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Abstract. Motivated by new applications such as secure Multi-Party Computation
(MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK),
many MPC-, FHE- and ZK-friendly symmetric-key primitives that minimize the
number of multiplications over Fp for a large prime p have been recently proposed
in the literature. This goal is often achieved by instantiating the non-linear layer
via power maps x 7→ xd. In this paper, we start an analysis of new non-linear
permutation functions over Fn

p that can be used as building blocks in such symmetric-
key primitives. Given a local map F : Fm

p → Fp, we limit ourselves to focus on
S-Boxes over Fn

p for n ≥ m defined as SF (x0, x1, . . . , xn−1) = y0∥y1∥ . . . ∥yn−1 where
yi := F (xi, xi+1, . . . , xi+m−1). As main results, we prove that

• given any quadratic function F : F2
p → Fp, the corresponding S-Box SF over Fn

p

for n ≥ 3 is never invertible;
• similarly, given any quadratic function F : F3

p → Fp, the corresponding S-Box
SF over Fn

p for n ≥ 5 is never invertible.
Moreover, for each p ≥ 3, we present (1st) generalizations of the Lai-Massey con-
struction over Fn

p defined as before via functions F : Fm
p → Fp for each n = m ≥ 2

and (2nd) (non-trivial) quadratic functions F : F3
p → Fp such that SF over Fn

p for
n ∈ {3, 4} is invertible. As an open problem for future work, we conjecture that for
each m ≥ 1 there exists a finite integer nmax(m) such that SF over Fn

p defined as
before via a quadratic function F : Fm

p → Fp is not invertible for each n ≥ nmax(m).
Finally, as a concrete application, we propose Neptune, a variant of the sponge
hash function Poseidon, whose non-linear layer is designed by taking into account
the results presented in this paper. We show that this variant leads to a concrete
multiplication reduction with respect to Poseidon.
Keywords: Multiplicative Complexity · Non-Linear Layer · MPC/FHE/ZK-Friendly
Schemes · Poseidon

1 Introduction
Due to the development of new applications such as Secure Multi-Party Computation
(MPC), Fully Homomorphic Encryption (FHE), and Zero-Knowledge proofs (ZK), several
symmetric cryptographic schemes have been recently proposed in the literature to minimize
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the number of non-linear operations (namely, field multiplications) in their natural algorith-
mic description, often referred to as the multiplicative complexity. (From now on, we also
use the term Fp-multiplication – or simply, multiplication – to refer to a non-linear operation
over Fp.1) Today, many of the mentioned applications operate on Fp ≡ GF(p) for a large
prime p ≥ 3 (usually, p is of order 264, 2128 or even bigger), hence having cryptographic
schemes that have a natural description over Fp is desirable. MPC-, FHE- and ZK-friendly
symmetric-key primitives defined over Fp include MiMC [AGR+16], GMiMC [AGP+19],
HadesMiMC [GLR+20], Rescue [AAB+20], Poseidon [GKR+21], Masta [HKC+20], Ci-
minion [DGGK21], Pasta [DGH+21], Grendel [Sze21], Reinforced Concrete [GKL+21],
Hydra [GØSW22], and Griffin [GHR+22]. As designing symmetric-key primitives in
this domain is relatively new and not well-understood, many of these schemes share some
common features. In particular, the non-linear function used in almost all of them is a
simple power map x 7→ xd. One of the few exceptions is Masta, whose non-linear layer
resembles the chi-function introduced in [Wol85], which constitutes a prototype for the
construction of the new non-linear functions we study in this paper. We start a research
of new non-linear permutation functions over Fn

p that can be used as building blocks in
MPC-, FHE- and ZK-friendly symmetric-key primitives.

1.1 The Round Function and the Non-Linear Layer
Symmetric cryptographic schemes including ciphers, permutations and hash functions are
typically designed by iterating an efficiently implementable round function a sufficient
number of times in order to guarantee the desired security level. Such round function is
usually composed of two layers, a non-linear one and a linear/affine one. In more details,
the round function of a scheme over Ft

p for a prime p ≥ 2 and t ≥ 1 is usually defined as

x 7→ c+M× S-Box(x) (1)

for each x ∈ Ft
p, where

• S-Box : Ft
p → Ft

p is the non-linear layer (or substitution layer);

• M∈ Ft×t
p is an invertible matrix, and c ∈ Ft

p is a round constant or a secret key.

Focusing on Substitution-Permutation Network (SPN) schemes, the non-linear layer is
composed of parallel independent non-linear functions. Let 1 ≤ n < t be a divisor of t,
that is, t = n · t′ for a certain integer t′, and let S : Fn

p → Fn
p be an invertible non-linear

function. Given x = (x0, x1, . . . , xt−1) ∈ Ft
p, the substitution layer is usually defined as

S-Box(x) := S(x0, . . . , xn−1) ∥ S(xn, . . . , x2n−1) ∥ . . . ∥ S(xt−n, . . . , xt−1) , (2)

where · ∥ · denotes concatenation. In such a case, the scheme admits an equivalent
representation over Ft′

q , where q := pn, and it can be classified as a strong-arranged SPN
or as a weak-arranged one depending on the details of the linear layer M (see [CGG+22]
for more details).

Invertible Functions over Fn
p ≡ Fpn . Given a non-linear function S over Fn

p ≡ Fpn ,
Hermite’s criterion gives a characterization of which S is a permutation and which is not.

Theorem 1 (Hermite’s Criterion [MP13]). Let q = pn, where p ≥ 2 is a prime and n is a
positive integer. A polynomial F ∈ Fq[x] is a Permutation Polynomial (PP) of Fq if and
only if the following two conditions hold:

1We do not make any distinction between a Fp-multiplication and a square operation, since – to the
best of our knowledge – they have similar costs in the mentioned applications.
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1. the reduction of (F(x))q−1 mod (xq − x) is a monic polynomial of degree q − 1;

2. for each integer t with 1 ≤ t ≤ q − 2 and t ̸= 0 mod p, the reduction of (F(x))t

mod (xq − x) has degree ≤ q − 2.

However, applying the previous criteria on a generic function over Fpn in order to
establish if it is a permutation or not is in general computational demanding. This is
not the case for certain special classes of polynomials, including the power maps and the
Dickson polynomials, for which this question is easy to answer. E.g., a power map x 7→ xd

over Fpn for p ≥ 2 and n ≥ 1 is invertible if and only if gcd(pn − 1, d) = 1. As a direct
consequence, no quadratic function over Fp for p ≥ 3 is invertible.2

Other examples of invertible functions over Fp for p ≥ 3 have been recently proposed in
the literature via the Legendre symbol Lp : Fp → {−1, 0, 1} defined as Lp(x) := x(p−1)/2

(recalled in Definition 3), and they include x 7→ x · (α + Lp(x)) where Lp(α2 − 1) = 1
introduced by Shallue [Sha12], x 7→ xd ·Lp(x) where gcd(d+(p−1)/2, p−1) = 1 introduced
by Szepieniec [Sze21], and their generalization proposed in [GKRS22].

Local Maps. For each z ∈ Fn
p , the generic S-Box S(z) = y0∥y1∥ . . . ∥yn−1 over Fn

p is
defined as

S(z) := F0(z)∥F1(z)∥ . . . ∥Fn−1(z)

where F0, F1, . . . , Fn−1 : Fn
p → Fp are potentially distinct functions. Instead of working

with a generic function S, in this paper we limit ourselves to consider the case in which
each value yi is specified according to a single fixed local map F : Fm

p → Fp for m ≤ n.

Definition 1. Let p ≥ 3 be a prime integer. Let 1 ≤ m ≤ n, and let F : Fm
p → Fp be a

non-linear function. The function SF over Fn
p is defined as

SF (x0, x1, . . . , xn−1) := y0∥y1∥ . . . ∥yn−1 (3)

where
yi = F (xi, xi+1, . . . , xi+m−1) (4)

for each i ∈ {0, 1, . . . , n− 1}, where the sub-indexes are taken modulo n.

It is easy to check that the function SF is shift-invariant in the sense that SF ◦Π =
Π ◦ SF for each translation permutation Π over Fn

p , that is, a map Π(x0, x1, . . . , xn−1) =
xi∥x1+i∥ . . . ∥xn−1+i for a certain i ∈ {0, 1, . . . , n− 1}, where the sub–indexes are taken
modulo n. We refer to the shift-invariant function SF over Fn

p defined via the local map
F : Fm

p → Fp as the “shift-invariant (m,n)-lifting SF induced by F” (for simplicity, we
usually make use of the abbreviation “SI-lifting/SIL function SF ”).

One of the most well known examples of this kind of non-linear layer is the shift-invariant
lifting Sχ over Fn

2 defined via the local map χ : F3
2 → F2

χ(x0, x1, x2) := x0 + (x1 + 1) · x2 mod 2 , (5)

first introduced by Wolfram [Wol85] and then re-considered and analyzed by Daemen [Dae95].
The function Sχ defined over Fn

2 as in Definition 1 is invertible for each odd n ≥ 3 (we refer
to e.g. [Dae95,MDGM22] for the proof), and it is used as a building component in many de-
signs, including Keccak [BPVA+11,BDPA13], Rasta [DEG+18], Subterranean [DMMR20],
among many others. Any shift-invariant lifting Sχ over Fn

2 induced by the χ function as
local map, which therefore is a (2, n)-lifting , has several properties:

2Let F (x) = α · x2 + β · x + γ with α ̸= 0 be a generic quadratic function. Via the change of variable
y = x − β/(2α), we obtain F (y) = α · y2 + γ, which is not invertible since F (y) = F (−y) for each y ∈ Fp.
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• while the degree of Sχ is 2, the degree of S−1
χ (namely, its inverse) is (n + 1)/2,

that is, it is proportional to the field size (see e.g. [Dae95, Section 6.6.2] for details):
hence, the greater is the size of the field n, the greater is the degree of S−1

χ . This
fact has a crucial impact in order to prevent backward or/and Meet-in-the-Middle
(MitM) algebraic attacks, as in the case of Rasta [LSMI21,LSMI22];

• in terms of computational cost (multiplications/ANDs and additions/XORs), the
cost of computing Sχ over Fn

2 is equal to the cost of computing a non-linear layer
defined as the concatenation of n′ independent functions S ′

χ defined over Fn′′

2 for
n = n′ · n′′;

• according to the analysis made in [DMMR20,MDGM22], a scheme instantiated with
Sχ over Fn

2 can achieve the same (if not better) security against statistical attacks
of a scheme instantiated via a non-linear layer defined as the concatenation of n′

independent functions S ′
χ over Fn′′

2 for n = n′ · n′′ as before.

Other examples of local maps F : Fm
2 → F2 which induce an invertible SI–lifting SF over

Fn
2 are listed in [Dae95, App. A.3], including F : F5

2 → F2 defined as

F (x0, x1, x2, x3, x4) = x1 + (x0 + 1) · (x2 + 1) · x3 · x4 or
F (x0, x1, x2, x3, x4) = x2 + (x0 + 1) · (x1 + 1) · x3 · (x4 + 1)

for which the SI–lifting SF over Fn
2 is always invertible for each n ≥ 5.

While some results are proposed in the literature for the binary case, to the best of our
knowledge, no analogous result is known for the prime field case. In this paper, we pick up
this problem, and we study the properties and the multiplicative cost of the SI-lifting SF

over Fn
p induced by a quadratic function F : Fm

p → Fp for a prime p ≥ 3. Our goal would
be to find a local quadratic map F : Fm

p → Fp for a prime p ≥ 3 and for small m ∈ {2, 3}
such that:

1. SF over Fn
p is invertible for a large class of values of n ≥ m;

2. the cost of computing SF over Fn
p in terms of non-linear operations is bounded by n;

3. SF over Fn
p has several good/convenient algebraic and statistical properties similar

to the ones listed for Sχ.

1.2 Our Contributions
Generalized Lai-Massey Construction for n = m. Probably, the easiest example of
an invertible function SF over F2

p defined via a local map F : F2
p → Fp is the Lai-Massey

construction [LM90], for which F (x0, x1) = x0 + (x0 − x1)2 and

SF (x0, x1) = x0 + (x0 − x1)2∥x1 + (x0 − x1)2 .

In Section 3, we start by presenting generalizations of such construction over Fn
p for

m = n, including (i) F (x0, x1, . . . , xn−1) = x0 + (
∑n−1

i=0 (−1)i · xi)2 for n = m even and (ii)
F (x0, x1, . . . , xn−1) = x0 +

∑n−1
i=0 (xi − xi+1)2 among others.

Invertible Quadratic Functions. Even if the Lai-Massey constructions just presented
can be efficiently computed (from the point of view of the multiplicative complexity), a
cryptographic scheme based only on such non-linear functions can be potentially broken
using e.g. an invariant subspace attack [Vau99] if the linear layer is not chosen appropriately.
For this reason, we look for other quadratic functions as possible building blocks of a
MPC-/ FHE-/ZK-friendly symmetric-key primitive, and we find the following:
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• F (x0, x1, x2) = ψ0 · x0 +ψ1 · x1 +ψ2 · x2 + (x0 + x1 + x2) · (α · x0 + β · x1 + γ · x2) for
which the SI–lifting SF over F3

p is invertible if p = 2 mod 3 by carefully choosing
ψi, α, β, γ as given in Proposition 9;

• F (x0, x1, x2) = α · (x0−x1)2 +β · (x1−x2)2 +γ · (x2−x0)2 +ε ·x0 +ε′ · (x0 +x1 +x2)
for which the SI–lifting SF over F3

p is invertible if p = 1 mod 3 by carefully choosing
α, β, γ, ε, ε′ as given in Proposition 10;

• F (x0, x1, x2) = (x0−x1)2+(x1−x2)2+α·x0+β ·(x0+x1+x2) for which the SI–lifting
SF over F4

p is invertible by carefully choosing α, β as given in Proposition 12.

These functions cover all possible values of p ≥ 3, and they can be computed via only
n ∈ {3, 4} non-linear operations, that is, t non-linear operations per round (details are
given in the following). For comparison, a non-linear layer instantiated via the power map
x 7→ xd (for d ≥ 3 so that gcd(d, p − 1) = 1) requires t · (⌊log2(d)⌋ + hw(d) − 1) ≥ 2 · t
non-linear operations,3 which is at least double than the cost required for functions in the
families just proposed.

Non-Existence Results. As main results of this paper:

• in Theorem 2, we prove that there is no quadratic function F : F2
p → Fp such that

the induced SI-lifting SF over Fn
p for n ≥ 3 is a permutation;

• in Theorem 3, we prove that there is no quadratic function F : F3
p → Fp such that

the induced SI-lifting SF over Fn
p for n ≥ 5 is a permutation.

Both results are also supported by our practical experiments, as given in App. B. Regarding
the case m = n = 2, in Proposition 8 we prove that the only quadratic function F : F2

p → Fp

for which the SI–lifting SF over F2
p is invertible is a Lai-Massey function of the form

F (x0, x1) = α · x0 + β · x1 + γ · (x0 − x1)2 for α ̸= ±β.
Focusing on the case m = 3, it is someway surprising when comparing the binary case

and the prime case. Indeed, while e.g. the SI–lifting Sχ over Fn
2 induced by the local

map χ defined as in (5) is known to be a permutation for each odd n ≥ 3, here we prove
that there is no equivalent of the chi-function when working with a quadratic function
F : F3

p → Fp for a prime integer p ≥ 3.
As an open problem for future work, we conjecture that for each m ≥ 1 there exists a

finite integer nmax(m) such that the SI-lifting SF over Fn
p induced by a quadratic function

F : Fm
p → Fp is not invertible for each n ≥ nmax(m) (see Conjecture 1 for details). Our

results and observations suggest that if such conjecture is true, then nmax(m) grows linearly
with m (more specifically, nmax(m) = 2 ·m− 1).

Neptune as a Concrete Application. Estimating the impact of quadratic non-linear
layers in the design of a generic MPC-/FHE-/ZK-friendly iterative symmetric scheme is in
general very hard, since many factors play a crucial role in determining the performance
of the scheme in target applications (e.g., the number of rounds required for its security
– and so the overall multiplicative complexity – does not depend only on the details of
the non-linear layer, but also on the details of the linear layer, on the possible attack
scenarios, on the security level, and so on). For this reason, we focus on Poseidon – a
sponge hash function [BDPV07, BDPA08] recently proposed for ZK applications – and
we show a possible way to modify it based on non-linear layers presented in this paper in
order to reduce its multiplicative complexity.

3Given d =
∑⌊log2(d)⌋

i=0 di · 2i for di ∈ {0, 1}, evaluating x 7→ xd can require computing x2j for each
j ∈ {0, 1, . . . , ⌊log2(d)⌋} for a cost of ⌊log2(d)⌋ non-linear operations, plus other hw(d) − 1 non-linear
operations to get x 7→ xd (where hw(·) is the Hamming weight).
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The internal permutation of the sponge hash function Poseidon is based on the Hades
design strategy [GLR+20] proposed at Eurocrypt 2020. Its main feature and novelty
regards the use of both rounds with full S-Box layer and rounds with partial S-Box layer
in order to achieve both security and good performance. Here, we take this concept to its
extremes. Instead of limiting ourselves to consider an uneven distribution of the S-Boxes,
we propose to use two different round functions, one for the internal part and one for the
external one. In Section 7, we propose a new sponge hash function called Neptune over
Ft

p, a variant of the hash function Poseidon in which

• the power maps x 7→ xd in the external full rounds are replaced by a concatenation
of independent S-Boxes defined over F2

p via the Lai-Massey construction;

• the power map x 7→ xd in the internal partial rounds remains unchanged, but the
matrix that instantiates the linear layer of the internal partial rounds is different
from the one proposed for the external full rounds.

As we show in there, these changes have the effect of (largely) reducing the multiplicative
complexity of Poseidon in the case of large t≫ 1.

2 Preliminary
Notation. Let p be a prime number (unless specified otherwise, we always assume p ≥ 3).
L Let Fp denote the field of integer numbers modulo p, and let Fn

p be the corresponding
vector space for n ≥ 1. (We use the symbol “·” to denote the product between (i) elements
of Fp and (ii) one element of Fp with one element of Fn

p , while we use the symbol “×” to
denote the product between elements of Fn

p or/and Fn×m
p .) We use small letters to denote

either parameters/indexes or variables and greek letters to denote fixed elements in Fp.
Given x ∈ Fn

p , we denote by xi its i-th component for each i ∈ {0, 1, . . . , n− 1}, that is,
x = (x0, x1, . . . , xn−1) or x = x0∥x1∥ . . . ∥xn−1, where ·∥· denotes concatenation. We use
capital letters to denote functions from Fm

p to Fp for m ≥ 1, e.g., F : Fm
p → Fp and the

calligraphic font to denote functions over Fn
p for n > 1, e.g., S : Fn

p → Fn
p . We use the

fraktur font (e.g., X) to denote sets of elements, where |X| denotes the cardinality of the
set X. We denote by circ(µ0, µ1, . . . , µn−1) ∈ Fn×n

p the circulant matrix

circ(µ0, µ1, . . . , µn−1) :=


µ0 µ1 . . . µn−2 µn−1
µn−1 µ0 . . . µn−3 µn−2

...
...

µ1 µ2 . . . µn−1 µ0

 .

Given a matrix M ∈ Fn×m
p , we denote its transpose by MT ∈ Fm×n

p .

Legendre Symbol. We recall some properties of the Legendre symbol used in the following.

Definition 2. Let p ≥ 3 be a prime number. An integer α is a quadratic residue modulo
p if it is congruent to a perfect square modulo p, and it is a quadratic non-residue modulo
p otherwise.

Definition 3. The Legendre symbol Lp(·) is a function Lp : Fp → {−1, 0, 1} defined as
Lp(x) := x

p−1
2 mod p ∈ {−1, 0, 1}, or equivalently Lp(0) = 0 and

Lp(x) :=
{

1 if x is a non-zero quadratic residue modulo p,
−1 if x is a quadratic non-residue modulo p

.

Proposition 1 ( [Nag51]). The Legendre symbol has the following properties:
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1. if x = y mod p, then Lp(x) = Lp(y);

2. Lp(x · y) = Lp(x) · Lp(y).

Moreover, particular identities include:

• Lp(−1) = 1 if p = 1 mod 4, while Lp(−1) = −1 if p = 3 mod 4;

• Lp(−3) = 1 if p = 1 mod 3, while Lp(−3) = −1 if p = 2 mod 3;

• Lp(2) = 1 if p = 1, 7 mod 8, while Lp(2) = −1 if p = 3, 5 mod 8.

2.1 Equivalence Class
First, we introduce a relation for classifying functions with similar properties.4

Definition 4 (Similar Functions). Let p ≥ 2 be a prime integer. Let F, F ′ : Fm
p → Fp be

two functions. F and F ′ are similar – denoted as F ∼ F ′ – if and only if

∀x ∈ Fm
p : F ′(x) = ω · F (µ · x+ ν̄) + ψ (6)

where (1st) µ, ω ∈ Fp \ {0}, (2nd) ψ ∈ Fp and (3rd) ν̄ = ν · (1∥1∥ . . . ∥1) ∈ Fm
p for ν ∈ Fp.

Lemma 1. The binary relation ∼ in Definition 4 is an equivalence relation.

Proof. The relation satisfies Equation (6) therefore the following properties hold:

• reflexivity (F ∼ F ): obvious, by choosing µ = ω = 1, and ψ = ν = 0;

• symmetry (F ∼ F ′ implies F ′ ∼ F ): by definition, F ′(x) = ω · F (µ · x + ν̄) + ψ.
Given x′ = µ · x+ ν̄, then:

∀x′ ∈ Fm
p : F (x′) = ω−1 · F ′(µ−1 · x′ − µ−1 · ν̄)− ψ · ω−1 ;

• transitivity (F ∼ F ′ and F ′ ∼ F
′′ implies F ∼ F

′′): by definition, F ′(x) =
ω · F (µ · x+ ν̄) + ψ and F

′′(x) = ω′ · F ′(µ′ · x+ ν̄′) + ψ′. Then

∀x ∈ Fm
p : F

′′
(x) = (ω · ω′) · F ((µ · µ′) · x+ (ν̄ + µ · ν̄′)) + (ψ′ + ω′ · ψ) .

Proposition 2. Let p ≥ 2 be a prime integer, and let F, F ′ : Fm
p → Fp be two similar

functions. Let SF ,SF ′ : Fn
p → Fn

p be the two SI–liftings induced respectively by F and F ′.
Then, SF is invertible if and only if SF ′ is invertible.

Proof. By definition of F ′ and SF ′ , the i-th output of SF ′(x0, x1, . . . , xn−1) is F ′(xi, xi+1,
. . . , xi+m−1), where the sub-indexes are taken modulo n. Since F ′(x) = ω ·F (µ ·x+ ν̄) +ψ
for each x ∈ Fm

p , it follows that

SF ′(x) = ω · SF (µ · x+ ν̄) + ψ̄

where ω ̸= 0 and where ψ̄ = (ψ,ψ, . . . , ψ) ∈ Fn
p . That is, SF ′ is equal to SF pre-composed

and post-composed with two invertible affine functions. This implies that SF ′ is invertible
if and only if SF is invertible.

4In order to simplify the notation, we denote the product (i) between two elements in Fp and (ii)
between an element of Fp and one of Fm

p by using the same symbol “·”. Given x = (x0, x1, . . . , xm−1) ∈ Fm
p

and µ ∈ Fp, then µ · x := (µ · x0, µ · x1, . . . , µ · xm−1) ∈ Fm
p .
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2.2 Necessary Conditions for Invertibility
Balanced Functions. As first thing, F has to be balanced for SF to be invertible.

Definition 5 (Balanced Function). Let p ≥ 2 be a prime integer. Let F : Fm
p → Fp. We

say that F is balanced if and only if the pre-image of every element in Fp has the same
cardinality, i.e. |{x ∈ Fm

p |F (x) = y}| = pm−1 for each y ∈ Fp.

Proposition 3. Let p ≥ 2 be a prime integer. Let be SF a SI-lifting over Fn
p induced by

F : Fm
p → Fp. If F is not balanced, then SF is not invertible.

The proof of this well known result is given in App. A. A concrete application of it is
given in the following proposition:

Proposition 4. Let p ≥ 2 be a prime integer. Let F : F2
p → Fp be

F (x0, x1) = α2,0 · x2
0 + α1,1 · x0 · x1 + α0,2 · x2

1 + α1,0 · x0 + α0,1 · x1 + α0,0 .

If α2,0 = α0,2 = 0, then F is not a balanced function.

Proof. Note that α1,1 = α2,0 = α0,2 = 0 would imply that F is a linear function. Hence,
we assume α1,1 ̸= 0. Without loss of generality (W.l.o.g.), we can work with α0,0 = 0, due
to Proposition 2 based on the equivalence class defined in Definition 4. In order to prove
the result, we analyse separately two cases: (1st) α1,0 = α0,1 = 0 and (2nd) α0,1 ̸= 0 (the
proof is analogous for α1,0 ̸= 0):

• If α0,1 = α1,0 = 0, then F (x0, x1) = 0 if x0 = 0 or x1 = 0. It follows that
|F−1(0)| ≥ 2p− 1 ⪈ p, hence F is not balanced;

• If α0,1 ̸= 0, we re-write F (x0, x1) = (α1,1 ·x0 +α0,1) ·x1 +α1,0 ·x0. If x0 = −α0,1/α1,1,
then F (−α0,1/α1,1, x1) = −α0,1 ·α1,0 for all x1 ∈ Fp. Moreover, F (0,−α1,0) = −α0,1 ·
α1,0. Since α0,1 ̸= 0 by assumption, it follows that |F−1(−α0,1 · α1,0)| ≥ p+ 1 ⪈ p,
which means that F is not balanced.

Working over F2, we have that α2,0 = α0,2 = 0, since x2 = x for each x ∈ F2. This
implies that there is no quadratic function F : F2

2 → F2 which induces an invertible
SI-lifting SF over Fn

2 for n ≥ 2, in accordance with the results given in [Dae95].

Corollary 1. Let F : F2
2 → F2 be a quadratic function. Then, the SI–lifting SF over Fn

2
induced by F for n ≥ 2 is not invertible.

Quadratic Functions F . Next, we show a necessary condition that a quadratic function
F : Fm

p → Fp defined as

F (x0, x1, . . . , xm−1) :=
∑

i0,...,im−1∈{0,1,2} s.t.
i0+...+im−1≤2

αi0,...,im−1 · x
i0
0 · · · · · x

im−1
m−1

≡
[
x0 x1 . . . xm−1 1

]
×


α2,0,...,0

α1,1,...,0
2 . . .

α1,0,...,1
2

α1,0,...,0
2α1,1,...,0

2 α0,2,...,0 . . .
α0,1,...,1

2
α0,1,...,0

2
... . . . ...

...
α1,0,...,1

2
α0,1,...,1

2 . . . α0,0...,2
α0,0,...,1

2α1,0,...,0
2

α0,1,...,0
2 . . .

α0,0,...,1
2 α0,0,...,0

×


x0
x1
...

xm−1
1


(7)

must satisfy in order to guarantee that SF can be a permutation.
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Proposition 5. Let p ≥ 3 be a prime integer. Let F : Fm
p → Fp be defined as in (7). Let

α(2), α(1) ∈ Fp be the sum of the coefficients of the monomials of degree 2 and 1 respectively,
that is,

∀l ∈ {1, 2} : α(l) :=
∑

i0,...,im−1∈{0,1,2} s.t.
i0+...+im−1=l

αi0,...,im−1 . (8)

If α(2) = α(1) = 0 or if α(2) ̸= 0, then the SI–lifting SF over Fn
p induced by F is not a

permutation for each n ≥ m.

Proof. We prove that SF is not a permutation by constructing collisions, that is, by
presenting two different elements z, z′ ∈ Fn

p such that SF (z) = SF (z′) and z ̸= z′. In
order to do this, we work with elements of the form w = (ŵ, ŵ, . . . , ŵ) ∈ Fn

p , that
is, wi = wj for each i, j ∈ {0, 1, . . . , n}. Over such inputs, the function F reduces to
F (x, x, . . . , x) = α(2) · x2 + α(1) · x+ α0,0,...,0. It follows that:

• if α(2) = α(1) = 0, then F (x, x, . . . , x) = α0,0,...,0 for each x ∈ Fp. Hence

∀x, y ∈ Fp : SF (x, x, . . . , x) = SF (y, y, . . . , y) = (α0,0,...,0, . . . , α0,0,...,0) ;

• if α(2) ≠ 0 and α(1) ≠ 0, then F (x, x, . . . , x) = x · (α(2) · x+ α(1)) + α0,0,...,0. Since
x · (α(2) · x+ α(1)) = 0 if x = 0 or x = −α(1)/α(2), then

SF (0, 0, . . . , 0) = SF

(
−α

(1)

α(2) ,−
α(1)

α(2) , . . . ,−
α(1)

α(2)

)
= (α0,0,...,0, . . . , α0,0,...,0) ;

• if α(2) ̸= 0 and α(1) = 0, then F (x, x, . . . , x) = α(2) · x2 + α0,0,...,0. It follows that

SF (x, x, . . . , x) = SF (−x,−x, . . . ,−x) = (α(2) ·x2 +α0,0,...,0, . . . , α
(2) ·x2 +α0,0,...,0)

for each x ∈ Fp.

Equivalently, SF can be a permutation only in the case in which α(2) = 0 and α(1) ̸= 0.

3 (Generalized) Lai-Massey Functions over Fn
p

In this section, we propose some generalizations over Fn
p of the Lai-Massey construction

proposed in [LM90] by working with a local map F : Fm
p → Fp and m = n.

Proposition 6. Let p ≥ 2 be a prime integer. Let n = m ≥ 2 such that either n is a
multiple of p (i.e., n = 0 mod p) or n is even (i.e., n = 2n′). Let

F (x0, x1, . . . , xn−1) =
n−1∑
i=0

µi · xi +H
(
ω0 · x0 + ω1 · x1 + . . .+ ωn−1 · xn−1

)
, (9)

where (µ0, . . . , µn−1) ∈ Fn
p is such that the circulant matrix circ(µ0, . . . , µn−1) ∈ Fn×n

p is
invertible and where

• if n = 0 mod p: ωi = 1 for each i ∈ {0, 1, . . . , n− 1};

• if n = 0 mod 2: ωi = (−1)i for each i ∈ {0, 1, . . . , n − 1}, and H : Fp → Fp is an
even function (that is, H(x) = H(−x)).

Then, the SI–lifting SF over Fn
p induced by F is invertible.
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Proof. Let y = SF (x) and let C := circ(µ0, . . . , µn−1). By definition of SF and since H is
an even function for n = 0 mod 2:

y0
y1
...

yn−1

 = C ×


x0
x1
...

xn−1

+


H
(∑n−1

i=0 ωi · xi

)
H
(∑n−1

i=0 ωi · xi

)
...

H
(∑n−1

i=0 ωi · xi

)
 = C ×


x0 + 1

µ′ ·H
(∑n−1

i=0 ωi · xi

)
x1 + 1

µ′ ·H
(∑n−1

i=0 ωi · xi

)
...

xn−1 + 1
µ′ ·H

(∑n−1
i=0 ωi · xi

)
 ,

where µ′ :=
∑

i µi ̸= 0 since C is invertible by assumption.
Let z := C−1 × y ∈ Fn

p . The overall costruction is invertible since

n−1∑
i=0

ωi · zi =
n−1∑
i=0

ωi · xi + 1
µ′ ·H

(
n−1∑
i=0

ωi · xi

)
·

n−1∑
i=0

ωi︸ ︷︷ ︸
=0 mod p

=
n−1∑
i=0

ωi · xi .

It follows that xi = zi − 1
µ′ ·H

(∑n−1
j=0 ωj · zj

)
for each i ∈ {0, 1, . . . , n− 1}.

By choosing H(x) = β · x2 + γ for β, γ ∈ Fp and C =circ(1, 0, . . . , 0) ∈ Fn
p , computing

SF over Fn
p requires just one Fp-multiplication.

Proposition 7. Let p ≥ 2 be a prime integer. Let

F (x0, x1, . . . , xn−1) =
n−1∑
i=0

µi · xi + γ ·
n−1∑
i=0

H
(
xi − xi+1

)
,

where (µ0, . . . , µn−1) ∈ Fn
p is such that the circulant matrix circ(µ0, . . . , µn−1) ∈ Fn×n

p is
an invertible matrix and where γ ∈ Fp \ {0}. Then, the SI–lifting SF over Fn

p induced by
F is invertible.

Proof. Let y = SF (x), C := circ(µ0, . . . , µn−1) and let µ′ :=
∑n−1

i=0 µi. First of all, µ′ ̸= 0
since C is invertible (indeed, if µ′ = 0, then the sum of all columns of C would be equal
to zero, and the matrix would be non-invertible due to the existence of a linear relation
among its columns). Based on this consideration, the following equality holds:

y0
y1
...

yn−1

 = C ×


x0 + γ

µ′ ·
∑n−1

i=0 H
(
xi − xi+1

)
x1 + γ

µ′ ·
∑n−1

i=0 H
(
xi − xi+1

)
...

xn−1 + γ
µ′ ·
∑n−1

i=0 H
(
xi − xi+1

)
 ,

Let z := C−1×y. Working as before, the overall construction is invertible since zi−zi+1 =
xi−xi+1, which implies xi = zi− γ

µ′ ·
∑n−1

j=0 H
(
zj−zj+1

)
for each i ∈ {0, 1, . . . , n−1}.

By choosing H(x) = β · x2 + γ for β, γ ∈ Fp and C =circ(1, 0, . . . , 0) ∈ Fn
p , then

evaluating the function SF costs n multiplications in Fp (and just one multiplication for
the case n = 3).

4 SI-Lifting SF over Fn
p induced by Quadratic F : F2

p → Fp

4.1 Analysis of the Case n = 2
Here we prove that the only quadratic function F : F2

p → Fp for which SF is invertible
over F2

p is F (x0, x1) = γ0 · x0 + γ1 · x1 + γ2 · (x0 − x1)2 where γ0 ̸= ±γ1.
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Proposition 8. Let p ≥ 3 be a prime integer, and let F : F2
p → Fp be a quadratic function.

The SI–lifting SF over F2
p induced by F is invertible if and only if

F (x0, x1) = γ0 · x0 + γ1 · x1 + γ2 · (x0 − x1)2

where γ0 ̸= ±γ1.

Proof. Consider a generic function G(x0, x1) = α1,0 · x0 + α0,1 · x1 + α2,0 · x2
0 + α0,2 · x2

1 +
α1,1 · x0 · x1. First of all, if α2,0 + α0,2 + α1,1 ̸= 0, then the function is not invertible (see
Proposition 5). Hence, we assume α1,1 = −α2,0 − α0,2, which means

G(x0, x1) = α1,0 · x0 + α0,1 · x1 + (α2,0 · x0 − α0,2 · x1) · (x0 − x1) .

If α2,0 = α0,2 and α1,0 ̸= α0,1, then G(x0, x1) = α1,0 · x0 + α0,1 · x1 + α2,0 · (x0 − x1)2

is a generalization of the Lai-Massey construction. Based on the results proposed in
the previous section, it is invertible if and only if the circulant matrix circ(α1,0, α0,1) is
invertible, that is, if α1,0 ̸= ±α0,1.

Let us now consider the case α2,0 ̸= α0,2. We show that the lifting SG is never
invertible by looking for a collision SG(x0, x1) = SG(y0, y1) with (x0, x1) ̸= (y0, y1). Via
the change of variables di = xi − yi and si = xi + yi for i ∈ {0, 1}, the system of equations
G(x0, x1) = G(y0, y1) and G(x1, x0) = G(y1, y0) to solve corresponds to[
α2,0 · d0 − α2,0+α0,2

2 · d1 α0,2 · d1 − α2,0+α0,2
2 · d0

α0,2 · d0 − α2,0+α0,2
2 · d1 α2,0 · d1 − α2,0+α0,2

2 · d0

]
×
[
s0
s1

]
= −

[
α1,0 · d0 + α0,1 · d1
α1,0 · d1 + α0,1 · d0

]
.

The determinant of the matrix is equal to

(α2,0 − α0,2) · (α2,0 + α0,2) · (d0 − d1)2 .

If α2,0 ̸= ±α0,2, it is sufficient to choose d0 ≠ d1 in order to find a collision (since d0 ≠ d1,
at least one among d0 and d1 are not null). The only remaining case to analyze is
α0,2 = −α2,0, for which the system of equation reduces to

α2,0 · (d0 · s0 − d1 · s1) = α1,0 · d0 + α0,1 · d1 ,

d0 · (α1,0 − α0,1) = d1 · (α1,0 − α0,1) .

A collision can be easily set up by choosing d0 = d1 ̸= 0 and s0, s1 such that α2,0 ·(s0−s1) =
α1,0 + α0,1 (note that α2,0 ̸= 0, otherwise G is linear).

4.2 Analysis of the Case n ≥ 3
As one of the main results of this paper, we prove that given any quadratic function
F : F2

p → Fp, then the SI–lifting SF induced by the local map F over Fn
p is never invertible

for each n ≥ 3.

Theorem 2. Let p ≥ 3 be a prime integer. Let F : F2
p → Fp be a function of degree 2.

The lifting SF induced by F over Fn
p is never a permutation for each n ≥ 3.

Proof. Due to the results given in Proposition 5, here we limit ourselves to consider the
case

α(2) = α2,0 + α1,1 + α0,2 = 0 (10)

and α(1) = α0,1 + α1,0 ̸= 0.
We prove the result for the case n = 3. Our goal is to prove that for each function

F : F2
p → Fp of degree 2 defined as in (7), it is possible to find a collision, that is, two

different inputs x, y ∈ F3
p such that F (x0, x1) = F (y0, y1), F (x1, x2) = F (y1, y2) and
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F (x2, x0) = F (y2, y0). By assuming x0 = y0 = 0, any collision for n = 3 can be easily
generalized for each n ≥ 4. In fact, given a collision for n = 3, a collision for n ≥ 4 can be
easily set up by working with x, y ∈ Fn

p where xi = yi = 0 for each i ≥ 3, that is,

SF (0, x1, x2) = SF (0, y1, y2) −→ SF (0, x1, x2, 0, 0, . . . , 0) = SF (0, y1, y2, 0, 0, . . . , 0) ,

since
∀i ∈ {3, . . . , n− 1} : F (xi, xi+1) = F (0, 0) = F (yi, yi+1) .

Let x0 = y0 = 0 and let n = 3. The condition SF (0, x1, x2) = SF (0, y1, y2) implies

i. F (0, x1) = F (0, y1), which is satisfied if and only if

(x1−y1)·(α0,2 · (x1 + y1) + α0,1) = 0 −→ x1 = y1 or y1 = −x1−
α0,1

α0,2
,

assuming α0,2 ̸= 0 in this second case;

ii. F (x2, 0) = F (y2, 0), which is satisfied if and only if

x2 = y2 or y2 = −x2 −
α1,0

α2,0
,

assuming α2,0 ̸= 0 in this second case.

Based on these considerations, we propose separate collisions for the cases (1st) α2,0, α1,1 ̸= 0,
(2nd) α2,0 = 0 and (3rd) α1,1 = 0. Since no condition is imposed on α0,2, these three
cases cover all possible quadratic functions F that have not been already excluded by
Proposition 5. Indeed, if two coefficients among α0,2, α2,0, α1,1 are equal to zero, then all
three coefficients are null due to (10), and the function becomes linear.

Case: α2,0, α1,1 ̸= 0. We propose a collision by working with two inputs of the form
(0, x1, x2) and (0, x1,−x2− α1,0

α2,0
). Due to the given considerations (i) and (ii), the conditions

F (0, x1) = F (0, x1) and F (x2, 0) = F (−x2−α1,0
α2,0

, 0) are always satisfied for each x1, x2 ∈ Fp.
Hence, it is sufficient to find x1, x2 such that the condition F (x1, x2) = F (x1,−x2 − α1,0

α2,0
)

is verified.
By choosing x1 = α0,2·α1,0

α1,1·α2,0
− α0,1

α1,1
, we have that

∀x ∈ Fp : SF

(
0, α0,2 · α1,0

α1,1 · α2,0
− α0,1

α1,1
, x

)
= SF

(
0, α0,2 · α1,0

α1,1 · α2,0
− α0,1

α1,1
,−x− α1,0

α2,0

)
,

since

F

(
α0,2 · α1,0 − α0,1 · α2,0

α1,1 · α2,0
, x

)
= F

(
α0,2 · α1,0 − α0,1 · α2,0

α1,1 · α2,0
,−x− α1,0

α2,0

)
=α0,2 · x2 + α0,2 · α1,0

α2,0
· x+ (α0,2 · α1,0 − α2,0 · α0,1)2

α2
1,1 · α2,0

+ α1,0 · (α0,2 · α1,0 − α0,1 · α2,0)
α1,1 · α2,0

.

Note that no condition on α0,2 ∈ Fp is imposed.

Case: α2,0 = 0. We propose a collision by working with two inputs of the form (0, x1, x2)
and (0,−x1− α0,1

α0,2
, x2). Due to the given consideration (i) and (ii), the conditions F (0, x1) =

F (0,−x1 − α0,1
α0,2

) and F (x2, 0) = F (x2, 0) are always satisfied for each x1, x2 ∈ Fp. Hence,
it is sufficient to find x1, x2 such that the condition F (x1, x2) = F (−x1 − α0,1

α0,2
, x2) is

verified.
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By choosing x2 = −α1,0
α1,1

, we have that

∀x ∈ Fp : SF

(
0, x,−α1,0

α1,1

)
= SF

(
0,−x− α0,1

α0,2
,−α1,0

α1,1

)
,

since
F

(
x,−α1,0

α1,1

)
= F

(
−x− α0,1

α0,2
,−α1,0

α1,1

)
= −α1,0 · (α0,1 + α1,0)

α1,1
,

where α1,1 = −α0,2 ̸= 0 due to Equation (10) and since α2,0 = 0.

Case: α1,1 = 0. We propose a collision by working with two inputs of the form (0, x1, x2)
and (0,−x1 − α0,1

α0,2
,−x2 − α1,0

α2,0
). Due to the given consideration (i) and (ii), the conditions

F (0, x1) = F (0,−x1 − α0,1
α0,2

) and F (x2, 0) = F (−x2 − α1,0
α2,0

, 0) are always satisfied for each
x1, x2 ∈ Fp. Hence, it is sufficient to find x1, x2 such that the condition F (x1, x2) =
F (−x1 − α0,1

α0,2
,−x2 − α1,0

α2,0
) is verified.

By choosing x2 = x and x1 = −x+ α1,0−α0,1
2·α0,2

, we have that

SF

(
0,−x+ α1,0 − α0,1

2 · α0,2
, x

)
= SF

(
0, x− α1,0 + α0,1

2 · α0,2
,−x− α1,0

α2,0

)
,

since

F

(
−x+ α1,0 − α0,1

2 · α0,2
, x

)
= F

(
x− α1,0 + α0,1

2 · α0,2
,−x− α1,0

α2,0

)
=
α2

1,0 − α2
0,1

4 · α0,2

where α2,0 = −α0,2 ̸= 0 due to Equation (10) and since α1,1 = 0.

5 SI-Lifting SF over Fn
p induced by Quadratic F : F3

p → Fp

5.1 Some Examples for the Case n = 3
Example of quadratic functions F : F3

p → Fp for which the SI–lifting SF over F3
p is invertible

are given in Proposition 6 – 7. Other examples are proposed in the following.

Case: p = 2 mod 3. First, we present a family of functions F : F3
p → Fp for which the

induced SI–lifting SF over F3
p is a permutation if p = 2 mod 3.

Proposition 9. Let p ≥ 5 be a prime integer such that p = 2 mod 3. Let α, β ∈ Fp and
ψ0, ψ1, ψ2 ∈ Fp such that (1st)

∑2
i=0 ψi ̸= 0 and (2nd) one of three following conditions

is satisfied: (i) ψ1 = ψ2 and ψ0 ≠ ψ1 and 2 · α + β ̸= 0; (ii) ψ0 = ψ2 and ψ0 ≠ ψ1 and
2 · β + α ̸= 0; (iii) ψ0 = ψ1 and ψ0 ̸= ψ2 and α− β ̸= 0.

Given F : F3
p → Fp defined as

F (x0, x1, x2) = ψ0 · x0 + ψ1 · x1 + ψ2 · x2 + (x0 + x1 + x2) · (α · x0 + β · x1 − (α+ β) · x2) ,

the SI–lifting SF over F3
p induced by F is invertible.

Proof. Note that α = β = 0 is never possible. Given yi = F (xi, xi+1, xi+2) for each
i ∈ {0, 1, 2} (where the sub-indexes are taken modulo 3), then

y0 + y1 + y2 = (ψ0 + ψ1 + ψ2) · (x0 + x1 + x2) ,
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where ψ0 + ψ1 + ψ2 ̸= 0 by assumption. Let ŷ := (y0 + y1 + y2)/(ψ0 + ψ1 + ψ2), where
ŷ = 0 if and only if x0 + x1 + x2 = y0 + y1 + y2 = 0. The system of equations for S(x) = y
becomes α · ŷ + ψ0 β · ŷ + ψ1 −(α+ β) · ŷ + ψ2

−(α+ β) · ŷ + ψ2 α · ŷ + ψ0 β · ŷ + ψ1
β · ŷ + ψ1 −(α+ β) · ŷ + ψ2 α · ŷ + ψ0

×
x0
x1
x2

 =

y0
y1
y2

 .
By simple computation, the matrix is invertible if

(ψ0 + ψ1 + ψ2) ·
(

3 · (α2 + α · β + β2) · ŷ2 + 3 · (α · (ψ0 − ψ2) + β · (ψ1 − ψ2)) · ŷ

+ (ψ2
0 + ψ2

1 + ψ2
2 − ψ0 · ψ1 − ψ1 · ψ2 − ψ0 · ψ2)

)̸
= 0 .

If ŷ = 0, then the matrix is invertible, since ψ2
0 + ψ2

1 + ψ2
2 − ψ0 · ψ1 − ψ1 · ψ2 − ψ0 · ψ2 is

different from zero by assumption on ψ0, ψ1, ψ2.
If ŷ ̸= 0, first note that the coefficient α2 +α · β+ β2 of ŷ2 is always different from zero

for each α, β since −3 is not a square modulo p due to the assumption p = 2 mod 3 (see
Proposition 1). Indeed, α2 + α · β + β2 = 0 for β ̸= 0 is equivalent to z2 + z + 1 = 0 for
z = α/β, which admits as solutions (−2±

√
−3)/2. Since −3 is a quadratic non-residue

modulo p, then no solution exists. Hence, assuming ψ1 = ψ2 (analogous for the others),
the determinant is equal to zero if and only if

ŷ = −3 · α · (ψ0 − ψ2)±
√
−3 · (ψ0 − ψ2)2 · (α+ 2 · β)2

6 · (α2 + α · β + β2) ,

which does not admit any solution since −3 is a quadratic non-residue modulo p (note
that ψ0 ̸= ψ2 and α ̸= −2β). It follows that SF (x) = y is invertible.

Regarding the cost, three Fp-multiplications are sufficient for computing SF . Indeed,
each function F (xi, xi+1, xi+2) can be computed via one multiplication only, that is,
(xi +xi+1 +xi+2)× (α ·xi +β ·xi+1− (α+β) ·xi+2) after pre-computing (xi +xi+1 +xi+2)
and (α · xi + β · xi+1− (α+ β) · xi+2), where the multiplications with constants α, β, α+ β
do not count since they are affine operations.

Case: p = 1 mod 3. Next, we present a family of functions F : F3
p → Fp for which the

induced SI–lifting SF over F3
p is a permutation if p = 1 mod 3.

Proposition 10. Let p ≥ 7 be a prime integer such that p = 1 mod 3. Let α, β, γ, ε, ε′ ∈
Fp such that ε ̸= 0, ε+ 3 · ε′ ̸= 0, α ̸= γ, α · β ̸= γ2, and β ∈ {β+, β−} where

β± = α · (1±
√
−3)− γ · (−1±

√
−3)

2 . (11)

(Note that −3 is a quadratic residue modulo p for p = 1 mod 3 – see Proposition 1.)
Given F : F3

p → Fp defined as

F (x0, x1, x2) = α · (x0 − x1)2 + β · (x1 − x2)2 + γ · (x2 − x0)2 + ε · x0 + ε′ · (x0 + x1 + x2) ,

the SI–lifting SF over F3
p induced by F is invertible.

Proof. Let us introduce the auxiliary variables ω := α ·β−γ2, ψ := β ·γ−α2, τ := α ·γ−β2.
First of all, note that ω, τ, ψ ̸= 0 and that the following equalities

ω · α+ ψ · β + τ · γ = 0 , ω · β + ψ · γ + τ · α = 0 , ω · γ + ψ · α+ τ · β = 0
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are always satisfied. In particular, the first two equalities can be easily verified by replacing
the values of ω, ψ, τ . Regarding the last one, we have that

ω · γ + ψ · α+ τ · β = −(α+ β + γ) · (β2 − β · (α+ γ) + α2 + γ2 − α · γ)︸ ︷︷ ︸
=0 for β∈{β+,β−} as in (11)

= 0 ,

where the solutions of β2 − β · (α+ γ) + α2 + γ2 − α · γ = 0 are

β =
α+ γ ±

√
(α+ γ)2 − 4 · (α2 + γ2 − α · γ)

2 =
α+ γ ±

√
−3α2 − 3γ2 + 6α · γ

2

=
α+ γ ±

√
−3 · (α− γ)2

2 = α+ γ ± (α− γ)
√

−3
2 = α · (1 ±

√
−3) − γ · (−1 ±

√
−3)

2 = β± .

Based on these initial observations, we show how to invert SF (x) = y. Given yi =
F (xi, xi+1, xi+2) for each i ∈ {0, 1, 2} (where the sub-indexes are taken modulo 3), it is
not hard to check that the following linear equation is always satisfied

ω · y0 + τ · y1 + ψ · y2 = ε · (ω · x0 + τ · x1 + ψ · x2) ,

which implies that

x0 = ω · y0 + τ · y1 + ψ · y2

ω · ε
− τ · x1 + ψ · x2

ω
≡ ŷ − τ · x1 − ψ · x2

ω
,

where ŷ := (ω · y0 + τ · y1 + ψ · y2)/ε and where ω, ε ̸= 0 by assumption.
By taking the difference between y1 and y2 and by substituting x0, we obtain:(

ω2 · (α− γ) + τ2 · (β − α) + ψ2 · (γ − β)
)︸ ︷︷ ︸

=0

·(x1 − x2)2

+ ω2 · ε · (x1 − x2) + (γ − α) · ŷ2 − ω2 · (y1 − y2) = 0 ,

where the coefficient of (x1− x2)2 is equal to zero due to the linear relations among ω, τ, ψ
previously given:

0 =ω · (ω · α+ ψ · β + τ · γ)︸ ︷︷ ︸
=0

−ω · (ω · γ + ψ · α+ τ · β)︸ ︷︷ ︸
=0

+τ · (ω · γ + ψ · α+ τ · β)︸ ︷︷ ︸
=0

− τ · (ω · β + ψ · γ + τ · α)︸ ︷︷ ︸
=0

+ψ · (ω · β + ψ · γ + τ · α)︸ ︷︷ ︸
=0

−ψ · (ω · α+ ψ · β + τ · γ)︸ ︷︷ ︸
=0

=ω2 · (α− γ) + τ2 · (β − α) + ψ2 · (γ − β) + 2γ · (α− γ) · (α · ψ + β · τ + γ · ω)︸ ︷︷ ︸
=0

=ω2 · (α− γ) + τ2 · (β − α) + ψ2 · (γ − β) .

It follows that
x1 = x2 + (γ − α) · ŷ2 − ω2 · (y1 − y2)

ω2 · ε
where ω2 · ε ≠ 0. By substituting x0, x1 in the equation y2 = F (x2, x0, x1) = ε · x2 + ε′ ·
(x0 +x1 +x2) +α · (x2−x0)2 +β · (x0−x1)2 +γ · (x1−x2)2 – we omit the details since the
computation is analogous to the one just given, we get a linear equation in x2 of the form:

(ε+ 3ε′) · x2 +G(y0, y1, y2) = 0

for a certain function G : F3
p → Fp. Since the coefficient ε+ 3 · ε′ of x2 is different from

zero by assumption, the system of equations has a unique solution for any given y1, y2, y3
and SF is invertible.

As before, three Fp-multiplications are sufficient for computing SF . Indeed, by pre-
computing zi = (xi − xi+2)2 for each i ∈ {0, 1, 2} for a total cost of three multiplications,
it follows that F (xi, xi+1, xi+2) is linear in x0, x1, x2 and in z0, z1, z2.
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5.2 Some Examples for the Case n = 4
A Generic Result. Given an invertible function SG over Fh

p , we first show how to construct
an invertible function over a bigger domain Fn

p for n being multiple of h.

Proposition 11. Let p ≥ 2 be a prime integer. Given 2 ≤ g ≤ h, let G : Fg
p → Fp such

that the SI–lifting SG over Fh
p induced by G is invertible.

Let m := (g − 1) · (z + 1) + 1 and n := h · (z + 1) for an arbitrary integer z ≥ 0. Let
F : Fm

p → Fp be defined as

F (x0, . . . , xm−1) := G(x0, xz+1, x2·(z+1), . . . , x(g−1)·(z+1)) .

(Note that F depends only on the variables xi for which the sub-index i is a multiple of
z + 1.) The SI–lifting SF over Fn

p induced by F is invertible.

Proof. The result is obviously true for z = 0 (for which m = g and n = h). So, let’s assume
z ≥ 1. Let y = SF (x). The system of n equations yi = F (xi, xi+1, . . . , xi+m−1) for each
i ∈ {0, 1, . . . , n− 1} can be split into z + 1 independent systems, each one consisting of h
equations of the form

∀i ∈ {0, 1, . . . , z} : (yi, yi+(z+1), . . . , yi+(h−1)·(z+1)) = SG(xi, xi+(z+1), . . . , xi+(h−1)·(z+1)) .

The invertibility of each one of these sub-systems follows from the fact that SG is invertible
by assumption.

The following corollary follows immediately.

Corollary 2. Let p ≥ 2 be a prime integer, and let m ≥ 2. Let G : F2
p → Fp such that

the SI–lifting SG over F2
p induced by G is invertible. Let F : Fm

p → Fp be defined as
F (x0, . . . , xm−1) := G(x0, xm−1). Then, the SI–lifting SF over F2·(m−1)

p induced by F is
invertible.

Based on these results, given F (x0, x1, x2) = α · x0 + β · x2 + (x0 − x2)2 such that
α ̸= ±β, then the SI-lifting SF over F4

p induced by F is invertible.

Concrete Examples. Examples of functions F : F3
p → Fp that depend on all three input

variables and for which SF over F4
p is invertible are given in the following.

Lemma 2. Let p ≥ 3 is a prime, and let F : F3
p → Fp be defined as

F (x0, x1, x2) := α · (x0 + x2) + β · x1 + γ ·H(x0 − x2) ,

where β, γ ∈ Fp \{0}, α ∈ Fp \{±β/2}, and where H : Fp → Fp is an even function. Then,
the SI–lifting SF over F4

p induced by F is invertible.

Proof. Let SF (x) = y. First of all, the equality yi− yi+2 = β · (xi+1− xi+3) holds for each
i ∈ {0, 1, 2, 3} since H is an even function. Hence, the system SF (x) = y is equivalent to

α β α 0
0 α β α
α 0 α β
β α 0 α

×

x0
x1
x2
x3

 =


y0 − γ ·H((y1 − y3)/β)
y1 − γ ·H((y0 − y2)/β)
y2 − γ ·H((y1 − y3)/β)
y3 − γ ·H((y0 − y2)/β)

 .
The determinant of the l.h.s. matrix is β2 · (4 · α2 − β2), which is always non-null due to
the condition β ̸= ±2α and β ̸= 0. Hence, it is possible to find an inverse matrix and to
solve the system.
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Proposition 12. Let p ≥ 5 be a prime integer. Let α ∈ Fp, and let γ ∈ Fp \ {0,−1,−1/3}
be such that Lp(γ2 + 1) = −1. Given F : F3

p → Fp defined as

F (x0, x1, x2) = (x0 − x1)2 + (x1 − x2)2 + α · (x0 + γ · (x0 + x1 + x2)) ,

the SI–lifting SF over F4
p induced by F is invertible.

Proof. Let SF (x) = y, and let β := α · γ. By simple computation:

y0 − y1 + y2 − y3 = (α+ β) · (x0 − x1 + x2 − x3) ,

where α+ β = α · (1 + γ) ̸= 0 by assumption. Let ŷ = (y0 − y1 + y2 − y3)/(α+ β), and
x0 = ŷ + x1 + x3 − x2. By substituting x0 in y1, y2, y3, we get:

y1 = (x1 − x2)2 + (x2 − x3)2 + α · x1 + β · (x1 + x2 + x3) ,
y2 = (x2 − x3)2 + (x3 − x0)2 + α · x2 + β · (x2 + x3 + x0)

= (x2 − x3)2 + (x2 − x1)2 + ŷ2 − 2 · (x2 − x1) · ŷ + α · x2 + β · (2 · x3 + ŷ + x1) ,
y3 = (x3 − x0)2 + (x0 − x1)2 + α · x3 + β · (x1 + x3 + x0)

= (x2 − x1)2 + 2ŷ2 + (x3 − x2)2 + 2 · (x3 − 2x2 + x1) · ŷ + α · x3 + β · (2x3 + ŷ + 2x1 − x2) .

Thus:

y2−y1 = ŷ2+βŷ+(α−2ŷ)·(x2−x1)+β ·(x3−x2) → x3 = x2+ỹ+ (2ŷ − α) · (x2 − x1)
β

,

where ỹ := (y2 − y1 − ŷ2 − βŷ)/β. By replacing it in y3 − y2, we get:

y3 − y2 = ŷ2 + (α+ 2ŷ) · ỹ + (x2 − x1) · (4ŷ2 − α2 − β2)
β

→ x2 = x1 + ȳ · β
4ŷ2 − α2 − β2 ,

where ȳ := y3 − y2 − ŷ2 − (α+ 2ŷ) · ỹ, and where 4ŷ2 − α2 − β2 is always non-zero due to
the assumption on γ. Indeed:

∀ŷ ∈ Fp : 4 · ŷ2 ̸= α2 + β2 ≡ α2 · (1 + γ2)

since Lp(4 · ŷ2) ∈ {0, 1} while Lp(α2 · (1 + γ2)) = Lp(α2) ·Lp(1 + γ2) = −1 by definition of
γ, and since a quadratic residue can never be equal to a quadratic non-residue. It follows
that

x0 = x1 + ŷ+ ỹ+ ȳ · (2ŷ − α)
4ŷ2 − α2 − β2 , x2 = x1 + ȳ · β

4ŷ2 − α2 − β2 , x3 = x1 + ȳ · (2ŷ − α+ β)
4ŷ2 − α2 − β2 + ỹ .

By replacing these values in y1, we get a linear equation in x1 of the form

(α+ 3β) · x1 +G(y0, y1, y2, y3) = 0

for a certain G : F4
p → Fp. Since α+ 3β = α · (1 + 3 · γ) ̸= 0 by assumption, the system

SF (x) = y is invertible.

Regarding the cost, four Fp-multiplications are sufficient for computing the SI–lifting
SF just defined. As before, it is sufficient to pre-compute and store z0 = (x0 − x1)2, z1 =
(x1 − x2)2, z2 = (x2 − x3)2, z3 = (x3 − x0)2. It follows that the SI–lifting SF is linear in
x0, x1, x2, x3 and in z0, z1, z2, z3.
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5.3 Analysis of the Case n ≥ 5
As a main result of this work, we prove that given any quadratic function F : F3

p → Fp,
then the lifting SF induced by F over Fn

p is never invertible for n ≥ 5.

Theorem 3. Let p ≥ 3 be a prime integer. Let F : F3
p → Fp be a function of degree 2.

The SI–lifting SF over Fn
p induced by F is never a permutation for each n ≥ 5.

As highlighted in the introduction, this result is quite surprising if compared to the F2
case, for which it is well known that the SI–lifting Sχ over Fn

2 induced via the local map χ
defined as in (5) is a permutation for each odd n ≥ 3.

In order to prove Theorem 3, we consider separately the following cases:

1. the function F : F3
p → Fp depends on at most two input variables (equivalently, it is

independent of at least one variable). If F (x0, x1, x2) = G(x0, x1) or F (x0, x1, x2) =
G(x1, x2), then due to the result given in Theorem 2, the SI–lifting SF over Fn

p

induced by F is never invertible. Also the case F (x0, x1, x2) = G(x0, x2) reduces to
the one studied in Theorem 2, since

• if n = 2n′ ≥ 6 is even, then the system of equations SF (x) = y can be split into
two independent systems of equations, namely,

SG(x0, x2, . . . , xn−2) = y0∥y2∥ . . . ∥yn−2, and
S ′

G(x1, x3, . . . , xn−1) = y1∥y3∥ . . . ∥yn−1 ,

both defined over Fn′

p . Due to Theorem 2, both SG and S ′
G are not invertible;

• if n = 2n′ + 1 ≥ 5 is odd, then the system of equations SF (x) = y can be
re-written as

SG(x0, x2, x4, . . . , xn−1, x1, x3, . . . , xn−2) = y0∥y2∥y4∥ . . . ∥yn−1∥y1∥y3∥ . . . ∥yn−2

over Fn
p . Due to Theorem 2, SG is not invertible;

2. the function F : F3
p → Fp only contains monomials that depend on a single variable,

that is, α1,1,0 = α1,0,1 = α0,1,1 = 0;

3. the function F : F3
p → Fp is linear in one variable, e.g., F (x0, x1, x2) = x0 +G(x1, x2)

where G : F2
p → Fp is a function of degree 2. Note that if F is linear in two variables

(e.g., F (x0, x1, x2) = x0 + α · x1 +G(x2) for a quadratic G : Fp → Fp), then SF is
never a permutation due to Proposition 5 since α(2) ̸= 0;

4. for the remaining cases, we analyze separately the functions with α1,0,1 ̸= 0 from the
ones with α1,0,1 = 0.

The second case is studied in Lemma 3, the third case is studied in Lemma 4, while the
last cases are studied in Lemma 5 and in Lemma 6 respectively. Details are given in the
next Section 6.

Practical Verification. The theoretical results just given are supported by our practical
verification, for which no quadratic function F that induces an invertible SF is found. For
our practical tests, we limit ourselves to consider balanced functions F : Fm

p → Fp under
the equivalence class defined in Definition 4. The practical results are reported in App. B –
Table 3 for the case of quadratic functions F : Fm

p → Fp for m = 2, 3. Those include the
number and the percentage of balanced functions, the maximum value of n ≥ 3 tested and
the total runtime.
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6 Proof of Theorem 3
We prove that the SI–lifting SF over Fn

p is not a permutation for any quadratic function
F : F3

p → Fp and n ≥ 5 by constructing collisions, i.e., we find two distinct n-tuples
x, y ∈ Fn

p such that SF (x) = SF (y) and x ̸= y, or equivalently:

∀i ∈ {0, 1, 2, . . . , n− 1} : F (xi, xi+1, xi+2) = F (yi, yi+1, yi+2) ,

where the sub-indexes are taken modulo n. Due to the results given in Proposition 5, here
we limit ourselves to consider the case

α(2) ≡α2,0,0 + α0,2,0 + α0,0,2 + α1,1,0 + α1,0,1 + α0,1,1 = 0 ,
α(1) ≡α1,0,0 + α0,1,0 + α0,0,1 ̸= 0 .

(12)

For reaching this goal, we introduce new variables s, d ∈ Fn
p , respectively for the sum

and for the difference:
s := x+ y and d := x− y . (13)

Clearly, a pair (s, d) is equivalent to a pair x, y, since x = (s+ d)/2 and y = (s− d)/2.

6.1 Case: α1,1,0 = α1,0,1 = α0,1,1 = 0
Lemma 3. Let p ≥ 3 be a prime integer. Let F : F3

p → Fp be a function of degree 2
defined as

F (x0, x1, x2) = α2,0,0 · x2
0 + α0,2,0 · x2

1 + α0,0,2 · x2
2 + α1,0,0 · x0 + α0,1,0 · x1 + α0,0,1 · x2 ,

that is, α1,1,0 = α1,0,1 = α0,1,1 = 0. The SI–lifting SF over Fn
p induced by F is never a

permutation for each n ≥ 5.

Proof. We prove this result by finding a collision for SF . Due to the condition α(2) =
α0,0,2 + α0,2,0 + α2,0,0 = 0 – see (12), at least two terms among α0,0,2, α0,2,0, α2,0,0 are
different from zero (otherwise F would be linear). For this reason, in order to prove the
result, we study separately the cases (1st) α0,0,2, α0,2,0, α2,0,0 ̸= 0 and (2nd) α0,0,2 = 0 or
α0,2,0 = 0 or α2,0,0 = 0:

case α0,0,2, α0,2,0, α2,0,0 ̸= 0: we show that the result is true for n = 5 by finding two
different inputs x, y ∈ F5

p such that x0 = y0 = x1 = y1 = ẑ ∈ Fp and SF (x) =
SF (y) ∈ F5

p and x ̸= y. This is done by solving a system of (linear) equations.
The collision over Fn

p for n ≥ 6 is obtained by working with x′ = x∥ẑ∥ẑ∥ . . . ∥ẑ and
y′ = y∥ẑ∥ẑ∥ . . . ∥ẑ ∈ Fn

p ;

case α0,0,2 = 0 or α0,2,0 = 0 or α2,0,0 = 0: we construct a collision directly over Fn
p ,

by choosing the differences (xi − yi) in an appropriate way.

Case: α0,0,2, α0,2,0, α2,0,0 ≠ 0. First of all, we construct a collision for n = 5 by
finding two different inputs x, y ∈ F5

p with x0 = y0 = x1 = y1 = 0 ∈ Fp such that
SF (x) = SF (y) ∈ F5

p and x ̸= y. This allows us to generalize such collision over Fn
p for

each n ≥ 6 by working as in Theorem 2, since

SF (0, 0, x2, x3, x4) = SF (0, 0, y2, y3, y4) →
SF (0, 0, x2, x3, x4, 0, . . . , 0) = SF (0, 0, y2, y3, y4, 0, . . . , 0) ,

where F (xi, xi+1, xi+2) = F (0, 0, 0) = F (yi, yi+1, yi+2) for each i ∈ {5, 6, . . . , n− 1}.



Lorenzo Grassi, Silvia Onofri, Marco Pedicini and Luca Sozzi 39

Hence, we look for x = (0, 0, x2, x3, x4), y = (0, 0, y2, y3, y4) ∈ F5
p such that SF (x) =

SF (y). By making use of the variables d, s ∈ F5
p introduced in (13):

F (0, 0, x2) = F (0, 0, y2) → d2 · (α0,0,2 · s2 + α0,0,1) = 0 → s2 = −α0,0,1

α0,0,2
,

F (x4, 0, 0) = F (y4, 0, 0) → d4 · (α2,0,0 · s4 + α1,0,0) = 0 → s4 = −α1,0,0

α2,0,0
,

where α0,0,2, α2,0,0 ̸= 0 by assumption, and where no condition on d2, d4 is imposed.
The other three conditions F (0, x2, x3) = F (0, y2, y3), F (x2, x3, x4) = F (y2, y3, y4) and

F (x3, x4, 0) = F (y3, y4, 0) correspond respectively to

d2 · (α0,2,0 · s2 + α0,1,0) + d3 · (α0,0,2 · s3 + α0,0,1) = 0 , (14)
d2 · (α2,0,0 · s2 + α1,0,0) + d3 · (α0,2,0 · s3 + α0,1,0) + d4 · (α0,0,2 · s4 + α0,0,1) = 0 , (15)
d3 · (α2,0,0 · s3 + α1,0,0) + d4 · (α0,2,0 · s4 + α0,1,0) = 0 , (16)

where s2 = −α0,0,1
α0,0,2

and s4 = −α1,0,0
α2,0,0

due to F (0, 0, x2) = F (0, 0, y2) and F (x4, 0, 0) =
F (y4, 0, 0) respectively. By summing these three equations, we get d2 + d3 + d4 = 0:

0 =d2 ·

−α0,0,1

α0,0,2︸ ︷︷ ︸
=s2

· (α0,2,0 + α2,0,0)︸ ︷︷ ︸
=−α0,0,2

+α1,0,0 + α0,1,0

+ d3 · (α(2)︸︷︷︸
=0

·s3 + α(1))

+ d4 ·


=s4︷ ︸︸ ︷
−α1,0,0

α2,0,0
·

=−α2,0,0︷ ︸︸ ︷
(α0,2,0 + α0,0,2) +α0,0,1 + α0,1,0


= α(1)︸︷︷︸

̸=0

·(d2 + d3 + d4) −→ d2 + d3 + d4 = 0 ,

where α(2) = α0,2,0 + α2,0,0 + α0,0,2 = 0 and α(1) ̸= 0 due to (12). Hence, the system of
equations (14) – (15) – (16) can be re-written as
d2 · (−α0,2,0 · α0,0,1 + α0,1,0 · α0,0,2) + d3 · (α2

0,0,2 · s3 + α0,0,1 · α0,0,2) = 0 ,
d2 · (α0,2,0 · α1,0,0 − α0,1,0 · α2,0,0) + d3 ·

(
α2

2,0,0 · s3 + α0,2,0 · α1,0,0 + α2,0,0 · (α1,0,0 − α0,1,0)
)

= 0 ,
d2 + d3 + d4 = 0 ,

where the first equation corresponds to (14) multiplied by α0,0,2, and where the second
one corresponds to (16) multiplied by α2,0,0 (after the substitution of d4 with −d2 − d3).
By re-writing the first two equations in a matrix form, we get[

−α0,2,0 · α0,0,1 + α0,1,0 · α0,0,2 α2
0,0,2 · s3 + α0,0,1 · α0,0,2

α0,2,0 · α1,0,0 − α0,1,0 · α2,0,0 α2
2,0,0 · s3 + α0,2,0 · α1,0,0 + α2,0,0 · (α1,0,0 − α0,1,0)

]
×
[

d2
d3

]
=
[

0
0

]
.

(17)
If the left-hand side (l.h.s.) matrix is invertible, then the only solution to the system of

equations would be d2 = d3 = 0, which implies d4 = 0. Hence, we choose s3 such that the
determinant of the l.h.s. matrix is equal to zero:

s3 = −α0,1,0

α0,2,0
.

In such a way, the first two equations are linearly dependent, and the solution of the
system of equations is given by

d3 = d2 ·
α0,2,0

α0,0,2
, d4 = d2 ·

α2,0,0

α0,0,2
,

s2 = −α0,0,1

α0,0,2
, s3 = −α0,1,0

α0,2,0
, s4 = −α1,0,0

α2,0,0
,
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where no condition on d2 ̸= 0 is imposed. Based on this computation, we have that

SF

(
0, 0, x −

α0,0,1

2α0,0,2
, −x ·

(
1 +

α2,0,0

α0,0,2

)
+

α0,0,1

2α0,0,2
−

α0,0,2 · α0,0,1 + α0,1,0

2α0,2,0
, x ·

α2,0,0

α0,0,2
−

α1,0,0

2α2,0,0

)
=SF

(
0, 0, −x −

α0,0,1

2α0,0,2
, x ·
(

1 +
α2,0,0

α0,0,2

)
+

α0,0,1

2α0,0,2
−

α0,0,2 · α0,0,1 + α0,1,0

2α0,2,0
, −x ·

α2,0,0

α0,0,2
−

α1,0,0

2α2,0,0

)
,

is a collision for SF , where x is an arbitrary value in Fp. We verified the above collision
using the computer algebra system Wolfram Mathematica by running the file Lemma3.ma
we provide in https://gitlab.com/pis147879/supplemental-material/-/tree/main/
proofs.

Case: α0,0,2 = 0 (analogous for α0,2,0 = 0 and for α2,0,0 = 0). If α0,0,1 = 0, then F
depends only on x0 and x1, and the result follows from Theorem 2. For this reason, we
limit ourselves to construct a collision for the case α0,0,1 ̸= 0 directly over Fn

p .
First of all, since α(2) = 0 due to (12) and since α0,0,2 = 0, it follows that α0,2,0 =

−α2,0,0. Working under the equivalence class defined in Definition 4, we can assume
α2,0,0 = −α0,2,0 = 1. Hence, we limit ourselves to prove the result for

F (x0, x1, x2) = x2
0 − x2

1 +A(x0, x1, x2) ,
where A(x0, x1, x2) := α1,0,0 · x0 + α0,1,0 · x1 + α0,0,1 · x2.

By making use of the variables d, s ∈ Fn
p introduced in (13), a collision SF (x) = SF (y)

occurs if
F (xi, xi+1, xi+2)− F (yi, yi+1, yi+2) = si · di − si+1 · di+1 +A(di, di+1, di+2) = 0

for each i ∈ {0, 1, . . . , n− 1} (where the sub-indices are taken modulo n), that is, if

d0 −d1 0 0 0 . . . 0
0 d1 −d2 0 0 . . . 0
0 0 d2 −d3 0 . . . 0
... . . . . . . ...
0 0 . . . 0 dn−3 −dn−2 0
0 0 . . . 0 0 dn−2 −dn−1
−d0 0 . . . 0 0 0 dn−1


×



s0
s1
s2
...

sn−3
sn−2
sn−1


=



A(d0, d1, d2)
A(d1, d2, d3)
A(d2, d3, d4)

...
A(dn−3, dn−2, dn−1)
A(dn−2, dn−1, d0)
A(dn−1, d0, d1)


.

The determinant of the l.h.s. matrix is zero, since the sum of all the rows is equal to zero.
Hence, a solution of such system exists if the right-hand side (r.h.s.) vector satisfies the
same linear condition, that is, if

∑n−1
i=0 A(di, di+1, di+2) = 0. Since

n−1∑
i=0

A(di, di+1, di+2) =
n−1∑
i=0

(α1,0,0 · di + α0,1,0 · di+1 + α0,0,1 · di+2) = α(1) ·
n−1∑
i=0

di ,

where α(1) ̸= 0 due to (12), it follows that
n−1∑
i=0

A(di, di+1, di+2) = 0 ←→
n−1∑
i=0

di = 0 .

By choosing d0, d1, . . . , dn−1 ∈ Fp such that
∑n−1

i=0 di = 0 (i.e., dn−1 = −
∑n−2

i=0 di),
equations that compose the system we aim to solve are linearly dependent. In such a case,
the collision SF (x) = SF (y) occurs if the following system of n− 1 equations is satisfied:

d0 −d1 0 0 . . . 0
0 d1 −d2 0 . . . 0
0 0 d2 −d3 . . . 0
...

. . . . . .
...

0 0 . . . 0 dn−3 −dn−2
0 0 . . . 0 0 dn−2

×



s0
s1
s2
...

sn−3
sn−2

 =



A(d0, d1, d2)
A(d1, d2, d3)
A(d2, d3, d4)

...
A(dn−3, dn−2, dn−1)

A(dn−2, dn−1, d0) + sn−1 · dn−1

 ,

https://gitlab.com/pis147879/supplemental-material/-/tree/main/proofs
https://gitlab.com/pis147879/supplemental-material/-/tree/main/proofs
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where no condition is imposed on sn−1 ∈ Fp. The determinant of such (n−1)×(n−1) matrix
is
∏n−2

i=0 di, which is different from zero by choosing di ̸= 0 for each i ∈ {0, 1, . . . , n− 2}.
In such a case, it is possible to find s0, s1, . . . , sn−2 that solve the system of equations for
the given di ̸= 0 and sn−1, where dn−1 = −

∑n−2
i=0 di. The found di and si correspond to a

collision for SF .

6.2 Case: F (x0, x1, x2) = α1,0,0 · x0 + G(x1, x2) (or Similar)
Lemma 4. Let p ≥ 3 be a prime integer. Let G : F2

p → Fp be a function of degree 2, and
let F : F3

p → Fp be a function of degree 2 defined as

1. F (x0, x1, x2) := α1,0,0 · x0 +G(x1, x2), or

2. F (x0, x1, x2) := α0,0,1 · x2 +G(x0, x1).

The SI–lifting SF over Fn
p induced by F is never a permutation for each n ≥ 5.

Proof. W.l.o.g., we limit ourselves to prove the lemma for the function F (x0, x1, x2) =
α1,0,0·x0+G(x1, x2), since the proof for the second case F (x0, x1, x2) = α0,0,1·x2+G(x0, x1)
is analogous. Indeed, assume that x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1)
generate a collision for the SI–lifting SF induced by F (x0, x1, x2) = x0 +G(x1, x2). Then,
x′ = (xn−1, xn−2, . . . , x1, x0) and y′ = (yn−1, yn−2, . . . , y1, y0) generate a collision for the
SI–lifting SF ′ induced by F ′(x0, x1, x2) = x2 +G(x0, x1).

Due to the equivalence class defined in Definition 4, we can assume that α1,0,0 = 1
in the case F (x0, x1, x2) = α1,0,0 · x0 + G(x1, x2), that is, from now on we work with
F (x0, x1, x2) = x0 +G(x1, x2).

We prove this result by finding a collision for SF . First of all, if α0,1,1 = 0, then F
satisfies Lemma 3, and a collision is already known. By assuming α0,1,1 ̸= 0, we achieve
this goal by studying separately the following cases:

case α0,0,2 = α0,2,0 ̸= 0: we construct a collision by working with two inputs x, y ∈ Fn
p

such that xi ̸= yi for each i ∈ {0, 1, 2, . . . , n− 1};

case n odd and α0,0,2 ̸= α0,2,0: we construct a collision by working with two inputs
x, y ∈ Fn

p such that xi = yi for each i odd and xj ̸= yj for each j even;

case n even and α0,0,2 ̸= α0,2,0: we construct a collision by working with two inputs
x, y ∈ Fn

p such that xi = yi for each i ̸= n− 1 odd and xj ̸= yj for each j even and
j = n− 1.

We recall that α(2) = 0 and α(1) ̸= 0 due to (12).

Case: α0,0,2 = α0,2,0 ̸= 0 and α0,1,1 ≠ 0. First of all, α(2) = 0 implies α0,1,1 =
−2α0,2,0. Working under the equivalence class defined in Definition 4, we also assume
α0,2,0 = 1 (besides α1,0,0 = 1).

Let A(z0, z1, z2) : F3
p → Fp be the linear function A(z0, z1, z2) := z0+α0,1,0·z1+α0,0,1·z2.

By making used of the variables d, s ∈ Fn
p introduced in (13), the collision SF (x) = SF (y)

occurs if:

0 = F (xi, xi+1, xi+2)− F (yi, yi+1, yi+2)
= (di+1 − di+2) · si+1 + (di+2 − di+1) · si+2 +A(di, di+1, di+2)
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for each i ∈ {0, 1, 2, . . . , n− 1}, that is, if

0 d1 − d2 d2 − d1 0 0 . . . 0
0 0 d2 − d3 d3 − d2 0 . . . 0
0 0 0 d3 − d4 d4 − d3 . . . 0
...

. . . . . .
...

0 0 0 . . . 0 dn−2 − dn−1 dn−1 − dn−2
d0 − dn−1 0 0 . . . 0 0 dn−1 − d0
d0 − d1 d1 − d0 0 . . . 0 0 0


×



s0
s1
s2
...

sn−3
sn−2
sn−1


= −

[
A(d0, d1, d2), A(d1, d2, d3), A(d2, d3, d4), . . . , A(dn−2, dn−1, d0), A(dn−1, d0, d1)

]T
.

The determinant of the l.h.s. matrix is equal to zero, since the sum (with alternating sign)
of the columns is equal to zero.

In order to set up a system of linear independent equations, note that the first condition
F (x0, x1, x2) = F (y0, y1, y2) (that is, 0 = (d1−d2)·s1+(d2−d1)·s2+d0+α0,1,0·d1+α0,0,1·d2)
is always satisfied if

d1 = d2 and d0 = −(α0,1,0 + α0,0,1) · d1 , (18)

where no condition on s0, s1, s2 is imposed. Since α(1) = 1 + α0,1,0 + α0,0,1 ̸= 0 due to
(12), then α0,1,0 + α0,0,1 ̸= −1 and so d0 ̸= d2, d1. In particular:

d0 − d1 = −(α0,1,0 + α0,0,1) · d1 − d1 = −d1 · α(1)

by definition of α(1) = 1 + α0,1,0 + α0,0,1 ̸= 0 (remember that we fixed α1,0,0 = 1).
For simplicity, we fix s0 = 0. In the case d1 = d2 and d0 = −(α0,1,0 + α0,0,1) · d2,

the first equation F (x0, x1, x2) = F (y0, y1, y2) is satisfied for each s0, and the collision
SF (x) = SF (y) occurs if

0 d2 − d3 d3 − d2 0 . . . 0
0 0 d3 − d4 d4 − d3 . . . 0
...

. . . . . .
...

0 0 . . . 0 dn−2 − dn−1 dn−1 − dn−2
0 0 . . . 0 0 dn−1 − d0

d1 − d0 0 . . . 0 0 0

×



s1
s2
...

sn−3
sn−2
sn−1

 =

−
[
A(d1, d2, d3), . . . , A(dn−3, dn−2, dn−1), A(dn−2, dn−1, d0), A(dn−1, d0, d1)

]T
.

The determinant of the l.h.s. matrix is equal to

(−1)n · (d0 − d1)︸ ︷︷ ︸
=−d1·α(1)

·
n−1∏
i=2

(di − di+1) ≡ −(−1)n · α(1) · d1 ·
n−1∏
i=2

(di − di+1) .

due to (18). Hence, the determinant is always different from zero by choosing d1 ̸= 0 and
di ̸= di+1 for each i ∈ {3, . . . , n−2}. In such a case, there exist s1, . . . , sn−2 ∈ Fp that solve
the system of equations for the given di, where s0 = 0, d1 = d2 and d0 = −(α0,1,0+α0,0,1)·d2.
The found di and si correspond to a collision for SF .

Case: n odd, α0,1,1 ≠ 0 and α0,0,2 ≠ α0,2,0. Let n = 2n′ + 1. By making used of the
variables d, s ∈ Fn

p introduced in (13), the collision SF (x) = SF (y) occurs if

0 =F (xi, xi+1, xi+2) − F (yi, yi+1, yi+2)
=α0,2,0 · di+1 · si+1 + α′

0,1,1 · (di+1 · si+2 + si+1 · di+2) + α0,0,2 · di+2 · si+2 +A(di, di+1, di+2)
=si+1 · (α0,2,0 · di+1 + α′

0,1,1 · di+2) + si+2 · (α0,0,2 · di+2 + α′
0,1,1 · di+1) +A(di, di+1, di+2)

for each i ∈ {0, 1, 2, . . . , n − 1}, where α0,1,1 := 2 · α′
0,1,1, and A(z0, z1, z2) : F3

p → Fp is
the linear function A(z0, z1, z2) := z0 + α0,1,0 · z1 + α0,0,1 · z2 as before.

We propose a collision by working with two inputs x, y ∈ Fn
p defined as
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• xi = yi for each i ∈ {1, 3, . . . , 2j + 1, . . . , n− 2} odd (i.e., di = 0 for each i odd);

• xi ̸= yi for each i ∈ {0, 2, . . . , 2j, . . . , n− 1} even.

In such a case, the collision SF (x) = SF (y) occurs if

0 α′
0,1,1 · d2 α0,0,2 · d2 0 0 . . . 0 0 0

0 0 α0,2,0 · d2 α′
0,1,1 · d2 0 . . . 0 0 0

0 0 0 α′
0,1,1 · d4 α0,0,2 · d4 . . . 0 0 0

...
. . .

. . .
...

0 0 0 0 0 . . . 0 α′
0,1,1 · dn−1 α0,0,2 · dn−1

α0,0,2 · d0+
α′

0,1,1 · dn−1
0 0 0 0 . . . 0 0 α0,2,0 · dn−1+

α′
0,1,1 · d0

α0,2,0 · d0 α′
0,1,1 · d0 0 0 0 . . . 0 0 0


×
[

s0, s1, s2, s3, s4, . . . , sn−3, sn−2, sn−1
]T

= −
[

A(d0, 0, d2), A(0, d2, 0), A(d2, 0, d4), . . . , A(dn−3, 0, dn−1), A(0, dn−1, d0), A(dn−1, d0, 0)
]T

.

The determinant of the l.h.s. matrix is equal to:

α′
0,1,1

n−1
2 · d0 · dn−1 ·

n′−1∏
i=1

d2i
2 · (d0 · β + dn−1 · γ) ,

where

β := α0,2,0
n−1

2 · α0,1,1 + α0,0,2
n+1

2 and γ := α0,2,0
n+1

2 + α0,0,2
n−1

2 · α′
0,1,1 .

Hence:

• if α0,0,2 = 0, then α0,2,0 = −α0,1,1 ̸= 0 due to the fact that α(2) = 0 – see (12). In
such a case, β ̸= 0, and the matrix is invertible (i.e., the determinant is different
from zero) for d0, d2, d4, . . . , dn−1 ̸= 0 and β · d0 ̸= −dn−1 · γ. By solving the linear
system of equations, the found di and si correspond to a collision for SF . Analogous
for α0,2,0 = 0;

• if α0,0,2, α0,2,0 ̸= 0, then at least one among β and γ is different from zero. Indeed,
if α0,0,2, α0,2,0 ̸= 0 and if β = γ = 0, then

0 = β

α0,2,0
n−1

2
=
(
α0,0,2

α0,2,0

)n−1
2

· (α0,1,1 + α0,2,0) → α0,2,0 = −α0,1,1 ,

0 = γ

α0,0,2
n−1

2
=
(
α0,2,0

α0,0,2

)n−1
2

· (α0,1,1 + α0,0,2) → α0,0,2 = −α0,1,1 .

This implies that α0,0,2 = α0,2,0, which is not possible by assumption. Hence, w.l.o.g.,
let’s assume that β ≠ 0 (analogous if γ ̸= 0). Working as before, the matrix is
invertible (i.e., the determinant is different from zero) for d0, d2, d4, . . . , dn−1 ̸= 0
and β · d0 ̸= −dn−1 · γ. By solving the linear system of equations, the found di and
si correspond to a collision for SF .

Case: n even, α0,1,1 ≠ 0 and α0,0,2 ≠ α0,2,0. Let n = 2n′′ + 2. The proof is similar
to the one proposed for n odd, but in this case we propose a collision by working with two
inputs x, y ∈ Fn

p defined as

• xi = yi for each i ∈ {1, 3, . . . , 2i′+1, . . . , n−3} odd, but not for i = n−1 (equivalently,
di = 0 for each i odd ̸= n− 1);

• xi ̸= yi for each i ∈ {0, 2, . . . , 2i′, . . . , n− 2} even, and for i = n− 1.
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In such a case, the collision SF (x) = SF (y) occurs if

0 α′
0,1,1 · d2 α0,0,2 · d2 0 0 . . . 0 0 0

0 0 α0,2,0 · d2 α′
0,1,1 · d2 0 . . . 0 0 0

0 0 0 α′
0,1,1 · d4 α0,0,2 · d4 . . . 0 0 0

.

.

.
. . .

. . .
.
.
.

0 0 0 0 0 . . . 0
α0,2,0 · dn−2+

α′
0,1,1 · dn−1

α0,0,2 · dn−1+
α′

0,1,1 · dn−2
α0,0,2 · d0+
α′

0,1,1 · dn−1
0 0 0 0 . . . 0 0

α0,2,0 · dn−1+
α′

0,1,1 · d0
α0,2,0 · d0 α′

0,1,1 · d0 0 0 0 . . . 0 0 0


×
[

s0, s1, s2, s3, s4, . . . , sn−3, sn−2, sn−1
]T

= −
[

A(d0, 0, d2), A(0, d2, 0), A(d2, 0, d4), . . . , A(0, dn−2, dn−1), A(dn−2, dn−1, d0), A(dn−1, d0, 0)
]T

,

where α′
0,1,1 := α0,1,1/2 as before. The determinant of the l.h.s. matrix is equal to:

(α′
0,1,1)n′′

·
(

(α0,0,2)n′′
·
(
α0,0,2 · dn−1 + α′

0,1,1 · dn−2
)

·
(
α0,0,2 · d0 + α′

0,1,1 · dn−1
)

− (α0,2,0)n′′
·
(
α′

0,1,1 · d0 + α0,2,0 · dn−1
)

· (α′
0,1,1 · dn−1 + α0,2,0 · dn−2)

)
·

n′′∏
i=0

d2i
2 .

Working as in the case n odd:

• if α0,2,0 = 0 (hence, α0,0,2 = −α0,1,1 ̸= 0): the determinant of the matrix becomes

(α′
0,1,1 ·α0,0,2)n′′

·
(
α0,0,2 · d0 + α′

0,1,1 · dn−1
)
·
(
α0,0,2 · dn−1 + α′

0,1,1 · dn−2
)
·

n′′∏
i=0

d2i
2 ,

which is different from zero by choosing d0, d2, d4, . . . , dn−2, dn−1 ̸= 0, d0 ̸= −
α′

0,1,1·dn−1
α0,0,2

and dn−1 ̸= −
α′

0,1,1·dn−2
α0,0,2

. By solving the linear system of equations, the found di

and si correspond to a collision for SF . Analogous if α0,0,2 = 0;

• if α0,2,0, α0,0,2 ̸= 0: let d0, dn−1 ∈ Fp \ {0} be such that α′
0,1,1 · d0 + α0,2,0 · dn−1 = 0.

In such a case, the determinant becomes

(α′
0,1,1 · α0,0,2)n′′

α′
0,1,1

·
(
(α′

0,1,1)2 − α0,0,2 · α0,2,0
)

·
(
α0,0,2 · dn−1 + α′

0,1,1 · dn−2
)

·dn−1 ·
n′′∏
i=0

d2i
2 ,

which is different from zero by choosing d0, d2, d4, . . . , dn−2, dn−1 ̸= 0 and dn−1 =
−α′

0,1,1·dn−2
α0,0,2

, if (α′
0,1,1)2 ̸= α0,0,2 · α0,2,0. By solving the linear system of equations,

the found di and si correspond to a collision for SF .
In order to finish the proof, we have to prove that (α′

0,1,1)2 ̸= α0,0,2 · α0,2,0. Since
α(2) = α0,0,2 + α0,2,0 + α0,1,1 = 0 due to (12), then

(α′
0,1,1)2 − α0,0,2 · α0,2,0 =

(
−α0,0,2 + α0,2,0

2

)2
− α0,0,2 · α0,2,0 = (α0,0,2 − α0,2,0)2

4

is equal to zero if and only if α0,0,2 = α0,2,0, which is not possible by assumption.
This concludes the proof.
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6.3 Case: α1,0,1 ̸= 0
Lemma 5. Let p ≥ 3 be a prime integer. Let F : F3

p → Fp be a function of degree 2
defined as in (7) where α1,0,1 ̸= 0. The SI–lifting SF over Fn

p induced by F is never a
permutation for each n ≥ 5.

Proof. We prove this result by finding a collision for SF . The strategy of the proof is
similar to the one proposed for Lemma 3. We first prove the result for the case n = 5.
Our goal is to prove that for each function F : F3

p → Fp of degree 2 defined as in (7), it is
possible to find two different inputs x, y ∈ F5

p such that SF (x) = SF (y), or equivalently:

∀i ∈ {0, 1, 2, 3, 4} : F (xi, xi+1, xi+2) = F (yi, yi+1, yi+2) ,

where the sub-indexes are taken modulo n = 5. By assuming x0 = y0 = x1 = y1 = ẑ ∈ Fp,
we can easily generalize such collision for each n ≥ 6, that is,

SF (ẑ, ẑ, x2, x3, x4) = SF (ẑ, ẑ, y2, y3, y4) →
SF (ẑ, ẑ, x2, x3, x4, ẑ, . . . , ẑ) = SF (ẑ, ẑ, y2, y3, y4, ẑ, . . . , ẑ) ,

since F (xi, xi+1, xi+2) = F (ẑ, ẑ, ẑ) = F (yi, yi+1, yi+2) for each i ∈ {5, . . . , n− 1}.

Case: Only a Single Non-Null Difference di ̸= 0. We first construct collisions in which
the inputs x and y differ in one word/variable only, that is, there exists l ∈ {2, 3, 4} such
that xl ̸= yl (equivalently, dl ̸= 0 where dl = xl − yl is defined as in (13)), and xj = yj for
each j ∈ {2, 3, 4}.

SubCase: x4 ̸= y4. In the case x2 = y2, x3 = y3, and x4 ̸= y4, the collision
SF (ẑ, ẑ, x2, x3, x4) = SF (ẑ, ẑ, x2, x3, y4) occurs if
F (x2, x3, x4) = F (y2, y3, x4) → 0 = α0,0,2 · (x4 + y4) + α0,1,1 · x3 + α1,1,0 · x2 + α0,0,1 ,

F (x3, x4, ẑ) = F (x3, y4, ẑ) → 0 = α0,2,0 · (x4 + y4) + α0,1,1 · ẑ + α1,1,0 · x3 + α0,1,0 ,

F (x4, ẑ, ẑ) = F (y4, ẑ, ẑ) → 0 = α2,0,0 · (x4 + y4) + (α1,1,0 + α1,0,1) · ẑ + α1,0,0 ,

that is,α1,1,0 + α1,0,1 0 0
α0,1,1 0 α1,1,0

0 α1,0,1 α0,1,1

×
 ẑx2
x3

 = −

α2,0,0 · (x4 + y4) + α1,0,0
α0,2,0 · (x4 + y4) + α0,1,0
α0,0,2 · (x4 + y4) + α0,0,1

 .
A non-trivial solution (hence, a collision) exists if α1,1,0 ̸= −α1,0,1 and α1,1,0 ̸= 0 (remember
that α1,0,1 ̸= 0 by assumption).

SubCase: x3 ≠ y3. Working in a similar way, in the case x2 = y2, x3 ̸= y3, and x4 = y4,
the collision SF (ẑ, ẑ, x2, x3, x4) = SF (ẑ, ẑ, x2, y3, x4) occurs ifα1,0,1 α0,1,1 0

0 α1,1,0 α0,1,1
α1,0,1 0 α1,1,0

×
 ẑx2
x4

 = −

α0,0,2 · (x3 + y3) + α0,0,1
α0,2,0 · (x3 + y3) + α0,1,0
α2,0,0 · (x3 + y3) + α1,0,0

 .
A non-trivial solution (hence, a collision) exists if α2

1,1,0 + α2
0,1,1 ̸= 0 (remember that

α1,0,1 ̸= 0 by assumption).

SubCase: x2 ≠ y2. Finally, in the case x2 ̸= y2, x3 = y3, and x4 = y4, the collision
SF (ẑ, ẑ, x2, x3, x4) = SF (ẑ, ẑ, y2, x3, x4) occurs ifα1,0,1 + α0,1,1 0 0

α1,1,0 α0,1,1 0
0 α1,1,0 α1,0,1

×
 ẑx3
x4

 = −

α0,0,2 · (x2 + y2) + α0,0,1
α0,2,0 · (x2 + y2) + α0,1,0
α2,0,0 · (x2 + y2) + α1,0,0

 .
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A non-trivial solution (hence, a collision) exists if α0,1,1 ̸= −α1,0,1 and α0,1,1 ̸= 0 (remember
that α1,0,1 ̸= 0 by assumption).

Summary. In summary, assuming α1,0,1 ̸= 0, the case in which it is not possible to find
a collision by using the strategy just proposed (i.e., only a single non-zero difference di) is

α2
1,1,0 + α2

0,1,1 = 0 ;
α1,0,1 = −α1,1,0 or α1,1,0 = 0 ;
α1,0,1 = −α0,1,1 or α0,1,1 = 0 .

(19)

Indeed, if α1,0,1 ̸= 0, it is sufficient that one of three conditions given in the system is not
fulfilled in order to find a collision using the previous strategy.

In the following, we set up collisions for this remaining case. Before going on, we
note that if α1,1,0 = 0, then the condition α1,0,1 = −α1,1,0 cannot occur since α1,0,1 ̸= 0.
Analogous for α0,1,1 = 0 and α1,0,1 = −α0,1,1.

Case: α0,1,1 ̸= 0 and α1,1,0 ≠ 0. Let’s first consider the case α1,0,1 ̸= 0 and α1,1,0 ̸= 0.
Here, we prove that this case can never occur. Indeed, the second condition in (19) is
satisfied if and only if α1,0,1 = −α1,1,0, while the third condition in (19) is satisfied if and
only if α1,0,1 = −α0,1,1. It follows that −α1,0,1 = α1,1,0 = α0,1,1. By replacing it in the
first condition in (19), we get

0 = α2
1,1,0 + α2

0,1,1 = 2 · α2
1,1,0 → α1,1,0 = 0 ,

which contradicts the assumption of the analyzed case α1,1,0 ̸= 0.

Case: α1,1,0 = 0 and/or α0,1,1 = 0. If α1,1,0 = 0, then due to the first condition
α2

1,1,0 + α2
0,1,1 = 0, it follows that α0,1,1 = 0. Hence, α1,1,0 = 0 if and only if α0,1,1 = 0.

Let’s consider separately the cases α0,2,0 ̸= 0 and α0,2,0 = 0.

SubCase: α0,2,0 ̸= 0. If α0,2,0 ̸= 0, we can still set up a collision by working with
x2 = y2, x3 = y3, and x4 ̸= y4. Let s4 := x4 + y4. In such a case, the collision
SF (ẑ, ẑ, x2, x3, x4) = SF (ẑ, ẑ, x2, x3, y4) occurs ifα1,0,1 0 α2,0,0

0 0 α0,2,0
0 α1,0,1 α0,0,2

×
 ẑx2
s4

 = −

α1,0,0
α0,1,0
α0,0,1

 .
Since the determinant of the l.h.s. matrix is always non-zero (it corresponds to α2

1,0,1 ·α0,2,0,
which is non-zero due to the assumption on α1,0,1 ̸= 0 and α0,2,0 ̸= 0), this linear system
of equations admits a solution, which corresponds to a collision.

SubCase: α0,2,0 = 0. If α0,2,0 = 0 and if α0,1,0 = 0, the result follows immediately from
Theorem 2. Hence, we limit ourselves to consider the case α0,2,0 = 0 and α0,1,0 ̸= 0.

W.l.o.g., since α0,1,0 ̸= 0, we can assume α0,1,0 = 1 due to the equivalence class
proposed in Definition 4. Since α0,2,0 = α1,1,0 = α0,1,1 = 0 and since α1,0,1 ̸= 0, the
condition 0 = α(2) = α2,0,0 +α0,0,2 +α1,0,1 as given in (12) implies that at least one among
α2,0,0 and α0,0,2 is different from zero. W.l.o.g., we assume α2,0,0 ̸= 0, and we propose a
collision by working with x2 = y2 (analogous for α2,0,0 = 0 and α0,0,2 ̸= 0 by working with
x4 = y4).

In such a case, the collision SF (ẑ, ẑ, x2, x3, x4) = SF (ẑ, ẑ, x2, y3, y4) occurs if
α1,0,1 0 α0,0,2 0
α1,0,1 0 0 α2,0,0

0 α1,0,1 · d4 0 α0,0,2 · d4
α1,0,1 · d3 0 α2,0,0 · d3 0

×

ẑ
x2
s3
s4

 = −


α0,0,1
α1,0,0

d3 + α0,0,1 · d4
α1,0,0 · d3 + d4

 , (20)
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where d3 = x3 − y3 ̸= 0 and d4 = x4 − y4 ≠ 0. The determinant of the l.h.s. matrix is
equal to

2 · α2
1,0,1 · α2,0,0 · (α0,0,2 − α2,0,0) · d3 · d4 .

If α0,0,2 ̸= α2,0,0, the determinant is different from zero by choosing d3, d4 ̸= 0, and the
solution of the system of equations corresponds to a non-trivial collision. Instead, if
α0,0,2 = α2,0,0, the rows of the l.h.s. matrix satisfy a linear relation with linear coefficients
−d3, 0, 0, 1, that is,

−d3 ·

α1,0,1
0

α0,0,2
0


T

+ 0 ·

α1,0,1
0
0

α2,0,0


T

+ 0 ·

 0
α1,0,1 · d4

0
α0,0,2 · d4


T

+

α1,0,1 · d3
0

α2,0,0 · d3
0


T

=

0
0
0
0


T

.

A solution can exist if the r.h.s. vector satisfies the same linear relation, that is, if

0 = −d3 · α0,0,1 + α1,0,0 · d3 + d4 → d4 = d3 · (α0,0,1 − α1,0,0) .

Given d3 ̸= 0, d4 is equal to zero if and only if α0,0,1 = α1,0,0. Hence, if α0,0,2 = α2,0,0 and
α0,0,1 ̸= α1,0,0 (and so d4 ̸= 0), the equations are linearly dependent, and the system of
equations (20) reduces to 0 α0,0,2 0

0 0 α2,0,0
α1,0,1 · d4 0 α0,0,2 · d4

×
x2
s3
s4

 = −

α0,0,1 − α1,0,1 · ẑ
α1,0,0 − α1,0,1 · ẑ
d3 + α0,0,1 · d4

 .
Since the l.h.s. matrix is invertible (the determinant is equal to α2

0,0,2 ·α1,0,1 · d4 ≠ 0), then
the system of equations admits a non-trivial solution, which corresponds to a collision.

SubSubCase: α0,2,0 = 0, α0,0,2 = α2,0,0, and α0,0,1 = α1,0,0. The only remaining
case to analyze is α0,2,0 = 0, α0,0,2 = α2,0,0, and α0,0,1 = α1,0,0, for which we propose a
collision by working with ẑ = 0, x2 ̸= y2, x3 ̸= y3, and x4 ̸= y4 (i.e., d2, d3, d4 ̸= 0). By
making used of the variables di and si as defined in (13), the collision SF (0, 0, x2, x3, x4) =
SF (0, 0, y2, y3, y4) occurs if

α2,0,0 · s2 + α1,0,0 = 0
α2,0,0 · s3 · d3 + d2 + α1,0,0 · d3 = 0
α2,0,0(s2 · d2 + s4 · d4) + α1,0,1

2 (s2 · d4 + s4 · d2) + α1,0,0 · (d2 + d4) + d3 = 0
α2,0,0 · s3 · d3 + α1,0,0 · d3 + d4 = 0
α2,0,0 · s4 + α1,0,0 = 0

.

The first and the last equations imply s2 = s4 = −α1,0,0
α2,0,0

. The difference between the
second and the fourth equation implies d2 = d4. By choosing s3 = −d2+α1,0,0·d3

α2,0,0·d3
, both the

second and the fourth equations are satisfied. The last equation to solve is the third one,
which can be re-written as

0 = (2α2,0,0 + α1,0,1)︸ ︷︷ ︸
=α(2)=0

·s2 · d2 + 2α1,0,0 · d2 + d3 = 2α1,0,0 · d2 + d3

since α(2) = 0 – see (12). By choosing d3 = −2α1,0,0 · d2 where d2 ≠ 0, we finally get a
collision for the case α0,0,2 = α2,0,0 and α0,0,1 = α1,0,0 of the form

SF

(
0, 0, x2 − α1,0,0

2α2,0,0
,−α1,0,0 · x+

1 − 2α2
1,0,0

4α2,0,0 · α1,0,0
,
x

2 − α1,0,0

2α2,0,0

)
= SF

(
0, 0,−x

2 − α1,0,0

2α2,0,0
, α1,0,0 · x+

1 − 2α2
1,0,0

4α2,0,0 · α1,0,0
,−x

2 − α1,0,0

2α2,0,0

)
,
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where x is an arbitrary value in Fp. We verified the above collision using the computer
algebra system Wolfram Mathematica by running the file Lemma5.ma we provide in https:
//gitlab.com/pis147879/supplemental-material/-/tree/main/proofs.

6.4 Case: α1,0,1 = 0
Lemma 6. Let p ≥ 3 be a prime integer. Let F : F3

p → Fp be a function of degree 2
defined as in (7) where α1,0,1 = 0. The SI–lifting SF over Fn

p induced by F is never a
permutation for each n ≥ 5.

Proof. We prove this result by finding a collision for SF . We study separately the case
(1st) α0,1,1 = 0 or/and α1,1,0 = 0 from the case (2nd) α0,1,1, α1,1,0 ̸= 0. The strategy of
the proof is analogous to the one proposed for Lemma 5, that is, we look for a collision of
the form SF (ẑ, ẑ, x2, x3, x4, ẑ, . . . , ẑ) = SF (ẑ, ẑ, y2, y3, y4, ẑ, . . . , ẑ) for a generic ẑ ∈ Fp. As
before, we limit ourselves to focus on the case n = 5, that is, we present collisions of the
form SF (ẑ, ẑ, x2, x3, x4) = SF (ẑ, ẑ, y2, y3, y4).

Case: α0,1,1 = 0 or/and α1,1,0 = 0. First of all, if α1,1,0 = α0,1,1 = 0, then the result
follows immediately from Lemma 3. Let’s assume that exactly one term among α1,1,0
and α0,1,1 is different from zero. In this case, we can set up a collision by working with
x2 = y2, x4 = y4, and x3 ̸= y3 (equivalently, d2 = d4 = 0 and d3 ̸= 0), for which the
collision SF (ẑ, ẑ, x2, x3, x4) = SF (ẑ, ẑ, x2, y3, x4) occurs ifα0,0,2 α0,1,1 0

α0,2,0 α1,1,0 α0,1,1
α2,0,0 0 α1,1,0

×
s3
x2
x4

 = −

α0,0,1
α0,1,0
α1,0,0

 ,
where s3 = x3 + y3 as in (13). The determinant of the l.h.s. matrix is

α0,0,2 ·α2
1,1,0 −α0,1,1 ·α0,2,0 ·α1,1,0 +α2,0,0 ·α2

0,1,1 =
{
α0,0,2 · α2

1,1,0 if α1,1,0 ̸= 0 and α0,1,1 = 0
α2,0,0 · α2

0,1,1 if α1,1,0 = 0 and α0,1,1 ̸= 0
.

In the case α1,1,0 ̸= 0 and α0,1,1 = 0:

• if α0,0,2 ̸= 0, then the matrix is invertible, and the solution corresponds to a collision;

• if α0,0,2 = 0, then the matrix is not invertible. However, the function F reduces to

F (x0, x1, x2) = α2,0,0 · x2
0 + α0,2,0 · x2

1 + α1,1,0 · x0 · x1 + α1,0,0 · x0 + α0,1,0 · x1 + α0,0,1 · x2

≡ α0,0,1 · x2 +G(x0, x1)

for a certain quadratic function G : F2
p → Fp. In such a case, the function SF is not

invertible, respectively due to the results proposed in Lemma 4 if α0,0,1 ̸= 0, and in
Theorem 2 otherwise (i.e., if α0,0,1 = 0).

Analogous for the case α1,1,0 = 0 and α0,1,1 ̸= 0.

Case: α0,1,1, α1,1,0 ̸= 0. Let α′
0,1,1 := α0,1,1/2 and α′

1,1,0 := α1,1,0/2. In this case, we
set up a collision by working with x2 = y2, x3 ̸= y3, and x4 ̸= y4 (equivalently, d2 = 0 and
d3, d4 ̸= 0). By making used of the variables di and si defined as in (13) for i ∈ {3, 4}, the
collision SF (ẑ, ẑ, x2, x3, x4) = SF (ẑ, ẑ, x2, y3, y4) occurs if α0,0,2 0 α0,1,1 0

0 α2,0,0 0 α1,1,0
α0,2,0 · d3 + α′

0,1,1 · d4 α0,0,2 · d4 + α′
0,1,1 · d3 α1,1,0 · d3 0

α2,0,0 · d3 + α′
1,1,0 · d4 α0,2,0 · d4 + α′

1,1,0 · d3 0 α0,1,1 · d4

×

s3
s4
x2
ẑ

 = −

 A(0, 0, d3)
A(d4, 0, 0)
A(0, d3, d4)
A(d3, d4, 0)

 ,

https://gitlab.com/pis147879/supplemental-material/-/tree/main/proofs
https://gitlab.com/pis147879/supplemental-material/-/tree/main/proofs
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where A : F3
p → Fp is the linear function defined as A(z0, z1, z2) = α1,0,0 · z0 + α0,1,0 · z1 +

α0,0,1 · z2. The determinant of the l.h.s. matrix is equal to

β · (α′
1,1,0 · d2

3 + α′
0,1,1 · d2

4) + γ · d3 · d4

where

β := α1,1,0 · α0,1,1 · α0,2,0 − α2
1,1,0 · α0,0,2 − α2

0,1,1 · α2,0,0 ,

γ := α1,1,0 · α0,1,1 · α2,0,0 · α0,0,2 − α2
0,1,1 · α2,0,0 · α0,2,0 − α2

1,1,0 · α0,0,2 · α0,2,0 .

Thus:

• if β ̸= 0, then the determinant of the matrix is different from zero by choosing d3 ̸= 0
and d4 = 0 (or vice-versa);

• if β = 0 and γ ̸= 0, then the determinant of the matrix is different from zero by
choosing d3 ̸= 0 and d4 ̸= 0.

In such cases, the solution of the system of equations corresponds to a collision.
By re-using the same approach in the case x3 = y3, x2 ̸= y2, and x4 ̸= y4 (equivalently,

d3 = 0 and d2, d4 ̸= 0), it is possible to set up a collision for the case

α0,0,2 · α2,0,0 · (α2
1,1,0 − α2

0,1,1) + α1,1,0 · α0,1,1 · α0,2,0 · (α0,0,2 − α2,0,0) ̸= 0

as well (we omit the details, since the computation is analogous to the one just given for
the case x2 = y2, x3 ̸= y3, and x4 ̸= y4).

In order to finish the proof, the only remaining case in which we have to set up a
collision is

α1,1,0 · α0,1,1 · α0,2,0 − α2
1,1,0 · α0,0,2 − α2

0,1,1 · α2,0,0 = 0
α1,1,0 · α0,1,1 · α2,0,0 · α0,0,2 − α2

0,1,1 · α2,0,0 · α0,2,0 − α2
1,1,0 · α0,0,2 · α0,2,0 = 0

α0,0,2 · α2,0,0 · (α2
1,1,0 − α2

0,1,1) + α1,1,0 · α0,1,1 · α0,2,0 · (α0,0,2 − α2,0,0) = 0
. (21)

The sum between the first equation and the second one multiplied by α0,2,0 is equal to
α2

0,2,0 = α0,0,2 · α2,0,0. By replacing α1,1,0 · α0,1,1 · α0,2,0 in the last equation via the first
one, we get (α0,0,2 · α1,1,0)2 = (α2,0,0 · α0,1,1)2. Due to these considerations, it follows that
Equation (21) reduces to {

α0,0,2 · α1,1,0 = ±α2,0,0 · α0,1,1

α2
0,2,0 = α0,0,2 · α2,0,0

.

It is not hard to check that this system is satisfied if and only if one of the two following
events happens:

1. α2,0,0 = α0,2,0 = α0,0,2 = 0; or

2. φ2 = ±α0,1,1
α1,1,0

is a quadratic residue, and α0,0,2 = α2,0,0 · φ2, α0,2,0 = ±α2,0,0 · φ,
where α2,0,0, α0,2,0, α0,0,2 ̸= 0.

SubCase: α2,0,0 = α0,2,0 = α0,0,2 = 0. Due to α(2) = 0 – see (12), we have that
α0,1,1 = −α1,1,0. We construct a collision by working with x2 ̸= y2, x3 ̸= y3 and x4 = y4
(equivalently, d4 = 0 and d2, d3 ̸= 0). In such a case, the collision SF (ẑ, ẑ, x2, x3, x4) =
SF (ẑ, ẑ, y2, y3, x4) occurs if α0,1,1 · d2 0 0 0

−α0,1,1 · d2
α0,1,1

2 · d3
α0,1,1

2 · d2 0
0 − α0,1,1

2 · d3 − α0,1,1
2 · d2 α0,1,1 · d3

0 0 0 −α0,1,1 · d3

×

 ẑs2
s3
x4

 = −

 α0,0,1 · d2
α0,1,0 · d2 + α0,0,1 · d3
α1,0,0 · d2 + α0,1,0 · d3

α1,0,0 · d3

 .
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The determinant of the l.h.s. matrix is equal to zero (since the sum of its rows is equal to
zero). Hence, a solution can exist only in the case in which the r.h.s. vector satisfies the
same linear condition, that is,

(α0,0,1 + α0,1,0 + α1,0,0)︸ ︷︷ ︸
≡α(1) ̸=0

·(d2 + d3) = 0 → d2 = −d3 ,

where α(1) ≠ 0 due to (12). In the case d2 = −d3 ̸= 0, a solution for the system of
equations (hence, a collision) is given by

ẑ = −α0,0,1

α0,1,1
, x4 = α1,0,0

α0,1,1
, s3 = s2 − 2 · α0,1,0

α0,1,1
,

where no condition is imposed on s2. It follows that

SF

(
−α0,0,1

α0,1,1
,−α0,0,1

α0,1,1
, x, y − α0,1,0

α0,1,1
,
α1,0,0

α0,1,1

)
= SF

(
−α0,0,1

α0,1,1
,−α0,0,1

α0,1,1
, y, x− α0,1,0

α0,1,1
,
α1,0,0

α0,1,1

)
,

where x ∈ Fp\{0} and y ∈ Fp are arbitrary values. We verified the above collision using the
computer algebra system Wolfram Mathematica by running the file Lemma6.ma we provide
in https://gitlab.com/pis147879/supplemental-material/-/tree/main/proofs.

SubCase: φ2 = ±α0,1,1
α1,1,0

is a quadratic residue, α0,0,2 = α2,0,0 · φ2 ̸= 0, and α0,2,0 =
±α2,0,0 · φ ̸= 0. Here we present a collision by working with ẑ = 0, x2 = y2, x3 ̸= y3
and x4 = y4 (equivalently, d2 = d4 = 0 and d3 ̸= 0). In such a case, the collision
SF (0, 0, x2, x3, x4) = SF (0, 0, x2, y3, x4) occurs if±φ2 · α1,1,0 φ2 · α2,0,0 0

α1,1,0 ±φ2 · α2,0,0 ±φ2 · α1,1,0
0 α2,0,0 α1,1,0

×
x2
s3
x4

 = −

α0,0,1
α0,1,0
α1,0,0

 ,
where s3 = x3 + y3. The determinant of the l.h.s. matrix is

−α2
1,1,0 · α2,0,0 · (1± φ+ φ2) .

Since α1,1,0, α2,0,0 ̸= 0, if 1± φ+ φ2 ≠ 0, then the determinant is different from zero, and
the system admits a solution which corresponds to a collision.

For finishing the proof, we construct a collision for the remaining case 1± φ+ φ2 = 0.
In order to do this, we first prove that φ2 = ±1. Indeed, due to the condition α(2) = 0 –
see (12), we have that

0 = α(2) = α2,0,0 + α0,2,0 + α0,2,0 + α0,1,1 + α1,1,0

= α2,0,0 · (1± φ+ φ2)︸ ︷︷ ︸
=0

+α1,1,0 + α0,1,1 −→ α1,1,0 = −α0,1,1 ,

where α0,0,2 = α2,0,0 · φ2 and α0,2,0 = ±α2,0,0 · φ. Since φ2 = ±α0,1,1
α1,1,0

, it follows that

φ2 = ±α0,1,1

α1,1,0
= ±−α1,1,0

α1,1,0
= ±1 .

By combining φ2 = ±1 and 1± φ+ φ2 = 0, we get the following:

• if φ2 = −1:
0 = 1± φ+ φ2 = 1± φ− 1 = ±φ ,

that is, φ2 = 0, which contradicts φ2 = −1;

https://gitlab.com/pis147879/supplemental-material/-/tree/main/proofs
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• if φ2 = 1:
0 = 1± φ+ φ2 = ±φ+ 2 → φ = ±2 .

The condition φ = ±2 does not contradict φ2 = 1 only in the case in which 4 = 1
mod p, that is, p = 3.

Hence, the only remaining case to analyze for concluding the proof is p = 3 and φ = ±1,
that is

F (x0, x1, x2) = x2
0 + x2

1 + x2
2 ± x0 · x1 ∓ x1 · x2 + α1,0,0 · x0 + α0,1,0 · x1 + α0,0,1 · x2 ,

where the condition α1,1,0 = −α0,1,1 ̸= 0 implies α1,1,0 = ±1 and α0,1,1 = ∓1 when working
over F3. Let’s focus on the case α1,1,0 = 1 and α0,1,1 = −1 (the other case is analogous).
In such a case, we construct a collision by working with x2 ̸= y2, x3 ̸= y3 and x4 = y4
(equivalently, d4 = 0 and d2, d3 ≠ 0). The collision SF (ẑ, ẑ, x2, x3, x4) = SF (ẑ, ẑ, y2, y3, x4)
occurs if

−d2 d2 0 0
d2 d2 + d3 d3 + d2 0
0 d2 − d3 d3 − d2 −d3
0 0 d3 d3

×

ẑ
s2
s3
x4

 = −


α0,0,1 · d2

α0,1,0 · d2 + α0,0,1 · d3
α1,0,0 · d2 + α0,1,0 · d3

α1,0,0 · d3

 ,
where si = xi+yi and di = xi−yi for i ∈ {2, 3} as in (13). Similar to before, the determinant
of the l.h.s. matrix is zero (since the sum of its rows is equal to zero – remember that we
are working over F3). Hence, a solution can exist if the r.h.s. vector satisfies the same
linear relation, which as before implies d3 = −d2. In the case d2 = −d3 ̸= 0, a solution for
the system of equations (hence, a collision) is given by

ẑ = −α0,1,0 + α0,0,1, s2 = −α0,1,0, s3 = −x4 − α1,0,0 ,

where no condition is imposed on x4. This concludes the proof.

7 Neptune: a Concrete Application
As a final step, we present Neptune, a sponge hash function [BDPV07,BDPA08] instanti-
ated with the Neptuneπ permutation. (A sponge hash function instantiated by a generic
permutation P is shown in Figure 1.) Neptuneπ resembles the permutation Poseidonπ

proposed in [GKR+21]. In the following, after recalling Poseidon and presenting Nep-
tune as its variant,5 we discuss its design rationale and its security. Next, we compare
the multiplicative complexity of Neptune with the one of Poseidon.

7.1 Poseidon and the Hades Design Strategy
Poseidon is a sponge hash function over Ft

p. Its internal permutation is based on the
Hades design strategy [GLR+20], proposed at Eurocrypt 2020. The main feature of Hades
schemes is the use of two different non-linear layers, namely, a full one (composed of t
power maps x 7→ xd for odd d ≥ 3) in the external rounds, and a partial one (composed
of a single power map x 7→ xd and t− 1 identity functions) in the internal rounds. This
particular structure allows to provide security against both statistical and algebraic attacks,
and at the same time to achieve a low multiplicative complexity. Roughly speaking, the
external rounds aim to prevent statistical attacks, while the main goal of the internal
partial rounds is to increase the overall degree of the permutation, which is crucial for
providing security against algebraic attacks.

5Due to this fact, we decided to call our hash function as Neptune, which is the Roman name of the
Greek god Poseidon.
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Figure 1: A sponge hash function instantiated with a permutation P.

Let p > 263 be a prime number and let κ ∈ [80, 256] be the security level. Let t ≥ 2
be such that pt ≥ 23·κ (given t = c+ r, the capacity c and the rate r satisfy respectively
pc ≥ 22·κ and pr ≥ 2κ). Let d ≥ 3 be the smallest integer such that gcd(d, p− 1) = 1. The
Poseidon permutation Pπ : Ft

p → Ft
p is defined as

Pπ(·) = F (7) ◦ · · · ◦ F (4)︸ ︷︷ ︸
=4 rounds

◦P(RP −1) ◦ · · · ◦ P(0)︸ ︷︷ ︸
=RP rounds

◦F (3) ◦ · · · ◦ F (0)︸ ︷︷ ︸
=4 rounds

(·) ,

where F (j) = c(F,j) +M ×S(F )(·) and P(j) = c(P,j) +M ×S(P )(·) are the round functions,
so that c(F,j), c(P,j) are (random) round constants, M ∈ Ft×t

p is a MDS matrix and
S(F ),S(P ) : Ft

p → Ft
p are defined as

S(F )(x0, . . . , xt−1) = xd
0∥xd

1∥ . . . ∥xd
t−1, S(P )(x0, . . . , xt−1) = xd

0∥x1∥ . . . ∥xt−1.

The number of full rounds is RF = 8 and the number of partial rounds is RP =
⌈1.125 · ⌈logd(2) · (min{κ, log2(p)} − 8) + logd(t)⌉⌉.

In [BCD+20], distinguishers for this reduced-round permutation were presented, which
lead to collision attacks on the sponge hash function instantiated with the reduced-round
permutation Pπ. In the same paper, authors also set up preimage attacks on the sponge
hash function instantiated with the full-round permutation Pπ in the case of a weak
MDS matrix M such that M2 is a multiple of the identity, and so, for which an invariant
subspace trail that covers all the internal rounds with probability 1 exists (see also [KR21]).
In [GRS21], Grassi et al. showed how to properly choose the MDS matrix M in order to
prevent this (and similar) attack(s).

7.2 Neptune
Let κ ∈ [80, 256] be the security level, and let p > 263 be a prime number. Let t = 2t′ ∈
{2, 4, . . . , 24} be an even integer. Since Neptune is intended to be used as the internal
permutation of a sponge hash function, the parameters p, κ and t have to satisfy (1st)
pc ≥ 22·κ and (2nd) pr ≥ 2κ, where r and c are respectively the rate and the capacity
such that t = c+ r. About the padding, we suggest to use the same one proposed e.g. in
Poseidon: (1st) the message m is padded with 0∗ until the size of m∥0∗ is a multiple of
r; (2nd) the inner part is initially instantiated as IV = |m|∥IV′ ∈ Fc

p, where |m| is the size
of the input message m as an element of F⋆

p, and where IV′ ∈ Fc−1
p is a fixed initial value.

The Neptune permutation N π : Ft
p → Ft

p is defined as6

N π(·) = E(5) ◦ E(4)︸ ︷︷ ︸
=2 rounds

◦ I(RI −1) ◦ · · · ◦ I(0)︸ ︷︷ ︸
=RI rounds

◦ E(3) ◦ · · · ◦ E(0)︸ ︷︷ ︸
=4 rounds

(M (E) × ·) ,

6In [GLR+20, GKR+21], authors use the nomenclature “Full” and “Partial” rounds for referring
respectively to the “External” and the “Internal” rounds.
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where

E(j) = c(E,j) +M (E) × S(E)(·) , and I(j) = c(I,j) +M (I) × S(I)(·) ,

and where c(E,j), c(I,i) ∈ Ft
p are (random) round constants.

About the External Rounds E. Let α, γ ∈ Fp \ {0} be arbitrary and fixed (e.g., α = 1
and γ ̸= 0). The non-linear S(E) : Ft

p → Ft
p is defined as

S(E)(x0, x1, . . . , xt−2, xt−1) = S ′(x0, x1)∥S ′(x2, x3)∥ . . . ∥S ′(xt−2, xt−1) ,

where S ′ over F2
p is defined as S ′(x2i, x2i+1) = y2i∥y2i+1 for each i ∈ {0, 1, . . . , t′ − 1}

where

y2i = α2 · (2x2i + x2i+1) + 3α · (x2i − x2i+1)2 +
(
γ + α · (x2i − 2x2i+1)− (x2i − x2i+1)2)2

,

y2i+1 = α2 · (x2i + 3x2i+1) + 4α · (x2i − x2i+1)2 +
(
γ + α · (x2i − 2x2i+1)− (x2i − x2i+1)2)2

.

Let M ′,M
′′ ∈ Ft′×t′

p be two MDS matrices such that (1st) M ′ ̸= µ ·M ′′ for each µ ∈ Fp

and (2nd) M ′
i,j ̸= M

′′

i,j for each i, j ∈ {0, 1, . . . , t′ − 1}. The matrix M (E) ∈ Ft×t
p is defined

as

M (E) =



M ′
0,0 0 M ′

0,1 0 . . . M ′
0,t′−1 0

0 M
′′
0,0 0 M

′′
0,1 . . . 0 M

′′

0,t′−1
M ′

1,0 0 M ′
1,1 0 . . . M ′

1,t′−1 0
0 M

′′
1,0 0 M

′′
1,1 . . . 0 M

′′

1,t′−1
...

. . .
...

M ′
t′−1,0 0 M ′

t′−1,1 0 . . . M ′
t′−1,t′−1 0

0 M
′′

t′−1,0 0 M
′′

t′−1,1 . . . 0 M
′′

t′−1,t′−1


,

that is,

M
(E)
i,j =


M ′

i′,j′ if (i, j) = (2i′, 2j′)
M

′′

i′′ ,j′′ if (i, j) = (2i′′ + 1, 2j′′ + 1)
0 otherwise

,

About the Internal Round I. The internal round I is defined via a Partial-SPN scheme
as in Poseidon. The non-linear layer S(I) : Ft

p → Ft
p is defined as

S(I)(x0, x1, . . . , xt−2, xt−1) = xd
0∥x1∥ . . . ∥xt−2∥xt−1 ,

where d ≥ 3 is the smallest integer such that gcd(d, p− 1) = 1. The linear layer is defined
via an invertible matrix M (I) ∈ Ft×t

p that must prevent arbitrary-long subspace trails for
the Partial-SPN scheme I(RI −1) ◦ · · · ◦ I(0), as explained in [GRS21].

We suggest to make use of a matrix that can be computed via O(t) affine operations,
as

M
(I)
i,j =

{
µ

(I)
i if i = j

1 otherwise
,

where µ(I)
i,i ∈ Fp \ {0} are chosen in order to guarantee the previous requirements.

Number of Rounds. The number of rounds are: RE = 6 for the external ones (that is, 4
at the beginning and 2 at the end), and

RI = ⌈1.125 · ⌈logd(2) · (min{κ, log2(p)} − 6) + 3 + t+ logd(t)⌉⌉

for the internal ones (where we add 12.5% of security margin, as in Poseidon).
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7.3 Design Rationale
By simple calculation, the number of Fp-multiplications required to evaluate Poseidon is

(⌊log2(d)⌋+ hw(d)− 1) · (8 · t+RP ) ,

that is, O(16 · t) for d = 3 and O(24 · t) for d = 5 (where d = 3, 5 are the two most common
values used in ZK protocols). In order to design Neptune, we decided to focus only on the
external full rounds, since we noticed that the number of internal partial rounds is almost
constant with respect to t. For this reason, we decided not to modify them. Regarding the
external rounds and in order to make use of the results proposed in this paper, the goals
we tried to achieve were:

1. cost of t Fp-multiplications;

2. be able to guarantee security against statistical attacks via a small number of full
external rounds.

As a result, instead of limiting ourselves to consider an uneven distribution of the S-Boxes,
we propose two different round functions, one for the internal part and one for the external
one. Moreover, we consider an uneven distribution of the external rounds (four at the
beginning versus two at the end).

Concatenation of Independent S-Boxes. At the current state, we do not know any
(non-trivial) quadratic function F : Fm

p → Fp for which it is possible to set up an invertible
function SF over Fn

p as in Definition 1 for n≫ m. For this reason, we were “forced” to set
up the non-linear layer of the external rounds as a concatenation of independent quadratic
S-Boxes defined over Fn

p for n ∈ {2, 3, 4}.
Based on our results, possible options for SF over Fn

p based on F : Fm
p → Fp include:

• Lai-Massey constructions, as F (x0, x1) = x0 + (x0 − x1)2 or F (x0, x1, x2) = x0 +∑2
j=0(xj − xj+1)2;

• if p = 1 mod 3: F (x0, x1, x2) = x0 +α · (x0−x1)2 +β · (x1−x2)2 + γ · (x2−x0)2 as
in Proposition 10; otherwise, if p = 2 mod 3: F (x0, x1, x2) = x0 + (x0 + x1 + x2) ·
(α · x0 + β · x1 − (α+ β) · x2) as in Proposition 9;

• F (x0, x1, x2) = (x0−x1)2 +(x1−x2)2 +α ·x0 +β · (x0 +x1 +x2) as in Proposition 12.

We decided to discard the second option, since it would force us to consider separately
the case p = 1 mod 3 from the case p = 2 mod 3. Regarding the first and the third
option, they all admit invariant subspaces, that is, there exists a subspace X ⊂ Fm

p which
is invariant through the non-linear function. E.g., ⟨[1, 1]T ⟩ is invariant for the Lai-Massey
one with m = n = 2, ⟨[1, 1, 0]T ⟩, ⟨[1, 0, 1]T ⟩, ⟨[0, 1, 1]T ⟩ (and their linear combinations) are
invariant for the Lai-Massey one with m = n = 3, while ⟨[1, 1, 1, 1]T ⟩ is invariant for the
last function with m = 3 and n = 4. We opted for the Lai-Massey construction with
m = n = 2, since it allows to cover a larger range of values of t.

Let F (x0, x1) = α · x0 + (x0 − x1)2 for α ∈ Fp \ {0}, and let SF over F2
p be defined as

in Definition 1. Due to the presence of the invariant subspace ⟨[1, 1]T ⟩, we do not use SF

directly, but we consider S ′(xi, xi+1) defined as

S ′(xi, xi+1) =
[
−α · γ

0

]
+ SF ◦

([
γ
0

]
+
[
2 1
1 3

]
× SF (xi, xi+1)

)
. (22)

The invertible matrix [2, 1; 1, 3] and the vector [γ; 0] (for γ ̸= 0) have been chosen in order
to destroy the invariant subspace ⟨[1, 1]T ⟩. Note that S ′ over F2

p costs 2 Fp-multiplications,
which implies that S(E) over Ft

p costs t Fp-multiplications.
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Low-Degree Inverse. By considering only the external rounds, a concrete drawback
of the quadratic Lai-Massey function regards the fact that its degree is low both in the
forward and in the backward direction. For this reason, the partial rounds instantiated
with an invertible power map – which has low degree in e.g. the forward direction and
high degree in the backward one – play a crucial role in order to stop Meet-in-the-Middle
(MitM) attacks. Indeed, we recall that the inverse x 7→ xd′ of x 7→ xd satisfies (d · d′ − 1)
mod (p − 1) = 0 (due to Fermat’s little theorem xp = x mod p for each x ∈ Fp \ {0}),
which implies that d′ is of approximately the same order of p (for small values of d).

The Linear Layer M (E). The S-Box S ′ over F2
p mixes two Fp-words in a non-linear way.

Hence, it is not necessary to instantiate the linear layer with a t× t MDS matrix in order
to achieve both full diffusion and a high number of active S-Boxes over two consecutive
rounds. Instead, such goal can be achieved by mixing only the first output components
of the S-Boxes among them via a MDS matrix M ′, and independently only the second
output components of the S-Boxes among them via a different MDS matrix M ′′ . This is
exactly the definition of M (E), for which half of the components are equal to zero.

Besides that, in the following we show that M (E) ∈ Ft×t
p cannot be re-written as a

matrix in Ft′×t′

p2 . Equivalently, it has degree strictly bigger than one when written as a
linear function over Ft′

p2 . Based on the classification given in [CGG+22, Section 2], the
Neptuneπ permutation is a weak-arranged SPN scheme, while the Poseidonπ permutation
is a strong-arranged SPN scheme. This has an impact on the security argument against
some structural statistical attacks, as discussed later on.

Initial Matrix Multiplication. With respect to Poseidon, we emphasize that the input of
Neptuneπ is multiplied by M (E) before the first S-Box layer is applied. This could make
a difference in the case of algebraic attacks, since the invertible S-Box layer is defined via
the concatenation of independent non-linear functions, as concretely shown in [BBLP22].
Indeed, if no initial diffusion/matrix multiplication takes place, one can potentially ignore
the first S-Box layer (by replacing the initial value IV with the corresponding output
via the S-Box layer). Once a solution is found at the output of the first S-Box layer, it
is sufficient to invert it in order to find the corresponding solution at the input of the
permutation and so of the hash function. A similar scenario could occur at the end of the
permutation if no full diffusion takes place.

7.4 Security Analysis
Due to the similarities between Poseidon and Neptune, we emphasize that (almost) all
the attacks work in the same way for the two schemes. This means that we are going to
adapt the security analysis of Poseidon to Neptune.

7.4.1 (Invariant) Subspace Trails for the Internal Rounds

As already pointed out in [BCD+20,KR21], there exist several subspaces of Ft
p that are

invariant through the internal rounds of Poseidon and so of Neptune. The matrix M (I)

plays a crucial role in order to destroy them.
Definition 6 ((Invariant) Subspace Trail [LAAZ11,LMR15,GRR16]). Let (U0, . . . ,Ul)
denote a set of l + 1 subspaces of Ft

p with dim(Ui) ≤ dim(Ui+1). (U0, . . . ,Ul) is a subspace
trail of length l with respect to the function R defined over Ft

p if for each i ∈ {0, . . . , l}
and for each αi ∈ Ft

p, there exists αi+1 ∈ Ft
p such that

R(Ui + αi) := {R(x) | x ∈ Ui + αi} ⊆ Ui+1 + αi+1 .

If Ui = Uj for each i, j = 0, . . . , l, the trail is called an invariant subspace trail.
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Following Poseidon, for each i ≥ 0, let’s define the subspace Xi ⊆ Ft
p as

Xi :=
{
x ∈ Ft

p | ∀j ≤ i :
(

(M (I))j × x
)

0
∈ Fp

}
.

As shown in [GRS21,GSW+21], the matrix M (I) must be chosen in order to guarantee
that no subspace Xi is invariant for an arbitrary number of internal rounds, and more
generally, that no subspace trail can cover any arbitrary number of internal rounds. We
suggest to make used the tool presented in [GRS21] in order to properly choose the matrix
M (I) for this goal. This implies that no more than t− 1 internal rounds can be covered
without activating any S-Box x 7→ xd.

7.4.2 Statistical Attacks

The external rounds aim to provide security against statistical attacks. Working as in
HadesMiMC or as in Poseidon (see [GLR+20, Section 4.2] for details), the idea is
that the permutation composed of the external rounds only (that is, with the internal
rounds replaced by an invertible linear layer) resists statistical attacks. Here we focus
on (truncated) differential and rebound attacks. As in Poseidon, the security against
these attacks implies the security against other statistical attacks, including the linear
one [Mat93], impossible differential [Knu98,BBS99], integral one [DKR97], zero-correlation
linear one [BR11,BR14], and so on.

Differential Attacks. Given pairs of inputs with some fixed input differences, differential
cryptanalysis [BS93] considers the probability distribution of the corresponding output
differences produced by the cryptographic primitive. Let δ,∆ ∈ Fn

p be respectively the
input and the output differences through a permutation P over Fn

p . The differential
probability (DP) of having a certain output difference ∆ given a particular input difference
δ is equal to

ProbP(δ → ∆) =
|{x ∈ Fn

p | P(x+ δ)− P(x) = ∆}|
pn

.

In the case of iterated schemes, a cryptanalyst searches for ordered sequences of differences
over any number of rounds that are called differential characteristics/trails. Assuming the
independence of the rounds, the DP of a differential trail is the product of the DPs of its
one-round differences.

Definition 7. Let P be a permutation over Fpn ≡ Fn
p . Its maximum differential probability

is defined as DPmax = maxδ,∆∈Fn
p \{0} ProbP(δ → ∆).

As it is well known, the maximum differential probability of the function x 7→ xd is
(d− 1)/p. Regarding the function S ′, we prove in App. C.1 the following result:

Lemma 7. Let p ≥ 3, and let S ′ : F2
p → F2

p be defined as in Definition 22. Let
δ ≡ (δ0, δ1) ∈ F2

p \ {(0, 0)} and ∆ ≡ (∆0,∆1) ∈ F2
p \ {(0, 0)} be respectively the input and

the output differences. Then:

|{x ∈ F2
p | S ′(x+ δ)− S ′(x) = ∆}|

p2 =


p−2 if δ0 ̸= δ1 and ∆0 ̸= ∆1

p−1 if δ0 = δ1 or ∆0 = ∆1

0 if δ0 = δ1 and ∆0 = ∆1

.

In other words, its maximum differential probability is p−1.
Working over two consecutive rounds, the minimum number of active S-Boxes is t′ + 1,

due to the fact that (1st) both M ′ and M ′′ are MDS matrices (with branch number equal
to t′ + 1 = t/2 + 1) and (2nd) they are “independent”, in the sense that they work over
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independent t′ Fp-words. This means that the overall probability of each differential trail
over two consecutive rounds per three times is at most

p−3(t′+1) = p−3t/2−3 ≤ p−3 · 2−9κ/2 ≪ 2−4·κ ,

since t = 2t′ and pt = pc · pr ≥ 23κ. As a result, when targeting a security level of κ bits,
two consecutive rounds per three times are sufficient for preventing classical differential
attacks. We point out that by considering the internal rounds as well (as suggested in
e.g. [KR21]), the probability of each differential trail is even smaller, more precisely, it is

at most p−3(t′+1) ·
(

d−1
p

)⌊RI /t⌋
, where

⌊
RI

t

⌋
≥ 1 since at least one S-Box x 7→ xd is active

every t internal rounds.

Truncated Differential and Rebound Attacks. Truncated differential attacks [Knu94]
are a variant of the classical differential one in which the attacker specifies only part of the
difference between pairs of texts. In the particular case of an hash function, truncated
differentials can be exploited in order to set up rebound attacks [MRST09]. The goal of
this attack is to find two (input, output) pairs such that the two inputs satisfy a certain
(truncated) input difference, and the corresponding outputs satisfy a certain (truncated)
output difference.

Due to the choice of the matrix M (E) and working as in Poseidon (see [GKR+21,
Section 5.5.1] for details), no truncated differential (equivalently, subspace trail) with
probability 1 can cover more than a single round. In particular, while the S-Box S ′ is
defined over Fp2 ≡ F2

p, we point out that the matrix M (E) does not admit an equivalent
representation over Ft′×t′

p2 . Indeed, consider the field Fp2 = GF(p)[x]/P (x), where P is an
irreducible polynomial of the form P (x) = x2 − η where Lp(η) = −1. The product of two
elements a · x+ b and c · x+ d is given by

(a · x+ b) · (c · x+ d) = ac · x2 + (ad+ bc) · x+ bd ≡ (ad+ bc) · x+ (bd+ η · ac),

where [
ad+ bc
bd+ η · ac

]
=
[
b a

η · a b

]
×
[
c
d

]
. (23)

Hence, each 2 × 2 sub-matrix [M ′
i,j , 0; 0,M ′′

i,j ] of M (E) is of the form (23) if and only if
M ′

i,j = M
′′

i,j , which never holds due to the definition of M ′,M
′′ .

Due to these facts and working as in Poseidon (for which both the S-Boxes and the
matrix multiplications are defined over the same field Fp), we conjecture that six external
rounds are sufficient for preventing rebound attacks.

7.4.3 Algebraic Attacks

Interpolation Attacks. The interpolation attack [JK97] aims to construct an interpolation
polynomial that describes the function. Such polynomial can be used in order to set up a
distinguisher and/or an attack on the symmetric scheme. The attack does not work if the
number of unknown monomials is sufficiently large (e.g., larger than the data available
for the attack). In the MitM scenario, the attacker constructs two polynomials, one that
involves the input(s) and one that involve the output(s), that must match in the middle.

Due to the presence of the map x 7→ xd in the internal rounds, the final two full rounds
combined with three internal rounds ensure maximum degree in the backward direction
(remember that 1/d ≡ d′ such that (d′ · d− 1) mod (p− 1) = 0, so d′ is of the same order
of p). Working as in Poseidon (see [GKR+21, Section 5.5.2] for details) and in order
to guarantee security against the interpolation attack, the number of internal rounds RI
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must satisfy

43 · dRI −3 ≥ min{p, 2κ} −→ RI ≥ 3 + logd(2) · (min{κ, log2(p)} − 6) ,

where (1st) the two final rounds and 3 internal rounds are necessary for reaching maximum
degree in the backward direction and (2nd) the first round is not taken into account, since
no full diffusion is achieved. Finally, we add t internal rounds due to the possibility to
cover them with an invariant subspace trails (which would imply no degree growth), and
logd(t) additional internal rounds in order to ensure that the polynomial is dense.

Security against interpolation attack also implies security against (i) higher-order
differential attack [Lai94,Knu94], due to the results presented in [BCD+20, Proposition 1],
and (ii) cube attacks [DS09,AP11].

Factorization and Gröbner Basis Attacks. Polynomial factorization can be used to
solve a single univariate equation F (x) = 0 for a polynomial F over Fp. E.g., in the
case r ≥ 1, factorization can be used to find a pre-image of h ∈ Fp, by solving F (x) =[
N̂ (x∥v̂∥IV)

]
0−h = 0 for a fixed v̂ ∈ Fr−1

p , where IV ∈ Fc
p is the initial value that

instantiates the inner part. In such a case, it is actually not necessary to find the full
factorization of the polynomial, since one root is sufficient for setting up the attack. The
cost of finding a root is proportional to the degree ∆ of the polynomial F , more precisely

∆ · (log2(∆))2 · (log2(∆) + log2(p)) · (1 + 64 · log2(log2(∆)))

as shown in [vzGG13]. It is easy to check that security against interpolation attack implies
security against this attack as well.

Gröbner basis reduction [Buc76] generalizes factorization, and it allows to solve a
system of non-linear equations that describe the function. As we explain in App. C.2, the
cost of such an attack depends both on the number and on the degree of the equations,
on the number of variables, but also on the fact that the equations to solve are dense or
not. In [GKR+21, Section 5.5.2], authors showed that the security of Poseidon against
the interpolation attack implies the security against Gröbner basis attacks. As one may
expect, in App. C.2, we show that the same conclusion holds for Neptune as well, due to
the similarity between the internal rounds of Neptune and the ones of Poseidon.

7.5 Multiplicative Complexity: Poseidon versus Neptune
With these results in mind, we finally compare the multiplicative complexity between
Poseidon and Neptune. By simple calculation, the number of Fp-multiplications required
to evaluate them are:

Neptune : (5 + ⌊log2(d)⌋ + hw(d)) · t + (⌊log2(d)⌋+ hw(d)− 1) · (RI − t) ,
Poseidon : 8 · (⌊log2(d)⌋ + hw(d) − 1) · t + (⌊log2(d)⌋+ hw(d)− 1) ·RP ,

where (RI − t) ≈ RP is almost constant with respect to t. In the case of large t≫ 1 and
for d = 3, Neptune requires O(8 · t) Fp-multiplications versus O(16 · t) Fp-multiplications
required by Poseidon. Similarly, in the case of large t ≫ 1 and for d = 5, Neptune
requires O(9·t) Fp-multiplications versus O(24·t) Fp-multiplications required by Poseidon.
More concretely, a comparison between the two schemes for small values of t is proposed in
Table 2 for the case p ≈ 2256. As it is possible to observe, Neptune has always a smaller
multiplicative complexity with respect to Poseidon.

Besides that, Neptune has several advantages with respect to Poseidon from the
plain performance point of view:
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Table 1: Comparison between Poseidon and Neptune – both instantiated with d = 3 –
for the case p ≈ 2256, κ = 128, and several values of t ∈ {4, 8, 12, 16}.

t RF RP & RI Multiplicative Complexity
Poseidon (d = 3) 4 8 87 238 (+ 10.2 %)
Neptune (d = 3) 4 6 96 216
Poseidon (d = 3) 8 8 88 304 (+ 21.6 %)
Neptune (d = 3) 8 6 101 250
Poseidon (d = 3) 12 8 88 368 (+ 29.6 %)
Neptune (d = 3) 12 6 106 284
Poseidon (d = 3) 16 8 89 434 (+ 36.5 %)
Neptune (d = 3) 16 6 111 318

Table 2: Comparison between Poseidon and Neptune – both instantiated with d = 5 –
for the case p ≈ 2256, κ = 128, and several values of t ∈ {4, 8, 12, 16}.

t RF RP & RI Multiplicative Complexity
Poseidon (d = 5) 4 8 60 276 (+ 21.0 %)
Neptune (d = 5) 4 6 68 228
Poseidon (d = 5) 8 8 60 372 (+ 40.1 %)
Neptune (d = 5) 8 6 72 264
Poseidon (d = 5) 12 8 61 471 (+ 53.9 %)
Neptune (d = 5) 12 6 78 306
Poseidon (d = 5) 16 8 61 567 (+ 64.3 %)
Neptune (d = 5) 16 6 83 345

• the matrix multiplication of each external round of Neptune costs t2/2 multiplica-
tions with constants versus t2 multiplications with constants in the case of Poseidon
(besides the fact that Neptune has two external/full rounds less than Poseidon);

• in Poseidon, the same matrix M is used for the full/external rounds and for the
partial/internal ones. Since such matrix must prevent arbitrary-long subspace trails
with probability 1 for the partial/internal rounds, it cannot be instantiated with,
e.g., a circulant matrix. Vice-versa, the MDS matrices M ′,M

′′ in the external rounds
of Neptune do not have to satisfy such requirement. Hence, they can be instantiated
with e.g. circ(2, 1, 1) or circ(3, 2, 1, 1) for t′ ∈ {3, 4} respectively;

• both Neptune and Poseidon admit an equivalent representation in which the
matrix multiplication of each internal/partial round costs 2 · t multiplications with
constants (for more details, we refer to [GLR+19,GLR+20, App. C]). However, in
such representation, the matrix of the internal/partial round is not fixed, that is,
changes at every round. Without using such equivalent representation, the matrix
multiplication of each internal round of Neptune can cost only t multiplications
with constants, besides being fixed.

A concrete implementation of Neptune and Poseidon for zk-SNARK has been
recently proposed in [GHR+22]. In there, authors showed that Neptune outperforms
Poseidon both from the point of view of the number of R1CS constraints, and from the
point of view of the plain performance, as expected. We refer to [GHR+22, Table 1 – 2 in
Section 7.5] for more details.
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8 Open Problems for Future Research
In this paper, we started an analysis regarding the possibility to construct invertible SI–
lifting SF via a local map F . We proved that, given any quadratic function F : Fm

p → Fp

for m ∈ {2, 3}, the corresponding function SF defined over Fn
p as in Definition 1 is not

invertible for n ≥ 3 and n ≥ 5 respectively. Based on this, in the following we formulate
and propose several interesting open problems for future research.

Open Conjectures. First of all, we expect that a similar scenario occurs for bigger values
of m. More formally:

Conjecture 1. Let p ≥ 3 be a prime integer, and let 1 ≤ m ≤ n. For each m, there exists
a finite integer nmax(m) ≥ m+ 1 such that given any quadratic function F : Fm

p → Fp,
the SI–lifting SF over Fn

p induced by F is not invertible for any n ≥ nmax(m).

E.g., if m = 1, then nmax = 1; if m = 2, then nmax = 3; if m = 3, then nmax = 5. The
lower bound nmax(m) ≥ m+ 1 for each m ≥ 2 is based on the result proposed in Section 3,
where the Lai-Massey functions defined over Fm

p via a quadratic function F : Fm
p → Fp are

invertible.
If this first conjecture is true, it would be interesting to analyze how fast nmax(m)

grows. The current results for m ∈ {1, 2, 3} suggest that

nmax(m) = 2 ·m− 1 .

Such a result is not in contrast with Corollary 2, or with other results proposed in the paper.
Indeed, by applying Corollary 2 on a generic m, we can construct an invertible function
SF over F2·(m−1)

p via a quadratic function F : Fm
p → Fp (e.g., F (x0, x1, . . . , xm−1) =

x0 + (x0 − xm−1)2). Such a result is not in conflict with nmax(m) = 2 ·m− 1 just given.

Conjecture 2. Let nmax(m) be defined as in Conjecture 1. Then, nmax(m) = 2 ·m− 1.

If this second conjecture “nmax(m) = 2 ·m− 1” is true, this implies that given a local
quadratic function F : Fm

p → Fp, it is not possible to set up an invertible function SF over
Fn

p defined as in Definition 1 for n≫ m.
In order to prove the conjectures, it could be useful to exploit the following matrix

representation of the problem. As we have already seen in (7), any function F : Fm
p → Fp

can be re-written in a matrix form as F (x0, x1, . . . , xm−1) = x̄T × A × x̄, where x̄ =
(x0, x1, . . . , xm−1, 1) ∈ Fm+1

p , and where A ∈ F(m+1)×(m+1)
p is the symmetric matrix given

in there. A possible way of proving the previous conjectures would be to find collisions
SF (x0, x1, . . . , xn−1) = SF (x′

0, x
′
1, . . . , x

′
n−1). In such a case, for each i ∈ {0, 1, . . . , n− 1},

the condition F (xi, xi+1, . . . , xi+m−1) = F (x′
i, x

′
i+1, . . . , x

′
i+m−1) corresponds to

[
xi . . . xi+m−1 1 x′

i . . . x′
i+m−1 1

]
×
[

A 0(m+1)×(m+1)

0(m+1)×(m+1) −A

]
︸ ︷︷ ︸

≡B∈F(2m+2)×(2m+2)
p

×



xi

...
xi+m−1

1
x′

i

...
x′

i+m−1
1


= 0 ,

where 0(m+1)×(m+1) ∈ F(m+1)×(m+1)
p is the null matrix. Hence, it could be potentially

possible to find collisions by exploiting the details of the symmetric matrix B, which is
independent of the index i.
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Constructing Invertible Non-Linear Functions. If the previous conjectures turn out
to be true, the problem to construct invertible non-linear functions over Fn

p with low
degree/multiplicative complexity would remain open.

A possible way for solving it would be to consider higher-degree local functions F : Fm
p →

Fp, e.g., cubic local functions. In such a case, it is possible that SF would be invertible for
each n ≥ m. Just as a concrete example, consider F (x0, x1, . . . , xm−1) =

(∑m−1
i=0 µi · xi

)3

for µ0, µ1, . . . , µm−1 ∈ Fp. Given m ≤ n, it is not hard to check that the SI–lifting SF over
Fn

p induced by F is invertible if (i) gcd(p−1, 3) = 1 (which implies that x 7→ x3 is invertible)
and (ii) the circulant matrix circ(µ0, µ1, . . . , µm−1, 0, 0, . . . , 0) ∈ Fn×n

p is invertible.
As another possible approach, one could consider modified versions of Definition 1 in

which several local maps are involved. More formally:
Definition 8. Let p ≥ 3 be a prime integer. Let 1 ≤ m,h ≤ n, and let F0, F1, . . . , Fh−1 :
Fm

p → Fp be h non-linear function(s). The function SF0,F1,...,Fh−1 over Fn
p is defined as

SF0,F1,...,Fh−1(x0, x1, . . . , xn−1) := y0∥y1∥ . . . ∥yn−1 where

yi = Fi mod h(xi, xi+1, . . . , xi+m−1)

for each i ∈ {0, 1, . . . , n− 1}, where the sub-indexes are taken modulo n.
A concrete example of invertible functions of this form is the Type–II Feistel construc-

tion [ZMI90,Nyb96], for which SF0,F1 over Fn
p for n ≥ 2 is defined via F0(x0, x1) = x1 and

F1(x0, x1) = x1 +G(x0), where G is any function over Fp. The research of other invertible
non-linear functions SF0,F1,...,Fh−1 is left for future research.
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A Proof of Proposition 3
Given F : Fm

p → Fp and y ∈ Fp, here we use the notation F−1(y) to denote F−1(y) :=
{x ∈ Fm

p |F (x) = y}. Without loss of generality, let’s assume that
∣∣F−1(0)

∣∣ ⪈ pm−1

(analogous for the other cases). Let’s define the sets A,B ⊆ Fn
p as:

A := {(x0, x1, . . . , xn−1) ∈ Fn
p | x0 = 0}

B := {(x0, x1, . . . , xn−1) ∈ Fn
p | (x0, x1, . . . xm−1) ∈ F−1(0)}.

In particular:

B =
⋃

(xm,...,xn−1)∈Fn−m
p

B(xm,...,xn−1), where

B(xm,...,xn−1) := {(x0, . . . , xm−1, xm, . . . , xn−1) ∈ Fn
p | (x0, . . . , xm−1) ∈ F−1(0)}.

Note that:

• |A| = qn−1

• SF |B ⊆ A (otherwise, F (x0, x1, . . . , xm−1) ̸= 0 ∈ Fp);
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•
∣∣B(xm,...,xn−1)

∣∣ ⪈ pm−1 for each (xm, . . . , xn−1) ∈ Fn−m
p (by the hypothesis of F

being not balanced and
∣∣F−1(0)

∣∣ ⪈ pm−1), which implies that

|B| =
∑

(xm,...,xn−1)∈Fn−m
p

|B(xm,...,xn−1)| ⪈ pm−1 · pn−m = pn−1 = |A| .

By meanings of cardinality of SF restricted on B cannot be injective, hence SF is not
injective, which implies that SF is not invertible.

B Practical Verification for Quadratic Functions
In this section, we describe the practical experiments we performed in order to support
our theoretical results. Supplemental material including the source code in C++ can be
found in the public git repository:

https://gitlab.com/pis147879/supplemental-material/-/tree/main/experiments

containing the following files:

• source code main.cpp,

• Makefile to compile and run the code,

• a readme.md file containing instructions,

• a description of practical experiments (experiments.pdf),

• directories with log files of our practical tests.

Compiling with make and running by setting in the Makefile variables in accord to
the case to run. A standard C++ compiler should work (we have used g++ with gcc
version 7.5.0 and the GNU multi–precision library libgmp version 6.2.0). The code is not
optimised although offers a rudimentary form of parallelization, which becomes necessary
to run some cases we report on.

In the same repository, directory:

https://gitlab.com/pis147879/supplemental-material/-/tree/main/proofs

we include symbolic computations to verify collisions in Lemmas 3-5-6 (Lemma3.ma,
Lemma5.ma, Lemma6.ma) and a summary of their execution results, same directory in
the file CollisionVerification-Lemma3-5-6.pdf.

B.1 Brute Force Research
Here we propose a pseudo-code of the algorithm that we used for our tests for the case of
polynomial functions F : Fm

p → Fp of degree d ≥ 2, defined as (7).
Given p ≥ 3 and n ≥ m ≥ 2, Algorithm 1 consists of two steps:

1. checking if a function F : Fm
p → Fp is balanced or not;

2. if a function is balanced, checking if the corresponding SI–lifting SF over Fn
p is

invertible or not.

The check is done by making use of hash tables.

https://gitlab.com/pis147879/supplemental-material/-/tree/main/experiments
https://gitlab.com/pis147879/supplemental-material/-/tree/main/proofs
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Algorithm 1: Pseudo-code for finding functions F : Fm
p → Fp for which the

corresponding SI–lifting SF over Fn
p is invertible.

Data: Input: p ≥ 3,m ≥ 2, n ≥ m
Result: Output: F : Fm

p → Fp such that SF over Fn
p is invertible

1 let X = ∅ be the set of functions Fm
p → Fp;

2 for each function F defined as in (7) do
// 1st Step: check if F is balanced

3 let a = 0 ∈ Np and b = 0 ∈ {0, 1}pn ;
4 for all x ∈ Fm

p do
5 aF (x) ← aF (x) + 1;
6 if aF (x) > pm−1 then
7 Break: F is not balanced, hence discard it;

// 2nd Step: given F balanced, check if SF is invertible
8 for all x ∈ Fn

p do
9 if bSF (x) = 0 then

10 bSF (x) ← 1;
11 else
12 Break: SF is not a permutation, hence discard F ;
13 X← X ∪ {F};
14 return X

Reducing the Search Space. As first step, we show how to use the necessary conditions
given in Section 2 in order to reduce the cost:

• first of all, the coefficient of the monomial of degree zero can be fixed equal to zero
(that is, α0,...,0 = 0); indeed, just choose ψ = −α0,...,0 · ω;

• the coefficient of one monomial of degree one and one of degree two can be chosen
in {0, 1} (e.g., α1,0,...,0, α2,0,...,0 ∈ {0, 1}); indeed, if they are both equal to zero the
result is obvious, if only one of them is different from zero just choose ω as the
inverse of the non-zero one. If both α1,0,...,0 ̸= 0 and α2,0,...,0 ̸= 0, take µ = α1,0,...,0

α2,0,...,0
,

ω = α2,0,...,0
(α1,0,...,0)2 and ν = 0.

In this way, the number of quadratic functions F : Fm
p → Fp reduces as following

p1+2m+(m
2 ) = p

m2+3m+2
2 → 22 · p

m2+3m−4
2 .

Memory and Computational Costs. Let’s analyze the cost of the algorithm. First of
all, the memory cost is given by O(max{p · ⌈log2(pm−1)⌉, pn}) = O(pn) bits. Indeed, since
the first step stops when one entry of a ∈ Np is bigger than pm−1, we need ⌈log2(pm−1)⌉
bits for each entry of such array.

Regarding the computational cost, for each function F : Fm
p → Fp:

• we have to test pm different inputs in order to check if F is balanced;

• if the function F is balanced, we have to test pn different inputs in order to check if
SF is invertible.

This requires O(pm · 22 · p(m2+3m−4)/2 · pn) steps (namely, memory access, evaluation of
the function F , etc.). Note that these are just rough estimations, since several functions F
are e.g. discarded in the first step if they are not balanced.
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Table 3: Summary of our practical results for d = 2 and m ∈ {2, 3}. For each p ≥ 3, we
report the maximum value of n tested, the number of balanced quadratic functions with
respect to the total number of functions F (with α0,0,0 = 0, α2,0,0, α0,0,1 ∈ {0, 1}) and the
total runtime in hours/days.

Case: m = 2 and n ≥ 3
p # balanced F percentage max n runtime
3 19 17.5% 31 1.5 hours
5 69 13.8% 10 3.6 hours
7 151 11.0% 7 0.9 hours
11 411 7.7% 7 9.6 hours
13 589 6.7% 5 1.0 hours
17 1 041 5.2% 5 3.7 hours
19 1 315 4.8% 5 6.3 hours
23 1 959 4.0% 5 16.0 hours

Case: m = 3 and n ≥ 5
p # balanced F percentage max n runtime
3 2 175 24.9% 13 9.8 hours
5 53 725 17.2% 7 5.3 hours
7 426 139 12.9% 7 6.0 days
11 2 464 657 3.2% 5 46.8 days

B.2 Practical Results
In order to carry out the practical experiments, we implemented the brute-force collision-
search algorithm described in Algorithm 1: for each quadratic function F : Fm

p → Fp we
look for a collision in the domain of the corresponding SI–lifting function SF (as defined in
Definition 1) over Fn

p for n ≥ m. We aim to practically verify that no invertible function
SF exists for the cases (1st) m = 2 and n ≥ 3 (as proved in Theorem 2) and (2nd) m = 3
and n ≥ 5 (as proved in Theorem 3). We verify it practically just for small values of p and
n, while the theoretical proofs confirm that the behavior that occurs for small values is
also valid for all p ≥ 3.

The tests have been done on a Intel 40-core Xeon E5-2698 v4 @ 2.20GHz. The results
of the practical experiments are given in Table 3, describing for each p ≥ 3:

• the number of balanced quadratic functions with respect to the total number of
functions F ;

• the maximum value of n tested (denoted as “max n”);

• the total runtime in hours/days.

We restrict the domain of functions F by using the equivalence classes introduced in
Section 2.1 (that is, α0,0,0 = 0, α2,0,0, α0,0,1 ∈ {0, 1}).

As described in Algorithm 1, tests are divided into two main phases: (1st) the balanced
testing and (2nd) the collision search. The time each step requires depends on the case
considered:

• d = 2 and m = 2: the balanced testing takes just the 0.1% of the total runtime,
while the collision search takes most of the time spent on the tests;

• d = 2 and m = 3: runtimes for balanced testing and collision search depend on p,
e.g. for p = 3 the balanced testing takes the 0.1% of the total runtime, while for
p = 11 it takes the 88%.
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Anyway, the balanced testing and collisions search runtimes depend strongly on the number
of iterations that the program requires in order to establish if a function is balanced or,
respectively, invertible (i.e., to find the first collision), since the program works iteratively,
testing for each value whether its image has already been evaluated as the image of another
value.

C Details about the Security Analysis of Neptune
C.1 Maximum Differential Probability of S ′

Let p ≥ 3 be a prime integer, and let S ′ : F2
p → F2

p be defined as in (22). Here we prove
that its maximum differential probability is p−1.

In order to do this, we proceed in two steps:
• first, we compute the maximum differential probability of SF ′ over F2

p defined as in
Definition 1 via F ′(x0, x1) = α · x0 + β · (x0 − x1)2;

• based on this result, we compute the maximum differential probability of S ′.

Maximum Differential Probability of SF ′ . Given input/output differences (δ0, δ1),
(∆0,∆1) ∈ F2

p \ {(0, 0)}, we first analyze the number of solutions (x0, x1) of the following
system

α · δ0 + β · (δ0 − δ1)2 + 2β · (δ0 − δ1) · (x0 − x1) = ∆0

α · δ1 + β · (δ0 − δ1)2 + 2β · (δ0 − δ1) · (x0 − x1) = ∆1 ,

which corresponds to
α · (δ0 − δ1) = ∆0 −∆1 (24)

and
(δ0 − δ1) · (x0 − x1) = ∆0 − α · δ0 − β · (δ0 − δ1)2

2β .

It follows that:
• if δ0 ̸= δ1, such system of equations admits exactly p solutions;

• if δ0 = δ1 (hence, ∆0 = ∆1), then the equations are always satisfied if ∆0 = α · δ0.

Maximum Differential Probability of S′. Given (δ0, δ1), (∆0,∆1) ∈ F2
p \ {(0, 0)}, the

maximum differential probability of S ′ is given by∑
(ε0,ε1)∈F2

p

Prob
([
δ0
δ1

]
→
[
ε0
ε1

])
× Prob

(([
2 1
1 3

]
×
[
ε0
ε1

])
→
[
∆0
∆1

])
. (25)

In our case, condition (24) becomes:

α · (δ0 − δ1) = ε0 − ε1 and α · (ε0 − 2 · ε1) = ∆0 −∆1,

that is

ε0 = 2 · α · (δ0 − δ1)− ∆0 −∆1

α
and ε1 = α · (δ0 − δ1)− ∆0 −∆1

α
.

Hence, the probability given in (25) reduces to

Prob
([

δ0
δ1

]
→
[

2 · α · (δ0 − δ1) − ∆0−∆1
α

α · (δ0 − δ1) − ∆0−∆1
α

])
× Prob

([
5 · α · (δ0 − δ1) − 3 · ∆0−∆1

α

5 · α · (δ0 − δ1) − 4 · ∆0−∆1
α

]
→
[

∆0
∆1

])
.

Such probability is never bigger than p−1, since:
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• if δ0 = δ1, then

2 · α · (δ0 − δ1)− ∆0 −∆1

α
= α · (δ0 − δ1)− ∆0 −∆1

α
.

This implies that the first probability is equal to 1. If δ0 ̸= δ1, then the first
probability is 1/p;

• if ∆0 = ∆1, then

5 · α · (δ0 − δ1)− 3 · ∆0 −∆1

α
= 5 · α · (δ0 − δ1)− 4 · ∆0 −∆1

α
.

This implies that the second probability is equal to 1. If ∆0 ̸= ∆1, then the first
probability is 1/p;

• if δ0 = δ1 and ∆0 = ∆1, then

2 · α · (δ0 − δ1)− ∆0 −∆1

α
= α · (δ0 − δ1)− ∆0 −∆1

α

=5 · α · (δ0 − δ1)− 3 · ∆0 −∆1

α
= 5 · α · (δ0 − δ1)− 4 · ∆0 −∆1

α
= 0.

In such a case, the overall probability is equal to zero, since we cannot have a zero
difference in the middle when the input/output differences are non-zero (remember
that the construction is invertible).

It follows that the probability is maximum when either δ0 = δ1 or ∆0 = ∆1, and in such a
case it is equal to 1/p.

C.2 Gröbner Basis Attacks on Neptune
The cost of the Gröbner basis attack depends on the system of equations that describes
Neptune. As usually done in the literature, instead of considering (collision or/and
preimage) attacks on the sponge hash function, we focus on the CICO problem on the
permutation that instantiates Neptune.

Definition 9. The invertible function G : Ft
p → Ft

p is κ-secure against the CICO (t1, t2)-
problem (where t1, t2 < t) if there is no algorithm with expected complexity smaller than
2κ that for given i1 ∈ Ft1

p and o1 ∈ Ft2
p finds i2, o2 such that G(i1∥i2) = o1∥o2.

We consider two approaches:

• working on the relation between the input and the output of the entire permutation;

• working at round level.

Preliminary. A Gröbner basis attack consists of three steps:

1. first, the attacker needs to set up the equation system and compute a Gröbner basis
for it;

2. secondly, they perform a change of term ordering for the basis, usually going to a
term order which makes it easier to eliminate variables and find the solutions;

3. finally, the attacker uses the system obtained in the second step in order to start
solving for the variables.
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We refer to [CLO13,SS21] for a detailed description about such an attack. Here we focus on
the complexity of the first step (i.e., computing a Gröbner basis), which can be estimated
by

CGB = O
((

Dreg + nv

nv

)ω)
operations, where Dreg is the degree of regularity, nv is the number of variables, and
2 ≤ ω < 3 is a constant representing the complexity of a matrix multiplication. Let ne be
the number of equations in the polynomial system, nv be the number of equations to solve,
and di is the degree of the i-th equation. Directly computing Dreg is hard in general, but
an estimate for semi–regular sequences, for which the degree of regularity is defined as the
index of the first non-positive coefficient in the series of

H(z) =
∏ne

i=1(1− zdi)
(1− z)nv

.

In the particular case of regular sequences (namely, in the case ne = nv), the degree of
regularity is simply equal to

Dreg = 1 +
ne∑

i=1
(di − 1) .

C.2.1 Working on the Input and the Output

Let’s first consider the input and the output of the permutation, focusing on the case in
which the number of unknown input variables x is equal to the number of known output
variables. In such a case, we get x equations of degree 46 · dRI = 212+RI ·log2(d) (we assume
that RF = 6 is fixed) in x variables. Hence, we have that

Dreg = 1 + x · (212+RI ·log2(d) − 1) ,

which implies a cost of approximately

O

((
x · 212+RI ·log2(d)

x

)ω
)

assuming a semi-regular system (as done for Poseidon). Since ω ≥ 2 (the best scenario
for the attacker), then(

x · 212+RI ·log2(d)

x

)ω

≥

((
1 + x · (212+RI ·log2(d) − 1)

)x

x!

)2

≥
(

1 + x · (212+RI ·log2(d) − 1)
x

)2x

≈ (212+RI ·log2(d))2x,

where x! ≤ xx for each x ≥ 1. In order to guarantee κ bits of security:

(212+RI ·log2(d))2x ≥ min{2κ, px}.

The maximum is obtained for x = 1, which implies

RI ≥ logd(2) ·
(

min{κ, log2(p)}
2 − 12

)
.

Such inequality is always satisfied by the number of rounds required to prevent the
interpolation attack, for which RI is proportional to RI ≥ logd(2) ·min{κ, log2(p)}. Due
to the large gap between these two number of rounds, we expect that the Gröbner basis
attack does not outperfom the interpolation attack even in the case in which the degree of
regularity used here is over-estimated (equivalently, the system is not semi-regular).
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C.2.2 Working at Round Level

Another possibility for setting up the Gröbner basis attack consists of working at round
level. In such a case:

• every internal round can be described as a single equation of degree d;

• every external round can be described via t equations of degree 2. Indeed, assuming
for simplicity α = β = 1, note that given (y0, y1) = S ′(x0, x1), we have[

y0 + (y0 − y1)2

y1 + (y0 − y1)2

]
=
[
γ
0

]
+
[
2 1
1 3

]
×
[
x0 + (x0 − x1)2

x1 + (x0 − x1)2

]
.

It follows that we have

• RI equations of degree d;

• RF · t− c equations of degree 2 (note that the final c Fp-elements are truncated)

in RF · t− c+ RI variables (note that the inner part is instantiated with a fixed initial
value). Assuming a semi-regular system and RF = 6, we have that

Dreg = 1 + 6 · t− c+RI · (d− 1) .

As in the case of Poseidon, the number of rounds necessary for preventing the interpolation
attack largely satisfies the inequality(

1 + 12 · t− 2 · c+R′
I · d

6 · t− c+R′
I

)2
≥ min{2κ, px},

where R′
I = RI − t in order to take into account the fact that (up to) t internal rounds

can be skipped via an invariant subspace.
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