : Fu
2 7→ F2 of algebraic degree d , i.e. the truth

table of (b, g(b)) is known, we can recover the truth table (x , f (x)) with
the Möbius transform.
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Figure: Evaluating a polynomial
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On Möbius Transform

■ standard Möbius transform:

• time: u · 2u bit operations.

• memory: 2u bits

■ optimized Möbius transform (credit to Dinur):

• time: u · 2u bit operations

• memory: u ·
( u
≤d

)
bits (EUROCRYPT 2021)

■ Evaluating a quadratic (d = 2) polynomial f (x) with Gray code:

• time: u · 2u bit operations

• memory:
( u
≤2

)
bits

Fukang Liu et al. Low-Memory Algebraic Attacks on LowMC FSE 2023 7 / 31



On Crossbred Algorithm

Core idea 1

Given a Boolean polynomial f (x) , we aim to split x = (x1, . . . , xu) into
two parts y , z of length u − u1 and u1, respectively, i.e.

{y1, . . . yu−u1 , z1, . . . , zu1} = {x1, . . . , xu}

such that f (x) can be rewritten as

f (x) =
∑

qi (y)ℓi (z)

where ℓi is a linear function in z . In this case, we simply say f (x) is linear
in z .
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On Crossbred Algorithm

Core idea 2

Given m Boolean polynomial equations

f1(x) = 0, f2(x) = 0, . . . , fm(x) = 0

we aim to find a possible way to divide x into (y , z) such that m′

polynomials fi (x) are linear in z .

In this way, we can exhaust all possible values of y ∈ Fu−u1
2 and

solve the corresponding m′ linear equations in z.
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On Crossbred Algorithm for Quadratic Equation Systems

The original crossbred algorithm

Let
f1(x) = 0, f2(x) = 0, . . . , fm(x) = 0

be m quadratic Boolean equations in u variables.

For each fi , we can generate some degree-3 and degree-4 equations:

xj fi (x) = 0, xjxk fi (x) = 0.

Then, we obtain a much overdefined system of high-degree
equations and expect to find as many linear equations in z from
these equations by splitting x into y and z.
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On Crossbred Algorithm for Quadratic Equation Systems

The simplified crossbred algorithm

Let
f1(x) = 0, f2(x) = 0, . . . , fm(x) = 0

be m quadratic Boolean equations in u variables where m > u.

Randomly choose u1 variables such that

m ≥ u1 +

(
u1
2

)
and set them as z . Then, we can always expect to obtain

m −
(
u1
2

)
linear equations in z by eliminating all quadratic terms zizj .
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On Crossbred Algorithm for Quadratic Equation Systems

The simplified crossbred algorithm

In this way, we obtain the following equation system:

A · (z1, z2, . . . , zu1)T = B,

where each element in A and B is linear and quadratic in y , resp.

Finally, with the polynomial evaluation, traverse y over Fu−u1
2 and

compute the corresponding matrices A and B. Solve the linear equation
system in z and recover z .
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z1z2

z1

zu1

.

.

.
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.
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On Crossbred Algorithm for Quadratic Equation Systems

Let
ϵ+ u1 = m − u1(u1 − 1)/2, ϵ > 0.

The total time complexity is

m2 ·
(

u

≤ 2

)
+ 2u−u1 · (u1 + ϵ) · (u21 + u1 · ϵ+ u)

bit operations.
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On Dinur’s Algorithm

Let
E (x) : P1(x) = P2(x) = 0 = . . . = Pm(x) = 0

be m Boolean equations in u variables and the degree is d .

The core idea:

1 Split x into y ∈ Fu−u1
2 and z ∈ Fu1

2 .

2 Randomly pick ℓ = u1 + 1 equations from the m equations and
denote them by

E1(y , z) : R1(y , z) = R2(y , z) = · · · = Rℓ(y , z) = 0

3 Each solution to E (x) must be a solution to E1(y , z), but the inverse
does not hold. The goal is efficiently enumerate the solutions to
E1(y , z) and check their correctness against E (x).
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On Dinur’s Algorithm

Assumption

We assume that when the value of y is specified, there is at most 1
solution of z satisfying E1(y , z), and the corresponding (y , z) is called the
isolated solution to E1(y , z).

[Reason: after y is specified, we have ℓ = u1 +1 equations in u1 variables.]
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On Dinur’s Algorithm

How to efficiently solve E1(x)?
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On Dinur’s Algorithm

Polynomial method

Let
F1(y , z) = (R1(y , z)⊕ 1)(R2(y , z)⊕ 1) . . . (Rℓ(y , z)⊕ 1).

Then, E1(y , z) is equivalent to the following equation

F1(y , z) = 1.

Hence, the problem becomes how to enumerate all possible (y , z)
such that F1(y , z) = 1.
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On Dinur’s Algorithm

New representations of F1(y , z) (similar to cube attack):

F1(y , z) = z1z2 . . . zu1U0(y)⊕ Q0(y , z),

F1(y , z) = z1z2 . . . zi−1zi+1 . . . zu1Ui (y)⊕ Qi (y , z) where zi = 0.

Then, we have

U0(y) =
⊕
z∈Fu1

2

F1(y , z),

Ui (y) =
⊕

(z1,z2,...,zi−1,zi+1,...,zu1 )∈F
u1−1
2 ,zi=0

F1(y , z) where 1 ≤ i ≤ u1,

dU0 = Deg(U0) ≤ dF1 − u1,

dUi
= Deg(Ui ) ≤ dF1 − u1 + 1 where 1 ≤ i ≤ u1.
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On Dinur’s Algorithm

Properties under the previous assumption

If
U0(y) = 0,

there will be no solution to z .
If

U0(y) = 1,

there is a solution to z and it can be computed as follows:

zi = Ui (y)⊕ 1, i ∈ [1, u1].
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On Dinur’s Algorithm

The overall procedure:

1 Find the ANFs of Ui (y) where i ∈ [0, u1].

2 Evaluate Ui (y) over all y ∈ Fu−u1
2 with the optimized Möbius

transform.

3 For each obtained value of Ui (y), use the above property to recover z
and hence x = (y , z) is known.

4 Check the correctness of x = (y , z) against E (x).
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On Dinur’s Algorithm

Costs:

Costs in Step 1 to recover Ui (y).

Costs in Step 2 to evaluate the polynomials over all y ∈ Fu−u1
2 .

Amortize the costs to check the correctness by considering 4 such
smaller systems: E1(y , z), E2(y , z), E3(y , z), E4(y , z).

Time complexity:

4 · (2d · log2u · 2u1 ·
(

u − u1
≤ dF1 − u1 + 1

)
) + 4 · (u1 + 1) · (u − u1) · 2u−u1

Memory complexity:

4 · (u1 + 1) ·
(

u − u1
≤ dF1 − u1 + 1

)
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Analyzing LowMC in the Picnic Setting (ToSC 2022)

Attack on 3-round LowMC:

• GnD + crossbred algorithm (m variables; 3m quadratic equations)

S

S

S

S

S

L1

S

S

S

S

S

L2

S

S

S

S

L3

A3 (quadratic in v)A2 (linear in v)A1 (linear in K) A4 (linear in v)

Guessed
· · ·

· · ·· · ·· · ·
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Results for 3-Round LowMC

Methods n k s r Time Memory

Fast exhaustive search
129 129 43 3

2134.8 221

Dinur’s algorithm 2125 2104

Our attack 2127.2 216.9

Fast exhaustive search
192 192 64 3

2197.9 222.7

Dinur’s algorithm 2180 2150

Our attack 2186.2 218.6

Fast exhaustive search
255 255 85 3

2261 224

Dinur’s algorithm 2235 2197

Our attack 2246.8 219.8
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Analyzing LowMC in the Picnic Setting (ToSC 2022)

Attack on 4-round LowMC:

• GnD + polynomial method (m variables; 14m degree-4 equations)

S

S

S

S

S
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S

S

S

S

S
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S

S

S

S
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Results for 4-Round LowMC

Methods n k s r Time Memory

Fast exhaustive search
129 129 43 4

2134.8 221

Dinur’s algorithm 2130 2113

Our attack 2133.8 236.7

Fast exhaustive search
192 192 64 4

2197.9 222.7

Dinur’s algorithm 2188 2164

Our attack 2195.0 253.4

Fast exhaustive search
255 255 85 4

2261 224

Dinur’s algorithm 2245 2218

Our attack 2255.8 268.0

Trivial time-memory trade offs for Dinur’s algorithm:
Time: not higher than ours;
Memory: > 284.6, > 2108.2 and > 2134.2 for k = 129, 192, 255, resp.
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Analyzing LowMC in the Picnic Setting (ToSC 2022)

Attack on LowMC with partial nonlinear layers:

S

S

S L1 L2

Lr−1

Ai (linear in K)A2 (linear in K)A1 (linear in K)

Ar−1 (linear in (K,µ))

Guessed

· · ·

S

S

S

· · ·

· · ·

S

S

S

· · ·

Li

S

S

S

· · ·

Ai+1 (linear in (K,µ))

· · ·

S

S

S

· · ·

Ar (linear in (K,µ))

S

S

S

· · ·

Intermediate variables (µ)

Ar+1 (linear in K)

Lr

Fukang Liu et al. Low-Memory Algebraic Attacks on LowMC FSE 2023 26 / 31



Analyzing LowMC in the Picnic Setting (ToSC 2022)

Attack on LowMC with partial nonlinear layers:

• GnD + crossbred algorithm (h variables; αh quadratic equations)

• Guess 1 quadratic equation → 3 quadratic equations

• intermediate variables →14 quadratic equations per S-box
Linearization:

z0 = x0 ⊕ x1x2 = a⋆,

z1 = (x1x2 ⊕ a⋆)⊕ x1 ⊕ (x1x2 ⊕ a⋆)x2 = a⋆ ⊕ x1 ⊕ a⋆x2,

z2 = (x1x2 ⊕ a⋆)⊕ x1 ⊕ x2 ⊕ (x1x2 ⊕ a⋆)x1 = a⋆ ⊕ x1 ⊕ x2 ⊕ a⋆x1.

3 additional quadratic equations:

z0 = x0 ⊕ x1x2 = a⋆,

x0x1 ⊕ x1x2 = x1a
⋆,

x0x2 ⊕ x1x2 = x2a
⋆.
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Results for Partial Nonlinear Layers

Methods n k s r
Time Time Memory

(#bit operations) (#calls) (in bits)

MITM
128 128 1 128

2147 2125 222

Our attack 2142.3 2120.3 218.9

MITM
192 192 1 192

2212.8 2189 222

Our attack 2205.8 2182.1 219.9

MITM
256 256 1 256

2278 2253 222

Our attack 2268.7 2243.7 220.5
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Results for Partial Nonlinear Layers

Methods n k s r
Time Time Memory

(#bit operations) (#calls) (in bits)

MITM
128 128 10 12

2129.6 2111 238

Our attack 2134.6 2116.0 218.8

MITM
192 192 10 19

2199.4 2179 238

Our attack 2203.7 2183.2 220.0

MITM
256 256 10 25

2259.6 2238 238

Our attack 2262.8 2241.2 220.6
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Summary

1 Efficient attacks on LowMC when memory is costly.

2 New guess strategies combined with advanced techniques to solve
nonlinear equations

3 Can we improve the polynomial method for overdefined systems?
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Thank you
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