

Finding Impossible Differentials in ARX Ciphers under Weak Keys

Tingting Cui cuitingting@hdu.edu.cn

Joint work with Qing Ling, Hongtao Hu, Sijia Gong, Zijun He, Jiali Huang, Jia Xiao

FSE 2024 @ Leuven, Belgium

Impossible differential (ID) attack is one of the most powerful cryptanalysis method in the field of symmetric ciphers. The methods to find IDs can be summarized in two phases:

- Phase 1: search IDs by treating the S-boxes as ideal ones, such as \mathcal{U} -method [KHL10], $\mathcal{U}\mathcal{I}\mathcal{D}$ -method [LLW14]
- Phase 2: search IDs by using DDT with automatic tools, such as based on MILP [ST17, CCJ+16], SAT/SMT [AK18, KLT15, MP13, RKJ+20] and CP [SGL+17]

All methods above to find ID are based on two underlying assumptions:

- Markov cipher assumption
- key independence assumption

Motivation — Is Markov cipher assumption true?

The trend to design ciphers towards lightweight: lighter round function and lighter key schedule. Take an example in ARX cipher as follows:

Under Markov cipher assumption:

Background and Motivation

$$\begin{array}{c|c} \Delta g = 0001* & Pr(\Delta z, \Delta e \to \Delta h) = p_2 > 0 \\ \hline z & & \text{e.g. } (\Delta z = 00100, \Delta e = 00011, \Delta h = \\ \Delta z = 0010* & \Delta h = 01000* & z = 00001 \text{ and } e = 00000) \end{array}$$

$$Pr(\Delta x = 0000*, \Delta y = 0001*, \Delta g = 0001* \rightarrow \Delta h = 0100*) = p_1p_2 > 0.$$

Without Markov cipher assumption:

Property 1. [Li+19]

Let $x = z \boxplus y$ and $x' = z' \boxplus y'$, where $x, y, z, x', y', z' \in \mathbb{F}_2^n$. Suppose $\Delta x = x \oplus x'$, $\Delta y = y \oplus y'$ and $\Delta z = z \oplus z'$. If $\Delta x = \Delta y = 0 \cdots 0 \stackrel{.}{1} 0 \cdots 0$, then $\Delta z = 0 \cdots 0$ if and only if $x[I] \neq y[I]$ or $x'[I] \neq y'[I]$.

Property 2.

Let $x = z \square y$ and $x' = z' \square y'$, where $x, y, z, x', y', z' \in \mathbb{F}_2^n$. Suppose $\Delta x = x \oplus x'$, $\Delta y = y \oplus y'$ and $\Delta z = z \oplus z'$. If $\Delta z = \Delta v = 0^{n-1} \cdots 0 \times 10 \cdots 0$ 0 < l < n-1, then $\Delta x = 0 \cdots 0$ if and only if z[l] = y[l] or z'[l] = y'[l].

iff.
$$x[I] \neq y[I]$$
 or $x'[I] \neq y'[I]$

Properties on Two Consecutive Modular Additions

Property 3.

Let $z=x\boxplus y,\ z'=x'\boxplus y',\ h=z\boxplus g$ and $h'=z'\boxplus g'$, where $x,y,z,g,h,x',y',z',\ g',h'\in\mathbb{F}_2^5$. Suppose $\Delta x=x\oplus x',\ \Delta y=y\oplus y',\ \Delta z=z\oplus z',\ \Delta g=g\oplus g'$ and $\Delta h=h\oplus h'.$ If $\Delta z[2:1]\neq 00$, then we have $(\Delta x=1000*,\Delta y=00***,\Delta g=0000**\to\Delta h=00***).$

- When $\Delta z[2:1] \neq 00$, the differential will be impossible.
- In practical ciphers, $\Delta z[2:1] \neq 00$ is possible to happen.

Properties on Two Consecutive Modular Additions

Property 4.

Let $z = x \boxplus y$, $z' = x' \boxplus y'$, $h = z \boxplus g$ and $h' = z' \boxplus g'$, where $x, y, z, g, h, x', y', z', g', h' \in \mathbb{F}_2^5$. Suppose that $\Delta x = x \oplus x', \Delta y = y \oplus y', y' \in \mathbb{F}_2^5$ $\Delta z = z \oplus z'$, $\Delta g = g \oplus g'$ and $\Delta h = h \oplus h'$. Then

$$(\Delta x = 0000*, \Delta y = 0010*, \Delta g = 0000* \rightarrow \Delta h = 1010*).$$

- The carries brought by lower bits do not make the ID transitions viable.

Properties on Two Consecutive Modular Additions

Property 5.

Let $z = x \boxplus y$, $z' = x' \boxplus y'$, $h = z \boxplus g$ and $h' = z' \boxplus g'$, where $x, y, z, g, h, x', y', z', g', h' \in \mathbb{F}_2^5$. Suppose that $\Delta x = x \oplus x', \Delta y = y \oplus y', \Delta y = y \oplus y'$ $\Delta z = z \oplus z'$, $\Delta g = g \oplus g'$ and $\Delta h = h \oplus h'$. Then

$$(\Delta x = 0000*, \Delta y = 00 * **, \Delta g = 0000* \rightarrow \Delta h = 100 **)$$

- The carries brought by lower bits do not make the ID transitions viable.

Summary on Properties $3\sim 5$

- The ID patterns in Properties 3~5 can be extended by adding uncertain bits on higher and lower bit positions.
- Properties 3~5 represent just a thin selection of thousand ID patterns found experimentally.
- These Properties can be used to find IDs on four local constructions extracted from ARX ciphers.

IDs on Local Construction (a)

Constraints	$\Delta z[i+2:i+1] \neq 00$		
	i+4, · · · , i	i+4, · · · ,i	i+ <u>3,···</u> ,i
	$\Delta x = (* \cdot \cdot \cdot * 1000* * \cdot \cdot \cdot *)$	$\Delta x = (* \cdot \cdot \cdot * 0000 * * \cdot \cdot \cdot *)$	$\Delta x = (* \cdot \cdot \cdot * 0000 * \cdot \cdot \cdot *)$
	<i>i</i> <u>+4, · · · ,</u> <i>i</i>	i+4,,i	<i>i</i> <u>+3,···</u> , <i>i</i>
Differentials	$\Delta y = (* \cdot \cdot \cdot * \boxed{00 * * *} * \cdot \cdot \cdot *)$	$\Delta y = (* \cdot \cdot \cdot * 0010 * * \cdot \cdot \cdot *)$	$\Delta y = (* \cdot \cdot \cdot *) 00 * * * \cdot \cdot \cdot *)$
	$\underline{i+4,\cdots,i}$	$\underline{i+4,\cdots,i}$	<i>i</i> +3, · · · , <i>i</i>
	$\Delta z = (* \cdot \cdot \cdot * * * * * * *)$	$\Delta z = (* \cdot \cdot \cdot * * * * * * *)$	$\Delta z = (* \cdot \cdot \cdot * * * * * *)$
	i <u>+4, · · ·</u> , i	<i>i</i> <u>+4</u> , · · · , <i>i</i>	<i>i</i> + <u>3,···</u> , <i>i</i>
	$\Delta g = (* \cdot \cdot \cdot * 0000* * \cdot \cdot \cdot *)$	$\Delta g = (* \cdot \cdot \cdot * 0000* * \cdot \cdot \cdot *)$	$\Delta g = (* \cdot \cdot \cdot *)$
	$i+4,\cdots,i$	i <u>+4,⋯</u> ,i	<i>i</i> + <u>3,···</u> , <i>i</i>
	$\Delta h = (* \cdot \cdot \cdot * \boxed{00 * * *} * \cdot \cdot \cdot *)$	$\Delta h = (* \cdot \cdot \cdot *) 1010* * \cdot \cdot \cdot *)$	$\Delta h = (* \cdot \cdot \cdot *)$ 100* $* \cdot \cdot \cdot *$
Result	$(\Delta x, \Delta y, \Delta g \rightarrow \Delta h)$	$(\Delta x, \Delta y, \Delta g \nrightarrow \Delta h)$	$(\Delta x, \Delta y, \Delta g \rightarrow \Delta h)$
rvesuit	according to Property 3	according to Property 4	according to Property 5

IDs on Local Construction (b)

Constraints	$\Delta \overline{z}[i+2:i+1] \neq 00$		
	i+4, · · · , i	i+4, · · · , i	<i>i</i> + <u>3,···</u> , <i>i</i>
		$\Delta x = (* \cdot \cdot \cdot * \boxed{0000*} * \cdot \cdot \cdot *)$	· •
	<i>i</i> +4,···, <i>i</i>	i+4,····,i	<i>i</i> +3,····, <i>i</i>
Differentials		$\Delta y = (* \cdot \cdot \cdot * \boxed{0010*} * \cdot \cdot \cdot *)$	· · · — ·
	<u>i+4,···,i</u>	<u>i+4, · · · , i</u>	<i>i</i> <u>+3, · · · ,</u> <i>i</i>
	$\Delta \overline{z} = (* \cdot \cdot \cdot * * * * * * * * \cdot \cdot \cdot *)$	$\Delta \bar{z} = (* \cdot \cdot \cdot * * * * * * * *)$	
	$\underline{j+4,\cdots,j}$	$\underline{j+4,\cdots,j}$	<i>j</i> <u>+3,⋯</u> , <i>j</i>
	$\Delta \underline{z} = (* \cdot \cdot \cdot * * * * * * * * \cdot \cdot \cdot *)$	$\Delta \underline{z} = (* \cdot \cdot \cdot * * * * * * *)$	$\Delta \underline{z} = (* \cdot \cdot \cdot *) * * * * * * * * * * * * * * *$
	<i>j</i> <u>+4,⋯</u> , <i>j</i>	<i>j</i> <u>+4,⋯</u> , <i>j</i>	$j+3,\cdots,j$
		$\Delta g = (* \cdot \cdot \cdot * 0000* * \cdot \cdot \cdot *)$	$\Delta g = (* \cdot \cdot \cdot *)$
	$j+4,\cdots,j$	<i>j</i> <u>+4, · · · ,</u> <i>j</i>	$j+3,\cdots,j$
	$\Delta h = (* \cdot \cdot \cdot *)$ $00 * ** * * \cdot \cdot \cdot *)$	$\Delta h = (* \cdot \cdot \cdot *)$	$\Delta h = (* \cdot \cdot \cdot *)$ 100* $* \cdot \cdot \cdot *$
Result	$(\Delta x, \Delta y, \Delta g \nrightarrow \Delta h)$	$(\Delta x, \Delta y, \Delta g \rightarrow \Delta h)$	$(\Delta x, \Delta y, \Delta g \rightarrow \Delta h)$
	according to Property 3	according to Property 4	according to Property 5

•The *i*-th bit of \bar{z} is cyclically shifted to the *j*-th bit of \underline{z} .

IDs on Local Construction (c)

Constraints	k[i+3:i+1] = 000 or 111 $\Delta \overline{z}[i+2:i+1] \neq 00$	k[i+3:i+2] = 00 or 11	k[i+2:i+1] = 00 or 11	
	$\Delta x = (* \cdots * \underbrace{1000*}_{i+4,\cdots,i} * \cdots *)$	$\Delta x = (* \cdots * \underbrace{\begin{matrix} i+4, \cdots, i \\ 0000* \\ i+4, \cdots, i \end{matrix}}_{i+4, \cdots, i} * \cdots *)$	$\Delta x = (* \cdot \cdot \cdot * \boxed{0000} \underset{i+3,\cdots,i}{*} \cdot \cdot \cdot *)$	
Differentials	$\Delta y = (* \cdot \cdot \cdot * \underbrace{00 * **}_{i+4, \cdots, i} * \cdot \cdot \cdot *)$	$\Delta y = (* \cdot \cdot \cdot * \underbrace{0010*}_{i+4, \dots, i} * \cdot \cdot \cdot *)$	$\Delta y = (* \cdots * \underbrace{00* *}_{i+3,\cdots,i} * \cdots *)$	
	· / /	$\Delta z = (* \cdot \cdot \cdot * \underbrace{\overset{\cdot}{*} \overset{\cdot}{*} \overset{\cdot}{*} \overset{\cdot}{*} }_{i+4, \dots, i} * \cdot \cdot \cdot *)$		
	$\Delta g = (* \cdot \cdot \cdot * \boxed{0000*} * \cdot \cdot \cdot *)$			
	$\Delta h = (* \cdot \cdot \cdot * \boxed{00 * **} * \cdot \cdot \cdot *)$	$\Delta h = (* \cdot \cdot \cdot * \boxed{1010*} * \cdot \cdot \cdot *)$		
Result	$(\Delta x, \Delta y, \Delta g \rightarrow \Delta h)$	$(\Delta x, \Delta y, \Delta g \nrightarrow \Delta h)$	$(\Delta x, \Delta y, \Delta g \rightarrow \Delta h)$	
ivesuit	according to Property 3	according to Property 4	according to Property 5	

IDs on Local Construction (d)

Constraints	c[i+3:i+1] = 000 or 111 $\Delta \overline{z}[i+2:i+1] \neq 00$	c[i+3:i+2] = 00 or 11	c[i+2:i+1] = 00 or 11	
Differentials	$\Delta x = (* \cdot \cdot \cdot * \underbrace{1000 *}_{i+4, \dots, i} * \cdot \cdot \cdot *)$	i+4,···,i	$i+3,\cdots,i$	
Differentials	$\Delta z = (* \cdots * \underbrace{* * * * * *}_{i+4,\cdots,i} * \cdots *)$ $\Delta z = (* \cdots * \underbrace{* * * * * *}_{*} * \cdots *)$	$\Delta z = (* \cdots * \underbrace{* * * * *}_{i+4,\cdots,i} * \cdots *)$	$\Delta z = (* \cdot \cdot \cdot * * \cdot * * * * \cdot \cdot *)$	
	$\Delta g = (* \cdots * \underbrace{0000*}_{i+4,\cdots,i} * \cdots *)$	$\Delta g = (* \cdots * \begin{bmatrix} i+4, \cdots, i \\ 0000* \\ i+4, \cdots, i \end{bmatrix} * \cdots *)$	$\Delta g = (* \cdots * \underbrace{0000}_{i+3,\cdots}, i * \cdots *)$	
	$\Delta h = (* \cdot \cdot \cdot * 00 * ** * \cdot \cdot \cdot *)$	$\Delta h = (* \cdot \cdot \cdot * 1010* * \cdot \cdot \cdot *)$	$\Delta h = (* \cdot \cdot \cdot *)$	
Result	$(\Delta x, \Delta y, \Delta g \nrightarrow \Delta h)$	$(\Delta x, \Delta y, \Delta g \rightarrow \Delta h)$	$(\Delta x, \Delta y, \Delta g \rightarrow \Delta h)$	
rvesuit	according to Property 3	according to Property 4	according to Property 5	

Properties on Three Consecutive Modular Additions

Property 6.

 $x \boxplus y = z \pmod{2^4}, \ x' \boxplus y' = z' \pmod{2^4}, \ z \boxplus d = e \pmod{2^4},$ $z' \boxplus d' = e' \pmod{2^4}, \ f \boxplus g = h \pmod{2^5} \ \text{and} \ f' \boxplus g' = h' \pmod{2^5}. \ \text{Suppose}$ $\text{that} \ \Delta x = x \oplus x', \Delta y = y \oplus y', \Delta z = z \oplus z', \Delta d = d \oplus d', \Delta e = e \oplus e', \Delta f = f \oplus f', \Delta g = g \oplus g' \ \text{and} \ \Delta h = h \oplus h'. \ \text{If} \ f[4:1] = e, \ \text{then}$

$$(\Delta x = 000*, \Delta y = 000*, \Delta d = 10**, \Delta g = 0000* \rightarrow \Delta h = 0000*)$$

■ In practical ciphers, f = e || * is possible to happen.

Local Constructions of ARX ciphers

- The ID patterns in Property 6 can be extended by adding uncertain bits on higher and lower bit positions.
- The structures of consecutive three modular additions and its variants are extracted from ARX ciphers.
- These Property 6 can be used to find IDs on these local constructions below. Please refer to the table on the next page.

IDs on Local Constructions (e) \sim (g)

Constraints		$k_1[2:1] = 00 \text{ or } 11$	$c_1[2:1] = 00 \text{ or } 11$
		$k_2[j+3:j+1] = 000 \text{ or } 111$	$c_2[j+3:j+1] = 000 \text{ or } 111$
	i+ <u>3,···</u> ,i	i+ <u>3,···</u> ,i	<i>i</i> + <u>3,⋯</u> , <i>i</i>
	$\Delta x = (* \cdots * 000* * \cdots *)$	$\Delta x = (* \cdot \cdot \cdot *)$	$\Delta x = (* \cdot \cdot \cdot *)$
	i+ <u>3,</u> ,i	<i>i</i> + <u>3,···</u> , <i>i</i>	<i>i</i> +3,····, <i>i</i>
	$\Delta y = (* \cdot \cdot \cdot * \boxed{000*} * \cdot \cdot \cdot *)$	$\Delta y = (* \cdot \cdot \cdot *) 000* * \cdot \cdot \cdot *)$	· ` <u> </u>
Differentials	i+3, ···, i	i+3, · · · , i	<i>i</i> +3, ··· , <i>i</i>
Differentials	$\Delta \bar{z} = (* \cdots * \boxed{* * * *} * \cdots *)$	$\Delta \overline{z} = (* \cdot \cdot \cdot *)$	$\Delta \overline{z} = (* \cdot \cdot \cdot *) * * \cdot \cdot *)$
	3 <u>, · · · , 0</u>	3 <u>, · · · , 0</u>	3 <u>, ··· ,</u> 0
	$\Delta \underline{z} = (* \cdot \cdot \cdot * * * * *)$	$\Delta \underline{z} = (* \cdot \cdot \cdot * * * * *)$	$\Delta \underline{z} = (* \cdot \cdot \cdot * * * * *)$
	3 <u>, · · · ,</u> 0	3 <u>, · · · ,</u> 0	3 <u>, · · · ,</u> 0
	$\Delta d = (* \cdot \cdot \cdot * \cdot 10 * *)$	$\Delta d = (* \cdot \cdot \cdot * \cdot 10 * *)$	$\Delta d = (* \cdot \cdot \cdot * \cdot 10 * *)$
	3,, 0	3,, 0	3,, 0
	$\Delta e = (* \cdot \cdot \cdot * * * * *)$	$\Delta e = (* \cdot \cdot \cdot * * * * *)$	$\Delta e = (* \cdot \cdot \cdot * * * * *)$
	$j+4, \cdots, j$	$j+4, \cdots, j$	$j+4, \cdots, j$
		$\Delta f = (* \cdot \cdot \cdot * * * * * * * *)$	
	j <u>+4, · · · ,</u> j	$j+4,\cdots,j$	<i>j</i> <u>+4,⋯</u> , <i>j</i>
	$\Delta g = (* \cdot \cdot \cdot *)$	$\Delta g = (* \cdot \cdot \cdot *)$	$\Delta g = (* \cdot \cdot \cdot *)$
	$j+4,\cdots,j$	$j+4,\cdots,j$	$j+4,\cdots,j$
	$\Delta h = (* \cdot \cdot \cdot * \boxed{0000*} * \cdot \cdot \cdot *)$	$\Delta h = (* \cdot \cdot \cdot * 0000* * \cdot \cdot \cdot *)$	$\Delta h = (* \cdot \cdot \cdot * \boxed{0000*} * \cdot \cdot \cdot *)$
Result	$(\Delta x, \Delta$	$(y, \Delta d, \Delta g \rightarrow \Delta h)$ according to Pro	operty 6

¹ The *i*-th bit of \bar{z} is cyclically shifted to LSB of \underline{z} .

² The LSB of e is cyclically shifted to the j-th bit of f.

Framework for Finding IDs in ARXs under weak keys

- Step 1. Obtain the differentials $\Delta x_i \to \Delta x_{i+m}$ and $\Delta x_{j-n} \leftarrow \Delta x_j$ by some tool according to properties of addition modulo 2^n .
- Step 2. Check the possibility of the differential $\Delta x_{i+m} \to \Delta x_{j-n}$ by using ID patterns of consecutive modular additions. If $\Delta x_{i+m} \nrightarrow \Delta x_{i-n}$, return $\Delta x_i \nrightarrow \Delta x_i$.
- Step 3. Use some tool to obtain possible forms of intermediate difference Δx_{i+m+t} and **divide and conquer** with them. Specially, return to Step 2 to check $\Delta x_{i+m} \to \Delta x_{i+m+t}$ and $\Delta x_{i+m+t} \to \Delta x_{j-n}$. (i+m < i+m+t < j-n)

Apply to SPECK32/64

When $k_{i+1}[14:13] = 00$ (or 11), $k_{i+3}[14:12] = 000$ (or 111), $x_i[2] \neq y_i[11]$ or $(x_i'[2] \neq y_i'[11]$, there are two 8-round IDs for SPECK32/64 under 2^{60} weak keys:

- $(\Delta x_i = 0 \cdots 0100, \Delta y_i = 000010 \cdots 0) \rightarrow (\Delta x_{i+8} = 0 \cdots 010, \Delta y_{i+8} = 0 \cdots 01010)$ under $k_{i+7}[1] = 0$ if $x_{i+8}[2] = x_{i+8}[4] \oplus y_{i+8}[4]$.
- $(\Delta x_i = 0 \cdots 0100, \Delta y_i = 000010 \cdots 0) \rightarrow (\Delta x_{i+8} = 0 \cdots 010, \Delta y_{i+8} = 0 \cdots 01010)$ under $k_{i+7}[1] = 1$ if $x_{i+8}[2] \neq x_{i+8}[4] \oplus y_{i+8}[4]$.

Apply to LEA-k (k = 128, 192, 256)

Finding Impossible Differentials in ARX Ciphers under Weak Keys

11-round ID for LEA-k under 2^{k-1} weak keys:

- Rounds $i \sim i + 5$: $(10\cdots0,10\cdots0,10\cdots0,10\cdots0,10\cdots0)\rightarrow (*\cdots*\overset{9}{1}*\cdots*,0\overset{27}{\cdots}\overset{13}{0}*\cdots*,\overset{19}{1}\overset{9}{0}\cdots0,000*\cdots*\overset{19}{1}\overset{9}{0}\cdots0,0\cdots0*\cdots*)$ with prob. 1
- Rounds $i+7 \sim i+11$: $(*\cdots*100, **\cdots*100, *\cdots*, *\cdots*) \rightarrow (0\cdots0, 0\cdots0, 00010\cdots0, 0\cdots0)$ with prob. 1
- Rounds $i+5 \sim i+6$: When $T_{i+6}^1[6:5] = 00$ or 11, the differential of **the** red part is impossible according to the Property 5.

Apply to CHAM64/128

two 22-round IDs for CHAM-64/128 under 2127 weak keys:

- $(\Delta x_j^0 = 0 \cdots 0_1^7 0 \cdots 0, \Delta x_1^1 = 10 \cdots 0, \Delta x_1^2 = 0 \cdots 0, \Delta x_3^3 = 0 \cdots 0)$ $\rightarrow (\Delta x_{j+22}^0 = 01 \cdots 0, \Delta x_{j+22}^1 = 0 \cdots 0, \Delta x_{j+22}^2 = 0 \cdots 0, \Delta x_{j+22}^3 = 0 \cdots 0_1^7 0)$ under $k_i[7] = 0$ if $x_i^0[7] \neq x_i^4[15]$.
- $$\begin{split} &\bullet \quad (\Delta x_{j}^{0} = 0 \cdot \cdot \cdot 0_{1}^{7} 0 \cdot \cdot \cdot 0, \ \Delta x_{i}^{1} = 10 \cdot \cdot \cdot 0, \ \Delta x_{j}^{2} = 0 \cdot \cdot \cdot 0, \ \Delta x_{j}^{3} = 0 \cdot \cdot \cdot 0) \\ & \rightarrow \quad (\Delta x_{j+22}^{0} = 0 \cdot \cdot \cdot 0, \ \Delta x_{j+22}^{1} = 0 \cdot \cdot \cdot 0, \ \Delta x_{j+22}^{2} = 0 \cdot \cdot \cdot 0, \ \Delta x_{j+22}^{3} = 0 \cdot \cdot \cdot 0_{1}^{7} 0) \\ & \text{under } k_{i}[7] = 1 \text{ if } x_{j}^{0}[7] = x_{j}^{1}[15]. \end{split}$$
- **a** According to Property 1, if $k_i[7] = 0$, $x_i^0[7] \neq x_i^1[15]$ or $k_i[7] = 1$, $x_i^0[7] = x_i^1[15]$, there is the differential $(\Delta x_i \to \Delta x_{i+1})$ with Probability 1, refer to the green part.
- When (i+13)[2:1]=00 or 11 and (i+17)[10:8]=000 or 111, the differential $(\Delta x_{i+9} \to \Delta x_{i+18})$ of the red part is impossible according to the property 6.

Compare with Previous Results

Cipher	Round	Weak key space	Starting round	Reference
	6	2 ⁶⁴	any	[Li+18]
SPECK-32/64	6	2 ⁶⁴	any	[XSQ17]
	7	2 ⁶⁴	any	[Li+19]
	8	2 ⁶⁰	any	This work
LEA-k	10	2 ^k	any	[Hon+14]
LLA-X	10	2 ^k	any	[Cui+16]
	11	2 ^{k-1}	any	This work
CHAM-64/128	18	2 ¹²⁸	any	[Koo+17]
CHAIVI-04/120	20	2 ¹²⁸	$i, i \in A$	[Xu+22]
	22	2 ¹²⁷	$i,i\inB$	This work

 $[\]begin{array}{l}
1 & A = \{3, 5, 11, 13, 19, 21, 27, 29, 35, 37, 43, 45, 51, 53, 59\}. \\
^2 & B = \{2, 4, 10, 12, 18, 20, 26, 28, 34, 36, 42, 44, 50, 52, 58\}.
\end{array}$

Conclusion

This work

- Some more accurate differentials properties on consecutive addition modulo 2ⁿ.
- A framework to find IDs of ARX ciphers under weak key.
- Apply to SPECK, LEA and CHAM to find longer IDs under weak key.

Future work

- As properties $3\sim 6$ represent just a thin selection of the ID patterns found experimentally, it is valuable to continue analyzing these ID patterns.
- It is also a meaningful work to try to build an automated search model to find more impossible differentials.
- It is worthwhile to dig deeper for more impossible differentials to get better key recovery attacks for ARX ciphers.

Thanks for your attention! Q & A

