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Overview

© Introduction
@ Brief Description of KECCAK-f[1600]
@ Previous Works on Differential Trail Search

© New 3-Round Trial Core Search Strategy
@ Classification of Search Space
@ |deal Improvement Assumption
@ General Search Algorithm
@ Summary of Search Result
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KECCAK-f[1600] - the SHA3 Permutation

KECCAK-f[1600] permutation uses XOR, AND and NOT operations in its round function.
o The state size is 1600 bits, organized as a 5 x 5 array of 64-bit lanes with (z,y, z) coordinates.
@ Each round consists of 5 steps, i.e., the linear 0, p, 7, ¢ operation, and the nonlinear .

R=toxomopol

@ 24 rounds.
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Round Function of KECCAK-f[1600]

R=toxomopol

@ 0 step adds two columns to current bit position (x,y,z).

@ column sum c[z][z] = EB;:O alz][y][#]
alzly][z] = clz = 1][2] @ a[z][y][z] @ [z + 1][z - 1]
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Brief Description of KECCAK-f[1600]

Introduction

Round Function of KECCAK-f[1600]

toxomopof
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@ p step: lane-level rotation. It rotates the 64 bits of each lane by a specific offset, which is

determined by the coordinates [x,y] of the lane.
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Round Function of KECCAK-f[1600]

R=toxomopof
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@ 7 step: permutation on lanes. It rearranges the 25 bits of each slice.

alyl2z + 3y[z] = alz][y][z].
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Round Function of KECCAK-f[1600]

R=toyxomopof
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@ X is the only nonlinear component. It is a row wise 5-bit Sbox.
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Round Function of KECCAK-f[1600]

R=toxomopof

@ . step: add a round constant to the state
@ Add a round-dependent constant to the first lane to destroy the symmetry.
@ Since it has no effect on this kind of differential trail search, we ignore it.
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Previous Works on Differential Trail Search
Previous Results on Exhaustive Trail Search of KECCAK-f[1600]

Differential Propagation Analysis from [DVA12]

@ 3-round trails with propagation weight below T35 = 36 are searched completely.
@ Lower bound of 6-round trails is 74.

New techniques for trail search [MDVA17]
@ 3-round trail cores with threshold propagation weight T3 = 45 are searched exhaustively.

o Lower bound on propagation weight of 4/5/6-round trails are improved accordingly.

Our results

We set T3 = 53 for our search strategy. There is no theoretical proof for a satisfactory lower bound, but
we indeed found many new trail cores.

v
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0 Property and 3-Round Trail Core

o Column Parity p of state « is the parity of all columns, i.e.,
p=P(a).

o In CP Kernel and out CP Kernel. If p =0, 6 has no effect on «,
« is called in CP Kernel denoted as |K|, otherwise, it's out CP
Kernel, denoted as |V|.

@ We use parity and Kernel to represent column parity and column
parity kernel.

3-round trail core
A X A
fo -=» o1 = f1 = az = P2

A 3-round trail core is denoted by (aq, ) or (51, B2).

y+ 42 y
L

Target 3-round trail cores

The 3-round trail core (S, B2) with propagation weight w™"(ay)? +w(B1) + w(B2) < Ts.

2w"e? (1) refers to the optimal weight of By which can propagate to oy
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New 3-Round Trial Core Search Strategy Classification of Search Space

Classification of 3-Round Trail Core

@ According to whether a; and «y are in Kernel, 3-round trail cores can be classified into 4
categories.
o |K|K] trail cores, both a; and a2 are in Kernel.
o |N|K]| and |N|N] trail cores, with always a1 out Kernel. (In our work, trail cores with either of the
features are covered by the same strategy.)
o |K|N]| trail cores with only az in Kernel.
@ For the last two cases, the search strategy are quite similar. But for |[N|K| and |N|N]| trails, the
trail core search starts from out Kernel a1, and from out Kernel as for |K|N]| trails.
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New 3-Round Trial Core Search Strategy Classification of Search Space

Search strategy for | K| K| trail cores

@ First prepare all the theoretical candidate 3; structures for in Kernel a; with m orbitals!. Store
them in a look up table.

@ According to 3; can propagate to a; which is in Kernel through A™! = p~! o 77!, construct the
possible ay

© Based on the relationship between «; and (1, filter a1, and extend forward by one round to obtain
the target three round trails

LA group of 2 active bits in the same column is called an orbital
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An Example - |K|K| Trail Search Algorithm

a By b1
Emﬂﬂ PP 2, 1P, P8 2
D)\ 92](3) 94 2y g7 gh g 2y T Gliab.qh %

TR} T
Z1 22 23 24 3, Pl 24 i, ol

@ 4 orbitals at «; propagate to 3 slices at 81 with {3,3,2} pattern

o From the look up table, we enumerate all the possible valid slice for 2] to obtain pY, p4y and pj.
Through A™' =6"1op~ton™!, p1, pa, and ps3 are determined. Then ¢1, g2, g3 can be
enumerated according to the orbital relation.

@ Through mopod, ¢4 is determined. According to the valid 2-bit slices stored in the look up table,

P} can be obtained, so p4 is fixed, after that, g4 can be enumerated according to the orbital
relation.

e Until now, all the four orbitals with 8 bits are determined. Then we filter a; by checking qf, ¢4
and ¢j are all at slice 2z} or not and they result in in kernel slice at as or not.

@ Extend one round to get the target three round trail cores.
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Parity-Bare State and Subspace

@ Enumerating out Kernel a
o A group of out Kernel states « share the same parity p, i.e., each parity stands for a subspace of «,
denoted by V.
o Under each parity p, there are a group of states called parity-bare states that can represent all other
states in V. Other states can be generated by adding orbitals to the parity-bare states.
o Thus, out Kernel states in V,, can be covered by enumerating parity-bare states.
@ The space and subspace of out Kernel states
e Any out Kernel state o can represent a set of states simply through adding orbitals to it. The
subspace represented by « is denoted as V.
o The space of out Kernel states can be divided into subspaces represented by out Kernel o, i.e.,

Vi = Vo, (Voo (U Ve
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How to cover the search space

The search space is all the out Kernel states a.

The ideal representative of subspace V,
For each subspace V,, of V,,, an ideal representative state o’ is generated based on «.
@ The ideal representative state generally does not exist in reality.

@ It represents the optimal number of active rows of 3-round trail cores, of all states in V,,, indicating
the lower bound of the whole subpace.

@ Thus, if the ideal representative of a subspace cannot meet the weight requirement T3, the whole
subspace can be safely discarded.
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Viability Check and Ideal Improvement Assumption

Ideal Improvement Assumption
The ideal improvement assumption on out Kernel states o assumes that

o for |N|K| and |N|N]| trails, a1 can be optimally improved at 5 in terms of number of active rows
with least number of orbitals added to it;

o for |K|N| trails, ag can be optimally compensated with an in Kernel «; with the least number of
orbitals added to it.

Basically, the ideal representative of subspace V,, is obtained when « is ideally improved.

Viability Check

The process of generating the ideal representative state of a subspace and deciding whether to delete it
is called viability check. The out Kernel state a that passes the viability check is called viable. Thus
searching 3-round trail cores equals to generating all viable out Kernel states.
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The Complete Process of 3-Round Trail Core Search

A general strategy to efficiently cover the search space:

Parity-bare States

@ All candidate parities are prepared. For each candidate parity, the
corresponding parity-bare states are enumerated. « Oé/

@ For each parity-bare state, conduct viability check on it and

generate the viable states.

Viable Add

one
orbital

© For all viable «, add one orbital to it and conduct viability check on

the newly generated o/. Repeat the process until there is no viable
states anymore.

@ For all the viable o, extend them forward or backward and collect

the target 3-round trail cores. Extend forward or backward by

one round & obtain 3-round trail
cores
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An Example - |K|N| Trail Search Algorithm

AL Xt A
ap < B <— ag = B
@ The search starts from out Kernel as.
@ The ideal improvement assumption states that

o for each active rows at aw, rather than consider only the compatible
(1, it assumes all the 31 patterns are legal;

e for any ag, with the superset of 31, it assumes that a always have
in Kernel a;. If its original active rows cannot make «; in Kernel, it
can be improved to be in Kernel by adding orbitals to az;

o when adding orbitals to a2, it assumes the least number of row
increase on a2 and (2.

© Conduct the viability check and add one orbital to viable as.
Repeat the process on viable as.

© Extend all the collected viable as backward to in Kernel a; by one
round.
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Parity-bare States

Add
one
orbital

Viable

Extend backward by one round
& obtain 3-round trail cores
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New 3-Round Trial Core Search Strategy [RIEINRSETST el

Brief Summary of Result

| IKIK] | [NIE| | [NIN] | |K|N]

T3 in [DVA12]
T3 in [MDVA17]
our 13

Minimal Weight
Time Complexity

40
45
53

35
242

36
45
53

48
240
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New 3-Round Trial Core Search Strategy [RIEINRSETST el

Thanks for your attention!
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