
Practical Seed-Recovery for the
PCG Pseudo-Random Number Generator

Charles Bouillaguet, Florette Martinez and Julia Sauvage

November 2, 2020

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 1 / 31

Introduction

What?
Cryptanalysis of the Permuted Congruential Generator (PCG).

Results
Practical seed-recovery / prediction.

How?
"Guess-and-Determine" attack.
Most expensive part : many small CVP problems.
Actually done in ≤ 20 000 CPU-hours.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 2 / 31

Why?

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 3 / 31

Why?

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 4 / 31

Why?

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 5 / 31

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 6 / 31

Introduction

What?
Cryptanalysis of the Permuted Congruential Generator (PCG).

Results
Practical seed-recovery / prediction.

How?
"Guess-and-Determine" attack.
Most expensive part : many small CVP problems.
Actually done in ≤ 20 000 CPU-hours.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 7 / 31

Permuted Congruencial Generators (PCG)

Conventional (non-crypto) pseudo-random generators
Designed in 2014 by Melissa O’Neil
PCG64

Internal state : 128-bit state and 128-bit increment
64-bit outputs
256-bit seed (or 128-bit with default increment)
Default pseudo-random generator in NumPy

0128

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 8 / 31

Permuted Congruencial Generators (PCG)

Conventional (non-crypto) pseudo-random generators
Designed in 2014 by Melissa O’Neil
PCG64

Internal state : 128-bit state and 128-bit increment
64-bit outputs
256-bit seed (or 128-bit with default increment)
Default pseudo-random generator in NumPy

×a + c mod 2128

Si

128

Si+1

128

0128

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 8 / 31

Permuted Congruencial Generators (PCG)

Conventional (non-crypto) pseudo-random generators
Designed in 2014 by Melissa O’Neil
PCG64

Internal state : 128-bit state and 128-bit increment
64-bit outputs
256-bit seed (or 128-bit with default increment)
Default pseudo-random generator in NumPy

×a + c mod 2128

Si

128

Si+1

128

0128 ⊕64 64

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 8 / 31

Permuted Congruencial Generators (PCG)

Conventional (non-crypto) pseudo-random generators
Designed in 2014 by Melissa O’Neil
PCG64

Internal state : 128-bit state and 128-bit increment
64-bit outputs
256-bit seed (or 128-bit with default increment)
Default pseudo-random generator in NumPy

×a + c mod 2128

Si

128

Si+1

128

0122128 ⊕64 64

≫
ri6

Xi

64

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 8 / 31

Attack Outline

Guess some bits in a few successive states.
Least-significant bits
Rotations

⇒ Turn it into a (regular) truncated congruential generator.

Reconstruct hidden information using lattice techniques.

Easy case (c known): full state
Hard case (c unknown): only partial information

Discard bad guesses.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 9 / 31

Attack Outline

Guess some bits in a few successive states.
Least-significant bits
Rotations

⇒ Turn it into a (regular) truncated congruential generator.

Reconstruct hidden information using lattice techniques.
Easy case (c known): full state
Hard case (c unknown): only partial information

Discard bad guesses.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 9 / 31

Easy Case: Known increment

If the increment (c) is known...

... Get rid of it!
S ′0 ← S0

S ′1 ← S1 − c

S ′2 ← S2 − (a + 1)c

S ′3 ← S3 − (a2 + a + 1)c

...

Yields S ′ : sequence of states with c = 0
→ Geometric sequence.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 10 / 31

Attack Details

S0

64 bits 64 bits

S1

S2

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 11 / 31

Attack Details

r0 wS0

` bits6

r1S1

r2S2

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 11 / 31

Attack Details

r0 wS0

` bits6

r1 w1S1

r2 w2S2

×a + c mod 2`

×a + c mod 2`

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 11 / 31

Attack Details

r0 wS0

` bits6

r1 w1S1

r2 w2S2

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 11 / 31

Attack Details

r0 wS0

` bits6

?????????????????

r1 w1S1

?????????????????

r2 w2S2

?????????????????

` bits 6

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 11 / 31

Attack Details

?????????????????

?????????????????

?????????????????

` bits 6
64 bits

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 11 / 31

Remove the “Constant Component”

?????????????????
T0

0−

?????????????????
T1

c−

?????????????????
T2

(a + 1)c−

×a mod 264

×a mod 264

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 12 / 31

Truncated Linear Congruential Generators

Internal state : 2k -bit state.
Multiplier a: known constant.
Initial state: unknown 2k -bit seed.

×a mod 2k

0k

Ti discarded

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 13 / 31

Reconstructing Truncated Geometric Sequences

Sequence ui+1 = a× ui mod 2k .
T = Truncated version (low-order bits unknown).
L = lattice spawned by the rows of

ui

Ti ?????????


1 a a2 . . . an−1

0 2k 0 . . . 0
0 0 2k . . . 0
.
0 0 0 . . . 2k


Main Idea

u = (u0, u1, . . . , un−1) belongs to the lattice L.
T (truncated geometric series) is an approximation of u.

⇒ T is close to a point of L.
⇒ Closest point to T in L u.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 14 / 31

Lattices and Basis reduction

Lattice : subgroup of Rn isomorphic to Zm

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 15 / 31

Lattices and Basis reduction

Lattice : subgroup of Rn isomorphic to Zm

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 15 / 31

CVP problem and Babai rounding

Closest Vector Problem
Standard NP-hard problem on lattices.
Given arbitrary x ∈ Zn, find closest lattice point.

Babai Rounding Algorithm
Approximately solves CVP.

BabaiRounding(x,L) = H × round
(
H−1 × x

)
Where H is a “good” (LLL-reduced) basis of the lattice L.
FAST (two matrix-vector products + rounding)
Exponentially bad approximation (in the lattice dimension).

→ Often exact in small dimension though.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 16 / 31

Lattices and Basis reduction

Lattice : subgroup of Rn isomorphic to Zm

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 17 / 31

Lattices and Basis reduction

Lattice : subgroup of Rn isomorphic to Zm

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 17 / 31

Implementation (Easy case, known increment)

Summary
Observe 3 outputs X0,X1,X2 (192 bits).
Guess 37 bits:

n = 3 successive rotations (6 bits each),
` = 19 least significant bits of S0,

Solve 237 instances of CVP in dimension 3 (Babai Rounding).
Reconstruct initial state, check outputs.

Caveat
Attack proved correct for ` = 20, works fine for ` = 19...

Concretely...
25 CPU cycles per guess, 23 CPU-minutes in total.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 18 / 31

Issue with c unknown

Summary so far (the Easy Case)
The increment (c) is known:

Remove it, get truncated geometric sequence, CVP.

Now the Hard Case
The increment (c) is unknown:

How to get truncated geometric sequence?
Use ∆Si = Si+1 − Si (∆Si+1 = a×∆Si mod 2128).

Same attack as before, but...
Must guess one more rotation.
Must guess least-significant bits of c .

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 19 / 31

Issue with c unknown

Summary so far (the Easy Case)
The increment (c) is known:

Remove it, get truncated geometric sequence, CVP.

Now the Hard Case
The increment (c) is unknown:

How to get truncated geometric sequence?
Use ∆Si = Si+1 − Si (∆Si+1 = a×∆Si mod 2128).

Same attack as before, but...
Must guess one more rotation.
Must guess least-significant bits of c .

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 19 / 31

Attack Details

S0

S1

S2

S3

S4

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 20 / 31

Attack Details

r0 wS0

` bits6

r1S1

r2S2

r3S3

r4S4

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 20 / 31

Attack Details

r0 wS0

` bits6

r1 w1S1

r2 w2S2

r3 w3S3

r4 w4S4

×a + c mod 2`

×a + c mod 2`

×a + c mod 2`

×a + c mod 2`

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 20 / 31

Attack Details

r0 wS0

` bits6

r1 w1S1

r2 w2S2

r3 w3S3

r4 w4S4

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 20 / 31

Attack Details

r0 wS0

` bits6

?????????????????

r1 w1S1

?????????????????

r2 w2S2

?????????????????

r3 w3S3

?????????????????

r4 w4S4

?????????????????

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 20 / 31

Attack Details

?????????????????

?????????????????

?????????????????

?????????????????

?????????????????

∆S0

∆S1

∆S2

∆S3

×a mod 264

×a mod 264

×a mod 264

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 20 / 31

Attack Details (cont’d)

Summary so far
Guess parts of the states (Si).
Attack state differences (∆Si).
CVP in dim. 4 reconstruct partial ∆Si (for all i).

Problem
How to check if guesses are valid?

Solution
Si [64 : 64 + `] from guesses + Xi (output) + ri (rotation).
Si [64 : 64 + `] from guesses + partial ∆Si .

⇒ Try all possible ri ’s. No match bad guess.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 21 / 31

Consistency Check

Si
06464 + `

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 22 / 31

Consistency Check

S0

∆Si

Si
06464 + `

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 22 / 31

Consistency Check

S0

∆Si

�

Si
06464 + `

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 22 / 31

Consistency Check

S0

∆Si

�

Si
06464 + `

Xi ≪ ri

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 22 / 31

Consistency Check

S0

∆Si

�

Si
06464 + ` ⊕

Xi ≪ ri

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 22 / 31

Attack Details (cont’d)

Summary so far
Guess parts of the states (Si).
Attack state differences (∆Si).
CVP in dim. 4 reconstruct partial ∆Si (for all i).

Problem
How to check if guesses are valid?

Solution
Si [64 : 64 + `] from guesses + Xi (output) + ri (rotation).
Si [64 : 64 + `] from guesses + partial ∆Si .

⇒ Try all possible ri ’s. No match bad guess.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 23 / 31

Finishing it Off

Summary so far
Guessed parts of the states (Si).
Isolated correct guess correct partial differences ∆Si .

Problem
How to get full initial state S0?

Solution
Correct partial ∆Si + consistency check all rotations ri .

⇒ MSB of all Si MSB of all ∆Si .
⇒ CVP in dim. 64 full ∆S0.

The rest is easy.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 24 / 31

Consistency Check

S0

∆Si

�

Si
06464 + ` ⊕

Xi ≪ ri

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 25 / 31

Finishing it Off

Summary so far
Guessed parts of the states (Si).
Isolated correct guess correct partial differences ∆Si .

Problem
How to get full initial state S0?

Solution
Correct partial ∆Si + consistency check all rotations ri .

⇒ MSB of all Si MSB of all ∆Si .
⇒ CVP in dim. 64 full ∆S0.

The rest is easy.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 26 / 31

Reconstructing the Full Differences (CVP in dim. 64)

??∆S0

??∆S1

??∆S2

??∆S3

??∆S4

??∆S5

??∆S6

??∆S7

??∆S8

??∆S9

×a

×a

×a

×a

×a

×a

×a

×a

×a

128
Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 27 / 31

Finishing it Off

Summary so far
Guessed parts of the states (Si).
Isolated correct guess correct partial differences ∆Si .

Problem
How to get full initial state S0?

Solution
Correct partial ∆Si + consistency check all rotations ri .

⇒ MSB of all Si MSB of all ∆Si .
⇒ CVP in dim. 64 full ∆S0.

The rest is easy.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 28 / 31

Implementation (Hard case, unknown increment)

Summary
Observe 64 outputs (4096 bits).
Guess k =51–55 bits:

n = 5 successive rotations (6 bits each),
` = 11–13 least significant bits of S0 and c .

Solve 2k instances of CVP in dimension 4 (Babai Rounding).
Consistency Check.

Caveat
Attack proved correct for ` = 14 (works fine for ` = 13).
Succeeds with p = 0.66 with ` = 11.

Concretely...
55 CPU cycles per guess, 12.5k–20k CPU-hours in total.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 29 / 31

Doing it for Real

Used 512 nodes
2×20-core Xeon Gold 6248 @ 2.5Ghz

Running time: 35 minutes.

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 30 / 31

Conclusion

Reconstructing the seed for PCG is practical.
PCG is not cryptographically secure (never claimed to be).
Don’t use Numpy to generate nonces...

Bouillaguet, Martinez, Sauvage (SU) Seed-Recovery for PCG November 2, 2020 31 / 31

	Introduction
	PCG generators
	Case with known increment (easy)
	Case with unknown increment (hard)
	Conclusion

