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Abstract. During recent years, research on authenticated encryption has been
thriving through two highly active and practically motivated research directions:
provable leakage resilience and key- or context-commitment security. However,
the intersection of both fields had been overlooked until very recently. In ToSC
1/2024, Struck and Weishäupl studied generic compositions of encryption schemes
and message authentication codes for building committing leakage-resilient schemes.
They showed that, in general, Encrypt-then-MAC (EtM) and MAC-then-Encrypt
(MtE) are not committing while Encrypt-and-MAC (EaM) is, under plausible and weak
assumptions on the components. However, real-world schemes are rarely strict black-
box constructions. Instead, while various leakage-resilient schemes follow blueprints
inspired by generic compositions, they often tweak them for security or efficiency.
In this paper, we study two blueprints, the first one based on EtM for one of
the strongest possible levels of leakage resilience. The second one is a single-pass
framework based on leveled implementations. We show that, with a careful selection
of the underlying primitives such as with identical encryption and authentication
keys and a collision-resistant PRF as the MAC, these blueprints are committing. Our
results do not contradict the results by Struck and Weishäupl since we pose more,
but practically-motivated, requirements on the components. We demonstrate the
practical relevance of our results by showing that our results on those blueprints allow
us to easily derive proofs that several state-of-the-art leakage-resilient schemes are
indeed committing, including TEDT and its descendants TEDT2 and Romulus-T, as
well as the single-pass scheme Triplex.
Keywords: Authenticated encryption · provable security · leakage resilience ·
committing encryption · PRF · authentication · tweakable block cipher

1 Introduction
Authenticated Encryption with Associated Data (AEAD) has become a fundamental
component in modern security applications, providing both confidentiality and authenticity.
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The development of efficient AEAD schemes has resulted in widespread constructions like
AES-GCM [SCM08], Ascon [DEMS21], Deoxys [JNPS21], and AES-GCM-SIV [GLL19] that
address diverse security goals including but not limited to Nonce-based AEAD (nAE) [Rog04],
Misuse-Resistant AEAD (MRAE) [RS06], or Deterministic AEAD (DAE) [RS06].

However, as AEAD schemes and their analyses mature, attackers continuously seek
new ways to exploit their security. Additionally, new applications introduce fresh security
challenges. Consequently, two areas of research have gained prominence:

1. Leakage-resilient AEAD: This area focuses on security notions and schemes where
the adversary can observe different forms of auxiliary leakage that may depend on
sensitive or secret information. The objective is to construct schemes that maintain
confidentiality and authenticity even in the presence of certain leakage.

2. Context-committing AEAD: This area addresses scenarios where the adversary has
access to, and can manipulate secret keys. For example, it deals with situations
where the ciphertext allows for correct decryption under multiple contexts, where a
context consists of the key K, the nonce N , and associated data A.

Leakage-resilient AEAD. This area of research has blossomed for almost two decades.
In this work, we focus on recent developments, and on the schemes discussed by Bellizia et
al. in [BBC+20] in particular. Therein, the authors categorized modern leakage-resilient
AEAD schemes into four grades, with a focus on so-called leveled implementations. In such
schemes, a few functions are assumed to be either leak-free or heavily protected, while the
rest of the construction can leak a lot of information. In this work, we will focus on two
relevant types of schemes:

• Grade-3 schemes: These schemes usually follow the pattern of Encrypt-then-MAC
(EtM), using a hash function and two calls to a heavily protected Tweakable Block
Cipher (TBC) implementation. They target Ciphertext Integrity with Misuse and De-
cryption Leakage (CIML2) security and indistinguishability against Chosen-Ciphertext
Adversaries with misuse resilience and decryption Leakage (CCAmL2) security. Ex-
amples of schemes in this category are TEDT [BGP+20] and ISAP [DEM+17].

• Grade-2 schemes: These schemes usually employ a single-pass AEAD scheme, a hash
function, and two heavily protected TBC calls. They target CIML2 security and
indistinguishability against Chosen-Ciphertext Adversaries with misuse resilience
and encryption Leakage (CCAmL1) security. An example is Triplex [SPS+22].

Because they cover many practical schemes, those two grades serve as the basis for the
blueprints we study in this paper.

Context-Committing AEAD. In recent years, a series of attacks such as the Facebook
message-franking attack [DGRW18], and the partitioning-oracle attack [LGR21] have
shown vulnerabilities in the usage of conventionally secure AEAD schemes. Those works
shared a common root cause: the existence of ciphertexts that can be decrypted correctly
under multiple keys, which was out of the scope of conventional AEAD security but is
necessary for security in the respective uses in practice.

To address this gap, Bellare and Hoang introduced commitment security in [BH22],
which requires each ciphertext to commit to the key (CMT-1) or to the entire context (CMT-
4) that produced it. Among the notions Bellare and Hoang proposed, CMT-4 represents
the strongest and therefore most desirable form for designers. It is formalized through the
following game. Given an AEAD scheme Π with an encryption function E , an adversary has
the task of providing two contexts, i.e. tuples (K, N, A, M) and (K ′, N ′, A′, M ′), consisting
of a key, nonce, associated data, and message each. The adversary wins the game if the
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contexts differ, i.e. (K, N, A, M) ̸= (K ′, N ′, A′, M ′) but they both encrypt to the same
ciphertexts: Π.E(K, N, A, M) = Π.E(K ′, N ′, A′, M ′).

Connecting Both Areas. At first glance, the overlap between leakage-resilient and context-
committing AEAD is unclear as there has been little exploration of their potential synergies.
With their recent work, Struck and Weishäupl [SW24] began to shed light on relations to
investigating the generic compositions of Encryption and Message Authentication Code
(MAC) schemes to develop schemes that are both leakage-resilient and committing. Their
study revealed that EtM and MAC-then-Encrypt (MtE) are not committing in general. They
also demonstrated that Encrypt-and-MAC (EaM) can achieve committing properties under
weak assumptions on the underlying schemes. Additionally, they presented a transformation
that converts an AEAD scheme into a leakage-resilient and context-committing scheme. In
a separate work, Krämer, Struck and Weishäupl [KSW23] have shown that the Grade-3
scheme ISAP is committing.

Contribution. While black-box compositions such as EtM, EaM, or MtE are valuable
for studying generic constructions and inspiring instantiations, real-world schemes often
deviate from them. In particular, many leakage-resilient schemes are based on blueprints
that take inspiration from generic compositions but incorporate small changes tailored to
specific security goals or higher efficiency. In this paper, we explore two such blueprints.
The first blueprint is based on EtM and aims to achieve the highest level of leakage resilience.
The second blueprint targets leveled single-pass implementations. We demonstrate that,
with a careful selection of underlying primitives, both blueprints can be committing.

While our findings on the first blueprint may seem to contradict the negative result
in [SW24] on EtM, two differences in the underlying assumptions help clarify. Firstly,
in [SW24], the authors considered a black-box composition where the encryption function
and the MAC use independent keys, whereas we require a strict dependency between
both. Secondly, our result requires a certain type of MAC in the scheme, namely a
collision-resistant Pseudo-Random Function (PRF).

Those additional requirements are not impractical. Our result on EtM general-
izes [FOR17, Theorem 3] and [GLR17, Theorem 3], where the authors demonstrated
similar restrictions on keys and MACs. The results on both blueprints allow us to easily
derive that several leakage-resilient schemes are committing, including TEDT and its
descendants TEDT2 and Romulus-T, as well as the single-pass scheme Triplex.

For schemes that follow our blueprints, showing their commitment security reduces to
showing the collision resistance of their building blocks. For this purpose, we study the
collision resistance of several leakage-resilient MACs used in EtM-based schemes, including
Hash-then-BC (HBC), Hash-then-TBC (HTBC), and LRMAC1. For single-pass schemes,
we examine instead the collision resistance of more components, including their functions
for Key Derivation (KDF), Encryption (Enc), and Tag Generation (TGF).

Our analysis poses a few cryptographic assumptions on the used components. For
keyed primitives, we operate in the ideal-cipher model, which is unavoidable in the chosen-
key setting of committing security. For hash functions and compression functions, we
require either collision and everywhere-preimage resistance, or collision resistance only. For
LRMAC1, which requires only collision resistance, this matches the assumption on the hash
function in the original MAC proof. For HBC, we require collision and everywhere-preimage
resistance, which is still more concrete than the random-oracle model used in the original
proof. For HTBC, we require collision and everywhere-preimage resistance, while the MAC
proof requires collision and range-oriented preimage resistance. While our assumptions are
slightly stronger, they are close to practice, as everywhere-preimage resistance can be seen
as a worst-case analysis of range-oriented preimage resistance and is therefore, expected to
lead to a similar bound for any secure standard hash function.
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2 Preliminaries
In this section, we define some necessary security notions of functions in general and hash
functions in particular, e.g., collision resistance, preimage resistance, and right collision
resistance. Thereupon, we recall the definitions for the primitives we need for authenticated
encryption.

General Notation. For a set X , we write X
$←− X to denote that a value X is sampled

uniformly at random from X and independent from other values. An adversary A is a
computationally bounded algorithm that shall win a security game against a challenger.
We call A t-bounded if it runs in time at most t. We indicate that A outputs X by A ⇒ X.
W.l.o.g., we assume that adversaries never ask pointless queries, i.e. queries to which
they can compute the answers themselves. In the following, we will introduce standard
primitives and security notions. Throughout this section, we will denote non-empty sets
and spaces by calligraphic uppercase variables and use K (or Kh), M, C, X , as spaces for
keys, plaintexts, ciphertexts, and hash values, respectively.

2.1 Security Notions for Keyed Hash Functions

Collision Resistance (CR). Let H : Kh ×M→ X be a hash function and Kh
$←− Kh. H

is called (ϵcr, t)-collision-resistant (CR) if for every t-bounded adversary A, the probability
that A(Kh) outputs a pair of distinct values (M0, M1) ∈ M2, such that M0 ≠ M1 and
HKh

(M0) = HKh
(M1) is bounded by ϵcr:

Pr
[
Kh

$←− Kh,A(Kh)⇒ (M0, M1) ∈M2 s. t. M0 ̸= M1, HKh
(M0) = HKh

(M1)
]
≤ ϵcr .

Right Collision Resistance (RCR). Let Xl × Xr be nonempty sets of spaces Xl and
Xr. Let H : Kh ×M → Xl × Xr be a hash function and Kh

$←− Kh. H is called (ϵrcr, t)-
right collision-resistant (RCR) if for every t-bounded adversary A, the probability that
A(Kh) outputs a pair of distinct values (M0, M1) ∈M2, such that (X0, Y0) = HKh

(M0),
(X1, Y1) = HKh

(M1), Y0 = Y1, and M0 ̸= M1, is bounded by ϵrcr:

Pr
[
Kh

$←− Kh,A(Kh)⇒ (M0, M1) ∈M2 s. t. M0 ̸= M1,

(X0, Y0) = HKh
(M0), (X1, Y1) = HKh

(M1), Y0 = Y1

]
≤ ϵrcr .

We can define Left Collision Resistance (LCR) analogously. In the following, we extend the
definition to a hash function with multiple inputs, where the collision resistance property
holds for a subset of the inputs.

Collision Resistance on a Subset of the Inputs (Partial CR). Let M1, M2, . . .Mn

denote nonempty sets or spaces and defineM =M1×M2×· · ·×Mn. Let H : Kh×M→ X
be a hash-function and Kh

$←− Kh. For a positive integer i ∈ {1, . . . , n}, H is called (ϵcr, t)
(M1 . . .Mi)-collision-resistant, if the probability of finding a hash collision on two distinct
messages M = (M1, . . . , Mn), M ′ = (M ′

1, . . . , M ′
n) ∈M2 s.t. (M1 . . . , Mi) ̸= (M ′

1 . . . , M ′
i)

is bounded by ϵcr:

Pr
[
Kh

$←− Kh,A(Kh)⇒ (M1 . . . , Mn), (M ′
1 . . . , M ′

n) ∈M2,

s. t. (M1 . . . , Mi) ̸= (M ′
1 . . . , M ′

i), HKh
(M1, . . . , Mn) = HKh

(M ′
1 . . . , M ′

n)
]
≤ ϵcr .
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Note that if i < n, then (Mi+1, . . . , Mn) and (M ′
i+1, . . . ,M ′

n) may or may not be equal. If
i = n, the definition is equivalent to standard collision resistance. In general, a function can
be collision-resistant on any subset of the inputs, and the inputs are explicitly given in the
collision-resistance property. We will call a hash function “partial right collision-resistant"
(partial RCR) if it achieves right collision resistance on a subset of inputs.

Everywhere Preimage Resistance. Let H : Kh × M → X be a hash function and
Kh

$←− Kh. H is called (ϵepre, t)-everywhere-preimage-resistant (ePre) if for every t-bounded
adversary A,

max
X∈X

{
Pr
[
Kh

$←− Kh,A(Kh)⇒M, s. t. HKh
(M) = X

]}
≤ ϵepre .

2.2 Primitives
Tweakable Block Cipher (TBC). A TBC is a mapping Ẽ : K × Tw × {0, 1}n → {0, 1}n

such that for any choice of K ∈ K and Tw ∈ Tw, Ẽ(K, Tw, ·) is a permutation over {0, 1}n.
If Tw = ∅, then E : K × {0, 1}n → {0, 1}n is a Block Cipher (BC). We will sometimes
write ẼT

K(X) and EK(X) for Ẽ(K, T, X) and E(K, X), respectively. In this paper, we will
analyze constructions in the ideal-cipher model, where Ẽ or E will be selected randomly
from the set of all possible cipher families with the same domain and range.

Pseudo-random Function (PRF) and Pseudo-Random Number Generator (PRNG).
A PRF is a deterministic mapping F : K × X → Y. Let Func(X ,Y) be the set of all
functions with domain X and range Y. In the PRF game, a challenger samples K

$←− K
and ρ

$←− Func(X ,Y) and provides an adversary A with access to either FK or ρ. The PRF
advantage of A on FK is defined as

AdvPRF
FK

(A) =
∣∣Pr[AFK ⇒ 1]− Pr[Aρ ⇒ 1]

∣∣ .

We call F an (ϵPRF, t)-secure PRF if for all t-bounded adversaries A, AdvPRF
FK

(A) ≤ ϵPRF.
A PRNG is a deterministic mapping G : {0, 1}k × N→ Y with Y ⊆ {0, 1}∗ that takes

an input K ∈ {0, 1}k and a positive integer ℓ as inputs and outputs Y ∈ {0, 1}k+ℓ. In the
PRNG game, a challenger samples K

$←− K and ρ
$←− Func(K × N,Y) and, on input of a

length ℓ, outputs either G(K, ℓ) or ρ(K, ℓ). Then, the PRNG advantage of an adversary A
against G is defined as

AdvPRNG
G (A) =

∣∣Pr[AG ⇒ 1]− Pr[Aρ ⇒ 1]
∣∣ .

We call G an (ϵPRNG, t)-secure PRNG if for all t-bounded adversaries A, it holds that
AdvPRNG

G (A) ≤ ϵPRNG. Later, we will use a generalization with multiple output-length
parameters ℓ1, ℓ2 where Y = {0, 1}ℓ1 × {0, 1}ℓ2 and so on.

Hash-function-based Message Authentication Codes (MACs). Let MAC : Kh ×K ×
M → T be a keyed function that transforms an input M ∈ M to a tag T ∈ T . Let
VerMAC : Kh × K ×M× T → {⊥,⊤} be the verification function that takes a message
M ∈ M and a would-be tag T ∈ T and returns ⊤ if MACs,K(M) = T and ⊥ otherwise.
In other contexts, security notions such as unforgeability and/or pseudo-randomness are
needed, but in the context of this paper, we are interested only in collision resistance,
which we define for hash-function-based MACs as follows.
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Collision Resistance for Hash-function-based MACs. Let Kh
$←− Kh. A MAC is called

(ϵmaccr, t)-collision-resistant (MAC-CR) if for every t-bounded adversary A, the probability
that A(Kh) outputs a pair of distinct inputs (K0, M0), (K1, M1) ∈ (K ×M)2, such that
MACKh,K0(M0) = MACKh,K1(M1) and (K0, M0) ̸= (K1, M1), is bounded by ϵmaccr:

Pr
[
Kh

$←− Kh,A(Kh)⇒ ((K0, M0), (K1, M1)) ∈ (K ×M)2

s. t. (K0, M0) ̸= (K1, M1), MACKh,K0(M0) = MACKh,K1(M1)] ≤ ϵmaccr .

In all collision games in the remainder, we will drop the hash key Kh that is released to
the adversary and assume that it is given to the adversary at the beginning of the game.

Authenticated Encryption. A nonce-based Authenticated Encryption scheme supporting
Associated Data (nAEAD) is a pair of functions Π = (E ,D) with associated sets K,N ,A,M,
C, denoting the key space, nonce space, associated data space, message space, and ciphertext
space, respectively. The elements of C comprise of a pair (C, T ), with T ∈ {0, 1}σ. The
encryption algorithm and decryption algorithms E and D are deterministic functions input
and D : K×N ×A×C →M ∪{⊥}, where the special symbol ⊥ indicates that (C, T ) was
deemed invalid. We sometimes write EN,A

K (M) and DN,A
K (C, T ) to denote E(K, N, A, M)

and D(K, N, A, (C, T )). For all correct schemes, encryption is injective fromM to C under
fixed K, N, A. The scheme is correct if DN,A

K (EN,A
K (M)) = M for all K, N, A, M and tidy

if M = DN,A
K (C, T ) and M ̸=⊥, then EN,A

K (M) = (C, T ) for all K, N, A, (C, T ). All AEAD
schemes considered in this work are assumed to be correct and tidy.

CMT-4 Security. The two prevalent notions of committing security in the literature are

• CMT-1 security: A commitment to only the key K.

• CMT-4 security: A commitment to the complete context (K, N, A, M).

Since we consider only CMT-4 security, we define it more formally here. Note that Bellare
and Hoang [BH22] demonstrated that incorporating the message M into the context is
unnecessary, as committing to (K, N, A) is equivalent to committing to (K, N, A, M).

In the CMT-4 game against an AEAD scheme Π, an adversaryA outputs (K1, N1, A1, M1)
and (K2, N2, A2, M2); A wins if and only if (K1, N1, A1, M1) ̸= (K2, N2, A2, M2) and
Π.Enc(K1, N1, A1, M1) = Π.Enc(K2, N2, A2, M2). We write Advcmt4

Π (A) to denote the
probability that A wins the CMT-4 game where A has access to the ideal primitives and
hash keys used by Π.

3 Blueprints for Leakage Resilience and their Motivation
as Committing Schemes

In this section, we describe a paradigm for designing leakage-resilient schemes based on
so-called leveled implementations. In this paradigm, different parts of the scheme have
different assumptions on how they are implemented and the associated leakage functions.
Since our focus is on the relation to context commitment, we study only integrity and
Ciphertext Integrity with Misuse and Leakage with decryption leakage (CIML2). We will
also consider a widespread leakage model wherein the adversary can receive unlimited
leakage, most of the scheme is unprotected, and only the protected parts are assumed to
be leak-free.
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KDF Enc

Hash
TGF

IV

FV

N

Ke

Km

T
A

M

C
MAC

Enc′

Figure 1: The EtM blueprint for leakage-resilient context-committing nAEAD. The gray
components are assumed to be strongly protected.

3.1 The EtM-based Blueprint
The first blueprint we look at is based on EtM but tailored to leakage resilience. It is
close to the FGHF′ construction by Degabriele et al. [DJS19], which itself is an instance of
N2 [NRS14]. In the following, let Ke, Km, N , A, M, C, IV , FV , and T be nonempty sets
or spaces for encryption keys, MAC keys, nonces, associated data, plaintexts, ciphertexts,
initial values, forward values, and tags, respectively. A leveled leakage-resilient EtM scheme
requires two leak-free fixed-input-length primitives:

1. A key-derivation function KDF : Ke × N → IV, which takes the nonce and the
encryption key and generates an initial value for the encryption phase.

2. A tag-generation function TGF : Km × FV → T , which takes the MAC key and a
fixed-length hash of the ciphertext, nonce, and associated data, and generates the
verification tag using a PRF.

The scheme also uses an encryption scheme Enc : K × IV ×M → C and a collision-
resistant hash function Hash : N×A×C → FV . However, these two primitives are assumed
to have unlimited leakage when considering CIML2 security. The high-level blueprint is
depicted in Figure 1 and the encryption of EtM[KDF, Enc, Hash, TGF](K, N, A, M) under
K = (Ke, Km) is defined as

IV ← KDF(Ke, N) , C ← Enc(IV, A, M) ,

FV ← Hash(N, A, C) , T ← TGF(Km, FV ) .

We observe three important properties. First, since the MAC, consisting of Hash and TGF,
follows the Hash-then-PRF paradigm, it already binds the triplet (N, A, C) to any given
key Km. However, Ke is not part of the binding. Second, if the two parts of the key
Ke and Km are independent, the adversary can fix (Km, C, T, N, A) and find two pairs
(Ke1 , M1) and (Ke2 , M2) to break the commitment. This implies that even if the keys are
dependent, we must ensure that the EtM scheme commits to (Ke, Km) and the MAC is
collision-resistant. In Section 4, we shall show that under these restrictions, EtM is indeed
context-committing. Moreover, we shall show that three of the prominent leakage-resilient
Hash-then-PRF MACs are indeed collision-resistant PRFs. Two of these MACs will require
a stronger assumption on the hash function, where the hash function resists not only
collision but also preimage attacks, while all three require a stronger assumption on the
TGF, as the analysis has to be conducted in the ideal-cipher model. However, we will show
that the KDF does not affect the committing security.
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KDF Enc TGF
IV FV

N

Ke Km

C

T

A M

Figure 2: The KET blueprint for single-pass leveled leakage-resilient context-committing
nAEAD. The gray components are assumed to be strongly protected.

3.2 The Single-pass Blueprint KET
The second blueprint we will consider is used for single-pass schemes. Similar to EtM,
the scheme includes leak-free KDF and TGF functions and an encryption function Enc
with unlimited leakage. The encryption function is responsible for generating both the
ciphertext C as well as the hash value FV . This blueprint Π[KDF, Enc, TGF] denoted as
KET is depicted in Figure 2 and its encryption of (N, A, M) under a key tuple (Ke, Km)
is defined as follows:

IV ← KDF(Ke, N) , (C, FV )← Enc(IV, A, M) , T ← TGF(Km, FV ) .

We can observe some requirements on the components. CIML2 security requires that the
TGF is collision-resistant for a given key K. Similarly as EtM, this means that the scheme
commits to (N, A, M) for K. Similarly as for EtM, further issues arise when considering
the keys. If the TGF is not collision-resistant, then we can find Km1 ≠ Km2 such that
T1 = T2 for the same (N, A, M). The commitment will break if Km is independent of Ke.
However, if Km depends on Ke, the success of the attack depends on the properties of the
KDF and the interaction between the KDF and the Enc function. Alternatively, it may be
possible to relax the requirements on the KDF if the TGF is collision-resistant.

4 CMT-4 Security of EtM-based AEAD Schemes
The first blueprint we will study concerns EtM-type constructions with a MAC that follows
the Hash-then-PRF design. This paradigm is used widely in leveled leakage-resilient schemes,
including TEDT [BGP+20], TEDT2 [Lis21], Romulus-T [IKMP20], and ISAP [DEM+17].
Definition 1 describes the generalized EtM construction, including generating the encryption
and MAC keys from a master key K. Therein, we abstract away some internal details. We
aggregate the functions KDF and Enc into a function Enc′ and similarly, wrap Hash and
TGF in a function MAC.

Definition 1. Let Π[KeyGen, Enc, Mac] be a nonce-based AEAD scheme such that

(Ke, Km)← KeyGen(K), C ← Enc(Ke, N, M), and T ← Mac(Km, N, A, C) .

Then, we call Π an EtM scheme.

In [SW24], the EtM (or N2 [NRS14]) scheme is shown to be not context-committing
in general. We show that the EtM scheme is nevertheless CMT-4-secure when KeyGen
is right collision-resistant (which precludes independent keys Ke and Km) and MAC is
collision-resistant. Similar results were already shown for complete robustness (CROB)
and binding security. Thus, Theorem 1 is adapted from [FOR17, Theorem 3] and [GLR17,
Theorem 3].
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Table 1: Examples for functions KeyGen : {0, 1}k×N2 → {0, 1}ke ×{0, 1}km that compute
(Ke, Km)← Keygen(K, ke, km) and their (ϵk, t)-right collision resistance. Let G : K×N→
{0, 1}ke × {0, 1}km be a (ϵG, t)-secure PRNG.

KeyGen ϵk

(Ke, Ke) for km = ke 0
(Ke, Ke ⊕ θ) for θ ∈ {0, 1}km \ {0} and km = ke 0
G(K, km, ke) ϵG + 2−km

(K[ke + km − 1..km], K[km − 1..0]) for k = ke + km 1
(K, 1∥K[k − 2..0]) for k = ke = km 1

Theorem 1. Let Π[KeyGen, Enc, MAC] be an EtM scheme such that KeyGen is (ϵk, t1)-
right collision-resistant and MAC is (ϵmaccr, t2)-collision-resistant for some t1 = O(t) and
t2 = O(t). Then, for any t-bounded CMT-4 adversary A against Π, it holds that

Advcmt4
Π (A) ≤ ϵmaccr + ϵk .

Proof. Suppose an adversary A outputs challenge values (K1, N1, A1, M1) and (K2, N2,
A2, M2) with corresponding ciphertexts (C1, T1) and (C2, T2). We bound the probability
that (C1, T1) = (C2, T2) = (C, T ). We define a sequence of hybrid games G0 through G2
as follows, where we introduce Boolean variables Ei, for i ∈ {0, 1, 2} such that Ei is true if
and only if the adversary wins in Game Gi.

Game G0. This is the original cmt4 game in the real world.

Game G1. Game G1 is almost identical to Game G0 but adds the aspect that G1
terminates if Km1 = Km2 ∧K1 ̸= K2. The probability of this event is at most

|Pr [E0]− Pr [E1]| ≤ ϵk .

Game G2. Game G2 is almost identical to G1 except that G2 also terminates if
(N1, A1, K1) = (N2, A2, K2) and M1 ̸= M2. Since this is impossible from the assumption
that the encryption scheme is correct and tidy, it follows that

|Pr[E1]− Pr[E2]| = 0 .

Finally, the adversary wins Game G2 if it is successful with (Km1 , N1, A1) ̸= (Km1 , N2,
A2), Km1 = Km2 ←→ K1 = K2

1. and Mac(Km1 , N1, A1, C) = Mac(Km2 , N2, A2, C).
This can happen only if there is a collision against the MAC given none of the previous
conditions occurs. As a result, we can upper bound the probability by

Pr[E2] ≤ ϵmaccr .

To sum up,

Advcmt4
Π (A) = Pr[E0] ≤

( 2∑
i=1
|Pr[Ei−1]− Pr[Ei]|

)
+ Pr[E2] ≤ ϵmaccr + ϵk ,

which yields our claim in Theorem 1.

1Two-way implication: K1 = K2 =⇒ Km1 = Km2 and Km1 = Km2 =⇒ K1 = K2
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Secure and Insecure Examples of KeyGen. Theorem 1 shows that CMT-4 security of
EtM schemes relies on the right collision resistance of the KeyGen function as well as the
collision resistance of the MAC. KeyGen functions with low ϵk can be found easily. For
concreteness, we listed a few intuitive secure examples in Table 1, alongside two negative
examples with ϵk = 1. The next section can therefore concentrate on the collision resistance
of MACs in and for EtM-based schemes.

5 Collision Resistance of Leveled Leakage-resilient MACs
In this section, we show the collision resistance of HBC [BGP+19], HTBC [BGP+19] (the
MAC used in TEDT and Romulus-T), and LRMAC1 [BGPS21]. While we are unaware of
concrete AEAD schemes that employ LRMAC1, establishing its suitability for CMT-4-secure
AEAD is relevant as it offers useful leakage resilience.

5.1 Collision Resistance of Hash-then-BC (HBC)
The MAC Hash-then-BC [BGP+19] is defined as follows. Given a hash function H :
Kh ×M→ {0, 1}n and a block cipher E : Km ×{0, 1}n → {0, 1}n, the authentication of a
message M ∈M to a tag T ∈ {0, 1}n with HBC[H, E]Km,Kh

under keys Km, Kh ∈ Km×Kh

is computed as
T ← E(Km, HKh

(M)) .

First, we define the collision-resistance game as follows. The adversary A gets the
hash-function key Kh at the beginning of the game. From here on, we drop all further
occurrences of hash-function keys and will proceed similarly in all following games. A
asks qe chosen-key queries to the ideal-cipher oracle E and obtains the corresponding
outputs. If a query (Ki, Xi) is in forward direction, A obtains Yi ← E(Ki, Xi); if a
query (Ki, Yi) is in backward direction, it obtains Xi ← E−1(Ki, Yi). At the end of its
interactions, A outputs two pairs (Km1 , M1) and (Km2 , M2) and wins if and only if
HBC[H, E](Km1 , M1) = HBC[H, E](Km2 , M2).
Theorem 2. Let E : Km × {0, 1}n → {0, 1}n be an ideal cipher and H :M→ {0, 1}n

be a (ϵcr, t1)-collision-resistant and (ϵepre, t2)-everywhere-preimage-resistant hash function.
Then for any adversary A that runs in time t and makes qe ≤ 2n−1 queries to the ideal
cipher, such that t1 = O(t + qe) and t2 = O(t + qe), HBC[H, E] is (ϵ, t)-collision-resistant
for

ϵ ≤ qeϵepre + ϵcr + 2q2
e + 1
2n

.

Proof. Suppose A outputs (Km1 , M1) and (Km2 , M2) such that HBC[H, E](Km1 , M1) =
HBC[H, E](Km2 , M2). We define a sequence of hybrid games as follows: Let Ei be the
event that the adversary wins in Game Gi for i ∈ {0, . . . , 3}.

Game G0. The real-world game.

Game G1. Game G1 is almost identical to Game G0 but terminates if one of the following
events happens during the ideal-cipher queries of A.

• Two forward queries with different keys produce the same output. The probability
of this event is upper bounded by

(
qe

2
)
/(2n − qe) ≤ q2

e/2n.

• A backward query with input T is followed by a forward query with output T with a
different key. The probability of this event is at most q2

e/2n.
It follows that

|Pr[E0]− Pr[E1]| ≤ 2q2
e

2n
.
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Game G2. Game G2 is almost identical to G1 except that G2 terminates if M1 ̸= M2
and H(M1) = H(M2). The probability of this event is at most

|Pr[E1]− Pr[E2]| ≤ ϵcr.

Game G3. We define that Game G3 keeps a set X = {Xi : i ∈ [qe]}, where the values
Xi ← E−1(Ki, Yi) represent the responses of backward ideal-cipher queries with key Ki and
input Yi. Game G3 is almost identical to G2 except that G3 terminates also if H(M1) ∈ X
or H(M2) ∈ X . Then, from the definition of everywhere-pre-image resistance, we have

|Pr[E2]− Pr[E3]| ≤ qeϵepre.

Finally, we study the probability that A wins in Game G3. Then, one of the following
cases must have occurred.

• Case 1: Km1 = Km2 . This case implies that M1 ≠ M2. If H(M1) = H(M2), there
exists an adversary against the collision resistance of the hash function H. Otherwise,
if H(M1) ̸= H(M2), a collision of the tags T1 = T2 is impossible since E is a
permutation for the same key Km. This case cannot happen: if a hash collision
existed, the game would terminate.

• Case 2: Km1 ̸= Km2 . In this case, a collision can happen only if E(Km1 , H(M1)) =
E(Km2 , H(M2)). Note that H(M1) ̸∈ X and H(M2) ̸∈ X by assumption. Thus, a
collision can happen only randomly with a probability of

Pr[E3] = Pr[E(Km1 , H(M1)) = E(Km2 , H(M2))] = 1/2n .

Our result follows from the sum of the individual bounds.

5.2 Collision Resistance of Hash-then-TBC (HTBC)
The MAC HTBC [BGP+19] is defined as follows. Let H :M→ {0, 1}n×{0, 1}τ be a hash
function and Ẽ : Km × {0, 1}τ × {0, 1}n → {0, 1}n be a TBC. Then, for a given message
M and keys Km ∈ Km, HTBC[H, Ẽ]Km

computes a tag T as

T ← Ẽ(Km, W, V ) where (V, W )← H(M) .

We define the collision-resistance game similarly to that for HBC.

Theorem 3. Let Ẽ : Km × {0, 1}τ × {0, 1}n → {0, 1}n be an ideal cipher and H :
M→ {0, 1}τ × {0, 1}n be a (ϵcr, t1)-collision-resistant and (ϵepre, t2)-everywhere-preimage-
resistant hash function. Then, for any adversary A that runs in time t and makes qe ≤ 2n−1

queries to the ideal cipher, such that t1 = O(t + qe) and t2 = O(t + qe), HTBC[H, Ẽ] is
(ϵ, t)-collision-resistant for

ϵ ≤ qeϵepre + ϵcr + 2q2
e + 1
2n

.

Proof. Suppose A outputs (Km1 , M1) and (Km2 , M2) such that HTBC[H, Ẽ](Km1 , M1) =
HTBC[H, Ẽ](Km2 , M2). Again, we define a sequence of hybrid games G0 through G3 and
define Ei as the event that the adversary wins in game Gi.

Game G0. This is the real-world game.
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Game G1. Game G1 differs from G0 in the fact that it terminates if one of the following
events happens during the ideal-cipher queries.

• Two forward queries with different keys produce the same output. This probability
is bounded by q2

e/2n.

• A backward query with input T is followed by a forward query with output T with a
different key. This probability is also bounded by q2

e/2n.

We obtain

|Pr[E0]− Pr[E1]| ≤ 2q2
e

2n
.

Game G2. Game G2 is almost identical to G1 but adds the fact that it terminates if
M1 ̸= M2 and H(M1) = H(M2). The probability of this event can be bounded by

|Pr[E1]− Pr[E2]| ≤ ϵcr .

Game G3. We adopt the definition of the set of backward-query responses X from
Game G3 of the proof of HBC. Besides it, Game G3 adds to G2 only the fact that G3 also
terminates if H(M1) ∈ X or H(M2) ∈ X . From the definition of everywhere-pre-image
resistance, we obtain

|Pr[E2]− Pr[E3]| ≤ qeϵepre .

Finally, we study the probability that A wins in Game G3. Similar to Theorem 2, the
adversary cannot win if (Km1 , W1) = (Km2 , W2). However, if Km1 ̸= Km2 , a collision
can happen if Ẽ(Km1 , W1, V1) = Ẽ(Km2 , W2, V2). For this event, we have to consider two
mutually exclusive cases that cover all possibilities as follows.

• Case 1: M1 = M2. In this case, we have H(M1) = H(M2) = (V, W ). Thus, the ad-
versary will be successful if it can find two keys Km1 , Km2 such that Ẽ(Km1 , W, V ) =
Ẽ(Km2 , W, V ). This is impossible since the game would terminate as defined in
either G1 or G3.

• Case 2: M1 ̸= M2. If H(M1) = H(M2), the game would terminate as defined in G2.
Otherwise, a collision can happen only if Ẽ(Km1 , W1, V1) = Ẽ(Km2 , W2, V2). If these
two queries had appeared in any ideal-cipher queries, the conditions that allowed
this collision to occur would have led the game to terminate.

If Km1 = Km2 and W1 ̸= W2, then H(M1) = H(M2) and M1 = M2 are impossible,
but the analysis of the case when M1 ≠ M2 is the same. This means that Ẽ(Km1 , W1,
V1) = Ẽ(Km2 , W2, V2) holds but at least one of these queries must have not appeared in
any ideal-cipher query, as the game would have terminated otherwise. If none of the above
happens, then a collision can happen only randomly with probability at most

Pr[E3] = Pr[Ẽ(Km1 , W1, V1) = Ẽ(Km2 , W2, V2)] ≤ 1
2n

.

Our claim in Theorem 3 follows from adding E3 to the transition differences.
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Figure 3: High-level structure of TEDT.

5.3 Collision Resistance of TEDT Variants
TEDT. The authentication part of the original TEDT [BGP+20] (depicted in Figure 3)
and Romulus-T [IKMP20] follow exactly our HTBC format. Therein, the hash function
H is based on Hirose’s compression function and Merkle-Damgård strengthening, which
outputs a 2n-bit value V ∥W . Note that for any tuple of key and nonce, the adversary can
choose a suitable message to achieve any desirable ciphertext. Thus, finding (K1, U1) and
(K2, U2), where Ui ← pad(Ni, Ai, Ci, PK) and PK denotes the public key for multi-user
security, that lead to the same tag T is equivalent to breaking CMT-4 security.

TEDT2. The authentication function of TEDT2 [Lis21] (depicted in Figure 4) also follows
our HTBC format, except for the fact that 8∥N∥W is used as a tweak in the final TBC
call. Let N1 and N2 be two nonces corresponding to the same (C, T ) output. Then, we
will have two cases:

Case 1: N1 = N2. Then, the analysis is exactly the same as in Theorem 3.

Case 2: N1 ̸= N2. In this case, N can be seen as part of the hash output. Thus, in
this case, the commitment can be broken only by finding a collision in the ideal-cipher
queries. Then, we consider two subcases depending on ideal-cipher queries concerning the
T -producing TBC call:

• Both queries are forward ideal-cipher queries: Here, the adversary will be successful
only if it can find two different tweaks producing the same tag. The success probability
is upper bounded by q2

e

2n .

• At least one of the queries is a backward ideal-cipher query: In this case, the success
probability can be upper bounded by ϵepre.

Thus, the analysis is the same as for HTBC with a hash function H
′(N, A, C) = N∥H(A, C).

5.4 Collision Resistance of LRMAC1
The MAC LRMAC1 [BGPS21] is defined as follows. Let H :M→ {0, 1}τ × {0, 1}n be a
hash function and Ẽ : Km × {0, 1}τ × {0, 1}n → {0, 1}n be a TBC. Given Km ∈ Km and a
message M ∈M, LRMAC1[H, Ẽ] computes the authentication tag as

T ← Ẽ(Km, V, 0n) where V ← H(M) .

We define the collision-resistance game similarly as in the case of HBC.

Theorem 4. Let Ẽ : Km × {0, 1}τ × {0, 1}n → {0, 1}n be an ideal cipher and H :M→
{0, 1}τ × {0, 1}n be a (ϵcr, t1)-collision-resistant hash function. Then, for any adversary A
that runs in time t and makes qe ≤ 2n−1 queries to the ideal cipher, such that t1 = O(t+qe),
LRMAC1[H, Ẽ] is (ϵ, t)-collision-resistant for

ϵ ≤ ϵcr + q2
e + 2qe + 5

2n
.
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Figure 4: High-level structure of TEDT2.

Proof. SupposeA outputs (Km1 , M1) and (Km2 , M2) such that LRMAC1[H, Ẽ](Km1 , M1) =
LRMAC1[H, Ẽ](Km2 , M2). Again, we will define a sequence of hybrid games and use Ei as
the event that the adversary wins in game Gi.

Game G0. The real-world game.

Game G1. The game terminates if one of the following events happens during the
ideal-cipher queries.

• Two forward queries with different keys produce the same output. This probability
is bounded by q2

e/2n.

• A backward query with input T outputs 0n. This probability is bounded by 2qe/2n.

It follows that
|Pr[E0]− Pr[E1]| ≤ q2

e + 2qe

2n
.

Game G2. Game G2 is almost identical to G1 but adds the fact that G2 will terminate
if M1 ̸= M2 and H(M1) = V1 = V2 = H(M2). The probability of this event is bounded by

|Pr[E1]− Pr[E2]| ≤ ϵcr .

Finally, we study the probability that A wins in G2. We have to consider only the case
that V1 ̸= V2 as V1 = V2 would lead the game to terminate.

• Case 1: (K1, V1, 0n, T ) appeared in an ideal-cipher query. Then,

Pr
[
Ẽ(K2, V2, 0n) = T

]
≤ 1

2n − q2
≤ 2

2n
.

• Case 2: (K2, V2, 0n, T ) appeared in an ideal-cipher query. Then,

Pr
[
Ẽ(K1, V1, 0n) = T

]
≤ 1

2n − q1
≤ 2

2n
.

• Case 3: neither TBC call appeared in any ideal-cipher query. Then,

Pr
[
Ẽ(K1, V1, 0n) = Ẽ(K2, V2, 0n)

]
≤ 1

2n
.

Thus, Pr[E2] ≤ 5/2n. The bound in Theorem 4 follows from adding it to all transition
probabilities.

Increasing the tag size and bit-security level. In all considered MACs, the security
is bounded by half of the tag size. One way around this limitation is to use a Double-
Block-Length (DBL) construction for the TGF. For instance, the TGF of LRMAC1 can be
replaced by Ẽ(K, H(M), 0n)∥Ẽ(K, H(M), 1n), that is Hirose’s DBL compression function
with an initial value of 0n [Hir06]. The construction is still invertible and compatible with
CIML2 security. Similar standard constructions can be found for HBC and HTBC.
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Table 2: Different variants of KET and the requirements on their components for CMT-4
security. (R)CR = (right) collision resistance.

Component
Scheme KeyGen KDF Enc TGF Result
KET-1 - CR RCR CR Theorem 5
KET-1a LCR CR RCR partial CR Theorem 6
KET-2 RCR - RCR CR Theorem 7
KET-2a RCR CR partial RCR CR Theorem 8

6 CMT-4 Security of Single-pass Leveled Schemes
In this section, we study the second blueprint KET from Figure 2. We call this blueprint
KET as a short-hand for its three components: a KDF, an Enc function, and a TGF. KET
can be seen as the paradigm underlying single-pass leveled leakage-resilient schemes such
as Triplex [SPS+22] or Multiplex [PSS24].

In this section, we establish three goals. First, we show that the KET composition is
CMT-4-secure when each component satisfies a specific set of collision-resistance properties.
Second, we show that it can fulfill the compact commitment, wherein verifying the tag
suffices to verify the commitment. Finally, we show that if the keys used in the first and
last components are identical (or generated by KeyGen having specific CR properties), we
can relax the collision-resistance requirements for certain components.

6.1 CMT-4 Security of the Generic KET scheme
We begin with the generic KET scheme wherein the keys in the KDF and the TGF are inde-
pendent, i.e. no constraints are imposed on their keys. For such schemes, we demonstrate
that achieving CMT-4 security requires collision resistance in all three components, KDF,
Enc, and TGF, with the minor relaxation that we require only right collision resistance for
Enc, i.e. collision resistance for the part of its outputs that are used in the TGF.

Definition 2. Let Π[KeyGen, KDF, Enc, TGF] be a nonce-based AEAD scheme. If, for a
given key K ∈ K, a nonce N ∈ N , associated data A ∈ A, and a message M ∈ M, it
encrypts M to a ciphertext (C, T ) as

(Ke, Km)← KeyGen(K) IV ← KDF(Ke, N),
(C, FV )← Enc(IV, A, M), T ← TGF(Km, FV ) ,

then, we call Π a KET-1 scheme.

We will study four relevant variants of this scheme which differ in their assumptions
posed on their individual components. Table 2 summarizes their properties.

Theorem 5. Let Π[KeyGen, KDF, Enc, TGF] be a KET-1 scheme such that

• the KDF is (ϵkdf, t1)-collision-resistant,

• Enc is (ϵenc, t2)-right collision-resistant, and

• the TGF is (ϵtgf, t3)-collision-resistant

for some t1 = O(t), t2 = O(t), and t3 = O(t). Then, for any t-bounded CMT-4 adversary
A against Π it holds that

Advcmt4
Π (A) ≤ ϵkdf + ϵenc + ϵtgf . (1)
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Proof. Since there is no restriction on KeyGen inputs and outputs, the CMT-4 security for
the context (K, N, A, M) follows from the CMT-4 security of the context (Km, Ke, N, A, M).
Suppose an adversary A outputs challenge values (N1, A1, K1, M1) and (N2, A2, K2, M2)
with corresponding ciphertexts (C1, T1) and (C2, T2). We upper bound the probability
that (C1, T1) = (C2, T2) = (C, T ). We consider the following disjoint cases that cover all
possibilities.

Case 1: Km1 ̸= Km2 . In this case, there must be a collision against the TGF.

Case 2: Km1 = Km2 , (A1.M1) ̸= (A2, M2). Then, we consider the following
subcases.

• Case 2a: FV1 ̸= FV2. Then, there is a collision against the TGF.

• Case 2b: FV1 = FV2. In this case, there is a right collision against the Enc function.

Case 3: Km1 = Km2 , (A1.M1) = (A2, M2), (Ke1 , N1) ̸= (Ke2 , N2). Again, we
study two subcases.

• Case 3a: FV1 ̸= FV2. Then, there is a collision against the TGF.

• Case 3b: FV1 = FV2, IV1 ̸= IV2. Then, there is a right-output collision against the
Enc function.

• Case 3c: FV1 = FV2, IV1 = IV2. Then, there is a collision against the KDF.

For each of the cases above, the advantage of the adversary is bounded by the collision
resistance property of the individual components, as given in Equation 1.

6.2 CMT-4 Security of the KET-1a scheme
Theorem 5 does not require any collision resistance property for KeyGen and holds even
when the keys Ke and Km are independent. However, if KeyGen is left-collision-resistant,
we can lift the requirement of full i.e. (FV, Km)-collision resistance from the TGF. Instead,
left collision resistance on the values FV will suffice, as captured by the following theorem.

Theorem 6. Let Π[KeyGen, KDF, Enc, TGF] be a KET-1a scheme such that

• KeyGen is (ϵk, t1)-left collision-resistant,

• the KDF is (ϵkdf, t2)-collision-resistant,

• Enc is (ϵenc, t3)-right collision-resistant, and

• the TGF is (ϵtgf, t4)-FV -collision-resistant (partial CR only on input FV but not on
input Km).

for some t1 = O(t), t2 = O(t), t3 = O(t), and t4 = O(t). Then, for any t-bounded CMT-4
adversary A against Π, it holds that

Advcmt4
Π (A) ≤ ϵkdf + ϵenc + ϵtgf + ϵk . (2)

Proof. Suppose an adversary A outputs challenge values (N1, A1, K1, M1) and (N2, A2,
K2, M2) with corresponding ciphertexts (C1, T1) and (C2, T2). We upper bound the
probability that (C1, T1) = (C2, T2) = (C, T ), where we have to consider the following
disjoint cases.
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Case 1: (A1, M1) ̸= (A2, M2). We have to study two subcases.

• Case 1a: FV1 ̸= FV2. Then, there is a collision against the TGF.

• Case 1b: FV1 = FV2. Then, there is a right collision against Enc.

Case 2: (A1, M1) = (A2, M2), (K1, N1) ̸= (K2, N2). Since KeyGen is left collision-
resistant, the probability of K1 ≠ K2 ∧ Ke1 = Ke2 is bounded by ϵk. Accounting for ϵk

by a standard hybrid argument, we can safely assume K1 ̸= K2 and therefore Ke1 ̸= Ke2

in the remainder. Thus, this case reduces to (Ke1 , N1) ̸= (Ke2 , N2).

• Case 2a: FV1 ̸= FV2. Then, there is a collision against the TGF.

• Case 2b: FV1 = FV2, IV1 ̸= IV2. Then, there is a right collision against the Enc.

• Case 2c: FV1 = FV2, IV1 = IV2. Then, there is a collision against the KDF, as
(Ke1 , N1) ̸= (Ke2 , N2).

For each of the cases above, the advantage of the adversary is bounded by the collision
resistance property of its respective three components, as given in Equation 2.

Next, we consider variants of KET that use the nonce as an additional input of the
encryption function. For those variants, collision resistance of the KDF is not necessary.
This is intuitive since we can view the next scheme as KET-1a where N is appended to the
output of the KDF.

Definition 3. Let Π[KeyGen, KDF, Enc, TGF] be a nonce-based AEAD scheme. If, for a
given key K ∈ K, a nonce N ∈ N , associated data A ∈ A, Π encrypts a message M ∈M
to a ciphertext (C, T ) as

(Ke, Km)← KeyGen(K) IV ← KDF(Ke, N),
(C, FV )← Enc(IV, N, A, M), T ← TGF(Km, FV ) ,

then, we call Π an KET-2 scheme.

Theorem 7. Let Π[KeyGen, KDF, Enc, TGF] be an KET-2 scheme such that

• the KeyGen function is (ϵk, t1)-right collision-resistant,

• and Enc is (ϵ′
enc, t2)-right collision-resistant, and

• the TGF is (ϵtgf, t3)-collision-resistant

for t1 = O(t), t2 = O(t) and t3 = O(t). Then, for any adversary A running in time at
most t against the CMT-4 security of Π, it holds that

Advcmt4
Π (A) ≤ ϵ′

enc + ϵtgf + ϵk . (3)

Proof. Suppose A outputs challenge values (N1, A1, K1, M1) and (N2, A2, K2, M2) with
corresponding ciphertexts (C1, T1) and (C2, T2). We bound the probability that (C1, T1) =
(C2, T2) = (C, T ). We consider the following disjoint cases.

Case 1: K1 ̸= K2. Here, we have the following subcases.

• Case 1a: Km1 = Km2 . Then, there is a right collision on Km against the KeyGen
function.

• Case 1b: Km1 ̸= Km2 . Then, there is a collision against the TGF.
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Case 2: K1 = K2, (N1, A1, M1) ̸= (N2, A2, M2). Again, we have two subcases.

• Case 2a: FV1 ̸= FV2. Then, there is a collision against the TGF.

• Case 2b: FV1 = FV2. Then, there is a right-output collision against Enc.

For each of the cases above, the advantage of the adversary is bounded by the collision
resistance property of the three components, as given in Equation 3.

Finally, we consider a special case of KET-2 that we call KET-2a, where Enc is only
collision-resistant when IV , A, or C change, i.e. it may be easy to find (IV, A, C, N1) and
(IV, A, C, N2) such that FV1 = FV2. However, if (IV1, A1) ̸= (IV2, A2), then collisions are
hard to find. The following theorem demonstrates that, despite this restrictive assumption
on the collision resistance of Enc, we can still attain CMT-4 security by imposing a milder
condition. In this case, it is essential to also assume that KDF is collision-resistant.

Theorem 8. Let Π[KeyGen, KDF, Enc, TGF] be a KET-2a scheme such that

• the KeyGen function is (ϵk, t1)-right collision-resistant,

• the KDF is (ϵkdf, t2)-collision-resistant,

• Enc is (ϵ′
enc, t3)-(IV, A)-right collision-resistant i.e Enc is RCR only on input (IV, A),

and

• the TGF is (ϵtgf, t4)-collision-resistant

for t1 = O(t), t2 = O(t), t3 = O(t), and t4 = O(t). Then, for any adversary A running in
time at most t against the CMT-4 security of Π, it holds that

Advcmt4
Π (A) ≤ ϵkdf + ϵ′

enc + ϵtgf + ϵk . (4)

Proof. Suppose an adversary A outputs challenge values (N1, A1, K1, M1) and (N2, A2,
K2, M2) with corresponding ciphertexts (C1, T1) and (C2, T2). We bound the probability
that (C1, T1) = (C2, T2) = (C, T ) with the following cases.

Case 1: K1 ̸= K2. Here, we have the following two subcases.

• Case 1a: Km1 = Km2 . Then, there is a right-output collision against the KeyGen
function, i.e. on Km.

• Case 1b: Km1 ̸= Km2 . Then, there is a collision against the TGF.

Case 2: K1 = K2, (N1, A1, M1) ̸= (N2, A2, M2).

• Case 2a: FV1 ̸= FV2. Then, there is a collision against the TGF.

• Case 2b: FV1 = FV2.

– If IV1 ̸= IV2, there is a (IV, A)-right-output collision against the Enc function.
– Otherwise, if IV1 = IV2 and N1 ≠ N2 holds, there is collision against the KDF.
– Finally, if IV1 = IV2 and N1 = N2 hold, we must have A1 ̸= A2 by injectivity

of Enc over the message space when the other parameters remain unchanged.
A1 ̸= A2 implies that there will be a collision against (IV, A)-right-output
collision of Enc.

For each of the cases above, the advantage of the adversary is bounded by the collision
resistance property of the four components, as given in Equation 4.
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Ẽ

Ẽ⊕
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Figure 5: Encryption with Triplex.

7 Triplex as an Instantiation of KET-2
In this section, we demonstrate the usefulness of the KET blueprint by showing that the
recent single-pass scheme Triplex [SPS+22] can be viewed as an instance of KET-2.

Triplex. Triplex operates with a KDF that consists of three TBCs, a protected call followed
by two parallel calls to an unprotected TBC. The KDF takes a key K = sk∥pk – that
combines a secret part sk with a public part pk for higher multi-user security – and a
nonce N and produces a 2n-bit output IV = h1∥k1. The encryption function of Triplex
takes various inputs including pk, N , A, M , and IV = h1∥k1, and outputs a ciphertext C
along with FV = V ∥W . Its TGF is essentially a single TBC call. It takes sk as the key,
V ∥W as the tweak, and a fixed input 0n to generate a tag T . Note that both Enc and
KDF take N as input and both the KDF and the TGF use the same key sk.

There are multiple ways to view Triplex, and each one leads to the application of
a different theorem. We will view the CMT-4 security of Triplex as an application of
Theorem 7. We can consider pk as part of the nonce instead of the key since it is not
utilized as a key anywhere. This simplification allows us to view Triplex as a specific
instance of the generic KET-2 construction. According to Theorem 7, for achieving CMT-4
security, we need to demonstrate collision resistance of the TGF and right-output collision
resistance of Enc.

Corollary 1. Let Π[KDF, Enc, TGF] denote Triplex. Then, there exists an (ϵcr, t1)-collision-
resistant hash function H, such that for any adversary A running in time at most t against
the CMT-4 security of Triplex, it holds that

Advcmt4
Π (A) ≤ q2

e + 2qe + 5
2n

+ ϵcr ,

where t1 = O(t).

Proof. First, we will redefine the KDF function of Triplex. This is done by moving the two
parallel TBC calls from out of the KDF into the Enc function. We denote the modified
KDF and Enc functions as KDF′ and Enc′, respectively, as visiaulized in Figure 5. This
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Figure 6: Alternative visualization of the modified encryption function Enc′ of Triplex.

change does not affect the scheme’s security but only moves the boundary of where the
KDF ends and Enc begins. In this representation, KDF is not collision-resistant, and we
apply Theorem 7. We know that ϵk = 0 since sk is used as both Ke and Km. Moreover,
the collision resistance of the TGF is similar to that of the TGF used in LRMAC1. In other
words, we obtain from the analysis of Theorem 4 that

ϵtgf ≤
q2

e + 2qe + 5
2n

.

What remains is to bound ϵenc. Note that the function Enc′ can be visualized as shown in Fig-
ure 6, wherein the bottom part is the Triplex hash function of the input pad(IV, N, pk, A, C)
for some injective padding function. The top symmetric encryption (SE) component com-
putes ciphertext C being input to the hash function. Thus, if N1 = N2, the top part (SE)
is bijective and FV -collision-resistant. If N1 ̸= N2, it is still FV -collision-resistant since
N is part of the input to the hash function. Then,

ϵenc ≤ ϵcr .

Finally, the hash function H used in Triplex is the Merkle-Damgård with Permutation
(MDP) hash function [HPY07] instantiated with Hir, Hirose’s double-block-length function
[Hir06]. From the indifferentiability of this MDPH hash function, we have that ϵcr is
negligible, which implies the commitment security of Triplex.

8 Conclusion
In this paper, we studied the CMT-4 security of two families of leveled leakage-resilient
schemes: Grade-3 schemes based on EtM and single-pass Grade-2 schemes. In both cases,
we give positive results. We show that EtM is committing as long as the keys satisfy a
particular definition of dependence and the MAC is collision-resistant. We give positive
results on the collision resistance of different leakage-resilient MACs: HBC, HTBC and
LRMAC1, and apply this to show the CMT-4 security of TEDT. We also discuss how to
increase the security by increasing the tag size. For single-pass schemes, we give different
variants with different assumptions on their components and show that the recently
proposed scheme, Triplex, achieves CMT-4 security up to half the tag size.

We believe our work shows an interesting connection between context commitment
and leakage-resilient schemes. Even though the two security goals are different and not
implied by each other, the underlying design principles allow for efficient schemes that
achieve both goals.

An interesting future direction is to study how to design leakage-resilient schemes that
are also committing beyond half the tag size. Another direction is to study if there is a
connection that can be derived between CIML2 security and CMT-4 security.
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