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AES-like Primitives

AES-like Constructions are very popular

▶ Block Ciphers:
• Deoxys-BC, Kuzneychik, LED, Midori, Prince,

Skinny, ...
▶ Hash Functions:

• Grøstl, Photon, Streebog, Whirlpool, ...
▶ Permutations:

• AESQ, Haraka, Prøst, Simpira, ...
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AES-like Primitives

Building blocks:

S S S S
S S S S
S S S S
S S S S

SB Pp MixM

▶ Apply S-box on each cell
▶ Only non-linear component
▶ Vast area of research

▶ Multiply each column with
matrix

▶ Vast area of research
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Security of AES-like Primitives

Resistance against differential and linear cryptanalysis.

▶ S-box: Every active S-box has an effect on probability of
differential trail.

▶ Mix: Gives a lower bound on active S-boxes in one round.
▶ Permute: Heavily influences bounds for multiple rounds.

Goal
Find a lower bound on the number of active S-boxes for a
design.
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Security of AES-like Primitives

Example AES

▶ MixColumns has branch number 5.
▶ Only constraint active input + output ≥ 5.

SB
SR MC SB

SR MC
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Security of AES-like Primitives

Can be much more complex for other choices:
▶ Midori (Branch number 4)
▶ but not possible to have 2 → 3 (or 3 → 2) transitions.
▶ Skinny (Branch number 2)
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AES-like Primitives

Known results on the permute layer
▶ M is MDS and n × n state → AES ShiftRows optimal
▶ Linear Frameworks for Block Ciphers, Daemen, Knudsen,

Rijmen, DCC, 2001
▶ Analyzing Permutations for AES-like Ciphers:

Understanding ShiftRows, Beierle, Jovanovic, Lauridsen,
Leander, Rechberger, CT-RSA, 2015

Problem we solve
Given an n × m state of w-bit words with a fixed SB and Mix
layer. What is the optimal choice for permute w.r.t. security
against differential/linear cryptanalysis?
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Security of AES-like Primitives

How can we find the optimal choice for p?

▶ For a 4 × 4 state we already get 244.25 choices.
▶ Need to evaluate cryptanalytical properties for all of

them?
▶ How can we limit the search space?
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Classifying Cell Permutations

First observation:

▶ Consider permutation p and ϑ.
▶ If MixM ◦ Permuteϑ = Permuteϑ ◦ MixM...
▶ ...then Permutep and Permuteϑ◦p◦ϑ−1 have the same

cryptographic properties.

k0 k1

SB Pϑ−1 Pp Pϑ MixM SB Pϑ−1 Pp

Pϑ−1 SB Pp Pϑ MixM Pϑ−1 SB Pp

Pϑ(k0) Pϑ(k1)

Pϑ−1 SB Pp MixM Pϑ Pϑ−1 SB Pp

Pϑ(k0) Pϑ(k1)

id
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Classifying Cell Permutations

Equivalence Relation:

▶ Two permutations p, p′ are M-equivalent if there exists ϑ

such that
p′ = ϑ ◦ p ◦ ϑ−1, (1)

and ϑ commutes with M.
▶ M-equivalent permutations will have same number of

active S-boxes!
▶ Unclear how to efficiently determine M-equivalence.
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Classifying Cell Permutations

weak M-equivalence:
▶ ϑ = π ◦ ϕ
▶ π permutes whole columns of the state
▶ ϕ permutes insides columns individually

π ϕ
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Classifying Cell Permutations

Structure matrix
Example


0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 p7→


4 0 13 1
5 6 14 2
11 9 8 3
15 12 7 10

 ,Ap =


0 1 0 3
2 1 1 0
1 1 1 1
1 1 2 0


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Classifying Cell Permutations

Result
We provide an efficient algorithm to enumerate all
permutations up to weak M-equivalence.

Basic idea of the algorithm:

▶ Enumerates all permutations up to weak M equivalence
for given structure matrix.

▶ For example 4 × 4 state there are 10147 valid structure
matrices.

▶ Find smallest representatives of each equivalence class.
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Classifying Cell Permutations

When does weak M imply M equivalence?

▶ Consider the matrix M.
▶ Let G be the directed graph corresponding to the

adjacency matrix of M.
▶ If G is strongly connected then M coincides with weak M.
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Case Study: Midori

Midori block cipher

▶ Energy efficient cipher
▶ 4 × 4 state
▶ Uses generic p
▶ MixColumns (Branch number 4, not all transitions

possible)

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .
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Case Study: Midori

1 2

4 3 15



Case Study: Midori

Takes a few days on a standard PC to find all permutations up
to M-equivalence.

▶ 221.7 distinct equivalence classes.
▶ MILP (slow for larger number of rounds)
▶ Using branch and bound (Matsui’s algorithm) much faster

https://github.com/kste/matsui
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Case Study: Midori

Midori64

Midori128
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Case Study: Midori

Conclusion

▶ Original permutation optimal for 1 to 12 rounds
▶ ...except for 9 rounds: 44 active S-boxes (instead of 41).
▶ For any higher number of rounds it is never optimal.
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Case Study: Midori

Proof in the paper

▶ If p, p2 and p3 have the structure matrix

Ap =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 (2)

then there are at least 28 active S-boxes for 6 rounds.
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Case Study: Skinny

Skinny

▶ Lightweight Tweakable Block Cipher
▶ Uses AES ShiftRows
▶ MixColumns (Branch number 2)

SC AC

ART

>>> 1
>>> 2
>>> 3

ShiftRows MixColumns
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Case Study: Skinny

Results using our algorithm

▶ weak M also implies M for Skinny MixColumns
▶ In total 239.66 equivalence classes.
▶ Took 23.8 CPU days to find them.
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Case Study: Skinny

We filter further:

▶ Only use permutations which give good diffusion
▶ Still 2.726.526 left...
▶ ≈ 2937 CPU days to run Matsui’s for all variants
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Case Study: Skinny

Skinny-64-64
Skinny-128-128
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Conclusion

Summary

▶ Better theoretical understanding
▶ Useful tool for future designs
▶ Possible to evaluate the best choice for some designs
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