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Our contribution

• improved and extended approach of  multiple linear cryptanalysis[BCQ04]

(exploit dominant statistically independent linear trails)

• Algorithm 1 and Algorithm 2 style attacks

• threshold based, rank based, combined 

• provide formulas for success probability and advantage 
in terms of  data size, correlations of  the trails, and threshold parameter

• under some hypotheses on statistical independence of  wrong key & right key statistics

• application to full DES, exploiting 4 linear trails
• get attacks with complexity better than or comparable with existing linear attacks 

on DES

• provide strong experimental verification
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Organization

• Introduction and Preliminaries

• Our multiple linear attacks

• Application to DES

• Generalization

• Conclusion
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Linear Trails and Linear Hulls
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• key-alternating iterative block cipher

• linear trail Γ = [Γ0, … , Γ𝑅]: sequence of  linear masks 

• linear hull H(𝛾, 𝛾′): the set of  linear trails with the initial mask 𝛾 and 
final mask 𝛾′

Γ0 Γ1 Γ1 Γ2 Γ𝑅−1 Γ𝑅

long key cipher  𝐸



Linear Correlations

• 𝜀 𝛾, 𝛾′; 𝐹 ≔
1

2𝑙
 𝑥 −1 𝛾,𝑥 ⊕ 𝛾′,𝐹 𝑥

• 𝜀 𝛾, 𝛾′;  𝐸, 𝑟𝑘 ≔ 𝜀 𝛾, 𝛾′;  𝐸 𝑟𝑘,⋅

• 𝐶 Γ;  𝐸 =  𝑖=0
𝑅−1 𝜀(Γ𝑖 , Γ𝑖+1; 𝐹𝑖+1)

•  𝜀 𝛾, 𝛾′;  𝐸, 𝑟𝑘, 𝐷 ≔
1

|𝐷|
 𝑃,𝐶 ∈𝐷 −1 𝛾,𝑃 ⊕ 𝛾′,𝐶
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linear correlation of  𝐹: 𝔽2
𝑙 → 𝔽2

𝑚 w.r.t. pair of  masks (𝛾, 𝛾’)

linear correlation of  a linear hull for a given long key 𝑟𝑘

(key-independent) linear correlation of  a trail

undersampled correlation

𝐷: data (consisting of  plaintext-ciphertext pairs)

𝐹

𝛾 𝛾′

 𝐸(𝑟𝑘,⋅)

𝛾 𝛾′



Linear Correlations

• Γ: a dominant trail 

• 𝜀 𝛾, 𝛾′; 𝑟𝑘 ≈ −1 ⊕𝑖=0
𝑅−1 Γ𝑖,𝑟𝑘𝑖 𝐶(Γ), or

• −1 ⊕𝑖=0
𝑅−1 Γ𝑖,𝑟𝑘𝑖 𝜀 𝛾, 𝛾′; 𝑟𝑘 ≈ 𝐶(Γ)
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⇒ regardless of  𝑟𝑘

𝜀 𝛾, 𝛾′;  𝐸, 𝑟𝑘 =  
Λ∈H 𝛾,𝛾′ −1 ⊕𝑖=0

𝑅−1 Λ𝑖,𝑟𝑘𝑖 𝐶(Λ;  𝐸)

parity bit determined by Λ and 𝑟𝑘

Unless mentioned otherwise, we assume:-

- Γ, Γ𝑗: dominant, fixed

- 𝑁 = |𝐷| ≪ 2𝑛, 𝑛: block size

- 𝐶 Γ , |𝐶 Γ𝑗 | ≫ 2−𝑛/2

- 𝐾∗ and 𝑟𝑘∗(correct key, long key): fixed



Algorithm 1 

• Use a single dominant trail Γ = [Γ0, … , Γ𝑅]
• try to recover the parity bit

𝛽∗ =⊕𝑖=0
𝑅−1 Γ𝑖 , 𝑟𝑘𝑖

∗

• Given a sample or data 𝐷, 
compute the undersampled correlation

 𝜀 Γ0, Γ𝑅−1; 𝑟𝑘∗, 𝐷
• determine 𝛽∗ to be 0 

iff  𝜀 Γ0, Γ𝑅−1; 𝑟𝑘∗, 𝐷 𝐶 Γ >0
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Γ𝑅

𝐹𝑅

Γ0

𝐹2

𝐹1

𝐶

𝑃

𝑟𝑘0
∗

𝑟𝑘1
∗

𝑟𝑘𝑅−1
∗

Γ1

Γ𝑅−1

 𝜀 𝛾, 𝛾′; 𝑟𝑘, 𝐷 ≔
1

|𝐷|
 

𝑃,𝐶 ∈𝐷

−1 𝛾,𝑃 ⊕ 𝛾′,𝐶



Algorithm 1

• Right Key Hypothesis

• Γ: dominant trail 

• Success Probability 

• 𝑃S = Pr
𝑋~N(𝜖,1/𝑁)

(𝜖𝑋 > 0) = Φ 𝑁 𝜖
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𝛽∗ =⊕𝑖=0
𝑅−1 Γ𝑖 , 𝑟𝑘𝑖

∗

𝜖 = 𝐶(Γ)

⇒ 𝑋 = −1 𝛽∗
 𝜀 𝛾, 𝛾′; 𝑟𝑘∗, 𝐷 : random variable letting 𝐷 vary with 𝐷 = 𝑁

𝑋~N(𝜖, 1/𝑁)



Algorithm 2

• Add outer rounds to a trail Γ = [Γ𝑠, … , Γ𝑠+𝑟]
for the inner cipher 𝐸|𝑠

𝑠+𝑟

• recover a parity bit and some outer round key bits

• Given 𝐷,

• Use the statistic −1 𝛽  𝜀 Γ, 𝑟𝑘∗, 𝜅, 𝐷
to pick out candidates for (𝛽∗, 𝜅∗)

• Proceed with trial encryption
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𝜅: bit string obtained by concatenating outer 

round key bits involved in the outer round 

computation of  Γ𝑠, 𝑋𝑠 ⊕ Γ𝑠+𝑟, 𝑋𝑠+𝑟
Γ𝑠+𝑟

𝐹𝑠+𝑟

𝑃

𝐶

𝜅

Γ𝑠

𝐹𝑠+2

𝐹𝑠+1

𝑋𝑠+𝑟

𝑋𝑠

𝐸  
𝑠

𝑠+𝑟 Γ𝑠+1

Γ𝑠+𝑟−1

Γ𝑠, 𝑋𝑠 ⊕ Γ𝑠+𝑟+1, 𝑋𝑠+𝑟+1 = 𝑔(𝜅, 𝑃, 𝐶)

 𝜀 Γ, 𝑟𝑘∗, 𝜅, 𝐷 ≔
1

𝐷
 

𝑃,𝐶 ∈𝐷

−1 𝑔 𝜅,𝑃,𝐶

𝛽∗ =⊕𝑖=𝑠
𝑠+𝑟−1 Γ𝑖 , 𝑟𝑘𝑖

∗

𝛽: indeterminate, binary

undersampled correlation gotten from 𝜅, 𝐷

threshold based or rank based



Algorithm 2
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• Right Key Hypothesis (on the distribution of  right key statistic)

• −1 𝛽∗
 𝜀 Γ, 𝜅∗, 𝐷 ~N(𝜖,

1

𝑁
)

• Wrong Key Hypothesis (on the distribution of  wrong key statistic)

•  𝜀 Γ, 𝜅, 𝐷 ~N(0,
1

𝑁
)

• Hypothesis on independence [Sel08]
• the order statistics for the wrong key statistics & the right key statistic

are independent

as 𝐷 varies with |𝐷| = 𝑁

as (𝜅, 𝐷) varies with 𝜅 ≠ 𝜅∗

success probability, advantage can be estimated 

for threshold/rank based methods



Algorithm 2 style attacks (multiple appr.)

• Γ1, Γ2, … , Γ𝑚: dominant, statistically independent trails

• 𝜖𝑗 = 𝐶(Γ𝑗) (𝑗 = 1,… , 𝑚), 𝜖 =  𝑗 𝜖𝑗
2

• Given data 𝐷, recover 𝜿∗, 𝜷∗ ,
• 𝜿∗: correct value of  the outer key 𝜿

• 𝜷∗ = 𝛽1
∗, … , 𝛽𝑚

∗ , 𝛽𝑗
∗ =⊕𝑖=𝑠

𝑠+𝑟−1 ⟨Γ𝑖
𝑗
, 𝑟𝑘∗⟩

• Use the statistic 𝑇 𝜿, 𝜷, 𝐷 ≔  𝑗 −1 𝛽𝑗𝜖𝑗𝜏𝑗 𝜅𝑗 , 𝐷
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𝜏𝑗 𝜅𝑗 , 𝐷 ≔ 𝑁  𝜀(Γj, 𝜅𝑗 , 𝐷)
Γ𝑠+𝑟

𝑗
𝐹𝑠+𝑟

𝑃

𝐶

𝜅𝑗

Γ𝑠
𝑗

𝐹𝑠+2

𝐹𝑠+1

𝑋𝑠+𝑟

𝑋𝑠

𝐸  
𝑠

𝑠+𝑟

𝜅𝑗: bit string obtained by concatenating outer 

round key bits involved in the outer round 

computation of  Γ𝑠
𝑗
, 𝑋𝑠 ⊕ Γ𝑠+𝑟

𝑗
, 𝑋𝑠+𝑟

𝜿: bit string obtained by combining of  𝜅𝑗 ’s (removing redundancy)

assume for simplicity that bits of  𝜅𝑗’s are either identical or independent 

𝜷 = (𝛽1, … , 𝛽𝑚): any binary vector 



Algorithm 2 style attacks (multiple appr.)

• Algorithm 2MT (Threshold based): 
Pick out (𝜿, 𝜷)’s with 𝑇 𝜿, 𝜷, 𝐷 ≥ 𝜃 = 𝑡𝑁2

• Algorithm 2MR (Rank based): 
Rank (𝜿, 𝜷)’s according to 𝑇 𝜿, 𝜷, 𝐷

• Algorithm 2MC (Combined): 
Pick out candidates (𝜿, 𝜷)’s with 𝑇 𝜿, 𝜷, 𝐷 ≥ 𝜃 and then rank them
• yields better advantage than Algorithm 2MT for 𝑃S ≈ 1
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𝑇 𝜿,𝜷, 𝐷 ≔  

𝑗

−1 𝛽𝑗𝜖𝑗𝜏𝑗 𝜅𝑗 , 𝐷



Algorithm 2 style attacks (multiple appr.)

• Wrong key types

• For 𝐽𝑂 ⊊ 1, … , 𝑚 , 
𝜿 is said to have the wrong key type 𝐽𝑂 if  {𝑗: 𝜅𝑗= 𝜅𝑗

∗} = 𝐽𝑂

• For 𝐽𝑂, 𝐽𝐼 ⊂ 1, … , 𝑚 s.t. 𝐽𝑂 ≠ 1,… , 𝑚 or 𝐽𝐼 ≠ 1,… , 𝑚 , 
(𝜿, 𝜷) is said to have the wrong key type (𝐽𝑂, 𝐽𝐼) if  

• 𝜿 has the wrong key type 𝐽𝑂 and 𝜷 has the type 𝐽𝐼
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𝑊 𝐽𝑂 : the set of  𝜿’s having the wrong key type 𝐽𝑂

𝑊 𝐽𝑂, 𝐽𝐼 : the set of (𝜿, 𝜷)’s having the wrong key type 𝐽𝑂, 𝐽𝐼

For 𝐽 ⊂ 1, … , 𝑚 , 

𝜷 is said to have the type 𝐽 if  𝑗: 𝛽𝑗 = 𝛽𝑗
∗ = 𝐽

If  𝜷 has the type 𝐽 , denote it by 𝜷𝐽



Multivariate Normal Distributions

• An 𝑚-variate random variable 𝑿 is said to have the normal distribution 
with mean vector 𝝁 and covariance matrix 𝚺 if  it has the p.d.f. 

𝒙 ↦
1

2𝜋 𝑚/2 det 𝚺 1/2
𝑒−

𝒙−𝝁 𝑇𝚺−1 𝒙−𝝁
2

• Probability that an 𝑚-variate normal random variable satisfies a linear 
inequality
• 𝑿~N(𝝁, 𝚺), 𝒂 ∈ ℝ𝑚, 𝒂 ≠ 0, 𝑏 ∈ ℝ

• Pr
𝑿

( 𝒂, 𝑿 + 𝑏 ≥ 0) = Φ(
𝒂,𝝁 +𝑏

𝝈𝑇𝒂
)
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𝚺 = 𝝈𝝈𝑇

Φ: c.d.f. of  the std normal distribution

𝝁 ∈ ℝ𝑚, 𝚺: positive definite  𝑚 × 𝑚 matrix over ℝ

𝑿~N(𝝁, 𝚺), 



Algorithm 2 style attacks (multiple appr.)

• 𝑿𝐽𝑂
: vector-valued random variable having the distribution determined 

by the values ( −1 𝛽1
∗
𝜖1𝜏1 𝜅1, 𝐷 , … , −1 𝛽𝑚

∗
𝜖𝑚𝜏𝑚 𝜅𝑚, 𝐷 )

• Hypothesis: 𝑿𝐽𝑂
∼ N(𝝁𝐽𝑂

, 𝚺𝐽𝑂
)

• 𝝁𝐽𝑂
= 𝜇1, … , 𝜇𝑚 ; 𝜇𝑗 = 𝑁𝜖𝑗

2 for 𝑗 ∈ 𝐽𝑂, 𝜇𝑗 = 0 for 𝑗 ∉ 𝐽𝑂
• 𝚺𝐽𝑂

= diag(𝑁𝜖1
2, … , 𝑁𝜖𝑚

2 )

15

For each 𝐽𝑂 ⊂ {1, … , 𝑚}

𝐷 = 𝑁, 𝜿 ∈ 𝑊 𝐽𝑂

distribution D𝐽𝑂



Algorithm 2 style attacks (multiple appr.)

•  𝑿𝐽𝑂
: vector-valued random variable having the distribution determined by 

( −1 𝛽1
∗
𝜖1𝜏1 𝜅1

∗, 𝐷 , … , −1 𝛽𝑚
∗
𝜖𝑚𝜏𝑚 𝜅𝑚

∗ , 𝐷 , 𝜖𝑗1
𝜏𝑗1

𝜅𝑗1
, 𝐷 , … , 𝜖𝑗𝑢

𝜏𝑗𝑢
𝜅𝑗𝑢

, 𝐷 )

• Hypothesis (Stronger):  𝑿𝐽𝑂
∼ N( 𝝁𝐽𝑂

,  𝚺𝐽𝑂
)

•  𝝁𝐽𝑂
= 𝜇1, … , 𝜇𝑚+𝑢 ,  𝚺𝐽𝑂

= diag 𝜎1
2, … , 𝜎𝑚+𝑢

2 ;

(𝜇𝑗 , 𝜎𝑗
2) = (𝑁𝜖𝑗

2, 𝑁𝜖𝑗
2) for 𝑗 ∈ {1, … , 𝑚},  (𝜇𝑚+𝑙 , 𝜎𝑚+𝑙

2 ) = (0, 𝑁𝜖𝑗𝑙

2) for 𝑙 ∈ {1, … , 𝑢}
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For each 𝐽𝑂

𝐷 = 𝑁, 𝜿 ∈ 𝑊 𝐽𝑂

Let 1, … , 𝑚 ∖ 𝐽𝑂 = {𝑗1, … , 𝑗𝑢}

right key statistic wrong  key statistic

distribution D  𝐽𝑂



Algorithm 2MT

• Determine (𝜿, 𝜷) to be correct if

• 𝑇(𝜿, 𝜷, 𝐷) ≥ 𝑡𝑁𝜖2

• Success Probability 𝑝S(𝑡):

• Pr
𝐷

(𝑇(𝜿∗, 𝜷∗, 𝐷) ≥ 𝑡𝑁𝜖2)

= Pr
𝑿∼D{1,…,𝑚}

(𝑋1 + ⋯ + 𝑋𝑚 ≥ 𝑡𝑁𝜖2) = Φ( 1 − 𝑡 𝑁𝜖)

• False alarm probability: 
1

2𝑘𝑂+𝑚 ×  𝐽𝑂,𝐽𝐼 :𝑤𝑟𝑜𝑛𝑔 |𝑊 𝐽𝑂 |𝑝fa
2𝑇, 𝐽𝑂,𝐽𝐼 (𝑡)

• 𝑝fa
2𝑇, 𝐽𝑂,𝐽𝐼 (𝑡): probability that (𝜿, 𝜷) of  type (𝐽𝑂, 𝐽𝐼) satisfies the threshold 

condition 
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𝑇 𝜿,𝜷, 𝐷 ≔  

𝑗

−1 𝛽𝑗𝜖𝑗𝜏𝑗 𝜅𝑗 , 𝐷

𝑘𝑂: number of  bits in 𝜿

linear inequality



Algorithm 2MT

• False alarm probability 𝑝fa
2𝑇, 𝐽𝑂,𝐽𝐼 for type 𝐽𝑂 , 𝐽𝐼

• The false alarm probability 𝑝fa
2T(𝑡)

•
1

2𝑘𝑂+𝑚  𝐽𝑂,𝐽𝐼 :wrong 𝑊 𝐽𝑂 𝑝fa
2𝑇, 𝐽𝑂,𝐽𝐼 (𝑡)

• Advantage: − log2 𝑝fa
2T 𝑡
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Pr
𝐷,𝜿∈𝑊(𝐽𝑂)

(𝑇(𝜿, 𝜷𝐽𝐼 , 𝐷) ≥ 𝑡𝑁𝜖2)= Pr
𝑿∼D  𝐽𝑂

( 𝑗∈𝐽𝑂∩𝐽𝐼
𝑋𝑗 −  𝑗∈𝐽𝑂∖𝐽𝐼

𝑋𝑗 +  𝑙=1
𝑢 −1 𝛽𝑗𝑙𝑋𝑚+𝑙) ≥ 𝑡𝑁𝜖2)

= Φ( 𝑁  𝑗∈𝐽𝑂∩𝐽𝐼
𝜖𝑗

2 −  𝑗∈𝐽𝑂∖𝐽𝐼
𝜖𝑗

2 − 𝑡𝜖2 /𝜖)

≈ Φ(−𝑡 𝑁𝜖) (in many cases)

linear inequality



Algorithm 2MR

• Rank (𝜿, 𝜷) according to the statistic 𝑇(𝜿, 𝜷, 𝐷)

• Success Probability = 1

• False alarm probability: 
1

2𝑘𝑂+𝑚 ×  𝐽𝑂,𝐽𝐼 :𝑤𝑟𝑜𝑛𝑔 |𝑊 𝐽𝑂 |𝑝fa
2𝑅, 𝐽𝑂,𝐽𝐼

• 𝑝fa
2𝑅, 𝐽𝑂,𝐽𝐼 : probability that (𝜿, 𝜷) of  type (𝐽𝑂 , 𝐽𝐼) is ranked higher than (𝜿∗, 𝜷∗)
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Algorithm 2MR

• False alarm probability 𝑝fa
2𝑅, 𝐽𝑂,𝐽𝐼 for type (𝐽𝑂, 𝐽𝐼):

Pr
𝐷,𝜿∈𝑊(𝐽𝑂)

(𝑇(𝜿, 𝜷𝐽𝐼 , 𝐷) ≥ 𝑇(𝜿∗, 𝜷∗, 𝐷) )

= Pr
𝑿∼D  𝐽𝑂

(−  

𝑗:𝑗≤𝑚,𝑗∉𝐽𝑂

𝑋𝑗 − 2  

𝑗∈𝐽𝑂∖𝐽𝐼

−1 𝛽𝑗
∗

𝑋𝑗 +  
𝑙=1

𝑢

−1
𝛽𝑗𝑙

∗

𝑋𝑚+𝑙) ≥ 𝑡𝑁𝜖2)

= Φ(− 𝑁(  

𝑗∈𝐽𝑂∖𝐽𝐼

𝜖𝑗
2 +

1

2
 

𝑗∈ 1,…𝑚 ∖𝐽𝑂

𝜖𝑗
2

1/2

)

• The false alarm probability 𝑝fa
2R

•
1

2𝑘𝑂+𝑚  𝐽𝑂,𝐽𝐼 :wrong |𝑊 𝐽𝑂 |𝑝fa
2𝑅, 𝐽𝑂,𝐽𝐼

• Advantage: − log2 𝑝fa
2R − 1
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≈ Φ(− 𝑁/2𝜖) (in many cases)

linear inequality



Algorithm 2MC

• Pick out 𝜷’s with 𝑇(𝜿, 𝜷, 𝐷) ≥ 𝑡𝑁𝜖2 and then rank them according to 
the statistic

• Success Probability: the same as in Algorithm 2MT

• Φ( 1 − 𝑡 𝑁𝜖)

• False alarm probability: 
1

2𝑘𝑂+𝑚 ×  𝐽𝑂,𝐽𝐼 :𝑤𝑟𝑜𝑛𝑔 |𝑊 𝐽𝑂 |𝑝fa
2𝐶, 𝐽𝑂,𝐽𝐼 (𝑡)

• 𝑝fa
2𝐶, 𝐽𝑂,𝐽𝐼 (𝑡): probability that (𝜿, 𝜷) of  type (𝐽𝑂, 𝐽𝐼) is ranked higher than 

(𝜿∗, 𝜷∗) and satisfies the threshold condition
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Algorithm 2MC

• False alarm probability 𝑝fa
2𝐶, 𝐽𝑂,𝐽𝐼 (𝑡) for type (𝐽𝑂, 𝐽𝐼):

Pr
𝐷,𝜿∈𝑊(𝐽𝑂)

(𝑇(𝜿, 𝜷𝐽𝐼 , 𝐷) ≥ 𝑇(𝜿∗, 𝜷∗, 𝐷), 𝑇(𝜿, 𝜷𝐽𝐼 , 𝐷) ≥ 𝑡𝑁𝜖2)

• The false alarm probability 𝑝fa
2C(𝑡)

•
1

2𝑘𝑂+𝑚  𝐽𝑂,𝐽𝐼 :wrong |𝑊 𝐽𝑂 |𝑝fa
2C,(𝐽𝑂,𝐽𝐼) t

• Advantage: − log2 𝑝fa
2C(𝑡)
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can be estimated numerically or by simulation

Two linear inequalities

≈ 𝑝fa
2C,(∅,∅)

t (in many cases)



Application to DES

• Exploit 4 linear trails [BV17]

• Γ1: 𝜖1 = 𝐶 Γ1 = −2−19.75, 𝑘𝑂
1 = 12

• Γ2: 𝜖2 = 𝐶 Γ2 = −2−20.07, 𝑘𝑂
2 = 18

• Γ3: 𝜖3 = 𝐶 Γ3 = −2−19.75, 𝑘𝑂
3 = 12

• Γ4: 𝜖4 = 𝐶 Γ4 = −2−20.07, 𝑘𝑂
4 = 18

• Perform Algorithm 2MC, given data 𝐷 of  size 𝑁:

• compress data and get 4 lists 𝐿𝑗 ’s applying FWHT.

• combine lists 𝐿1 and 𝐿2 to get a list 𝐿1,2; combine lists 𝐿3 and 𝐿4 to get a list 𝐿3,4

• Sort 𝐿1,2 and 𝐿3,4 and get the list 𝐿1,2,3,4 considering the threshold condition

• Try the candidates in 𝐿1,2,3,4 one by one

23

𝜖 = 2−18.89

𝜅1, 𝜅2 share 6 bits

𝜅3, 𝜅4 share 6 bits

𝜿 has 48 bits: 𝑘𝑂 = 48

𝜅1||𝜅2 and 𝜅3||𝜅4 does not 

have any bits in common 

𝑇(𝜿, 𝜷, 𝐷) ≥ 𝑡𝑁𝜖2



Application to DES
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theoretical/experimental 𝑃S

theoretical/experimental 

advantage

1,000 experiments

𝑁 up to 242.78



Multiple linear cryptanalysis [BCQ04]

• Algorithm 1 and Algorithm 2 style attacks

• formulas for advantage estimated in terms of  trail correlations and data 
complexity

• rank based, 𝑃S fixed to 1

• limitations
• advantage not analyzed theoretically for 𝑃S < 1

• experimental advantage not satisfactory

• e.g. when applied to DES [BV17]
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Multidimensional linear cryptanalysis [HCN09]

• Algorithm 1 and Algorithm 2 style attacks

• threshold based or rank based

• use LLR statistic or  𝜒2 statistic

• approximate, asymptotic advantages theoretically provided

• under certain independence assumptions

• does not require trails to be dominant

• does not yield attack better than [Mat94] on DES
• advantage not satisfactory when using a small number of  trails

• LLR method more effective, but not separable in general: 
adding outer rounds requires much overhead
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Recent linear attacks on DES

• multiple linear cryptanalysis using 8 dependent trails [BV17]

• conditional linear cryptanalysis [BP19]

• analysis using a separable statistic [FS19]
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cf. 243 data/ 243 time / 0.85 [Mat94]

Our attacks have comparable complexities;

advantageous with smaller data size.



Merits of  the attack

• Why efficient?

• the linear statistic 

• separable: overhead in adding outer rounds minimized

• almost the same as the optimal LLR statistic up to a constant

• parity bits recovered at the same time ⇒ advantage increased

• 𝜒2 method does not consider recovering parity bits 

• existing LLR methods usually assume parity bits are known

• multivariate normal distribution

• allows to get estimates of  attack complexity better than using order statistics
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Generalization

• Exploit close-to-dominant, dependent trails

• Use modified hypotheses on the distributions of  multivariate random 
variables
• presume multivariate normal distributions but with different mean vectors and 

covariance matrices – need to be precomputed in advance

• Perform the same procedure with similar statistics
• Use linear statistics with varying coefficients

• 𝑃S, 𝑃fa can be computed in the same way for each attack
• probability of  regions represented by linear inequalities for an multivariate  

normal random variable
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Conclusion

• Multiple linear attacks using multiple dominant linear trails

• statistical models regarding the distribution of  vector valued random variables 
consisting of  component statistics

• closed formulas for success probability and advantage of  various Algorithm 1 
and Algorithm 2 style attacks in terms of  data size, correlations of  the trails, and 
threshold parameter incorporating the decomposition of  outer key bits

• best advantage among existing linear attacks when exploiting multiple dominant 
statistical independent trails

• Application to DES
• exhibit the validity of  the statistical models

• show the effectiveness of  the attack
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