
QARMAv2
Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder

Shibam Ghosh, Marcel Nageler, and Francesco Regazzoni
Arm, CRI, Universities of Amsterdam, Graz, Haifa, Lugano



Introduction
2 © ARM 2024



What is QARMAv2?
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What is QARMAv2?

QARMAv2 is a revision of the Tweakable Block Cipher QARMAv1
from FSE 2017 to improve its security and allow for longer

tweaks, while keeping latency and area similar.

Like QARMAv1, it is in the public domain, no IPR exerted on any
component of it by any party that worked on the design!
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Why QARMAv2?
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I mean, QARMAv1 looks fine, so why update it?
Cipher Rounds Outer Attack Complexity Technique Ref.Attacked Whitening? Time Data Memory
64 4 + 6 N 2116 + 270.1 253 CP 2116 MITM [ZD16]
64 4 + 4 Y 233 + 290 216 CP 290 MITM [LJ18]
64 4 + 5 Y 248 + 289 216 CP 289 MITM [LJ18]
64 4 + 6 Y 259 259 KP 229.6 bits Rel-tweak stat. sat. [LHW19]
64 4 + 7 Y 2120.4 261 CP 2116 Trunc. imp. diff. [YQC18]
64 3 + 8 Y 264.4 + 280 261 CP 261 Imp. diff. [ZDW18]
64 5 + 6 Y 2111.16 234.26 CP 2108 Rel-tweak trunc. diff. [SII23]
64 4 + 8 Y 266.2 248.4 CP 253.70 Zero corr./Integral [ADG+19]
128 4 + 6 N 2232 + 2141.7 2105 CP 2232 MITM [ZD16]
128∗ 4 + 6 Y 2237.3 2122 CP 2144 Trunc. imp. diff. [YQC18]
128 2 + 8 Y 2120.94 2104.02 CP 294.50 Rel-tweak Imp. Diff. [DuWLW22]
128∗ 4 + 7 Y 2241.8 2122 CP 2232 Trunc. imp. diff. [YQC18]
128 4 + 7 Y 2126.1 2126.1 KP 271 bits Rel-tweak stat. sat. [LHW19]
128 8 + 3 Y 2104.60 2124.05 CP 248 Rel-tweak trunc. diff. [SII23]
128 9 + 4 Y 2238.02 2106.63 CP 2240 Rel-tweak trunc. diff. [SII23]
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Why QARMAv2?

▪ Not a whim or just to papers++:
During the last seven years we achieved a better
understanding of block cipher design, and of the
requirements coming from practical applications.

▪ Longer tweaks to address use cases and for better security.
▪ Revised components to improve security.
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In a nutshell: 1) More flexible inputs...

▪ QARMAv2-64-128: 64-bit block size and 128 bit key,
and tweaks up to 128 bits (up from 64 bits)

▪ QARMAv2-128-𝑠: 128-bit block size and 𝑠 bit key,
with 𝑠 = 128, 192 or 256, and tweaks up to 256 bits
(up from 128 bits)
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In a nutshell: 2) Security bounds...

To align with common requirements from NIST and other SDOs
we want to move from the tradeoff definition of security

Time ×Memory ≥ 2128−𝜀 or 2256−𝜀

of PRINCE, MANTIS, QARMAv1, etc... to

if Memory ≤ 256 resp. 80, then Time ≥ 2key size

similarly to PRINCEv2.
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Security Considerations
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Security — Stateless IVs, Modes, Memory Encryption
▪ AES with a 128-bit block in a XEX construction and a 128-bit block,
128-bit tweak TBC like QARMAv1-128 have something in common.
Syntetic or random IVs do not work well: Collision after 𝑂(264) messages.
Worse with modes like GCM, with a 96-bit IV and a 32-bit counter.

▪ One solution is to use longer blocks.
However, a 256-bit wide cipher can be heavier than a 128-bit cipher.
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Security — Stateless IVs, Modes, Memory Encryption
▪ AES with a 128-bit block in a XEX construction and a 128-bit block,
128-bit tweak TBC like QARMAv1-128 have something in common.
Syntetic or random IVs do not work well: Collision after 𝑂(264) messages.
Worse with modes like GCM, with a 96-bit IV and a 32-bit counter.

▪ One solution is to use longer blocks.
▪ Remark: a 128-bit block cipher with 256-bit tweaks

may define a space of 2256 permutations for each value of the key.
So, for Cryptographic Memory Encryption, we can have 64-bit counters, 64-bit
addresses, 64 bits of “realm identity,” and room to spare.

▪ For embedded: 64-bit blocks, and 128-bit keys and tweaks should be ok.
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Security — Better Key and Tweak Schedules

▪ With a TBC, key changed infrequently. We do not consider related-key attacks.
▪ Tweak changes often, Adversary may control it. Consider related-tweak attacks.
▪ So, we do not consider a “tweakey”, but rather tweak and key separately.
▪ We move from Even-Mansour to an Alternating-Key Schedule because:
▪ Security bounds are better and more “normal” (as already seen).
▪ OTOH longer tweak⇒ the adversary has more control.
▪ Hence, we may need more rounds if we kept the Even-Mansour scheme.
▪ Better key/tweak schedule may help offset this.
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Design
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Overall Scheme
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Overall Scheme: Keep the Reflector Construction

𝐾 (0) 𝐾 (1) 𝐾 (2) 𝐾 (3) 𝐾 (4)

𝑃 𝑆 𝐹 = 𝑅𝑟 𝐺 ̄𝐹 = 𝑅̄𝑟 𝑆̄ 𝐶

𝑇 (0) 𝑇 (1)

Use the same circuit for both encryption and decryption with a minor set-up step.
The function 𝐹 is a keyed and tweaked iterated cipher with round function 𝑅.

A bar over a function denotes its inverse, for instance 𝑅̄ = 𝑅−1.
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Building Blocks
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The State
The internal state of the cipher has a size of 𝑏 bits.
A 𝑏-bit value is called a block.
It is as a three-dimensional array, consisting of ℓ layers, with ℓ ∈ {1, 2}.
A layer is an array of 16 elements, and also a 4 by 4 matrix of 4-bit cells:

𝐿 = 𝑐0‖𝑐1‖⋯ ‖𝑐14‖𝑐15 = (
𝑐0 𝑐1 𝑐2 𝑐3
𝑐4 𝑐5 𝑐6 𝑐7
𝑐8 𝑐9 𝑐10 𝑐11
𝑐12 𝑐13 𝑐14 𝑐15

) .

Thus, 𝑏 = 64 ℓ.
Both key and tweak have a size of 2𝑏 = 128 ℓ bits.
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The Round Function and the Reflector
A full round is

k

𝑥 𝜏 𝑀 𝑆 𝑋 𝑦

t

𝔠

i.e.

k

𝑥 𝑅 𝑋 𝑦

t

𝔠

,

where 𝑅 = 𝑆 ◦𝑀 ◦ 𝜏, and 𝑋 swaps the first two rows between the two layers (for ℓ = 2 only).
𝜏 is the same cell shuffle used in MIDORI, MANTIS, and QARMAv1. The reflector is

k0 k1

𝑥 𝜏 𝑀 𝜏̄ 𝑦 ,

where 𝑘0, 𝑘1 are two round keys.
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The State (Cellwise) Shuffle

The MIDORI state shuffle
𝜏 = [ 0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2 ]

acts on each layer cellwise as follows

𝐿 = (
𝑐0 𝑐1 𝑐2 𝑐3
𝑐4 𝑐5 𝑐6 𝑐7
𝑐8 𝑐9 𝑐10 𝑐11
𝑐12 𝑐13 𝑐14 𝑐15

) 𝜏
∣−−−→ (

𝑐0 𝑐11 𝑐6 𝑐13
𝑐10 𝑐1 𝑐12 𝑐7
𝑐5 𝑐14 𝑐3 𝑐8
𝑐15 𝑐4 𝑐9 𝑐2

) = 𝜏(𝐿) .
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The Diffusion Matrix

Let 𝜌 denote the cyclic rotation to the left of the four bits in a cell, i.e.,
𝜌(x) = 𝜌((𝑥3, 𝑥2, 𝑥1, 𝑥0)) = x⋘ 1 = (𝑥2, 𝑥1, 𝑥0, 𝑥3) .

𝜌 is linear, and 𝜌4 = identity. The diffusion matrix 𝑀 is the circulant

𝑀 ∶= 𝑀4,1 = circ(0, 𝜌, 𝜌2, 𝜌3) = (
0 𝜌 𝜌2 𝜌3
𝜌3 0 𝜌 𝜌2
𝜌2 𝜌3 0 𝜌
𝜌 𝜌2 𝜌3 0

) .

Involutory Almost-MDS, like MIDORI’s circ(0, 1, 1, 1) and QARMAv1’s circ(0, 𝜌, 𝜌2, 𝜌).
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The S-Box

For the general-purpose versions of QARMAv2, we use the following S-Box

ק = [ 4 7 9 B C 6 E F 0 5 1 D 8 3 2 A ] .

(For PAC we allow the use of QARMAv1’s 𝜎0.)

The road that led to the choice of S-Boxes has been bumpy.

We changed S-Box because Tim Beyne found some invariants if the new matrix is
used with the old S-Box. (The TL;DR is: stricter filtering in S-Box search + new
analysis of propagation of affine subspaces.)
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The Tweak Schedule

We observe that if we use a fixed permutation to modify the tweak, by continuing
with the same transformation through the reflector we are sort of implying that in
an attack the schedule must “work well” with the function 𝐹 and its inverse.

Hence, we define
[ 𝑇1, 𝜑𝑟−1(𝑇0), 𝜑(𝑇1), 𝜑𝑟−2(𝑇0), 𝜑2(𝑇1), 𝜑𝑟−3(𝑇0), … , 𝜑𝑟−1(𝑇1), 𝑇0 ] .

Swapping 𝑇0 with 𝑇1 gives the inverse schedule.(Some symmetry necessary to allow easy setup.)

We “just” need to find a suitable 𝜑.
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Encryption
& Decryption
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QARMAv2 Encryption (odd 𝑟)

𝐾0 𝐾1 𝐾0 𝐾1 𝐾0 𝐾0 𝐾1

𝑃 𝑆 𝑅 {𝑋} 𝑅 𝑅 {𝑋} 𝑅 𝑅 𝑅 {𝑋}
𝜏

𝑊0 = 𝑜2(𝐾0)

𝑀

𝐿1 𝐿0 𝐿1 𝐿0 𝐿1 𝐿1 𝐿0 𝑊1 = 𝑜−2(𝐾1)

𝜏̄
𝐶 𝑆̄ 𝑅̄ {𝑋} 𝑅̄ 𝑅̄ {𝑋} 𝑅̄ 𝑅̄ 𝑅̄ {𝑋}

(k0) (k1)

(k1) (k0)

𝑜(𝐾0) + 𝛼𝑜−1(𝐾1) + 𝛽

==

𝑇1 𝜑𝑟−1(𝑇0) 𝜑(𝑇1) 𝜑𝑟−2(𝑇0) 𝜑 𝑟+1
2 (𝑇0) 𝜑 𝑟−1

2 (𝑇1)

𝜑 𝑟−1
2 (𝑇0)𝜑 𝑟+1

2 (𝑇1)𝜑𝑟−2(𝑇1)𝜑(𝑇0)𝜑𝑟−1(𝑇1)𝑇0

𝔠2 𝔠3 𝔠4 𝔠𝑟−1 𝔠𝑟

𝔠2 𝔠3 𝔠4 𝔠𝑟−1 𝔠𝑟
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QARMAv2 Decryption (odd 𝑟): using the same circuit

𝐾0 𝐾1 𝐾0 𝐾1 𝐾0 𝐾0 𝐾1

𝑃 𝑆̄ 𝑅̄ {𝑋} 𝑅̄ 𝑅̄ {𝑋} 𝑅̄ 𝑅̄ 𝑅̄ {𝑋}
𝜏̄

𝑊1 = 𝑜2(𝐾0)

𝑀

𝐿1 𝐿0 𝐿1 𝐿0 𝐿1 𝐿1 𝐿0 𝑊0 = 𝑜−2(𝐾1)

𝜏
𝐶 𝑆 𝑅 {𝑋} 𝑅 𝑅 {𝑋} 𝑅 𝑅 𝑅 {𝑋}

(k1) (k0)

(k0) (k1)

𝑜(𝐾0) + 𝛼𝑜−1(𝐾1) + 𝛽

==

𝑜−1(𝐿0 + 𝛼) 𝑜(𝐿1 + 𝛽)

= =

𝑇1 𝜑𝑟−1(𝑇0) 𝜑(𝑇1) 𝜑𝑟−2(𝑇0) 𝜑 𝑟+1
2 (𝑇0) 𝜑 𝑟−1

2 (𝑇1)

𝜑 𝑟−1
2 (𝑇0)𝜑 𝑟+1

2 (𝑇1)𝜑𝑟−2(𝑇1)𝜑(𝑇0)𝜑𝑟−1(𝑇1)𝑇0

𝔠2 𝔠3 𝔠4 𝔠𝑟−1 𝔠𝑟

𝔠2 𝔠3 𝔠4 𝔠𝑟−1 𝔠𝑟
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Security
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Cryptanalysis
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Estimated reach of various types of cryptanalysis
QARMAv2-64 QARMAv2-128

Attack Parameter 𝑟 Rounds Parameter 𝑟 Rounds
Differential 6 (5) 14 (12) 9 (8) 20 (18)
Boomerang (Sandwich) 7 (5) 16 (12) 10 (8) 22 (18)
Linear 5 12 7 16
Impossible-Differential 3 8 4 10
Zero-Correlation 3 8 4 10
Integral (Division Property)∗ – 5 – –
Meet-in-the-Middle – 10 – 12
Invariant Subspaces – 5 – 6
Algebraic (Quadratic Equations) – 6 – 7

Values are for two independent tweak blocks, except numbers in
parentheses, which are specific for a single block tweak, stretched.

∗ Integral has been recently extended to 10, rep. 11 rounds.
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Security claims and parameter choices
With two independent tweak blocks.

Variant Block Size Key Size Time Data Parameter Rounds
QARMAv2-64-128 64 bits 128 bits 2128−𝜀 256 𝑟 = 9 20
QARMAv2-128-128 128 bits 128 bits 2128−𝜀 280 𝑟 = 11 24
QARMAv2-128-192 128 bits 192 bits 2192−𝜀 280 𝑟 = 13 28
QARMAv2-128-256 128 bits 256 bits 2256−𝜀 280 𝑟 = 15 32

▪ A goal was to not increase the number of rounds.
▪ This was not achieved for QARMAv2-64.
▪ The reason is: Boomerang attacks.
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Focus 1: Finding
better tweak schedules
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Finding tweak shuffles — Main idea: avoid self-cancellation

𝜏 𝑀, 𝑆 𝜏 𝑀, 𝑆

𝜑
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Finding tweak shuffles — Main idea: avoid self-cancellation
𝜏 𝑀 𝜏 𝑀

𝜏 𝑀 𝜏 𝑀

𝜏 𝑀 𝜏 𝑀

𝜏 𝑀 𝜏 𝑀

𝜏 𝜏

𝜏𝜏

Use avoidance of self-cancellations as a starting point, then fine-tune.
First consider 𝜏2. Then apply row permutations and an additional
swap involving non affected cells to get maximal cyclic order 16.
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And then active S-Box counts (cell-wise MILP model)

QARMAv2
𝑟 = 2 3 4 5 6 7

ℓ Rounds = 6 8 10 12 14 16
1 RT Diff. 5 12 24 32 41 52

Linear 5 32 50 64 72 –
2 RT Diff. 5 16 32 52 61 –

Linear 24 44 56 80 96 –
QARMAv1

1 RT Diff. 6 14 24 32 42 52
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And then active S-Box counts (cell-wise MILP model)

QARMAv2
𝑟 = 2 3 4 5 6 7
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Remark on the new schedules

▪ If you want to keep using QARMAv1, update it with
the new key schedule.

▪ All the cryptanalysis on QARMAv1 should still
apply, likely with no smaller complexity.

▪ If you like the new tweak schedule, go to QARMAv2.
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Focus 2:
Implementation
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Implementations (5nm TSMC, low voltage)
Area optimized Latency optimized

� Area � Delay � Area � Delay
Cipher Ro

un
ds

Tw
ea
k

Security Claims 𝜇𝑚2 GE ps 𝜇𝑚2 GE ps
PRESENT-128 31 N 𝐷 ≥ 264 ‖ 𝑇 ≥ 2128 848.8 10636 1841 1824.1 22858 958
PRINCE 12 N 𝐷 × 𝑇 ≥ 2126 334.6 4193 710 672.1 8422 534
MANTIS-6 14 Y 𝐷 × 𝑇 ≥ 2126 425.4 5331 734 715.8 8969 592
MANTIS-7 16 Y 𝐷 × 𝑇 ≥ 2126 485.6 6085 854 788.4 9879 683
BIPBIP-Dec (i.e. 𝑏 = 24, 𝔱 = 40) 11 Y 𝑇 >∼ 272 ‖ 𝐷 >∼ 272 ‖ 𝑇𝐷 >∼ 296 303.7 3806 647 381.1 4776 436
BIPBIP-Enc (i.e. 𝑏 = 24, 𝔱 = 40) 11 Y (same) 514.7 6450 1480 1090.3 13662 909
QARMAv1-64-𝜎0 (𝑟 = 3, PAC, 𝔱 = 64) 8 Y 𝐶𝑃 ≥ 220, 𝐾𝑃 ≥ 240 251.2 3147 464 450.0 5638 334
QARMAv1-64-𝜎0 (𝑟 = 5, PAC, 𝔱 = 64) 12 Y 𝐶𝑃 ≥ 230, 𝐾𝑃 ≥ 240 394.7 4946 728 707.0 8860 525
QARMAv1-64 (𝑟 = 7, 𝔱 = 64) 16 Y 𝐷 × 𝑇 ≥ 2126 551.7 6913 1030 996.6 12489 731
QARMAv2-64-𝜎0 (𝑟 = 4, PAC ≤ 10 bits) 10 Y 𝑇 ≈ 2128 309.7 3881 606 495.9 6214 430
QARMAv2-64-𝜎0 (𝑟 = 5, PAC ≤ 24 bits) 12 Y 𝑇 ≈ 2128 374.6 4694 721 600.8 7529 514
QARMAv2-64 (𝑟 = 7, 𝔱 = 64) 16 Y 𝐷 ≥ 256 ‖ 𝑇 ≥ 2128 537.0 6729 936 954.4 11959 706
QARMAv2-64 (𝑟 = 9, 𝔱 = 128) 20 Y 𝐷 ≥ 256 ‖ 𝑇 ≥ 2128 675.2 8461 1173 1187.3 14879 885
𝔨, 𝔱 = size of key, resp. tweak in bits.
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Implementations (5nm TSMC, low voltage)
Area optimized Latency optimized

� Area � Delay � Area � Delay
Cipher Ro

un
ds

Tw
ea
k

Security Claims 𝜇𝑚2 GE ps 𝜇𝑚2 GE ps
AES-128 10 N 𝐷 ≥ 2128 ‖ 𝑇 ≥ 2128 2304.1 28873 3064 4520.6 56648 1791
AES-256 14 N 𝐷 ≥ 2128 ‖ 𝑇 ≥ 2128 3238.7 40585 4290 6191.5 77587 2513
MIDORI-128 20 N 𝐷 ≥ 2128 ‖ 𝑇 ≥ 2128 1085.1 13597 1156 1954.5 24492 840
ASCON-p12 (note: 𝑏 = 320) 12 N 𝐷 ≥ 264 ‖ 𝑇 ≥ 2128 2228.3 27923 826 2766.8 34671 507
SPEEDY-5 (note: 𝑏 = 192) 5 N 𝐷 ≥ 264 ‖ 𝑇 ≥ 2128 1571.8 18567 650 2668.0 33433 384
SPEEDY-6 (note: 𝑏 = 192) 6 N 𝐷 ≥ 2128 ‖ 𝑇 ≥ 2128 1795.5 22499 787 3133.8 39270 468
SKINNY-128-128 (i.e. 𝔨 + 𝔱 = 128) 40 Y 𝐷 ≥ 288.5 (†) 3986.3 49953 4371 9241.0 115800 2164
SKINNY-128-384 (i.e. 𝔨 + 𝔱 = 384) 40 Y 𝐷 ≥ 288.5 (†) 4513.6 56560 4348 9527.5 11939 2177
QARMAv1-128 (𝑟 = 9, 𝔱 = 128) 20 Y 𝐷 × 𝑇 ≥ 2254 (‡) 1422.3 17823 1290 2535.8 31776 912
QARMAv1-128 (𝑟 = 11, 𝔱 = 128) 24 Y 𝐷 × 𝑇 ≥ 2254 1635.6 20496 1561 3078.3 38575 1091
QARMAv2-128-128 (𝑟 = 9, 𝔱 = 128) 20 Y 𝐷 ≥ 280 ‖ 𝑇 ≥ 2128 1347.5 16886 1170 2337.5 29292 890
QARMAv2-128-128 (𝑟 = 11, 𝔱 = 256) 24 Y 𝐷 ≥ 280 ‖ 𝑇 ≥ 2128 1620.3 20305 1409 2875.8 36037 1068
QARMAv2-128-256 (𝑟 = 15, 𝔱 = 256) 32 Y 𝐷 ≥ 280 ‖ 𝑇 ≥ 2256 2166.8 27152 1879 3797.8 47592 1425
𝔨, 𝔱 = size of key, resp. tweak in bits.
(†) = inferred from original analysis. (‡) = Tweak masking suggested.
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Final Words
41 © ARM 2024



See you at FSE 2031
for QARMAv3!!!
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THANK YOU!
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