
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 1, pp. 538–556. DOI:10.46586/tches.v2023.i1.538-556

A Faster Third-Order Masking of Lookup Tables
Anju Alexander, Annapurna Valiveti and Srinivas Vivek

IIIT Bangalore, Bangalore, IN
{anju.alexander,annapurna,srinivas.vivek}@iiitb.ac.in

Abstract. Masking of S-boxes using lookup tables is an effective countermeasure
to thwart side-channel attacks on block ciphers implemented in software. At first
and second orders, the Table-based Masking (TBM) schemes can be very efficient
and even faster than circuit-based masking schemes. Ever since the customised
second-order TBM schemes were proposed, the focus has been on designing and
optimising Higher-Order Table-based Masking (HO-TBM) schemes that facilitate
masking at arbitrary order. One of the reasons for this trend is that at large orders
HO-TBM schemes are significantly slower and consume a prohibitive amount of RAM
memory compared to circuit-based masking schemes such as bit-sliced masking, and
hence efforts were targeted in this direction. However, a recent work due to Valiveti
and Vivek (TCHES 2021) has demonstrated that the HO-TBM scheme of Coron et
al. (TCHES 2018) is feasible to be implemented on memory-constrained devices with
pre-processing capability and a competitive online execution time. Yet, currently,
there are no customised designs for third-order TBM that are more efficient than
instantiating a HO-TBM scheme at third order.
In this work, we propose a third-order TBM scheme for arbitrary S-boxes that is secure
in the probing model and under compositions, i.e., 3-SNI secure. It is very efficient
in terms of the overall running time, compared to the third-order instantiations of
state-of-the-art HO-TBM schemes. It also supports the pre-processing functionality.
For example, the overall running time of a single execution of the third-order masked
AES-128 on a 32-bit ARM-Cortex M4 micro-controller is reduced by about 80%
without any overhead on the online execution time. This implies that the online
execution time of the proposed scheme is approximately eight times faster than the
bit-sliced masked implementation at third order, and it is comparable to the recent
scheme of Wang et al. (TCHES 2022) that makes use of reuse of shares. We also
present the implementation results for the third-order masked PRESENT cipher.
Our work suggests that there is a significant scope for tuning the performance of
HO-TBM schemes at lower orders.
Keywords: Side-Channel Attacks, Masking, S-box, Third Order, Probing Leakage
Model, SNI Security, Software implementation.

1 Introduction
Side-channel attacks are a major security threat for cryptographic implementations [Koc96,
KJJ99]. Masking is an effective countermeasure for side-channel attacks, in particular,
differential power/electromagnetic attacks. The popularity of the masking countermeasure
is due to its simplicity which paves the way for formal security analysis in the probing
leakage model [ISW03, Cor14, BBD+16], and its connection, rather equivalence, to the
more realistic noisy leakage model [CJRR99, PR13, DDF14]. Despite the shortcomings of
the probing leakage model, for instance, the independent leakage assumption, it continues
to attract great attention of the research community.

Masking countermeasures implemented in software, particularly those based on the
probing leakage model, can be categorised into two types: circuit-based masking schemes

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-07-15 Accepted: 2022-09-15 Published: 2022-11-29

https://doi.org/10.46586/tches.v2023.i1.538-556
mailto:anju.alexander@iiitb.ac.in, annapurna@iiitb.ac.in, srinivas.vivek@iiitb.ac.in
http://creativecommons.org/licenses/by/4.0/

Alexander et al. 539

and Table-based Masking (TBM) schemes. Circuit-based masking schemes, that include
schemes proposed in [ISW03, RP10, CGP+12, RV13, CRV14, PV16, CGPZ16, GR16,
GR17, GRVV17, WGY+22] and many more, are based on representing the computation,
say, of a block cipher, as a boolean or an arithmetic circuit. On the contrary, the TBM
schemes, that include schemes proposed in [CJRR99, SP06, RDP08, Cor14, CRZ18, VV20,
VV21] represent the non-linear computations as a lookup table. For the case of SPN-based
and Feistel-based block ciphers, the S-box is represented as a lookup table that is then
masked using TBM schemes. Note, however, that the linear layers of block ciphers are
still represented as a circuit as the masking of these layers is relatively efficient.

At first and second orders, the TBM schemes, particularly, [CJRR99, RDP08], are
more efficient than circuit-based masking schemes [Vad17]. A particular advantage of most
of the TBM schemes is that they support pre-processing.

Currently this feature is not possible with most of the circuit based schemes. However, a
recent work by Wang et al. [WGY+22] has made significant progress in this direction. The
authors claim that they can reuse all but one share across masked multiplications. Also,
their approach facilitates pre-processing of the computation. In general, the pre-processing
phase (a.k.a. offline phase) and the post-processing phase (a.k.a. online phase) refer
to the computation that happens before and after the availability of the secret input(s),
respectively. The goal of the offline/online paradigm is to achieve a faster online phase
with the help of the pre-computed results from the offline phase.

In particular, pre-processing in a TBM scheme corresponds to the shifting of a temporary
table by all the independently sampled shares, of course, except the final share. Post-
processing involves the lookup of the shifted table with the final share as the index and its
associated computations. However, at higher orders, the TBM schemes such as [Cor14]
and its successor [CRZ18] need an amount of RAM memory that is proportional to the
masking order for full pre-processing and, hence, becomes infeasible to implement on
resource-constrained devices. One way to overcome the memory requirement of Higher-
Order TBM (HO-TBM) schemes is to do sequential processing of the masking of S-boxes
and it leads to significantly poor performance compared to the circuit-based masking
schemes, particularly, bit-sliced masked implementations such as in [GR17]. A recent
work [VV21] demonstrated how the RAM memory requirement can be made essentially
constant for the HO-TBM scheme from [CRZ18] . They implemented a fully pre-processed
single execution of the AES-128 block cipher with 10 shares (i.e., at ninth order) on an
Arm-Cortex M4 microcontroller and showed that the online execution time is competitive
with that of bit-sliced masking though the overall execution time was still very high
compared to bit-sliced masking.

The HO-TBM schemes such as [Cor14, CRZ18, VV21] shift a temporary table by each
input share at a time and do mask refresh for each row of the table after every shift. More
concretely, consider an (n, m) S-box S that needs to be looked up with a masked input

x = x1 ⊕ x2 ⊕ . . .⊕ xk.

A temporary table T is first initialised to (S, 0, 0, . . . , 0), where all the k columns except
the first is set to zero. The rows of the Table T are shifted by each xi,

T (j)← T (xi ⊕ j), ∀j ∈ {0, 1}n,

by making use of an auxiliary table. After each shift, every row of the Table T is
independently refreshed and, hence, these schemes make use of a lot of computing time and
(pseudo) randomness. While the complete lack of mask refresh can lead to security flaws
as noted in [Cor14], an important consequence of these mask refreshes is that the security
proofs in the probing leakage model and under compositions, i.e. k− 1-SNI security proofs
[BBD+16], can be written elegantly.

540 A Faster Third-Order Masking of Lookup Tables

In this work, motivated by the designs of [RDP08, VV20] that make a sparing use of
mask refreshes in the second-order security context, we investigate the question of designing
a customised third-order secure TBM scheme that significantly reduces the number of
mask refreshes and, hence, reduces the computation time and randomness usage compared
to instantiating the current HO-TBM schemes at third order.

Our Contribution: We propose an efficient third-order secure TBM scheme for arbitrary
S-boxes (see Algorithm 3). Our scheme is secure in the probing leakage model and under
compositions, more specifically, it is 3-SNI secure [BBD+16]. We design the scheme in two
steps. In Step 1, we propose a 3-NI randomised lookup table scheme without any explicit
mask refresh. Whereas in Step 2, we refresh the output obtained from Step 1 using a 3-SNI
mask refresh, the 3-RB procedure, from [BDF+17, BBD+20] (see Algorithm 2). Hence,
the composition of these two steps is 3-SNI secure. Our approach requires (explicit) mask
refresh only once in the final step, which is a significant reduction in the number of calls
to mask refresh per (n, m) S-box to one from

(
3 · 2n + 1

)
in the third-order instantiation

of [Cor14, CRZ18]. We would like to note that the speedup of the pre-processing step for
our scheme comes only from our 3-NI Algorithm 1. We chose the 3-SNI refresh algorithm
3-RB from [BDF+17, BBD+20] instead of the 3-SNI full-refresh mainly to make the online
time competitive with the state-of-the-art table-based and circuit-based masking schemes.

Altogether, our proposed third-order randomised lookup table scheme is very efficient
compared to the third-order instantiation of the most efficient (in terms of the overall
computation time) HO-TBM scheme from [CRZ18]. In the experiments section (Section 3),
we demonstrate that our scheme reduces the total running time of a single execution of third-
order masked AES-128 by 78.87%, and also facilitates full pre-processing. The experiments
were run on a 32-bit Arm-Cortex M4 microcontroller. In Table 4, we provide a detailed
comparison of our work with the circuit-based implementations of [RP10, GR17, WGY+22].
The online execution time for Algorithm 3 is approximately 8 times faster than the bit-
sliced masked implementation of AES-128 at third order, and it is comparable with the
online execution times for [Cor14, CRZ18, WGY+22] (see Tables 3 and 4).

To further improve the overall execution time, one may try to consider an implementa-
tion of the proposed scheme on processors with large registers. But, it turns out that the
extension of Algorithm 3 to large register variant (LRV) suffers from a second-order attack
(see Appendix D). We would like to stress that our basic scheme still beats the overall
running time of increasing shares LRV variant of [CRZ18] (see the third row of Table 3)
without making use of large registers. For completeness, Table 1 provides estimates for
the number of bit operations, RAM memory and randomness usage per (n, m) S-box for
Algorithm 3, and the HO-TBM schemes from [CRZ18] and [VV21].

Table 1: Comparison of our proposal with the HO-TBM schemes [CRZ18, VV21] instanti-
ated at third order to mask a single (n, m) S-box. The schemes are compared in terms
of RAM memory (in bits), true random values (in bits), and the total running time (in
number of bit operations). RAM memory includes the number of bits required for the
randomised lookup table along with the auxiliary table.

RAM #True random Time

Algorithm 3 3 ·m · 2n m · (2n + 4) m · (6 · 2n + 2 ·n)

[CRZ18] (Increas-
ing shares)

m · 2(n+3) 10 ·m · 2n 28 ·m · 2n

[VV21] (Multiple
PRG variant)

m·
(
2(n+1)+40·n

)
40 · n ·m m·2n ·(3·m+31)

Alexander et al. 541

The rest of the paper is organised as follows. In Section 2, we present our third-order
TBM scheme (Algorithm 3) along with its 3-SNI security proof. The experiment results
are presented in Section 3 and the paper concludes with Section 4.

2 Proposed Third-Order TBM Scheme
This section describes our proposal for a third-order TBM scheme. As mentioned previously,
the motivation for our scheme are the resource-efficient second-order TBM schemes from
[RDP08, VV20]. Our goal is to securely compute y = S(x), where

S : {0, 1}n −→ {0, 1}m,

is stored in the form of a lookup table, and the input x is in the secret-shared form

x = x1 ⊕ x2 ⊕ x3 ⊕ x4 ∈ {0, 1}n.

Needless to say, a naïve extension of the second-order scheme from [VV20] (a variant
of [RDP08] that supports pre-processing) to the third order scenario will be insecure, as
demonstrated in Appendix A. Also, the third-order attack from [CPR07] on the HO-TBM
scheme from [SP06] is now well-known. To prevent these sorts of third-order attacks, we
opted for the shift of the table by x1 in addition to the shift by a combination of two
shares as done in [RDP08, VV20]. This brings down the total number of shifts of the
randomised table from 3 in [Cor14, CRZ18, VV21] to 2. More importantly, we avoid any
explicit mask refresh used in the current HO-TBM schemes. But, a mere construction
of the randomised table in two shifts cannot make the scheme secure since it leads to an
attack as described in Appendix B. Hence, we opt to use a vector of random masks to
protect the randomised table in the second shift. Moreover, the order of random masks
has to be chosen with caution, otherwise, it will lead to a tuple of intermediate variables
whose simulation demands the balanced S-box property (see Section 2.2 (Para 1) and
Appendix C).

This approach of constructing the randomised table in two shifts with a sufficient
amount of random values will only result in a 3-NI secure scheme (see Remark 1). One
way to achieve a 3-SNI secure instantiation that assures composability is to refresh the
outputs of the 3-NI scheme using a 3-SNI mask refresh [BBD+16, Proposition 4, Section 5].
A natural choice for the 3-SNI mask refresh from the literature is the full refresh algorithm
instantiated at third-order from [BBD+16]. This procedure is nothing but multiplying the
secret with one using the ISW multiplication over F2n [ISW03]. Since the computation
and randomness complexity of this algorithm is quadratic in the number of shares, there
will be an additional overhead on the online execution time of the resulting scheme. To
reduce the overhead associated with the SNI mask refresh, we make use of the RefreshBlock
gadget by Barthe et al. [BDF+17] which was later proven to be SNI secure in [BBD+20].
We have instantiated their scheme at third order and call it 3-RB. For convenience, we
slightly modified their notation and presented their scheme in Algorithm 2. Concretely,
the amount of randomness and computation time for 3-RB and 3-SNI full refresh are 4
random values and 8 xors vs. 6 random values and 12 xors, respectively.

Overall, our scheme consists of two sub-procedures. The first procedure is presented in
Algorithm 1, and Algorithm 2 describes the second procedure. Algorithm 1 begins with
an offline phase that deals with the computation of the randomised lookup table. This
phase consists of constructing an auxiliary table Taux to hold the result of the shift by
x1, whose entries are shifted further with x2 and x3 in one step to build the final table T .
The offline phase is followed by an online phase, where a lookup of the table T using x4
results in the secret sharing of S(x). Continue the online phase further in Algorithm 2
by receiving the outputs from Algorithm 1 and mask refresh them using Algorithm 2 to
generate the final output sharing of S(x). We would like to stress that this final step of

542 A Faster Third-Order Masking of Lookup Tables

mask refresh is crucial to prove the 3-SNI security of our scheme. We summarise the steps
of our proposed third-order lookup table scheme in Algorithm 3. We have also explicitly
marked the offline and online computation phases in the description of the methods. Note
that for the table indexing and access, we have used the parenthesis notation

(
like T (a)

)
,

and for the vector Y access we have used the [] notation (like Y [i]). Table 1 provides
estimates for the number of bit operations, RAM memory and randomness usage per
(n, m) S-box for Algorithm 3.
Remark 1. The scheme presented cannot be proved 3-SNI due to the following: suppose
that if the probed triplet is

(
(x2 ⊕ υ ⊕ x3), S(x1 ⊕ υ ⊕ a)⊕ y1, y1

)
. This triplet requires

the knowledge of three input shares for the simulation but as per the definition of SNI, we
are allowed to use only two shares since there are only two intermediate variables in this
triplet and the other probed variable is an output share.

Algorithm 1: 3-NI randomised LUT scheme.
Input :

• Input shares x1, x2, x3, x4, such that x = x1 ⊕ x2 ⊕ x3 ⊕ x4.

• An (n, m) S-box lookup table S.

Output : Output shares: y1, y2, y3, y4, such that S(x) = y1 ⊕ y2 ⊕ y3 ⊕ y4.
// Pre-processing (Offline phase)

1 y1
$←− {0, 1}m

2 for a← 0 to 2n − 1 do
3 Taux(a)←− S(x1 ⊕ a)⊕ y1
4 end
5 υ

$←− {0, 1}n

6 y2
$←− {0, 1}m

7 d←− (x2 ⊕ υ)⊕ x3
8 for i← 0 to 2n − 1 do
9 Y [i] $←− {0, 1}m

10 end
11 for a← 0 to 2n − 1 do
12 b←− a⊕ d
13 T (b)←− (Taux(a⊕ υ)⊕ Y [b])⊕ y2
14 end

// Post-processing (Online phase)
15 y3 = Y [x4]
16 y4 = T (x4)

2.1 Correctness
The following equations provide the proof of correctness of Algorithm 1.

T (x4) = Taux(υ ⊕ x4 ⊕ d)⊕ Y [x4]⊕ y2

= Taux(υ ⊕ x4 ⊕ x2 ⊕ υ ⊕ x3)⊕ y3 ⊕ y2 ∵ y3 = Y [x4]
= Taux(x4 ⊕ x2 ⊕ x3)⊕ y3 ⊕ y2

= S(x1 ⊕ x2 ⊕ x3 ⊕ x4)⊕ y1 ⊕ y3 ⊕ y2 ∵ Taux(a) = S(x1 ⊕ a)⊕ y1

= S(x)⊕ y1 ⊕ y2 ⊕ y3.

Alexander et al. 543

Algorithm 2: 3-RB [BDF+17, BBD+20]
Input : α1, α2, α3, α4 ∈ {0, 1}m.
Output : β1, β2, β3, β4 such that β1 ⊕ β2 ⊕ β3 ⊕ β4 = α1 ⊕ α2 ⊕ α3 ⊕ α4.

// Post-processing (Online phase)

1 r1, r2, r3, r4
$←− {0, 1}m

2 β1 ← (α1 ⊕ r1)⊕ r4
3 β2 ← (α2 ⊕ r2)⊕ r1
4 β3 ← (α3 ⊕ r3)⊕ r2
5 β4 ← (α4 ⊕ r4)⊕ r3
6 return β1, β2, β3, β4.

Algorithm 3: Third-order secure masked S-box computation with pre-processing
Input : x1, x2, x3, x4 ∈ {0, 1}n.
Output : y1, y2, y3, y4 ∈ {0, 1}m such that y1 ⊕ y2 ⊕ y3 ⊕ y4 = S(x).

1 Process the input shares of x using Algorithm 1 to obtain the shares of S(x)
2 Refresh the shares of S(x) using Algorithm 2

2.2 Security Proof
Before proceeding with the security proof, we will first recollect the t−NI and t−SNI
security notions from [BBD+16].

Definition 1. t-Non-Interference (t-NI) [BBD+16]. Let G be a gadget that takes
secret input shares (x1, x2, . . . , xk) and let the output shares be (y1, y2, . . . , yk), where
y1 ⊕ y2 ⊕ · · · ⊕ yk = y = f(x). Let the adversary observe tI many input and intermediate
shares, and tO output shares such that tI + tO ≤ t. Then, G is said to be t-NI secure if
the set of t observations can be perfectly simulated using tI + tO many input shares of x.

Definition 2. t-Strong Non-Interference (t-SNI) [BBD+16]. Let G be a gadget that
takes (x1, x2, . . . , xk) as the input shares of x = x1 ⊕ x2 ⊕ · · · ⊕ xk and let the output
shares be (y1, y2, . . . , yk), where y1 ⊕ y2 ⊕ · · · ⊕ yk = y = f(x). Let the adversary observe
tI many input and intermediate shares, and tO many output shares such that tI + tO ≤ t.
Then, G is said to be t-SNI secure if the set of t observations can be simulated using only
tI input shares of x, where tI ≤ t.

From the given definitions, it can be observed that the bound on the number of input shares
in the context of SNI simulation depends only on the observations of the input/intermediate
variables vs. the total number of observations in NI notion. We first prove Lemma 1,
showing that the Algorithm 1 (using shift and lookup using final share, x4) is 3-NI. The
output shares from Algorithm 1 are refreshed using 3-RB (Algorithm 2). Finally, we will
conclude by showing that the composed construction presented in Algorithm 3 is 3-SNI.
We would like to stress that, unlike the second-order [RDP08] scheme, our scheme does
not require the S-box balancedness property for the simulation. To recall, an (n, m) S-box
S, m ≤ n, is balanced if every output word is the image under S of exactly 2n−m input
words.

We now proceed with the security proof of Algorithm 1. The intuition behind the
security proof presented in Lemma 1 is as follows. Since the offline phase in this algorithm
uses three input shares x1, x2, x3 to build the randomised lookup table, it is trivial to see
that the simulation of any 3-tuple of variables from the offline phase is possible using at
most three input shares. This leaves us with the online phase where the final table lookup

544 A Faster Third-Order Masking of Lookup Tables

Table 2: List of variables in Algorithm 1.

Inputs
I x1, x2, x3, x4

Outputs
II y1, y2, y3 = Y [x4] and y4 = T (x4) = S(x)⊕ y1 ⊕ y2 ⊕ y3

Remaining variables
j Ij , 0 ≤ a < 2n

1 (x1 ⊕ a)
2 S(x1 ⊕ a)
3 Taux(a) = S(x1 ⊕ a)⊕ y1

4 random value: υ, υ ⊕ a

5 (x2 ⊕ υ)
6 d = (x2 ⊕ υ)⊕ x3

7 b = a⊕ d = a⊕
(
(x2 ⊕ υ)⊕ x3

)
8 random masks: Y [b] where b = a⊕ d

9 Taux(υ ⊕ a) = S(x1 ⊕ υ ⊕ a)⊕ y1

10 Taux(υ ⊕ a)⊕ Y [b] = S(x1 ⊕ υ ⊕ a)⊕ y1 ⊕ Y [b]
11 T (b) =

(
Taux(υ ⊕ a)⊕ Y [b]

)
⊕ r2 =

(
S(x1 ⊕ υ ⊕ a)⊕ y1 ⊕ Y [b]

)
⊕ y2

x4 outputs y4 = T (x4). Since x4 and y4 are not combined with any other variables of
Algorithm 1, the adversary has to probe either x4 or y4 individually to obtain x. With the
remaining two probes, he can observe at most two input/intermediate variables. Hence,
the task is two prove that the simulation of the observed variables together from the offline
and the online phases depends on at most three input shares. For ease of reference, we list
all the input, output, and intermediate variables of Algorithm 1 in Table 2.

Lemma 1. Algorithm 1 is 3-NI secure.

Proof. The gadget here is the S-box S that takes as input x in the form of four input shares
x1, x2, x3, x4 = x ⊕ x1 ⊕ x2 ⊕ x3, and outputs shares y1, y2, y3, y4 = S(x) ⊕ y1 ⊕ y2 ⊕ y3.
To demonstrate that the construction is 3-NI, we need to prove that the simulation of any
three variables of Algorithm 1 (as listed in Table 2) requires the knowledge of a maximum
of three input shares. Let I be the set of probes the adversary chooses to observe in the
gadget. We construct an index set J that holds the set of input share indices required for
simulating the observed probes from I. The goal is to show that |J | ≤ 3.

1. Initialise J = ϕ.

2. Probing xi or yi (except y3) results in J = J ∪ {i}. The output variable y3 is an
exception because it depends on x4 as y3 = Y [x4]. Hence, update the index set as
J = J ∪ {4} when y3 is probed. This covers the inputs and outputs of the gadget.

3. Add 1 to J as J = J ∪ {1} when any variable from {I1, I2, I3} is probed.

4. When a pair of variables from the subset {I4, . . . , I11} are probed, then update
J = J ∪ {2, 3}. Note that the above pair of variables have the random variable υ in

Alexander et al. 545

common. Even though I6 is a random mask chosen independent of the secret, the
index of this mask still depends on υ. Note that this case covers probing the same
variable at distinct values of index a, 0 ≤ a < 2n.

It can be observed from the above index set construction that we add at most one
input share index per probed variable, thus |J | ≤ 3. Note that the indices {2, 3} are added
only by probing a pair of variables. Now we are going to discuss the simulation of the set
of probed variables I using the input shares x|J .

1. It is trivial to simulate any of the probed output share(s) y1, y2, or y3 by assigning
them uniform and independent random value(s) since the same would have happened
in the actual implementation. If the final output share y4 is probed, we can still
assign a uniform random value since there always exists an unprobed output mask
yi, i ̸= 4, that randomises y4.

2. Any probed random variable like I4 and I8 can be simulated with a random value as
this would have happened in the actual implementation. Recollect that I8 = Y [a⊕d],
where d = (x2 ⊕ υ)⊕ x3 and a being the loop counter. But the case of the variable
Y [b] at a=c, requires careful attention when probed along with y3. It is possible that
y3 and Y [b] maybe same or distinct. The simulation in this case happens using
the input share x4. Recall that probing y3 resulted in J = J ∪ {4}. If υ remains
unprobed, then sample a random value for d and compute b = c⊕ d, else compute
d using the input shares x2 and x3. To simulate the probed variable, compare the
value of b with x4. If b = x4, then generate a random value and return the same
value for both y3 and Y [b], else return two independent uniform random values.

3. Needless to say, any intermediate variable depending on at most one input share
(including constants, sampled randomness, and input shares) is straightforward to
simulate. The intermediate variables {I1, . . . , I5} fall under this category which also
covers the variables in the construction of Taux.

4. The simulation of the intermediates I6 or I7 is as follows: if any other variable
involving υ i.e, from the subset {I4, . . . , I11}, is not probed, then assign a random
value. Otherwise, compute the probed variable using x2 and x3.

5. Similarly, depending on whether the output mask y1 is probed or not, simulate I9
either with a randomly chosen value or calculate the observed value using x1.

6. The simulation of the variables I10 or I11 that appear in the construction of T that
involve more than one input shares is as follows:

(a) at least one unprobed random mask: if either the output share y1 or the random
mask Y [d] remains unprobed, the simulation does not require the knowledge of
any input share since the unprobed value acts as a one-time pad.

(b) Otherwise, this would belong to Case 4 described above. Then we would have
1 ∈ J due to y1 and 2, 3 ∈ J due to probing the pair

(
I10 (or I11), Y [d]

)
. So,

compute the observed variables using input shares x1, x2, x3.
(c) Even the pair (I11 at a=c1 , I11 at a=c2), c1, c2 being constants (or I10 at two

distinct indices), can be assigned values, thanks to the vector of random values,
Y .

(d) The complex case in this setting would be probing (y3, y4) along with either I10
or I11. Assigning random values to the output shares y3 and y4 would fix the
value of y1 ⊕ y2 since

546 A Faster Third-Order Masking of Lookup Tables

y3 ⊕ y4 = S(x)⊕ y1 ⊕ y2.

So, we cannot use the fact that neither y1 nor y2 are unprobed. This is where
we carefully design the scheme such that the index of Y (in I10 or I11) is
randomised with the help of b. So, sample b at random, thanks to the unprobed
υ. We would have added 4 to J due to the probed y4. Depending on whether
the sampled d equals x4, assign I11 = y4. Similarly, for the case of I10 being
probed, we can assign I10 = y4 ⊕ y3. If the index b ̸= x4, the table entry can be
assigned a uniform random value due to unprobed Y [b]. In [RDP08], this case
calls for the S-box to be balanced. But, we do not require the balanced S-box
property for the simulation in our scheme (see Remark 2).

Thus, we can conclude that any triple consisting can be simulated with the knowledge of
at most three input shares.

Remark 2. As explained in the security proof of the second-order scheme with pre-processing
from [VV20, Theorem 1], simulating the pair

(
y3 = S(x)⊕ y1 ⊕ y2, S(υ ⊕ a)⊕ y1 ⊕ y2

)
in

their 2-SNI security proof requires the S-box to be balanced. This is because the output
masks y1 and y2 are reused for the entire table and there is no additional random mask
left. So, the variable S(υ ⊕ a) can only be assigned a random value provided the S-box,
S is balanced. But, in our case, thanks to the vector of randomness Y , the tuple can be
simulated in Step 2(d) for any S-box.

Theorem 1. Algorithm 3 is 3-SNI secure.

Proof. Because Algorithm 1 is 3-NI and Algorithm 2 is 3-SNI, their composition is known
to be 3-SNI [BBD+16, Proposition 4, Section 5]. Since the detailed proof is not available
in [BBD+16], for the sake of completeness we are giving a formal proof below.

Let G1 and G2 be the gadgets corresponding to Algorithm 1 and Algorithm 2, re-
spectively. To prove that Algorithm 3 is 3-SNI, we need to show that the gadget G
obtained by the composition of the sub gadgets G1 and G2 is indeed 3-SNI. The graphical
representation of the composition of gadgets is presented in Figure 1.
Let the number of input and intermediate probes on the gadget G be tI and tO such that

tI + tO ≤ t = 3.

Let tI1 and tO1 be the number of probes on input/intermediate and output variables of
the sub gadget G1, respectively. Similarly, let tI2 and tO2 be the number of probes on the
gadget G2 such that

3-NI 3-SNI

G1 G2

G

tO2 = tOtO1

tI1
tI2

tI = tI1 + tO1 + tI2

Figure 1: Our scheme resulting from the composition of gadgets 3-NI G1 and 3-SNI G2.

Alexander et al. 547

tI1 + tO1 + tI2 = tI , (1)

and
tO2 = tO.

Let J , J1 and J2 be the set of input shares required for the simulation of the gadgets G,
G1 and G2, respectively. Since the gadget G1 is 3-NI (from Lemma 1),

|J1| ≤ tI1 + tO1 , (2)

whereas for the 3-SNI gadget G2, we have

|J2| ≤ tI2 . (3)

Note that simulating the observations in the gadget G is nothing but simulating the
observations in the sub gadgets G1 and G2, so

J = J1 ∪ J2

|J | ≤ |J1|+ |J2|
≤ tI1 + tO1 + tI2 ∵ (2) and (3)
≤ tI . ∵ (1)

This shows that the set of input shares required for the simulation of the gadget G is
bounded by tI i.e., the number of probes on input/intermediate shares. Hence, we can
conclude that the gadget G is 3-SNI.

3 Implementation
This section presents the implementation details of our scheme presented in Algorithm 3.
We provide a detailed comparison of our work with the state-of-the-art masking schemes
instantiated at third order. The schemes are compared in terms of the overall RAM
memory, computation time, and the number of TRNG calls. Our approach achieves an
improved overall execution time compared to the higher-order scheme of [CRZ18] (at third
order) while maintaining the online time. The latter is achieved by making use of the full
pre-processing advantage of lookup table-based masking schemes. We ran our third-order
scheme for the block ciphers AES-128 and PRESENT (80-bit key variant). The source
code for our third-order scheme implementation is available at [AV].

The target embedded device is NXP’s FRDM-K64F which possesses a RAM memory
of 256 KB, 1MB flash memory, and has a processor clock speed of 120 MHz. The device
comes with an in-built hardware random-number generator clocked at 48 MHz. The
RNGA module requires approximately 300 clock cycles to generate a 32-bit random
word. We compile our implementations using the −O1 flag. Even though this setting
would increase the overall clock cycle consumption when compared to other flags, further
compiler optimisations may impact the side-channel security of the implementation, as
reported in [BWG+22]. Our implementation includes the third-order masked full block
cipher implementation of AES-128 [FIP01] and 80-bit key PRESENT [BKL+07]. While
implementing the block cipher AES-128, we have used the publicly available code from [Cor]
and [VV]. For the PRESENT cipher, we referred the unmasked implementation from the
public repository [Klo]. The code size is 26.5 KB for the masked implementation of AES-
128 using Algorithm 3, whereas for the full cipher masked implementation of PRESENT,
the code size is 25.8 KB. We would like to stress that our implementation code is only

548 A Faster Third-Order Masking of Lookup Tables

for the purpose of benchmarking and it requires additional hardening countermeasures to
resist against real-world side-channel attacks [BWG+22].

Since the computation in our schemes is divided into two phases, offline (pre-processing)
and online (post-processing), the total number of clock cycles for the execution is the sum
of offline and online computations. By offline computation we mean the total number of
clock cycles used for the processing that is independent of the input secret. By online
computation, we refer to the computation that is performed after the availability of the
secret input. The total RAM memory includes the amount of space required for the
pre-processed randomised lookup tables and the associated variables. This amounts to
the pre-processing of the lookup tables of 160 (10 rounds × 16) and 496 (31 round × 16)
S-box invocations for AES-128 and PRESENT ciphers, respectively. The true random
values and the input seed to PRGs are generated using the in-built RNGA module.

Table 3 on Page 549 presents the comparison of our implementation results for the
3-SNI secure implementation of AES-128 with other 3-SNI lookup table-based schemes
[CRZ18, VV21]. To maximise the speed of computation, multiple entries of the randomised
table can be packed and processed in parallel using the large register variant (LRV) approach
presented in [CRZ18]. It can be observed from Table 3 that there is an approximate factor
two reduction in the RAM memory usage of Algorithm 3 when compared to the increasing
shares variant of [CRZ18]. Where as there is a 78.87% reduction in the overall running
time of the proposed scheme presented in Algorithm 3 when compared to the LRV variant
with increasing shares approach of [CRZ18]. One may be tempted to adopt a similar LRV
strategy to Algorithm 3 to improve the overall running time of our scheme. But it turns
out that packing the entries using LRV variant for our generic scheme is insecure and the
details can be found in Appendix D.

We present the implementation results for the circuit-based schemes [RP10, GR17,
WGY+22] in Table 4 on Page 549. A recent work of Wang et al. [WGY+22] demonstrated
a scheme that facilitates reusing t = k − 1 shares across the ISW multiplication gadgets.
Similar to the strategy followed in the recent LUT-based schemes [VV20, VV21], the
authors of [WGY+22] have divided the computation into offline and online phases. They
have provided their source code optimised in C and assembly for a single round of masked
AES-128 [Wan]. Also, their implementation pre-processes the linear layers. Since their
code is not a full AES-128 cipher implementation, we could only estimate the clock cycles
needed for a single complete execution of AES-128 instantiated at third order. Our online
execution time (without the pre-processing of the linear layers) is comparable to that of
Wang et al.’s scheme [WGY+22] with full pre-processing (including the linear layers) (see
Row 1 of Table 3 and Row 3 of Table 4). The offline time of [WGY+22] is much faster than
ours, and so is the comparison w.r.t. the randomness usage. We think that it would be an
interesting research direction to explore whether the share resue technique of [WGY+22]
can be adapted to the table-based masking schemes, in particular, to our scheme.

In Table 4, we compare the online execution time of our scheme with that of bitslicing
and [RP10]. It can be observed that our scheme (Algorithm 3) requires eight times lesser
clock cycles when compared to the 3-SNI instantiation of masked AES-128 implementation
using bitslicing (optimised with 32-bit ISW-AND followed by mask refresh using full
refresh [DDF14]). Where as the online time of Rivain and Prouff’s third-order instantiation
[RP10] is 33.5 times slower than our proposed third-order scheme. We also implemented
the lightweight cipher PRESENT using the proposed scheme. The interesting observation
here is that even though the overall execution time of the third-order masked PRESENT
cipher is less than that of AES-128, the online time for the lightweight cipher is higher
than the latter.

Alexander et al. 549

Table 3: Comparison of third-order masked implementation of AES-128 using our scheme
(Algorithm 3) vs. [CRZ18]. Also, the results for third-order masked implementation of
PRESENT using Algorithm 3. Total memory and true random values are in KB and the
clock cycles are represented in millions (M).

Variant Total
Memory

Offline(M) Online(M) Total(M) # True
random

AES-128 Implementation

Algorithm 3 87.22 3.80 0.10 3.90 40.62

[CRZ18] (Increasing
shares)

167.1 36.19 0.10 36.29 240.46

[CRZ18] (Increasing
shares with LRV)

167.1 17.94 0.76 18.7 240.46

PRESENT Implementation

Algorithm 3 23.44 1.01 0.46 1.47 9.68

Table 4: Comparison of third-order circuit based masked implementation of AES-128.
Total memory and true random values are in KB and the clock cycles are represented in
millions (M).

Variant Total
Memory

Offline(M) Online(M) Total(M) # True
random

AES-128 Implementation

[RP10] 7.9 - 0.96 0.96 5.62

[GR17] (Bitslicing) 9.98 - 0.84 0.84 3.75

[WGY+22] (Com-
mon shares)

5.92 1.02 0.09 1.11 0.21

4 Conclusion

In this paper, we proposed a third-order secure table-based masking scheme that signifi-
cantly outperforms the state-of-the-art table-based masked software implementations in
terms of time, RAM memory, and randomness usage. A future research direction on this
topic is to design table-based schemes at fourth and higher orders that are significantly
more efficient than the fourth-order and slightly higher-order instantiations of current
higher-order table-based masking schemes. While nearly eliminating the maskrefresh in our
proposals leads to efficient schemes, the proofs become more involved. As we saw, there
is a fine line separating security and efficiency, and one needs to be vigilant of the same.
The lack of formal verification tools that can directly verify the security of table-based
masking schemes is making the effort to design new schemes more involved. It would be a
beneficial contribution to develop such verification tools.

550 A Faster Third-Order Masking of Lookup Tables

Acknowledgements
We would like to thank the anonymous reviewers of TCHES 2023 for their valuable
comments which helped us improve this manuscript. This work was partly funded by the
Infosys Foundation Career Development Chair Professorship grant for Srinivas Vivek and
by the Centre for Internet of Ethical Things (CIET), IIIT Bangalore.

References
[AV] Anju S Alexander and Annapurna Valiveti. C Third-Order LUT-based

AES and PRESENT Implementation. Available at https://github.com/
annapurna-pvs/Higher-Order-LUT-PRG. Last accessed on October 7, 2022.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-
Interference and Type-Directed Higher-Order Masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016, pages
116–129. ACM, 2016.

[BBD+20] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, François-Xavier Standaert, and Pierre-Yves Strub. Improved
parallel mask refreshing algorithms: generic solutions with parametrized non-
interference and automated optimizations. J. Cryptogr. Eng., 10(1):17–26,
2020.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of
masking schemes and the bounded moment leakage model. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, Advances in Cryptology - EURO-
CRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I, volume 10210 of Lecture Notes in Computer Science,
pages 535–566, 2017.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

[BWG+22] Arthur Beckers, Lennert Wouters, Benedikt Gierlichs, Bart Preneel, and
Ingrid Verbauwhede. Provable secure software masking in the real-world. In
Josep Balasch and Colin O’Flynn, editors, Constructive Side-Channel Analysis
and Secure Design - 13th International Workshop, COSADE 2022, Leuven,
Belgium, April 11-12, 2022, Proceedings, volume 13211 of Lecture Notes in
Computer Science, pages 215–235. Springer, 2022.

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and
Matthieu Rivain. Higher-Order Masking Schemes for S-Boxes. In Anne
Canteaut, editor, FSE 2012, volume 7549 of LNCS, pages 366–384. Springer,
2012.

https://github.com/annapurna-pvs/Higher-Order-LUT-PRG
https://github.com/annapurna-pvs/Higher-Order-LUT-PRG

Alexander et al. 551

[CGPZ16] Jean-Sébastien Coron, Aurélien Greuet, Emmanuel Prouff, and Rina Zeitoun.
Faster evaluation of sboxes via common shares. In Gierlichs and Poschmann
[GP16], pages 498–514.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Wiener [Wie99],
pages 398–412.

[Cor] Jean-Sébastian Coron. Higher-order countermeasures for AES and DES.
Available at https://github.com/coron/htable. Last accessed on October
1, 2022.

[Cor14] Jean-Sébastien Coron. Higher Order Masking of Look-Up Tables. In Nguyen
and Oswald [NO14], pages 441–458.

[CPR07] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side Channel
Cryptanalysis of a Higher Order Masking Scheme. In Pascal Paillier and
Ingrid Verbauwhede, editors, Cryptographic Hardware and Embedded Systems
- CHES 2007, 9th International Workshop, Vienna, Austria, September 10-13,
2007, Proceedings, volume 4727 of Lecture Notes in Computer Science, pages
28–44. Springer, 2007.

[CRV14] Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek. Fast Evaluation of
Polynomials over Binary Finite Fields and Application to Side-Channel Coun-
termeasures. In Lejla Batina and Matthew Robshaw, editors, CHES 2014.
Proc., volume 8731 of LNCS, pages 170–187. Springer, 2014.

[CRZ18] Jean-Sébastien Coron, Franck Rondepierre, and Rina Zeitoun. High Order
Masking of Look-up Tables with Common Shares. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(1):40–72, 2018.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage. In Nguyen and Oswald
[NO14], pages 423–440.

[FIP01] NIST FIPS. Advanced Encryption Standard (AES), Federal Information
Processing Standards Publication 197, US Department of Commerce/NIST,
November 26, 2001. Available from the NIST website, 2001.

[GP16] Benedikt Gierlichs and Axel Y. Poschmann, editors. Cryptographic Hardware
and Embedded Systems - CHES 2016 - 18th International Conference, Santa
Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813 of Lecture
Notes in Computer Science. Springer, 2016.

[GR16] Dahmun Goudarzi and Matthieu Rivain. On the Multiplicative Complexity
of Boolean Functions and Bitsliced Higher-Order Masking. In Gierlichs and
Poschmann [GP16], pages 457–478.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How Fast Can Higher-Order Masking
Be in Software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture
Notes in Computer Science, pages 567–597, 2017.

https://github.com/coron/htable

552 A Faster Third-Order Masking of Lookup Tables

[GRVV17] Dahmun Goudarzi, Matthieu Rivain, Damien Vergnaud, and Srinivas Vivek.
Generalized Polynomial Decomposition for S-boxes with Application to Side-
Channel Countermeasures. In Wieland Fischer and Naofumi Homma, editors,
Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th Inter-
national Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings,
volume 10529 of Lecture Notes in Computer Science, pages 154–171. Springer,
2017.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Wiener [Wie99], pages 388–397.

[Klo] D. Klose. C PRESENT Implementation. Available at http://www.
lightweightcrypto.org/implementations.php. Last accessed on October
1, 2022.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, CRYPTO 1996, Proc.,
volume 1109 of LNCS, pages 104–113. Springer, 1996.

[NO14] Phong Q. Nguyen and Elisabeth Oswald, editors. EUROCRYPT 2014. Proc.,
volume 8441 of LNCS. Springer, 2014.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against Side-Channel Attacks:
A Formal Security Proof. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013. Proc., volume 7881 of LNCS, pages 142–159. Springer,
2013.

[PV16] Jürgen Pulkus and Srinivas Vivek. Reducing the Number of Non-linear
Multiplications in Masking Schemes. In Gierlichs and Poschmann [GP16],
pages 479–497.

[RDP08] Matthieu Rivain, Emmanuelle Dottax, and Emmanuel Prouff. Block Ciphers
Implementations Provably Secure Against Second Order Side Channel Anal-
ysis. In Kaisa Nyberg, editor, Fast Software Encryption, 15th International
Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised
Selected Papers, volume 5086 of Lecture Notes in Computer Science, pages
127–143. Springer, 2008.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES
2010. Proc., volume 6225 of LNCS, pages 413–427. Springer, 2010.

[RV13] Arnab Roy and Srinivas Vivek. Analysis and Improvement of the Generic
Higher-Order Masking Scheme of FSE 2012. In Guido Bertoni and Jean-
Sébastien Coron, editors, CHES 2013. Proc., volume 8086 of LNCS, pages
417–434. Springer, 2013.

[SP06] Kai Schramm and Christof Paar. Higher Order Masking of the AES. In David
Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS, pages 208–225.
Springer, 2006.

http://www.lightweightcrypto.org/implementations.php
http://www.lightweightcrypto.org/implementations.php

Alexander et al. 553

[Vad17] Praveen Kumar Vadnala. Time-Memory Trade-Offs for Side-Channel Resistant
Implementations of Block Ciphers. In Helena Handschuh, editor, Topics in
Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA Conference
2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings, volume
10159 of Lecture Notes in Computer Science, pages 115–130. Springer, 2017.

[VV] Annapurna Valiveti and Srinivas Vivek. Implementation of Higher-
order Lookup Table using PRG. Available at https://github.com/
annapurna-pvs/Higher-Order-LUT-PRG. Last accessed on October 1, 2022.

[VV20] Annapurna Valiveti and Srinivas Vivek. Second-order masked lookup table
compression scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(4):129–
153, 2020.

[VV21] Annapurna Valiveti and Srinivas Vivek. Higher-order lookup table masking
in essentially constant memory. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(4):546–586, 2021.

[Wan] Weijia Wang. Software Implementation of Masked AES round function
with common shares. Available at https://github.com/wjwangcrypto/
MaskingWithCommomShares.git. Last accessed on October 1, 2022.

[WGY+22] Weijia Wang, Chun Guo, Yu Yu, Fanjie Ji, and Yang Su. Side-channel
masking with common shares. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2022(3):290–329, 2022.

[Wie99] Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science. Springer, 1999.

A Trivial Extension of [RDP08]

Algorithm 4: Trivial extension of [RDP08] variant from [VV20].
Input : Input shares x1, x2, x3, x4 such that x = x1 ⊕ x2 ⊕ x3 ⊕ x4.
Output : Output shares: y1, y2, y3, y4, such that S(x) = y1 ⊕ y2 ⊕ y3 ⊕ y4.

1 υ
$←− {0, 1}n

2 y1, y2, y3
$←− {0, 1}m

3 d←− (x2 ⊕ υ)⊕ x3
4 for a← 0 to 2n − 1 do
5 b←− a⊕ d

6 T (b)←−
(
(S(x1 ⊕ υ ⊕ a)⊕ y1)⊕ y2

)
⊕ y3

7 end
8 y4 = T (x4)

The algorithm presented in Algorithm 4 on Page 553 which is a trivial extension of
the second-order scheme of [VV20] (a [RDP08] variant that supports pre-processing) to
third-order is insecure due to the attack tuple

(
x1 ⊕ υ, (x2 ⊕ υ)⊕ x3, x4

)
since the random

value υ can not be reused to combine input shares.

https://github.com/annapurna-pvs/Higher-Order-LUT-PRG
https://github.com/annapurna-pvs/Higher-Order-LUT-PRG
https://github.com/wjwangcrypto/MaskingWithCommomShares.git
https://github.com/wjwangcrypto/MaskingWithCommomShares.git

554 A Faster Third-Order Masking of Lookup Tables

B Constructing the Randomised Table in Two Shifts
To avoid the straightforward attack discussed in Appendix A, one can construct the
randomised table T in two steps. Construct a Taux in Step 1 by shifting it with x1 and
protect the shift by the output mask y1. In Step 2, shift Taux using (x2 ⊕ υ)⊕ x3 followed
by y2 and y3. The steps are summarised in Algorithm 5 on Page 553.

Algorithm 5: The scheme with two shifts and three output masks.
Input : Input shares x1, x2, x3, x4 such that x = x1 ⊕ x2 ⊕ x3 ⊕ x4.
Output : Output shares: y1, y2, y3, y4, such that S(x) = y1 ⊕ y2 ⊕ y3 ⊕ y4.

1 y1, y2, y3
$←− {0, 1}m

2 for a← 0 to 2n − 1 do
3 Taux(a)←− S(x1 ⊕ a)⊕ y1
4 end
5 υ

$←− {0, 1}n

6 d←− (x2 ⊕ υ)⊕ x3
7 for a← 0 to 2n − 1 do
8 b←− a⊕ d

9 T (b)←−
(
Taux(a⊕ υ)⊕ y2

)
⊕ y3

10 end
11 y4 = T (x4)

This attack is possible due to the fact that the output mask combination is common
across T . This scheme can be attacked using the tuple

(
y4, T (b)a=c, υ

)
, where c is a

constant,

y4 ⊕ T (b)a=c

=
(
S(x)⊕ y1 ⊕ y2 ⊕ y3

)
⊕

(
S(x1 ⊕ υ ⊕ c)⊕ y1 ⊕ y2 ⊕ y3

)
= S(x)⊕ S(x1 ⊕ υ ⊕ c),

this value combined with υ together depends on x.

C Scheme which works only for Balanced S-boxes
One natural way to thwart the attack described in Appendix B is to to use a vector of
random masks to protect T since repeating the same set of output masks across the table
results in an insecure scheme. This idea is presented in Algorithm 6 on Page 555.

The order of the masks has to be carefully chosen since it may lead to a simulation
that requires the balanced S-box property. Consider the tuple y3, y4, (Taux(a)⊕ y2)a=c, c
is a constant. Then,

y3 ⊕ y4 ⊕
(
Taux(a)⊕ y2)a=0

)
= y3 ⊕

(
S(x)⊕ y1 ⊕ y2 ⊕ y3

)
⊕

(
S(x1 ⊕ υ)⊕ y1 ⊕ y2

)
= S(x)⊕ S(x1 ⊕ υ).

One can simulate the above expression with a random value only when the S-box is
assumed to balanced. The simulation fails, otherwise.

Alexander et al. 555

Algorithm 6: Instance of a scheme violating 3-SNI.
Input : Input shares x1, x2, x3, x4 such that x = x1 ⊕ x2 ⊕ x3 ⊕ x4.
Output : Output shares: y1, y2, y3, y4, such that S(x) = y1 ⊕ y2 ⊕ y3 ⊕ y4.

1 y1, y2
$←− {0, 1}m

2 for a← 0 to 2n − 1 do
3 Taux(a)←− S(x1 ⊕ a)⊕ y1
4 end
5 υ

$←− {0, 1}n

6 d←− (x2 ⊕ υ)⊕ x3
7 for i← 0 to 2n − 1 do
8 Y3[i] $←− {0, 1}m

9 end
10 for a← 0 to 2n − 1 do
11 b←− a⊕ d
12 T (b)←− (Taux(a)⊕ y2)⊕ Y3[b]
13 end
14 y3 = Y3[x4]
15 y4 = T (x4)

D Attack on Extension to Large Registers
Recall that the objective of the scheme described in Section 2 is to improve the overall
running time (along with memory and randomness) compared to the state-of-the-art. In
Algorithm 3, the computation deals with an m-bit value at a time. The target hardware
can support, say w-bit computations, w > m. We follow a similar approach presented in
second-order scheme of [RDP08] and extended to higher-order in [Cor14, CRZ18]. The
idea is to pack multiple entries of the S-box prior to shifting the S-box with the input
share(s) [Cor14, CRZ18]. It turns out that extending our scheme (Algorithm 3) to large
register variant (LRV) leads to a second-order attack as explained below.

Let the processor support w-bit word instructions and w.l.o.g, say, w = 2i and let
m = 2j which implies the register can hold z = 2(i−j) such m-bit values. Precisely,
w = z ·m. Let each n-bit input xi be viewed as

xi = x
(1)
i ||x

(2)
i ,

where, x
(1)
i ∈ {0, 1}β1 , x

(2)
i ∈ {0, 1}β2 and β1 + β2 = n. Also, β2 = log2(z). Hence, every

row of the randomised table is a pack of z S-box outputs and is represented as:

T (u)←− S(u || 0)|| . . . S(u || (z − 1)),

where u ∈ {0, 1}β1 . Algorithm 7 on Page 556 describes the offline computation using the
LRV. It can be observed from Algorithm 7 (Step 5) that the output mask y′

1 is formed by
attaching the m-bit mask y1, z times. The same is the case for y2. This ensures all the
rows of table are masked with the same y1 and y2 as in Algorithm 3.

During the online phase, a lookup of the table T (x(1)
4) would result in a row using

which construct a small table of size 2z by unpacking the elements of the row. Also,
corresponding output mask y′

3 will be obtained by Y ′
3 [x(1)

4]. One would shift this table
with x

(2)
i , i ∈ {1, 2, 3, 4}, to obtain the final sharing of S(x). But, there is a second-order

attack on this variant by probing the pair
(
T (x(1)

4), Y ′
3 [x(1)

4]
)
. The attack works as follows.

556 A Faster Third-Order Masking of Lookup Tables

Algorithm 7: Extension of Algorithm 3 to large register variant.
Input :

• Shares x1, x2, x3. // Shares for offline

• w, the register size

• An (n, m) S-box lookup table S.

Output : Randomised lookup table T , y1, y2, Y ′
3 .

// Pre-processing/Offline phase
1 z ←− w/m
2 β2 ←− log2 z
3 β1 ←− (n− β2)
4 y1

$←− {0, 1}m

5 y′
1 = (y1|| . . . ||y1), z times

6 for a← 0 to 2β1 − 1 do
7 T (a)←− S(a||0)|| . . . ||S(a||(z − 1))
8 end
9 for a← 0 to 2β1 − 1 do

10 Taux(a)←− T (x(1)
1 ⊕ a)⊕ y′

1
11 end
12 y2

$←− {0, 1}m

13 y′
2 = (y2|| . . . ||y2), z times

14 for i← 0 to 2β1 − 1 do
15 Y ′

3 [i] $←− {0, 1}w

16 end
17 υ(1) $←− {0, 1}β1

18 d←− (x(1)
2 ⊕ υ(1))⊕ x

(1)
3

19 for a← 0 to 2β1 − 1 do
20 b←− a⊕ d

21 T (b)←− (Taux(a⊕ υ(1))⊕ Y ′
3 [b])⊕ y′

2
22 end

T (x(1)
4) =

(
S(x(1)||0)||S(x(1)||1)|| . . . ||S(x(1)||(z − 1))

)
⊕ (y1|| . . . ||y1)⊕ (y2|| . . . ||y2)⊕ Y ′

3 [x(1)
4].

T (x(1)
4)⊕ Y ′

3 [x(1)
4] =

(
S(x(1)||0)||S(x(1)||1)|| . . . ||S(x(1)||(z − 1))

)
⊕ (y1|| . . . ||y1)⊕ (y2|| . . . ||y2).

Since the output masks y1 and y2 are common across the entries that are packed
together, shift the w-bit values and obtain the individual entries to cancel the effect of
y1 ⊕ y2. This leads to

S(x(1)||0)||S(x(1)||1)|| . . . ||S(x(1)||(z − 1)).

These individual values together depend on the β1 most significant bits of the secret, x.

	Introduction
	Proposed Third-Order TBM Scheme
	Correctness
	Security Proof

	Implementation
	Conclusion
	Trivial Extension of RivainDP08
	Constructing the Randomised Table in Two Shifts
	Scheme which works only for Balanced S-boxes
	Attack on Extension to Large Registers

