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Our contribution

* improved and extended approach of multiple linear cryptanalysis[BCQO04]
(exploit dominant statistically independent linear trails)

* Algorithm 1 and Algorithm 2 style attacks
* threshold based, rank based, combined

* provide formulas for success probability and advantage
in terms of data size, correlations of the trails, and threshold parameter

* under some hypotheses on statistical independence of wrong key & right key statistics

* application to full DES, exploiting 4 linear trails

* get attacks with complexity better than or comparable with existing linear attacks
on DES

. provide strong experimental verification
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 Conclusion



Linear Trails and Linear Hulls

* key-alternating iterative block cipher

long key cipher E rko rk rks rkR—1
| | é_‘
FO Fl Fl FZ FR_]_ 1_‘R

* linear trail I' = [T, ..., [g]: sequence of linear masks

* linear hull #{y,y"): the set of linear trails with the initial mask y and
final mask y’



Linear Correlations

/ 1 /
s(y,v; F) = ;Zx(_l)hf,x}@(y F(x))

linear correlation of F:Fhy — FI wir.t. pair of masks (y,7’)

e(y,y’;  rk) ==€(V,V’;E(rk,-)2 k
ey r

linear correlation of a linear hull for a given long

C(F )= f=_015(ri;ri+1iFi+1)

(key-independent) linear correlation of a trail

A / 1 /
&y,y's rk,D):= =X, oep(—1)HPISY0)

undersampled correlation
D: data (consisting of plaintext-ciphertext pairs)




Linear Correlations

parity bit determined by A and rk
R—1/A. 1.
8()/, y” Tk) — ZAEj{(y’y,)(_l)@l=o (Aj,Tk;) C(A, )

e [': 2 dominant trail
e e(y,y'; TK) ~ (=1)®i=0 Tirkid C(T), or
» (D)= Tirkie(y,y k) & C(D)

regardless of Tk

Unless mentioned otherwise, we assume:-

~ T,IV: dominant, fixed
N = |D| K 2™, n: block size
[CDLIC(T7)] >» 277/
K™ and rk™(correct key, long key): fixed



Algorithm 1

* Use a single dominant trail I' = [I, ..., I'g]
* try to recover the parity bit
B =@y (T, Tk
* Given a sample or data D,
compute the undersampled correlation
£(To, Tr—1;Tk", D)
* determine [ to be 0
iff 8(Ty, Tx_q:7k*, D)C(T)>0
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Algorithm 1

* Right Key Hypothesis

* [': dominant trail
X = (_1)'B*é(% y'; k™, D): random variable letting D vary with [D| = N
X~Neg,1/N) = c() B =@ (T rki)

=

* Success Probability

> X~.7\f(61:1/N)(E ) (\/_|E|)



Algorithm 2

P
* Add outer rounds to a trail I' = [T, ..., ['g4 1] e
- - S+r e X
for the inner cipher E E . {5 I,
. . . //
* recover a parity bit and some outer round key bits y F
/ S+1
: /
* Given D, B =@TU, kY P Lot
e Use the statistic (—1)P&(T, k, D)F: indeterminate, binary ,'c [ F..
to pick out candidates for (7, k™) | .
: : . threshold based or rank based \ .
* Proceed with trial encryption \
\\ l—‘S+T'—1
K: bit string obtained by concatenating outer AN F
round key bits involved in the outer round &(T K, D) = i (—1)90P.C) N Xs+r ;
computation of (I, Xs) D (Tsyr, Xgir) D] (P TeD \\\\\§*§-r S+

undersampled correlation gotten from k, D

(Ts, Xs) D (4741, Xs4re1) = g(x, P, C) ¢



Algorithm 2

* Right Key Hypothesis (on the distribution of right key statistic)
. (=B &(T, k", D)~Me, %) as D varies with |D| = N

* Wrong Key Hypothesis (on the distribution of wrong key statistic)
« &(T',k,D)~MO, %) as (k, D) varies with Kk # K*

* Hypothesis on independence [SelO8]

* the order statistics for the wrong key statistics & the right key statistic
are independent

success probability, advantage can be estimated

for threshold/rank based methods



Algorithm 2 style attacks (multiple appt.)

P
el 2 .. T™. dominant, statistically independent trails //»@
L X |
° — ' | — — / 2 . r’
Ej—C(F])(j—l,...,m),E— Z]E] /// % S
. * % / Fsiq
* Given data D, recover (k*, B7), /

* K*: correct value of the outer key K | Foo ]
K: bit string obtained by combining of k;’s (removing redundancy) Klj o
o RFf — (R* * * _ mMStr—1 yrJ ..1,% ‘ ;
ﬁ - (ﬁl) ---;,Bm)) ,B] _@izg Fi ;rk ) \\\ é
\
. . - \
* Use the statistic T (k, 8,D) = Zj(—l)'gl €T, (K-, D) \ Foir
N Xs+r r’
K;: bit string obtained by concatenating outer g S~ S+
y string obtained by concatenating ou Tj(Kj,D) = N&(IJ, k;, D) ——s}

round key bits involved in the outer round

' ' = ) ees . any binary vector C
computation of <FSJ,XS> S5 <FS]+7~;X5+T> B = (b Pm): any y

assume for simplicity that bits of k;’s are either identical or independent



Algorithm 2 style attacks (multiple appt.)

T(k,B,D) == Z(—l)ﬁijTj(Kj:D)

]
* Algorithm 2MT (Threshold based):
Pick out (k, )’ with T(rc, B,D) = 6 = tN?

* Algorithm 2MR (Rank based):
Rank (K, 8)’s according to T' (&, 8, D)

* Algorithm 2MC (Combined):
Pick out candidates (k, B)’s with T (¢, 8, D) = 6 and then rank them
* yields better advantage than Algorithm 2MT for Pg = 1



Algorithm 2 style attacks (multiple appt.)

* Wrong key types
¢ FOI’]O ; {1, ...,m},
K is said to have the wrong key type Jo if {j: k;= K;} = Jo

W (Jo): the set of K’s having the wrong key type ]

* For Jp,J; € {1, ...,m}st. Jop #{1,...,m}or J; # {1, ...,m},
(K, B) is said to have the wrong key type (Jp, /1) if
* K has the wrong key type Jo and f8 has the type J;
For ] c {1,...,m},
P is said to have the type [ if {],3] = ,3;} =]
If B has the type J , denote it by B/

W (Jo,J;): the set of (K, B)’s having the wrong key type(Jp, /1)



Multivariate Normal Distributions

p € R™ X: positive definite m X m matrix over R

e An m-variate random variable X is said to have the normal distribution
with mean vector i and covariance matrix X if it has the p.d.f.

1 (=TI (x—p) X~Mu, X),
- e 2
(2m)™/2|det(X)]|1/2

* Probability that an m-variate normal random variable satisfies a linear
inequalit
q Y m Y =00 r
« X~Mu,X),a€R™, a=0,beR
+ Pr({a,X) + b > 0) = (210 ®: c.d.f. of the std normal distribution
r({a, >

|07 al

X




Algorithm 2 style attacks (multiple appt.)

For each Jo C {1, ..., m}

* X, : vector-valued random variable having the distribution determined
by the values ((—1)'81 €17,(x1, D), ..., (—1)ﬁ;16m1'm(lcm, D))
ID| =N,k e W({Jy)

* Hypothesis: X;, ~ MM, Z;,)
* ”]0 — (Ml! r.um)a.u] — NEjZ forj E]Oa Hj = 0 forj $]O
* X, = diag(Nef, ..., Nej)

®» distribution Dy,



Algorithm 2 style attacks (multiple appr.)

For cach
oreach o o = (i)

- X Jo : vector-valued random variable having the distribution determined by
((— 1)’81611'1 (k1,D), ..., (— 1)'BmEme(Km, D), EhT]l (Kh, D) e]urju(K]u,D))
T —~ e -
right key statistic wrong key statistic

ID| =N,k e W(J,)

* Hypothesis (Stronger): X jo ~ MUy, i:\]0)
* ﬁ]o — (nul; ---;.um+u)> 2\]0 — dlag(o-lz’ ’O-T%H'u)’

(uj o) = (Nef, Nef) for j € {1, ...,m}, (1, Omsr) = (O, Nep) for L € {1, ..., u}

B distribution @,



Algorithm 2MT

* Determine (K, ) to be correct if
* T(k,B,D) = tNe?

* Success Probability pg(t):
. %r(T(:c*,ﬁ*,D) > tNe?)

= Pr (X;+ -+ X, =tNe?) = d((1 —t)VNe)
X"’@{l,...,m}

T(x,B,D) := Z(—l)ﬁjfjfj(Kj’D)
J

linear inequality

it 1 2T,(Jo.J1)
* szaT'(]O'h) (t): probability that (K, B) of type (Jo,/J;) satisfies the threshold

condition o
ko: number of bits in K



Algorithm 2MT

* False alarm probability praT'(] 01 o type Jo, J1)
(T(x,B’1,D) = tNe*)= %5 Qjejons; X — Ljejorg, X T Z?:l(_l)ﬁlemH) > tNe?)

Jo

linear inequali
= ®(VN(Zjejons, € — Zjejors, 6 — te?)/€) ey

D KEW(]O)

* The false alarm probability pg, T
2T (]O ]I) (t)

2k0+m Z(]o J): wronngUO) |p

~ ®(—tVNe) (in many cases)

* Advantage: — log, pf; 0



Algorithm 2MR

* Rank (K, B) according to the statistic T (k, 8, D)
* Success Probability = 1

fa
: probability that (&, ) of type (Jp,J;) is ranked higher than (k*, B7)

o 1 2R(Jp,
* False alarm probability: Y X Y UoJr):wrong W(J,)|p (Jo.J1)



Algorithm 2MR

. False alarm probability p RUo.J1) for type (Jo, J1):
(T (x, B’1, D) = T(x",B",D) )

D,k EW(]o)
= P Y K=z ) DY D ) > e

X~ =1

‘o jijsmijelo J€JoNJ1 1/2 linear inequality
= d(— (N( z € +§ z ef) )
J€Jo\J1 Je{1,..mN\Jo
* The false alarm probability p2R
) 2k0+m z:(]0 Jp):wrong (W({o)lps, 2R U0 ~ ®(—/N/2¢) (in many cases)

e Advantage: —log, pay — 1



Algorithm 2MC

* Pick out B’ with T (k, B, D) = tNe? and then rank them according to
the statistic

* Success Probability: the same as in Algorithm 2MT
« &((1—t)VNe)
+ False alarm probability: ——— X ¥ W (J) [p2cYoln )
p ty: 2kp+m (Jo,J1):wrong 0 pfa

. p?aC;(]on ) (t): probability that (K, B) of type (Jp,/J1) is ranked higher than
(K™, B") and satisfies the threshold condition



Algorithm 2MC

* False alarm probability pfzac'(] 0J1) (t) for type (Jo,J1):

(T(x,B’1,D) = T(x*,B*,D),T(k,B’!,D) > tNe?)

Two linear inequalities

D KEW(]O)

can be estimated numerically or by simulation

* The false alarm probability pfs Ct)
2C,(Jo/J1) () =~ p2C00

. X Dpa (t) (in many cases)

2k0+m Z(]o Jp):wrong W (o) |pf

* Advantage: — log, p Ct)



Application to DES

* Exploit 4 linear trails [BV17]

° Fl: €1 = C(Fl) — _2_19'75, k(]j
* [%ie, = C(Ip) = —272007, kg =
e [Bie;=C(I3) = —271975 K}
¢ F4: 64_ — C(F4) — _2_20'07, kg

* Perform Algorithm 2MC, given data D of size N:
* compress data and get 4 lists L;’s applying FWHT.

K1, Ko share 6 bits

K3, K4 share 6 bits

= 18

K1||k, and K3||K4 does not
have any bits in common

K has 48 bits: kg = 48

¢ = 2—18.89

* combine lists Ly and L, to get a list Ly 5; combine lists L3 and L, to get alist L3 4
* Sort Lq 5 and L3 4 and get the list L; 3 4 considering the threshold condition

* Try the candidates in L, ; 3 4 one by one

T(x,B,D) = tNe?



Application to DES

p
0.95 —=o ° + o : it
theoretical/experimental Pg 0.90
0.85 |2 o o R : :
0.80
237.78 238.?8 239.78 240.78 241.78 242.78
Data Complexity
1,000 experiments 20 2
42.78 2MT, ps — 0.85 .
N up to 2%4 18 2MT, ps = 0.90
— 9MT, ps = 0.95
16 — 9MC, ps = 0.85
14 2MC, ps = 0.90
—— 2MC, ps = 0.95
. . 2MR, ps = 1.00
theoretical/experimental
advantage
0
237.78 238.78 239.78 240.78 241.78 242.78

Data Complexity



Multiple linear cryptanalysis [BCQO4]

* Algorithm 1 and Algorithm 2 style attacks

* formulas for advantage estimated in terms of trail correlations and data
complexity
* rank based, Pg fixed to 1

* limitations
* advantage not analyzed theoretically for Pg < 1

* experimental advantage not satisfactory
* e.g. when applied to DES [BV17]



Multidimensional linear cryptanalysis [HCNO9]

* Algorithm 1 and Algorithm 2 style attacks
* threshold based or rank based
use LLR statistic or y? statistic

* approximate, asymptotic advantages theoretically provided

under certain independence assumptions

does not require trails to be dominant

* does not yield attack better than [Mat94] on DES

* advantage not satisfactory when using a small number of trails

* LLR method more effective, but not separable in general:
adding outer rounds requires much overhead



Recent linear attacks on DES

* multiple linear cryptanalysis using 8 dependent trails [BV17]

[ COIldlthIlal hnear Cryptanalysls [BPlg] Attack Data Time Ps Reference
Multiple 242.78 238.86 0.85 BV17]
: : C : 941.00 949.76 N _(
* analysis using a separable statistic [FS19] __tc | > 28 0.80 _
MultiDim. || 24181 | 24181 1 O(241-81) | (.83 [FS18]
L.C 241.85 241.85 + (")(241.85) 0.85
.. NI 942.00 941.00 Y .
Our attacks have comparable complexities; Conditional 241 ; 241 ) 0.52 [BP18
. . LC 2419 241.9 0.85
advantageous with smaller data size. $41.00 50,00 009
240.00 252.00 0.82
cf. 243 data/ 2%3 time / 0.85 [Mat94] Multiple || 24275 938.87 0.85 | This Work
LC 242.00 24235 0.80
241.90 243.77 0.85
241.00 248.17 0.80
241.00 249.23 0.95
240.00 251.14 0.80
240.00 251.89 0.95




Merits of the attack

* Why eftficient?

* the linear statistic
* separable: overhead in adding outer rounds minimized
* almost the same as the optimal LLR statistic up to a constant
* parity bits recovered at the same time = advantage increased
* x?% method does not consider recovering parity bits
* existing LLR methods usually assume parity bits are known
* multivariate normal distribution

* allows to get estimates of attack complexity better than using order statistics



(Generalization

* Exploit close-to-dominant, dependent trails

* Use modified hypotheses on the distributions of multivariate random
variables
* presume multivariate normal distributions but with different mean vectors and
covariance matrices — need to be precomputed in advance
* Perform the same procedure with similar statistics

* Use linear statistics with varying coetficients

* Pg, P¢, can be computed in the same way for each attack

* probability of regions represented by linear inequalities for an multivariate
normal random variable



Conclusion

* Multiple linear attacks using multiple dominant linear trails

* statistical models regarding the distribution of vector valued random variables
consisting of component statistics

* closed formulas for success probability and advantage of various Algorithm 1
and Algorithm 2 style attacks in terms of data size, correlations of the trails, and
threshold parameter incorporating the decomposition of outer key bits

* best advantage among existing linear attacks when exploiting multiple dominant
statistical independent trails

* Application to DES
* exhibit the validity of the statistical models
* show the effectiveness of the attack



