New Semi-Free-Start Collision Attack Framework for Reduced RIPEMD-160

Fukang Liu^{1,4} Christoph Dobraunig² Florian Mendel³ Takanori Isobe^{4,5} Gaoli Wang¹ Zhenfu Cao^{1,6}

¹East China Normal University, China ²Radboud University, The Netherlands ³Infineon Technologies AG, Germany ⁴University of Hyogo, Japan ⁵NICT, Japan ⁶Cyberspace Security Research Center, Shenzhen, China

Oct. 23, 2020

Cryptanalysis of MD-SHA Hash Family

Major breakthrough (full-round collision attacks):

- MD4 (practical, Dobbertin, FSE'96)
- RIPEMD (practical, Wang et al., EUROCRYPT'05)
- MD5 (practical, Wang et al., EUROCRYPT'05)
- SHA-0 (practical, Biham et al., EUROCRYPT'05)
- 5 SHA-1 (theoretical, Wang et al., CRYPTO'05)
- SHA-1 (practical, Stevens et al., CRYPTO'17)

Full-round theoretical semi-free-start collision attacks:

RIPEMD-128 (Landelle et al., EUROCRYPT'13)

Cryptanalysis of MD-SHA Hash Family

Developed techniques:

- start-from-the-middle (Dobbertin, FSE'96)
- advanced message modification (Wang et al., EUROCRYPT'05)
- modular differential characteristic (Wang et al., EUROCRYPT'05)
- neutral bits (Biham et al., EUROCRYPT'05)
- 5 boomerangs (Joux et al., CRYPTO'07)

Cryptanalysis of MD-SHA Hash Family

Automatic tools for collision-generating differential characteristics:

- guess-and-determine method (Cannière, ASIACRYPT'06)
- meet-in-the-middle method (Stevens et al., EUROCRYPT'07)
- improved guess-and-determine method (Mendel et al., ASIACRYPT'11)
- improved guess-and-determine method (Eichlseder et al., FSE'14)

Cryptanalysis of Reduced RIPEMD-160

Table: Collision attacks on reduced RIPEMD-160

Steps	Time	Memory	Ref.
30/80	2 ^{35.9}	2 ³²	CRYPTO'19
31/80	$2^{41.5}$	2 ³²	CRYPTO'19
33/80	$2^{67.1}$	2 ³²	CRYPTO'19
34/80	2 ^{74.3}	2 ³²	CRYPTO'19

Cryptanalysis of Reduced RIPEMD-160

Table: Semi-free-start collision attacks on reduced RIPEMD-160

Steps	Time	Memory	Ref.
attaks	startin	g from an in	termediate step
36/80	low	negligible	ISC'12
42/80	$2^{75.5}$	2 ⁶⁴	ASIACRYPT'13
48/80	2 ^{76.4}	2 ⁶⁴	ToSC 2017
at	tacks st	arting from	the first step
36/80	$2^{70.4}$	2 ⁶⁴	ASIACRYPT'13
36/80	2 ^{55.1}	2 ³²	ASIACRYPT'17
36/80	2 ⁴¹	negligible	this work
37/80	2 ⁴⁹	negligible	this work
38/80	2 ⁵²	negligible	this work
40/80	$2^{74.6}$	negligible	this work

Cryptanalysis of RIPEMD-160

What we learned from the cryptanalysis of RIPEMD-160:

■ Progress has been made.

■ It is far from the full-round collision attack!!!

RIPEMD-160

RIPEMD-160

Step function:

$$\begin{split} X_{i} &= X_{i-4}^{\ll 10} \boxplus (X_{i-5}^{\ll 10} \boxplus \Phi_{j}^{l}(X_{i-1}, X_{i-2}, X_{i-3}^{\ll 10}) \boxplus m_{\pi_{1}(i)} \boxplus K_{j}^{l})^{\ll s_{i}^{l}}, \\ Y_{i} &= Y_{i-4}^{\ll 10} \boxplus (Y_{i-5}^{\ll 10} \boxplus \Phi_{j}^{r}(Y_{i-1}, Y_{i-2}, Y_{i-3}^{\ll 10}) \boxplus m_{\pi_{2}(i)} \boxplus K_{j}^{r})^{\ll s_{i}^{r}}, \end{split}$$

Finalization:

$$\begin{array}{lll} h_0' = & h_1 \boxplus X_{79} \boxplus Y_{78}^{\otimes 10}, \\ h_1' = & h_2 \boxplus X_{78}^{\otimes 10} \boxplus Y_{77}^{\otimes 10}, \\ h_2' = & h_3 \boxplus X_{77}^{\otimes 10} \boxplus Y_{76}^{\otimes 10}, \\ h_3' = & h_4 \boxplus X_{76}^{\otimes 10} \boxplus Y_{80}, \\ h_4' = & h_0 \boxplus X_{80} \boxplus Y_{79}. \end{array}$$

9

Previous Cryptanalysis of Reduced RIPEMD-160

- ▶ Procedure:
 - Step 1: Fix a solution for the dense part.
 - Step 2: Utilize free message words to merge both branches.
 - Step 3: Verify the remaining probabilistic part.

Figure: Previous framework for SFS start collision attacks

New Cryptanalysis of Reduced RIPEMD-160

- ▶ The common procedure to find collisions:
 - Step 1: Construct a differential characteristic.
 - Step 2: Fulfill the differential conditions.
- ★ Technical contribution of this paper:
 - Efficient methods to fulfill the differential conditions.

Constructing a Differential Characteristic

► Reuse the pattern of the differential characteristic (CRYPTO'19)

Figure: Attack on t steps of RIPEMD-160 by inserting difference at m_{12}

Observation on the message expansion:

Figure: Partial information of the message expansion of RIPEMD-160

Observation

For the left branch, X_{17} is updated with m_7 in the second round. Besides, m_7 is used to update X_{42} in the third round.

The overall attack procedure to find *t*-step semi-free-start collisions:

- **1** Step 1: Find a starting point, i.e. a solution for (X_{13}, \ldots, X_t) .
- Step 2: Filter invalid X_{12} , i.e. valid solutions for (X_9, \ldots, X_{12}) .
- Step 3: Verify the differential conditions on the right branch.

Efficiently re-generate a starting point from an existing one:

- Strategy 1:
- ▶ Step 1: Modify $(X_{13}, ..., X_{15})$.
- ▶ Step 2: Update (m_4, m_{13}, m_1) to keep $(X_{16}, ..., X_{35})$ stay the same.
- ▶ Step 3: Recompute $(X_{36},...,X_t)$ and check their conditions.

X_{18}	X ₁₉	X_{20}	X ₂₁	X ₂₂	X_{23}	X ₂₄	X ₂₅	X_{26}	X ₂₇	X ₂₈	X_{29}	X ₃₀	X_{31}	X_{32}
m_4	m_{13}	m_1	m_{10}	m_6	m_{15}	m_3	m_{12}	m_0	m_9	m_5	m_2	m_{14}	m_{11}	m_8

X_{33}	X ₃₄	X_{35}	X ₃₆	X ₃₇	X ₃₈	X ₃₉	X ₄₀
m_3	m_{10}	m_{14}	m_4	m_9	m_{15}	m_8	m_1

Efficiently re-generate a starting point from an existing one:

- Strategy 2:
- ► Step 1: Modify (*X*₁₄, *X*₁₅)
- ▶ Step 2: Compute X_{13} using $(m_4, X_{14}, ..., X_{18})$ and check conditions.
- ▶ Step 3: Update (m_{13}, m_1) to keep (X_{16}, \dots, X_{39}) stay the same.

X_{18}	X ₁₉	X_{20}	X ₂₁	X ₂₂	X_{23}	X ₂₄	X ₂₅	X_{26}	X ₂₇	X ₂₈	X_{29}	X ₃₀	X_{31}	X_{32}
m_4	m_{13}	m_1	m_{10}	m_6	m_{15}	m_3	m_{12}	m_0	m_9	m_5	m_2	m_{14}	m_{11}	m_8

X_{33}	X ₃₄	X ₃₅	X ₃₆	X ₃₇	X ₃₈	X ₃₉	X_{40}
m_3	m_{10}	m_{14}	m_4	m_9	m_{15}	m_8	m_1

Efficiently re-generate a starting point from an existing one:

- Strategy 1 V.S. Strategy 2:
- ▶ 1: A few conditions on $(X_{36},...,X_t)$ (Use Strategy 1)
- ▶ 2: Many conditions on $(X_{36}, ..., X_t)$ (Use Strategy 2)

X ₁₈	X ₁₉	X ₂₀	X ₂₁	X 22	X_{23}	X_{24}	X ₂₅	X_{26}	X ₂₇	X ₂₈	X_{29}	X ₃₀	X_{31}	X_{32}
m_4	m_{13}	m_1	m_{10}	m_6	m_{15}	m_3	m_{12}	m_0	m_9	m_5	m_2	m_{14}	m_{11}	m_8

X ₃₃	X ₃₄	X ₃₅	X ₃₆	X 37	X ₃₈	X 39	X_{40}
m_3	m_{10}	m_{14}	m_4	m_9	m_{15}	m_8	m_1

Efficiently re-generate a starting point from an existing one:

- Benefits:
- ▶ The cost almost has no influence on the whole complexity.
- ▶ The whole complexity is dominated by the right branch.

!!! Regenerate a starting point only when X_{12} is fully traversed.

Desirable Differential Characteristics

To use our attack framework, a characteristic should satisify

- ▶ A few conditions on $(X_9, ..., X_{12})$.
- ▶ Not too many conditions on (X_{13}, X_{14}, X_{15}) .
- ▶ Not too many conditions on the right branch.
- The characteristic should be
- ▶ As sparse as possible in $(X_{13}, ..., X_{17})$.
- ▶ As sparse as possible in $(X_{36}, ..., X_t)$.
- ▶ As sparse as possible on the right branch.

The 36-Step Differential Characteristic

i X	$\pi_1(i)$	Y	$\pi_2(i)$
13 n	12		1
14 nu	13	0	10
15 -nuu	14	1	3
16-0-0110n	15	nn	12
17n01-110	7		6
1801nu-00-	4	1	11
19 011011 - 011111 u 0 0n 001 0 - 1	13	1	3
2011010000 101n1 - 00 - 011010000	1	u	7
21nnnn1nn1010111111 - 1011nu110100u10	10		0
22 1001 - 01 n u 1 - 01 u 0 n 1 1 n 1 n u u n u n u 1 -	6	10	13
23nn110u11n10nu100n001nnn10u11nnu1	15	11	5
241101nu0-10uun01nu1n0000nn1101u10	3	un	10
25 - 1uu1nn1 - n011001 n0u01uuu 1n101uuu	12		14
26 1101011u1un0u10 - u01uuuuuu001 - 010	0	0-01	15
270u11u0010011n1-1uuun001111000111	9	1 - 11 1 - 11	8
2811000100n11nnn0n11100n-10n0n0nn1	5	n-un	12
2901n00nu000u01nnu - 01uuu - u nunun11n	2		4
30n1u01n10u010011n000110-00000un1u	14	1 1	9
31 - 1n100 - nnn01 - 0101011 - 11 - nnn0 - 10u	11	11	1
32 10n010 - 000 0 - 111110010 - 100 10u	8	un	2
33 n u	3	11	15
34 0 1	10	00	5
35	14	un	1
36nu	4	nu	3 20

Practical SFS Collisions for 36/37-Step RIPEMD-160

Table: SFS collision for 36 steps of RIPEMD-160

	$\sim h_4$	809825f7	d2a55861	6bd86be7	fc58a6cb	11f6a005		
11	6c2c8526	dc3084cc	16188d15	c6c5da57	73f15b99	f7a7a97a	a7cbbf38	53a4b30
IVI	b6477677	47f24a3e	b1bdf3b5	78aaa252	69a579f0	72b32f35	bb877480	53a4b30 5caa647e
14/	6c2c8526	dc3084cc	16188d15	c6c5da57	73f15b99	f7a7a97a	a7cbbf38	53a4b30 5caa647e
IVI	b6477677	47f24a3e	b1bdf3b5	78aaa252	69a5f9f0	72b32f35	bb877480	5caa647e
ha	sh value	88f79fa4	c9973719	dcf0ff7f	15cef816	a9d702a5		

Table: SFS collision for 37 steps of RIPEMD-160

	$\sim h_4$	51c683bc	e9cd8258	75924d6d	b31d5b2b	9f1418b8		
1/	2a3e3e5d	2f3acda8	c5ab4a9c	dc1f16ce	695a6d71	848cc0fe	f11aa5a3	65da8473
	2a3e3e5d 9e6914b7							
14/	2a3e3e5d 9e6914b7	2f3acda8	c5ab4a9c	dc1f16ce	695a6d71	848cc0fe	f11aa5a3	65da8473
IVI	9e6914b7	fe96a9cf	da48b5c6	59b4296f	14a4fa10	c0870c31	3b3e4837	7f4d5b3f
ha	sh value	4ba88e59	fe3d1b6d	92324a6e	124af3ea	e0206481		

Comparison

Advantage:

- ► A new simple efficient framework is proposed.
- ▶ The memory complexity is further reduced.

Figure: Comparison between our framework and previous frameworks

Summary

- ► Results:
 - Practical SFS collision attacks on 36/37-step RIPEMD-160.
 - Theoretical SFS collision attacks up to 40 steps.

Steps	Time	Memory	Ref.
36/80	2 ⁴¹	negligible	this work
37/80	2 ⁴⁹	negligible	this work
38/80	2 ⁵²	negligible	this work
40/80	2 ^{74.6}	negligible	this work

Table: Semi-free-start collision attacks on reduced RIPEMD-160

Thank you