

Cryptanalysis of HALFLOOP Block Ciphers: Destroying HALFLOOP-24

FSE 2024, Leuven, March 25

Gregor Leander, Shahram Rasoolzadeh and Lukas Stennes

DOI: 10.46586/tosc.v2022.i3.217-238

Breaking HALFLOOP-24

Marcus Dansarie^{1,2}, Patrick Derbez³, Gregor Leander⁴ and Lukas Stennes⁴

¹ Swedish Defence University, Stockholm, Sweden

² University of Skövde, Skövde, Sweden

³ Univ Rennes, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Rennes, France

patrick.derbez@irisa.fr

⁴ Ruhr University Bochum, Bochum, Germany

gregor.leander@rub.de, lukas.stennes@rub.de

- ► Frequencies between 3MHz and 30MHz
- ► Skywave propagation: radio signals are reflected by upper atmosphere
- ► Enables communication across very large distances without any external infrastructure
- ► Users are the military, diplomatic services, disaster management agencies, etc.
- ► HALFLOOP is used for encrypting handshake messages (confidentiality and authentication)

- ► Frequencies between 3MHz and 30MHz
- ► Skywave propagation: radio signals are reflected by upper atmosphere
- ► Enables communication across very large distances without any external infrastructure
- ► Users are the military, diplomatic services, disaster management agencies, etc.
- ► HALFLOOP is used for encrypting handshake messages (confidentiality and authentication)

- ► Frequencies between 3MHz and 30MHz
- ► Skywave propagation: radio signals are reflected by upper atmosphere
- ► Enables communication across very large distances without any external infrastructure
- ► Users are the military, diplomatic services, disaster management agencies, etc.
- ► HALFLOOP is used for encrypting handshake messages (confidentiality and authentication)

- ► Frequencies between 3MHz and 30MHz
- ► Skywave propagation: radio signals are reflected by upper atmosphere
- ► Enables communication across very large distances without any external infrastructure
- ► Users are the military, diplomatic services, disaster management agencies, etc.
- ► HALFLOOP is used for encrypting handshake messages (confidentiality and authentication)

- ► Frequencies between 3MHz and 30MHz
- ► Skywave propagation: radio signals are reflected by upper atmosphere
- ► Enables communication across very large distances without any external infrastructure
- ► Users are the military, diplomatic services, disaster management agencies, etc.
- ► HALFLOOP is used for encrypting handshake messages (confidentiality and authentication)

Description of HALFLOOP-24 (HALFLOOP-{48,96} work similarly)

- ► HALFLOOP-24 is a tweakable block cipher *E*
 - ► Tweak consists of current time, a word counter and the used frequency
 - Supersedes SoDark cipher which used 56-bit keys
 - ► Specified in MIL-STD-188-141 since 2017
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - ► Essentially the same key schedule
 - ▶ State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- ► HALFLOOP-24 is a tweakable block cipher *E*
 - ► Tweak consists of current time, a word counter and the used frequency
 - Supersedes SoDark cipher which used 56-bit keys
 - ► Specified in MIL-STD-188-141 since 2017
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - ► Essentially the same key schedule
 - ▶ State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- ► HALFLOOP-24 is a tweakable block cipher E
 - ► Tweak consists of current time, a word counter and the used frequency
 - Supersedes SoDark cipher which used 56-bit keys
 - ► Specified in MIL-STD-188-141 since **2017**
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - Essentially the same key schedule
 - ▶ State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- ► HALFLOOP-24 is a tweakable block cipher *E*
 - Tweak consists of current time, a word counter and the used frequency
 - Supersedes SoDark cipher which used 56-bit keys
 - ► Specified in MIL-STD-188-141 since **2017**
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - ► Essentially the same key schedule
 - ▶ State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- ► HALFLOOP-24 is a tweakable block cipher E
 - ► Tweak consists of current time, a word counter and the used frequency
 - Supersedes SoDark cipher which used 56-bit keys
 - ► Specified in MIL-STD-188-141 since **2017**
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - ► Essentially the same key schedule
 - ▶ State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- ► HALFLOOP-24 is a tweakable block cipher E
 - ► Tweak consists of current time, a word counter and the used frequency
 - Supersedes SoDark cipher which used 56-bit keys
 - ► Specified in MIL-STD-188-141 since **2017**
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - ► Essentially the same key schedule
 - ▶ State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- ► HALFLOOP-24 is a tweakable block cipher E
 - ► Tweak consists of current time, a word counter and the used frequency
 - Supersedes SoDark cipher which used 56-bit keys
 - ► Specified in MIL-STD-188-141 since 2017
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - ► Essentially the same key schedule
 - ▶ State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- ► HALFLOOP-24 is a tweakable block cipher E
 - ► Tweak consists of current time, a word counter and the used frequency
 - Supersedes SoDark cipher which used 56-bit keys
 - ► Specified in MIL-STD-188-141 since **2017**
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - ► Essentially the same key schedule
 - ▶ State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

- ► HALFLOOP-24 is a tweakable block cipher *E*
 - ► Tweak consists of current time, a word counter and the used frequency
 - Supersedes SoDark cipher which used 56-bit keys
 - ► Specified in MIL-STD-188-141 since **2017**
- ► HALFLOOP-24 is heavily inspired by AES
 - ► Uses the same SBox
 - ► Essentially the same key schedule
 - ▶ State is represented as 3×1 matrix over \mathbb{F}_{2^8}
 - ▶ 10 rounds

MC: multiply with $c(x) = x^2 + 2x + 9$ modulo $x^3 + 1$

Generic Attack on HALFLOOP-{24,48,96} (already pointed out by [LRW02, DDLS22])

Offline Phase:

$$T=[\]$$
 for all $k'\in\mathbb{F}_2^{64}$: $c=E'_{0||k'}(p)$ append (k',c) to T

Offline Phase:

$$T = [\]$$
for all $k' \in \mathbb{F}_2^{64}$:
 $c = E'_{0||k'}(p)$
append (k', c) to T

Online Phase:

$$\begin{aligned} \textbf{for all } t \in \mathbb{F}_2^{64} \colon \\ c &= E(t,p) \\ \textbf{if } \exists k's.t.(k',c) \in T \colon \\ \text{key candidate } t || k' \end{aligned}$$

Attacks on HALFLOOP-24 - So Far

Setting	Time	Data	Memory	Reference
CPA	2 ⁶⁵	2 ⁶⁴	2 ⁶⁴	[DDLS22]
CCA	2 ¹⁰	2 ¹⁰	negligible	[DDLS22]
CPA ALE	2 ⁵⁶ 2 ⁵⁶	2 ¹⁸ 541 years	2 MB 2 MB	[DDLS22] [DDLS22]

Attacks on HALFLOOP-24 - So Far

Setting	Time	Data	Memory	Reference
CPA	2 ⁶⁵	2 ⁶⁴	2 ⁶⁴	[DDLS22]
CCA	2 ¹⁰	2 ¹⁰	negligible	[DDLS22]
CPA ALE	2 ⁵⁶ 2 ⁵⁶	2 ¹⁸ 541 years	2 MB 2 MB	[DDLS22] [DDLS22]

Attacks on HALFLOOP-24 - So Far

Setting	Time	Data	Memory	Reference
CPA	2 ⁶⁵	2 ⁶⁴	2 ⁶⁴	[DDLS22]
CCA	2 ¹⁰	2 ¹⁰	negligible	[DDLS22]
CPA	2 ⁵⁶	2^{18}	2 MB	[DDLS22]
ALE	2^{56}	541 years	2 MB	[DDLS22]

New Attack on HALFLOOP-24 (with minimal data)

 \Rightarrow trivial attack with $t = 2^{80}$ and D = 6 (CPA)

 \Rightarrow improved attack with $t = 2^{56}$ and D = 6 (CPA)

Setting	Time	Data	Memory	Reference
CCA	2 ¹⁰	2 ¹⁰	negligible	[DDLS22]
CPA	2 ⁵⁶	2 ¹⁸ 541 years	2 MB	[DDLS22]
ALE	2 ⁵⁶		2 MB	[DDLS22]
CPA	2 ⁵⁶	6	5 GB	This Work
CPA	2 ⁴⁸	8	5 GB	This Work
ALE	2 ⁴⁸	2 hours	5 GB	This Work

Attack in Practice – Automatic Link Establishment

- ► frequencies are the same
- word counters are the same
- messages are sent in the same16 minute bin
- seconds are the same modulo 4
- difference in remaining time matches difference in callsigns

- ► frequencies are the same
- word counters are the same
- messages are sent in the same16 minute bin
- seconds are the same modulo 4
- difference in remaining time matches difference in callsigns

- ► frequencies are the same
- word counters are the same
- messages are sent in the same16 minute bin
- ▶ seconds are the same modulo 4
- difference in remaining time matches difference in callsigns

- ► frequencies are the same
- word counters are the same
- messages are sent in the same16 minute bin
- seconds are the same modulo 4
- difference in remaining time matches difference in callsigns

- ► frequencies are the same
- ▶ word counters are the same
- messages are sent in the same16 minute bin
- seconds are the same modulo 4
- difference in remaining time matches difference in callsigns

Attacks on HALFLOOP-{48,96}

Variant	Attack	Time	Data	Memory
HALFLOOP-48	Generic	2^{65} 2^{122}	2 ⁶⁴	3 · 2 ²⁹ TB
HALFLOOP-48	DS-MITM		13	2 ⁵⁷ TB
HALFLOOP-96	Generic	2 ⁶⁵	2 ⁶⁴	3 · 2 ²⁹ TB
HALFLOOP-96-7r	DS-MITM	2 ¹¹⁴	15	2 ¹⁰⁵

Conclusion

TO AAA TO AAA TIS AAQ

 $t' \ [0011|11001|01001000011|010111|00000001|3.14 \mathrm{MHz}]$

$rk_6 L^{-1}(rk_7)$	$L^{-1}(rk_8)$	rk_9	rk_{10}
δ S δ			<u>8</u>
$S \rightarrow L$	L S		\overline{S}
$\Delta = 0$	$S \rightarrow S$		S

Setting	Time	Data	Memory	Reference
CCA	2^{10}	2 ¹⁰	negligible	[DDLS22]
CPA ALE	2 ⁵⁶ 2 ⁵⁶	2 ¹⁸ 541 years	2 MB 2 MB	[DDLS22] [DDLS22]
CPA CPA ALE	2 ⁵⁶ 2 ⁴⁸ 2 ⁴⁸	6 8 2 hours	5 GB 5 GB 5 GB	This Work This Work This Work

Conclusion

			64		
t	0011 11001	01001000010	010111	0000001	3.14MHz
	month day	minutes	seconds	word	frequency
_t ′	0011 11001	01001000011	010111 0	0000001	3.14MHz

$rk_6 L^{-1}(rk_7)$	$L^{-1}(rk_8)$	rk_9	rk_{10}
	-S	- S	′
			_
S + L +	-S + L - S	L - S	
	_ δ		_
	$S \oplus S$	- S	
$\Delta \stackrel{!}{=} 0$			

Setting	Time	Data	Memory	Reference
CCA	2 ¹⁰	2 ¹⁰	negligible	[DDLS22]
CPA	2 ⁵⁶	2 ¹⁸ 541 years	2 MB	[DDLS22]
ALE	2 ⁵⁶		2 MB	[DDLS22]
CPA	2 ⁵⁶	6	5 GB	This Work
CPA	2 ⁴⁸	8	5 GB	This Work
ALE	2 ⁴⁸	2 hours	5 GB	This Work