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Abstract. A verifiable delay function (VDF) is a function whose evaluation requires
running a prescribed number of sequential steps over a group while the result can be
efficiently verified. As a kind of cryptographic primitives, VDFs have been adopted
in rapidly growing applications for decentralized systems. For the security of VDFs
in practical applications, it is widely agreed that the fastest implementation for
the VDF evaluation, sequential squarings in a group of unknown order, should be
publicly provided. To this end, we propose a possible minimum latency hardware
implementation for the squaring in class groups by algorithmic and architectural
level co-optimization. Firstly, low-latency architectures for large-number division,
multiplication, and addition are devised using redundant representation, respectively.
Secondly, we present two hardware-friendly algorithms which avoid time-consuming
divisions involved in calculations related to the extended greatest common divisor
(XGCD) and design the corresponding low-latency architectures. Besides, we schedule
and reuse these computation modules to achieve good resource utilization by using
compact instruction control. Finally, we code and synthesize the proposed design under
the TSMC 28nm CMOS technology. The experimental results show that our design
can achieve a speedup of 3.6x compared to the state-of-the-art implementation of the
squaring in the class group. Moreover, compared to the optimal C++ implementation
over an advanced CPU, our implementation is 9.1x faster.
Keywords: Verifiable delay functions · squaring · extended GCD · low-latency ·
ASIC · architecture · class groups · redundant representation

1 Introduction
Verifiable delay functions (VDFs), formalized by Boneh et al. [BBBF18], are functions
that need inherently sequential computation to evaluate but the results can be verified
exponentially faster. Recently, the use of VDFs has been proven effective in a wide
range of exciting applications, such as generation of public verifiable randomness beacons
[GLOW21, BGB17, SJH+21], computational time-stamps [LSS20], proofs of replication
[BDG17, Fis19], and resource-efficient blockchains [CP19, Eth21, AVD21].

According to [BBBF18], a complete VDF is composed of the following three components:

• Setup(λ, T )→ (pp): The input for this operation are λ and T , where parameter λ
is related to the security level and parameter T corresponds to the delay. Moreover,
T is positively correlated with the delay but unequal to the value of delay. Based on
input, this operation will generate and output the public parameters, pp, that will
be used in the VDF, such as the domain and range of VDF.
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• Eval(pp, x)→ (y, π): This operation performs the inherent computation on the input
x based on the public parameter and outputs the result y. Meanwhile, evaluation
needs to output proof π, which are intermediate evaluation results for efficient
verification.

• Verify(pp, x, y, π) → (accept, reject): This operation verifies that the result y of
the evaluation is the correct output of x. Using the proof π given by the evaluator,
the result can be verified efficiently without re-doing the costly computation in the
evaluation.

In the VDF, the most critical and time-consuming operation is the evaluation, which
requires a prescribed number of steps to calculate and cannot be parallelized. The operation
of repeated squarings in a group of unknown order, defined as time-lock puzzles by Rivest,
Shamir, and Wagner in [RSW96], is considered a relatively simple and efficient solution
for evaluation. The two elegant VDF constructions proposed by Pietrzak [Pie18] and
Wesolowski [Wes19] utilize the serial nature of repeated squaring in groups of unknown
order, such as RSA groups or class groups of imaginary quadratic fields.

The repeated squaring over the RSA group is to compute: a2T mod N , where N = pq
(p, q are both unknown large primes). Since only a, T , and N are given, the fastest
algorithm to compute this takes T squaring steps. However, this assumption is broken if
the factorization of N is known. VDF construction over the RSA group requires the factors
of N to be generated by a trusted setup and not revealed. In contrast to RSA groups,
using class groups is a more elegant solution where the setup is transparent because the
order of the class group is nearly impossible to compute [BV07, CL84]. Therefore, VDF
in class groups potentially has a wide range of applications without a trusted third-party
setup, such as cryptocurrencies that require technical disclosure [CP19].

All VDF applications share a common constraint: they can only guarantee a pre-
scribed number of steps of sequential computation, but real-world execution time for VDF
computation depends heavily on the speed of computing platforms. The system could
be broken if a malicious participant can compute the VDF evaluation much faster than
all honest users. Therefore, to secure VDF applications, the fastest implementation for
VDF evaluation needs to be thoroughly studied and made public. Since VDF evaluation
is inherently sequential squaring over groups, a low-latency squaring algorithm and its
architecture with the minimum latency are crucial for making VDF schemes practical.

Related works. The sequential computation of VDF in the RSA group is performed
through modular multiplication or modular squaring, whose implementation has been
extensively studied. However, implementation results for VDF evaluation in the class
group have been scarcely presented in the open literature, though the latter is more advan-
tageous than the former because it does not need a third-party. In 2019, Öztürk proposed
an efficient low-latency multiplication algorithm for VDF in RSA groups with a fixed
modulus [Özt19]. This algorithm was adopted in the competition held by VDF Alliance
[VDF19] to achieve the lowest latency in operating a number of sequential squarings on
FPGA platforms. Based on this algorithm, Mert et al. fully analyzed and compared
the existing ultra-low latency algorithms of modular squaring for ASIC implementation
[MÖS20]. Besides, [San21] presented a low-latency Montgomery modular multiplication
algorithm for FPGA implementation with a slight increase in latency compared to work
in [Özt19]. However, it is easy to replace the modulus, and there is no need for a large
number of look-up tables and pre-computations.

The sequential computation of VDF evaluation in the class group includes successive
squaring and reduction of binary quadratic forms [BV07]. Their computations contain
calculations of the extended greatest common divisor (XGCD), divisions, multiplications,
and additions of large numbers. In 2019, Chia Network held a contest for the fast software



440 Low-Latency Implementation of the Squaring in Class Groups

implementation of VDF evaluation with a 2048-bit discriminant [Chi19], and optimized
C++ implementations have been developed through this competition. At last, a C++
implementation using the NUDUPL algorithm [JP02] stood out and was adopted as the
solution for Chia Network [CP19]. The NUDUPL algorithm performs squaring and reduces
output value to assist with the later reduction. The NUDUPL algorithm takes more
computation time than the conventional squaring algorithm, but the following reduction
time is reduced dramatically, making the evaluation more efficient.

In 2020, Zhu et al. proposed an efficient hardware accelerator for squaring by partially
parallelizing the squaring, and this resulted in a 2x speedup compared to the state-of-the-
art (SOTA) C++ implementation over a standard CPU [ZST+20]. For XGCD, the most
time-consuming computation in the VDF evaluation, Sreedhar et al. improved a two-bit
plus-minus (PM) algorithm with carry-save adders to calculate XGCD [SHT22]. The
design was implemented in ASIC, and the implementation results show that it is 8x faster
than the XGCD implementation in Zhu’s work [ZST+20]. Recently, complete hardware
implementation for the VDF evaluation in the class group was proposed in [ZTLW22]
which achieves a 3.6x speedup compared to the C++ implementation result. This design
chose the standard squaring algorithm rather than the more efficient NUDUPL algorithm,
and a modified parallel XGCD algorithm was used for XGCD calculation.

Contributions. Since the VDF application has only been proposed for a short time and is
computationally complex, the results of the hardware implementation are still limited. The
works in [ZTLW22] and [SHT22] are implementations of XGCD in VDF, and [ZST+20]
did not implement the reduction. Among these previous works, only that of [ZTLW22]
is a complete implementation for the squaring in the class group, but the algorithm and
the hardware design in it can be greatly optimized. Compared to these work, we propose
a low-latency implementation for the VDF in class groups with a 2048-bit discriminant
by using an efficient NUDUPL algorithm for the first time. As mentioned earlier, the
calculation of VDF evaluation is the sequential calculation of a number of squarings in
the class group, so we aim to accelerate the squaring in the class group. In addition
to VDF, the calculation of squaring in the class group can also be used in many other
applications, such as accumulators [BBF19, Lip12], timed commitments [TCLM21], and
succinct non-interactive argument of knowledge [LM19].

In this paper, we firstly review and conclude the efficient NUDUPL algorithm for
squaring in the class group. We also modify the complex operations involved (such as
XGCD and partial XGCD) to be more hardware friendly. Then, we provide low-latency
large-number adders and large-number multipliers by utilizing redundant representation.
At last, we devise the architecture for squaring in the class group using customized
instruction. The main contributions are summarized as follows:

• We utilize the k-ary algorithm proposed in [Sor90] to calculate large-number XGCD
only by simple additions and shifts. The goal of partial XGCD is to use the Euclidean
algorithm to reduce the input to a determined size. Therefore, for the first time, we
propose an efficient scheme to calculate the partial XGCD by only using comparisons,
shifts, and subtractions, avoiding the difficult division involved in the Euclidean
algorithm.

• We introduce a redundant representation system with a "carry-free" nature to realize
arithmetic modules, and extremely low-latency large-number adders and large-number
multipliers are devised, respectively. We adopt Goldschmidt algorithm [Gol64] to
implement the divisor, which can reduce the number of iterations and reuse the
large-number multipliers.

• We develop a compact control logic and design the instruction set for efficient
scheduling, making the implementation area-efficient and flexible. At last, we propose
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a low-latency design for squaring using the NUDUPL algorithm by integrating the
proposed compact control logic, memory, and arithmetic modules.

We code the proposed design in SystemVerilog and synthesize it under the TSMC 28nm
CMOS technology. The experimental results show that our implementation takes an
average of 2.0 µs for a squaring in the class group, which is the fastest implementation
among the existing work.

Paper organization. Section 2 overviews binary quadratic forms, the NUDUPL algo-
rithm, and the redundant representation. The proposed architectures for main operations
in the squaring are presented in Section 3. In Section 4, the method of instruction schedul-
ing is presented. The experimental results of the proposed design and the performance
comparison are given in Section 5. The work is summarized in Section 6.

2 Background
2.1 Binary Quadratic Forms
The VDF construction used in Chia Network is the [Wes19]’s construction using squaring
of binary quadratic forms over a class group. In this subsection, we briefly introduce
several definitions of binary quadratic forms used in the VDF construction.
Form. An integral binary quadratic form is defined as:

f(x, y) = ax2 + bxy + cy2, (1)

where a, b, c ∈ Z and a, b, c ≠ 0. For the sake of simplicity, we will write only form instead
of integral binary quadratic form. Moreover, form f(x, y) = ax2 + bxy + cy2 is written as
f = [a, b, c].
Discriminant. The discriminant of a form f = [a, b, c] is ∆(f) = b2 − 4ac. The
discriminant ∆ in Chia Network’s VDF is a large negative prime, e.g., 2048 bits, and |∆| ≡
3 mod 4, making the order of the class group unknown.
Positive definite. A form f of positive discriminant is called indefinite and a form of
negative discriminant is called positive/negative definite, according to whether f represents
positive or negative integers. The forms relevant to the Chia Network VDF are positive
definite forms, where ∆(f) < 0 and a > 0.
Reduced. A primitive positive definite form f = [a, b, c] is reduced if |b| ≤ a ≤ c, and
when a = c then b ≥ 0. In particular, each proper equivalence class of positive definite
form contains a unique reduced representative.
Squaring. The squaring is to calculate F = f2 = AX2 + BXY + CY 2, where [A, B, C]
can be obtained by performing specific calculations on [a, b, c].

2.2 NUDUPL Algorithm
Squaring operation on the binary quadratic form f of discriminant ∆ will make the
resulting form F = f2 larger. Since the VDF evaluation is performing repeated squaring
operations, a reduction is required to turn F into a unique reduced form while avoiding
increasing the form. The NUDUPL algorithm is used to compute reduced squaring of a
positive definite binary quadratic form by applying reduction before squaring. Compared
to the original calculation process of one squaring followed by one reduction, using the
NUDUPL algorithm takes less time to compute reduced squaring, which is essential for
the implementation of VDF evaluation.

We adopt the NUDUPL algorithm for low-latency implementation of squaring of binary
quadratic forms, and the NUDUPL algorithm is detailed in Algorithm 1. As shown in
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Algorithm 1: The NUDUPL algorithm
Input: (a, b, c), where a, b, c ∈ Z
Output: (A, B, C), where A, B, C ∈ Z

1 Precompute L← |∆| 14
2 (x, y, G)← XGCD(a,b) ▷ satisfy ax + by = G
3 Set Ax ← G,By ← a/G, Dy ← b/G ▷ G always equals 1 in Chia’s VDF
4 Bx ← (cy) mod By

5 Set bx ← Bx, by ← By

6 if |by| ≤ L then
7 dx ← (bxDy − c)/By

8 A← b2
y, C ← b2

x

9 B ← b− (bx + by)2 + A + C
10 C ← C −Gdx

11 else
12 Set x← 1, y ← 0, z ← 0
13 while |by| > L and bx ̸= 0 do
14 q ← ⌊ by

bx
⌋, t← by mod bx ▷ This block is the partial XGCD operation

15 by ← bx, bx ← t
16 t← y − qx, y ← x,x← t
17 z ← z + 1
18 end
19 if z is odd then
20 by ← −by, y ← −y
21 end
22 ax ← Gx, ay ← Gy
23 dx ← (bxDy − cx)/By

24 Q1 ← dxy, dy ← Q1 + Dy

25 B ← G(dy + Q1)
26 dy ← dy/x
27 A← b2

y, C ← b2
x

28 B ← B − (bx + by)2 + A + C
29 A← A− aydy, C ← C − axdx

30 end

Algorithm 1, the relatively expensive operations in the NUDUPL algorithm include XGCD
(step 2), modular multiplication (step 4), division (step 7, step 23, and step 26), and partial
XGCD (steps 13 to 21). We implement these operations as follows:

• XGCD: An efficient two-bit PM algorithm is adopted, and the corresponding low-
latency architecture using redundant signed digit (RSD) representation is designed.

• Modular multiplication: Since the modulus By is not fixed and By is also a divi-
sor in other divisions, we first calculate the reciprocal of By and then apply the
multiplication.

• Division: We use Goldschmidt algorithm [Gol64] to calculate division, which has a
fast convergence rate especially for large numbers.

• Partial XGCD: The partial XGCD uses the Euclidean algorithm to reduce the input
to a given size based on a specific rule. The large-number division (step 14) in
partial XGCD is highly time-consuming and must be performed many times, which
is unacceptable for low-latency design. We propose an efficient scheme to calculate
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partial XGCD only by analyzing the relationship between outputs by comparisons,
shifts, and subtractions.

In the following section, we will discuss the above algorithms and their hardware
architecture in detail. In addition to the above calculations, the NUDUPL algorithm also
involves many sequential multiplications, additions, and subtractions. We implement these
operations by instantiating a few adders and multipliers and designing an appropriate
instruction set.

2.3 Redundant Representation
Among the operations involved in the VDF evaluation, additions/subtractions are the most
common and basic operations. Since the operands are very large, using carry propagation
adders (CPAs) will result in a very long carry chain. Also, the VDF evaluation is performing
T squarings continuously and outputs the final result, where T usually is a large number
(106 or larger). Therefore, a redundant representation system works well for the low-latency
implementation of the VDF evaluation. It avoids carry propagation and requires only one
redundant representation to two’s complement representation conversion at final output.

In a regular base 2 representation system, an L-bit number can represent 2L different
numbers where each number has unique representations, called non-redundant represen-
tation. In contrast, redundant representation represents the 2L number by more bits
where a number can have two or more representations. The most common redundant
representations are Carry-Save (C-S) and RSD representations.
In C-S representation, a signed number A can be expressed as the sum of two signed
numbers Ac and As:

A = Ac + As =
∑k−1

i=0
(ac + as)2i (2)

In RSD representation, a signed number A can be expressed as the difference between
two unsigned numbers A+ and A−:

A = A+ −A− =
∑k−1

i=0
ai2i =

∑k−1

i=0
(a+

i − a−
i )2i, (3)

where a+
i , a−

i ∈ {0, 1} and ai ∈ {1̄, 0, 1}. In RSD with radix-2, digits ai are represented by 0,
1, and -1, where digit 0 is coded with 00 or 11, digit 1 is coded with 10, and digit -1 (written
as 1̄) is coded with 01. Both C-S representation and RSD representation are effective
in avoiding the long delays caused by the long carry chains in additions/subtractions.
However, we choose the RSD representation for our implementation because of the following
reasons:

• Even if the operands are signed, the RSD representation only needs unsigned numbers
without additional sign bits, which is a great advantage in the VDF design since it
involves signed operands.

• Compared to C-S representation, the "0" in RSD representation is determined [Avi61],
and this feature makes it simple to determine whether a number equals zero.

• The subtraction is straightforward because the opposite operation in RSD represen-
tation is just swapping positions of a+

i and a−
i .

3 Proposed Architectures for the Main Operations
3.1 RSD Multiplier
A bitwise integer multiplication by digital circuits can be summarized as three steps: (1)
Generating partial products; (2) Adding all partial products by a partial product reduction
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tree until only two partial product rows remain; (3) Adding the two remaining rows by
a fast CPA. Generating partial products is usually relatively simple, and we can use
redundant binary numbers to perform the second step. When the operands are large, the
delay caused by the long carry chain of CPA in the third step will be high. Fortunately,
we use the redundant form for the entire VDF evaluation, thus avoiding step 3 in our
multiplications.

As shown in Figure 1, the RSD multiplier consists of RSD partial product generators
(PPGs) and RSD adders (RSDAs). The two inputs of the RSD multiplier are A =

∑k−1
i=0 ai2i

and B =
∑k−1

i=0 bi2i, where ai, bi ∈ {1̄, 0, 1}. In our design, there is no need for Booth
encoding, as the input is already in RSD representation. We consider A as the multiplier
and B as the multiplicand, and the partial product is generated according to Table 1. The B̄
is obtained by just swapping the bits in odd and even positions of B: B̄ =

∑k−1
i=0 (b−

i −b+
i )2i.

PPG PPG PPG PPG PPG PPG PPG PPG

Multiplicand B

Multiplier A

  

{𝑎𝑛−1
+ , 𝑎𝑛−1

− } {𝑎𝑛−2
+ ,𝑎𝑛−2

− } {𝑎𝑛−3
+ ,𝑎𝑛−3

− } {𝑎𝑛−4
+ ,𝑎𝑛−4

− } {𝑎0
+,𝑎0

−} {𝑎1
+,𝑎1

−} {𝑎2
+,𝑎2

−} {𝑎3
+,𝑎3

−} 

RSDA RSDA RSDA RSDA

RSDA RSDA

RSDA

Product C

...

...

... ... L level

Figure 1: The block diagram of a RSD multiplier.

Table 1: Partial product generation of the RSD representation.
ai a+

i a−
i partial product

0 0 0 0
0 1 1 0
1 1 0 B
-1 0 1 B̄

v
+      +      -

+         -
PPM

v
- - +

- +
MMP

v
+       +     -

+       -
PPM

v
- - +

- +
MMP

v
+      +      -

+         -
PPM

v
- - +

- +
MMP

0 

0 

𝒂𝒂𝒏𝒏−𝟏𝟏+ 𝒂𝒂𝒏𝒏−𝟏𝟏−

𝒃𝒃𝒏𝒏−𝟏𝟏+ 𝒃𝒃𝒏𝒏−𝟏𝟏−

𝒂𝒂𝒏𝒏−𝟐𝟐+ 𝒂𝒂𝒏𝒏−𝟐𝟐− 𝒂𝒂𝟎𝟎+ 𝒂𝒂𝟎𝟎−
𝒃𝒃𝒏𝒏−𝟐𝟐+ 𝒃𝒃𝒏𝒏−𝟐𝟐− 𝒃𝒃𝟎𝟎+ 𝒃𝒃𝟎𝟎−

𝒔𝒔𝒏𝒏+ 𝒔𝒔𝒏𝒏− 𝒔𝒔𝒏𝒏−𝟏𝟏+ 𝒔𝒔𝒏𝒏−𝟏𝟏− 𝒔𝒔𝒏𝒏−𝟐𝟐+ 𝒔𝒔𝟏𝟏− 𝒔𝒔𝟎𝟎+ 𝒔𝒔𝟎𝟎−

v
+      +  -

+         -
PPM

v
- - +

- +
MMP

𝒂𝒂+ 𝒂𝒂−𝒃𝒃+

𝒃𝒃−
𝒙𝒙− = 𝒂𝒂−⊕(𝒃𝒃+⊕ 𝒂𝒂+)
𝒙𝒙+ = ~𝒂𝒂−(𝒃𝒃+⊕ 𝒂𝒂+) + 𝒃𝒃+ 𝒂𝒂+

𝒚𝒚+ = 𝒂𝒂+⊕(𝒃𝒃−⊕ 𝒂𝒂−)
𝒚𝒚− = ~𝒂𝒂+(𝒃𝒃−⊕ 𝒂𝒂−) + 𝒃𝒃− 𝒂𝒂−

𝒂𝒂+𝒂𝒂−

𝒙𝒙+ 𝒙𝒙−

𝒚𝒚− 𝒚𝒚+

….

….

….

Figure 2: The architecture of a 2n-bit RSD adder.
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After obtaining the partial product, RSD adders are needed to add the partial product.
The architecture of a n-digit RSD adder is shown in Figure 2. The critical path of an
RSD adder is the delay of a minus-minus-plus (MMP) adder and a plus-plus-minus (PPM)
adder, regardless of the digit size of the input. In addition, as shown in Figure 2, the
digit size of output becomes n+1. According to block diagram of the RSD multiplier in
Figure 1, a n × n-digit multiplication requires L level additions, where L = ⌈log2 n⌉. If
RSD adders are used directly for the RSD multiplier, then the digit size of the output
of the n× n-digit multiplier will become n + L. This digit size increase is unacceptable
considering that the VDF evaluation is repeated squaring. We need to process the overflow
digits of the multiplier to ensure the digit size of each squaring is fixed.

×

Level 1 

Level 3 

A
B

S11

S12

S21

S41

S18

... ...

S22

S23

S24

S31

S32

Level 2 

S19

 
 

S19

C

Extra

Figure 3: The process of a 8× 8-digit RSD multiplication.

We solve the above digit width increase problem by extending the bit width of input.
For a n×n-digit RSD multiplier, n+1 digits represent the input and 2n+2 digits represent
the product. We show a 8× 8-digit RSD multiplication as an example to illustrate our
processing method. Figure 3 shows the process of a 8× 8-digit RSD multiplication, and
one dot represents on digit: ai = {a+

i , a−
i }. For the 8× 8-digit multiplication in Figure 3,

we use 9 digits to represent the inputs, and the red dots represent the extended digit.
First, partial products S11 to S19 are calculated. At level 1 addition:

S11 ∈ [−28 + 1, 28 − 1], S12 ∈ [−29 + 2, 29 − 2],
S21 = S11 + S12 ∈ [−3× 28 + 3, 3× 28 − 3].

(4)

As a result, 10 digits are sufficient to represent the S21, but 11 digits are used. The
case of S22, S23, and S24 are also the same as S21. Then, at level 2 addition:

S21 ∈ [−3× 28 + 3, 3× 28 − 3], S22 ∈ [−3× 210 + 12, 3× 210 − 12],
S31 = S21 + S22 ∈ [−3825, 3825].

(5)

Although 12 digits are sufficient to represent S31, it is actually 14 digits for S31 when
calculated by an RSD adder. Since two extended digits are used to represent S31 and S32,
the value represented by the first two digits can only be 00, 01, 01̄, and 11̄. Next, S41 is
obtained by level 3 addition: S41 = S31 + S32. As shown in Figure 2, the first digit of S41
are determined by the first four bits of an addend: {a+

n−1, a−
n−1, a+

n−2, a−
n−2} and the first

three bits of another: {b+
n−1, b−

n−1, b+
n−2}. We suppose the S32 is the addend A and the

S31 is addend B, and the possible values of the first two bits of S41 are shown in Table
2(a). As shown in Table 2(a), the only possible bits for the first two bits of S41 are 00 and
11, 0 in digit format, so this overflow bits can be directly truncated. Moreover, for the
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multiplication of large digit width, the overflow digits can be processed in this way at level
k (k ≥ 3) additions.

Since we introduce an extended digit for addends of the RSD multiplication, an extra
addition is needed to add the partial product S19. Similar to the above analysis, for
addition: S41 + S19, the possible first digit of product C are shown in Table 2(a) and Table
2(b), so the overflow bits can also be truncated directly.

Table 2: The possible bits for s+
n , s−

n .

(a) {b+
n−1, b−

n−1, b+
n−2} = 000

Value a+
n−1, a−

n−1, a+
n−2, a−

n−2 s+
n , s−

n

00

0000 00
0011 00
1100 00
1111 00

01 0010 00
1110 00

01̄ 0001 00
1101 00

11̄ 1001 11

(b) {b+
n−1, b−

n−1, b+
n−2} = 001

Value a+
n−1, a−

n−1, a+
n−2, a−

n−2 s+
n , s−

n

00

0000 00
0011 00
1100 00
1111 00

01 0010 00
1110 00

01̄ 0001 00
1101 00

11̄ 1001 11

In summary, we ensure that the digit size of operands remains fixed during each
squaring by extending the digit size of the RSD multiplier. The architecture of the
proposed RSD multiplier is shown in Figure 4, where the digit size of the input of a
n × n-digit multiplication is n + 1, and the digit size of output is 2n + 2. This RSD
multiplier needs L + 1 level RSDAs, where L = ⌈log2 n⌉. The critical path delay can be
easily reduced by adding pipelines between RSDAs.
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Extra
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Figure 4: The architecture of the proposed RSD multiplier.

3.2 RSD Divisor
Division of large numbers are very complex operations in hardware implementation. For
additions and multiplications with fixed bit-width input, the bit-width of their output
is determinable, but division do not have this property. In practice, the precision of the
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quotient needs to be determined first and then the division is performed according to the
required precision, so the number of iterations of the division depends on the set precision
rather than the bit-width of the operands.

Division algorithms can be roughly divided into two categories: slow division and fast
division. Slow division include restoring, non-performing restoring, non-restoring, and
SRT division [HOH97]. This class of division algorithm are derived from the hand division
process, in which 1 bit of quotient is determined by the remainder in each iteration so that
the number of iterations and quotient’s bit-width are linearly related. For large-number
divisions, it is slow to converge to the quotient by using these algorithms.

The leading fast division algorithms are the Newton-Raphson algorithm and the
Goldschmidt algorithm [Gol64]. Such algorithms use functions to achieve quotient with
quadratic convergence and combine with fast multiplication to achieve a low-latency
design for large-number division. The operations of the Newton-Raphson algorithm
and Goldschmidt algorithm require several iterations, and each iteration requires two
multiplications and some additions and subtractions. But the difference is that the two
multiplications in the iteration of the Newton-Raphson algorithm have dependencies and
cannot be computed in parallel. However, the multiplications in the Goldschmidt algorithm
can be paralleled. By parallelizing two multiplications, the computation time for division
can be effectively reduced, which is why we choose the Goldschmidt algorithm to implement
the low-latency divider.

For a division: Q = N/D, the Goldschmidt algorithm repeatedly multiplies the
numerator and the denominator by a common factor Fi, which is chosen to make the
numerator converge to 1. This results in the dividend convergent to quotient Q:

Q = N

D
× F1

F1

F2

F2

F...

F...
. (6)

A simple Goldschmidt method is to utilize the binomial theorem. First, scale the N/D

by a power of two such that D ∈ ( 1
2 , 1]. Then, we choose D0 = 1 + x and Fi = 1 + x2i .

Thus,
N

D
= N

1 + x
= N · (1− x)

1− x2 =
N · (1− x) ·

(
1 + x2)

1− x4 = · · · = Q′

=
N ′ = N · (1− x) ·

(
1 + x2)

· · ·
(

1 + x2(k−1)
)

D′ = 1− x2k ≈ 1
.

(7)

After k iterations, the denominator 1 − x2n approaches 1, the numerator is near Q,
and Q is the exact integer quotient when k is large enough. Considering that most of the
divisors involved in the NUDUPL algorithm are the same, making N = 1 and computing
the value of 1/D simplifies the computation. The calculation process is shown in Algorithm
2.

Algorithm 2: The Goldschmidt algorithm
Input: D ∈ (0.5, 1]
Output: 1/D ∈ [1, 2)

1 Initialize: D0 ← D, F0 ← 2−D, N0 ← 1
2 for i = 0 to k do
3 Di+1 ← Di ∗ Fi

4 Ni+1 ← Ni ∗ Fi ▷ Compute two multiplications in parallel
5 Fi+1 ← 2−Di

6 end
7 1/D ← Nk+1
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As shown in Algorithm 1, the divisions in NUDUPL algorithm are step 4, step 7,
step 23, and step 26 in Algorithm 1, where the bit-width of divisor By in binary form
is 1024 and the bit-width of divisor x in binary form is 512. Division can be written
as the product of the dividend and the reciprocal of the divisor. The architecture for
computation of reciprocal of By can be used for computation of reciprocal of x, so we
present the architecture for computation of reciprocal of a 1024-bit number in this section.

Architecture. As shown in Figure 5, this is the architecture for computing the
reciprocal of a 1024-digit number D by using the Goldschimdt algorithm, where digit
can be {1̄, 0, 1}. First, the input D should be scaled to (0.5, 1] to satisfy the convergence
requirement, so a preprocessing module is needed. The preprocessing module mainly
contains a leading one detector (LOD) to calculate the number of significant digits nD of
D, and obtain D0 = D << (1024− nD) where the highest digit of D0 is 1. The design of
our LOD adopts the efficient method in [Kor09]. Moreover, to utilize the RSD multiplier
mentioned earlier, as shown in Figure 5, the highest digit of D0 is extended by two digits
and becomes a 1026-digit number. The architecture is used to calculate the reciprocal
of D, so the other input N0 is 1. After D0 and N0 are input, iterations are performed.
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Figure 5: The architecture for calculating the reciprocal using Goldschmidt algorithm.

During the iteration, Fi = 2 −Di is first computed by simple logical operations. Then,
Di+1 = Di ∗Fi and Ni+1 = Ni ∗Fi are computed by RSD multipliers in parallel. However,
the digit size of the output of the RSD multiplier is 2052, and the output needs to be
truncated to 1026 digits to perform the iterations. As shown in Figure 5, the last 1024
digits of Di+1 and Ni+1 can be truncated directly, but the first two digits cannot be
removed in RSD representation. Since the first two digits are actually 0, we can remove
the first two digits by converting the first three digits to one according to the rule shown
in Table 3.
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Table 3: The rule of truncating the highest two digits.
(n + 2)-th digit (n + 1)-th digit n-th digit The new n-th digit

1 1̄ 1̄ 1
0 1 1̄ 1
0 0 1 1
1̄ 1 1 1̄
0 1̄ 1 1̄
0 0 1̄ 1̄
0 0 0 0

In fact, the new n-th digit: {n+
new, n−

new} is only determined by the n-th digit: {n+, n−}
and (n + 1)-th digit: {n+

1 , n−
1 } and the rule to calculate the new n-th bit is as follows:

n+
new = |n+

1 |n
−
1 n+|n− + |n+

1 n−
1 |n+n− + n+

1 n−
1 n+|n− + n+

1 |n
−
1 |n+n−

n−
new = |n+

1 |n
−
1 |n+n− + |n+

1 n−
1 n+|n− + n+

1 n−
1 |n+n− + n+

1 |n
−
1 n+|n− (8)

After processing the highest digits, Ni+1 and Di+1 can be input to RSD multipliers for
iteration. For a 1024-digit division, 12 iterations are enough to obtain the accurate integer
quotient. The output Nk+1 of the last iteration is the reciprocal of D we need.

3.3 Architecture for the XGCD Algorithm
The XGCD calculation problem is to solve AX + BY = GCD(A, B) for two given
integers A and B, where (X, Y ) are also known as Bézout coefficients. The most popular
XGCD algorithms include the extended Euclidean algorithm (EEA), the plus-minus (PM)
algorithm, and the binary algorithm [Jeb93]. Among these algorithms, the EEA has the
least number of iterations, making it popular for software implementation. However, the
original EEA includes an extremely time-consuming division of large numbers, which makes
it hard to implement in hardware. Compared to the EEA, the PM and binary algorithms
require more iterations, but only additions, shifts, and comparisons are performed in each
iteration. Considering that the total time for the calculation of XGCD is equal to the
number of iterations multiplied by the time, a two-bit PM algorithm proposed in [YZ86]
can effectively achieve the low-latency hardware design.

We adopt the two-bit PM algorithm and design the corresponding hardware architecture
for XGCD calculation in the NUDUPL algorithm. The two-bit PM algorithm is shown in
Algorithm 3. First, initialize a and b to the input A and B, respectively, and also initialize
(x, y, z, w) to (1, 0, 0, 1) for calculating the Bézout coefficients. In particular, the algorithm
introduces a small auxiliary number δ to assist in determining the computation case, and
the comparison of a and b can be avoided. The sign of δ and whether a and b can be
divided by 2 or 4 determines the case of the computation. Then, a and b are updated by
addition/subtraction and shifts. Meanwhile, (x, y, z, w) is calculated by function CalBézout
which is shown in Algorithm 3. By performing these calculations, values of a and b keep
decreasing, and when one of them becomes 0, the iteration stops. After the iteration,
simple post-processing is performed and outputs the final value (G, X, Y ).

According to Algorithm 3, the proposed architecture for the two-bit PM algorithm is
shown in Figure 6. The components used to update a and b mainly include RSD adders,
multiplexers (MUXs), and shifters, which are easy to implement in low-latency hardware.
The module that computes Bézout coefficients is used to perform the recursive function
CalBézout. We reduce the latency of this module by computing all possible results in
advance, and then the result is selected by the last two digits of x and B. As shown in
Algorithm 3, at the end of each iteration, it is necessary to determine whether a or b is
equal to 0 in this iteration. Compared to the C-S representation, the advantage of using
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Algorithm 3: The two-bit PM algorithm
Input: (A, B), where A, B ∈ Z
Output: (G, X, Y ), where AX + BY = G

1 a← A, b← B
2 x← 1, y ← 0, z ← 0, w ← 1, δ ← 0 ▷ Initialization
3 while a ̸= 0 and b ̸= 0 do
4 if mod(a, 4) == 0 then
5 a← a/4, δ ← δ − 2, (x, y)← CalBézout(x,y,A,B,2)
6 else if mod(a, 2) == 0 and mod(a, 4) ̸= 0 then
7 a← a/2, δ ← δ − 1, (x, y)← CalBézout(x,y,A,B,1)
8 else if mod(b, 4) == 0 then
9 b← b/4, δ ← δ + 2, (z, w)← CalBézout(z,w,A,B,2)

10 else if mod(b, 2) == 0 and mod(b, 4) ̸= 0 then
11 b← b/2, δ ← δ + 1, (z, w)← CalBézout(z,w,A,B,1)
12 else if mod(a + b, 4) == 0 then
13 if δ ≥ 0 then
14 a← (a + b)/4, δ ← δ − 1, (x, y)← CalBézout(x+z,y+w,A,B,2)
15 else
16 b← (a + b)/4, δ ← δ + 1, (z, w)← CalBézout(x+z,y+w,A,B,2)
17 end
18 else
19 if δ ≥ 0 then
20 a← (a− b)/4, δ ← δ − 1, (x, y)← CalBézout(x-z,y-w,A,B,2)
21 else
22 b← (a− b)/4, δ ← δ + 1, (z, w)← CalBézout(x-z,y-w,A,B,2)
23 end
24 end
25 if a == 0 then
26 G← b, X ← z, Y ← w
27 else
28 G← a, X ← x, Y ← y
29 end
30 if G < 0 then
31 G← −G, X ← −X, Y ← −Y
32 end
33 end
34 Function CalBézout(x, y, A, B, l):
35 if mod(x, 2) == 0 and mod(y, 2) == 0 then
36 x← x/2, y ← y/2
37 else
38 x← (x + B)/2, y ← (y −A)/2
39 end
40 if l == 1 then
41 return x, y
42 else
43 CalBézout(x,y,A,B,l-1)
44 end
45 End Function
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Figure 6: The architecture for the two-bit PM algorithm.

RSD representation is that this judgment is very simple to implement in hardware. In
RSD representation, an XOR tree can be implemented to determine whether the input is
equal to "0", and for an n-digit input, the delay of the XOR tree is the delay of log2n + 1
XOR gates.

The post-processing module needs a module to compute the absolute value (ABS),
and this module can be implemented in various ways. The implementation method is
unimportant because it is not in the iteration, so adding several pipelines can reduce the
critical path. The critical path of the architecture for the two-bit PM algorithm is shown
as the red dashed line in Figure 6, which includes the delay of four MUXs, two RSD adders,
and a shifter. This critical path is short in hardware implementation, so in our design for
the two-bit PM algorithm, one iteration takes only one cycle.

3.4 Architecture for the Partial XGCD Algorithm

The NUDUPL algorithm applies reduction before squaring the form so the reduced squaring
form can be obtained faster, and the partial XGCD algorithm is mainly used to achieve
this purpose. By performing this algorithm, the intermediate operands can be reduced
from size O(∆) to O(∆1/2) in most cases and O(∆3/4) in the worst case. As shown in
steps 13 to 20 in Algorithm 1, the original partial XGCD using the Euclidean algorithm
contains the extremely time-consuming division of large numbers. According to [vdP03],
the partial XGCD algorithm makes the input bx and by decrease in each iteration until one
of them is smaller than another input L (L = ∆1/4). During the iteration, the following
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relation needs to be satisfied: ∣∣∣∣ x bx

y by

∣∣∣∣ =
∣∣∣∣ x′ b′

x

y′ b′
y

∣∣∣∣ , (9)

where the (x′b′
y − y′b′

x) remains constant in each iteration. Using the XGCD architecture
detailed in Section 3.3 for the partial XGCD is the best choice, but unfortunately the
iteration in two-bit PM does not satisfy Equation (9). The computation in each iteration
can be seen as a matrix multiplication as Equation (10), and the auxiliary matrix satisfies

ad− bc = 1. Besides, the choice of matrix
(

a b
c d

)
needs to satisfy two more conditions:

(1) The coefficients (a, b, c, d) should be hardware-friendly. (2) The coefficients (a, b, c, d)
should ensure that bx and by decrease in most iterations.(

a b
c d

) (
x bx

y by

)
=

(
x′ b′

x

y′ by

)
. (10)

Assuming by > bx > 0, we select a class of simple coefficients that satisfy the above
conditions: (

1 0
−2k 1

) (
x bx

y by

)
=

(
x bx

y − 2kx by − 2kbx

)
, k ∈ N (11)

As shown in Equation (11), by is decreased, and the calculation only involves subtraction
and shifts. The coefficient k needs to satisfy by decreases as much as possible , but by−2kbx

is still greater than 0. The best value of k will be different for different bx and by, so we
set multiple k and select the appropriate k by judging the relationship of bx and by. If too
many k are used, the hardware consumption and latency will increase.

Algorithm 4: The proposed partial XGCD algorithm
Input: bx, by, L, where bx > L, by > L
Output: x, y, bx, by

1 x← 1, y ← 0 ▷ Initialization
2 while bx ≥ L and by ≥ L do
3 if bx > 2k2by then
4 x← x− 2k2y, y ← y, bx ← bx − 2k2by, by ← by; continue
5 else if bx > 2k1by then
6 x← x− 2k1y, y ← y, bx ← bx − 2k1by, by ← by; continue
7 else if bx > by then
8 x← x− y, y ← y, bx ← bx − by, by ← by; continue
9 else if by > 2k2bx then

10 y ← y − 2k2x, x← x, bx ← by − 2k2bx, by ← by; continue
11 else if by > 2k1bx then
12 y ← y − 2k1x, x← x, bx ← by − 2k1bx, by ← by; continue
13 else
14 y ← y − x, x← x, by ← by − bx, bx ← bx; continue
15 end
16 end

Based on our experiments, we recommend to use two k: k1 and k2 (k2 > k1), and the
proposed partial XGCD algorithm is shown in Algorithm 4. When bx and by are larger
than L, iteration is performed, and each iteration mainly consists of shifts, subtraction, and
comparison. For different coefficients, k1 and k2, the computation time for each iteration
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is almost the same, and the number of iterations mainly determines the total computation
of partial XGCD.

We choose the parameter k1 and k2 by using a Monte Carlo simulation. We randomly
generate 220 pairs of 1024-bit numbers as inputs for the partial XGCD algorithm and count
the average number of the iterations. The relationship between the parameter k1 and k2
and the number of iterations are shown in Figure 7, where k1 = 1, 2, 3 and k2 ranges from
2 to 9 with an interval of 1. As shown in Figure 7, when k1 = 2 and k2 = 6, the number of
the iterations is minimal, and we choose this set of parameters in our design.

According to Algorithm 4, the architecture of the partial XGCD algorithm is shown in
Figure 8, which mainly contains several MUXs, shifters, modules for updating (bx, by) and
updating (x, y), and a control module. The module for updating (bx, by) includes parallel
RSD adders, parallel inverters for RSD numbers, and a MUX, shown in the right dashed
block in Figure 8. The module for updating (x, y) is similar to the module for updating
(bx, by). Besides, the control unit mainly consists of compare modules, and the compare
module is also used determining whether bx or by is smaller than L.

1 2 3 4 5 6 7 8 9 1 0
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Figure 7: The relationship between (k1, k2) and the number of iterations.

Comparing the value of two numbers can be obtained by subtracting the two numbers
and then determining whether the difference is positive or negative. The operands in
the partial XGCD algorithm are in RSD representation without sign bits. For an RSD
number, whether it is positive or negative can be determined by the position of its highest
bit. We assume that the position serial numbers of an RSD number are 0, 1, 2, ..., N from
left to right. Therefore, when the position of the highest bit of an RSD number is odd,
the number is negative. Otherwise, it is positive. For two 1024-digit numbers, A and B
in RSD representation, the architecture for comparing them is shown in Figure 9. First,
an RSD subtractor is applied to calculate: C = A−B, and then a converter is needed to
convert the digit 0 represented by 11 to 00 in C. We split the 1024-digit (2048-bit) number
D into 16× 4× 32-bit, then 4-bit and 32-bit leading one detectors (LODs) are used, refer
to [AS06]. The architecture of the Calculate Symbol module is shown in the right block in
Figure 9, and the output S is calculated. When S = 1, C is a negative number, and A is
smaller than B; when S = 0, C is a positive number, and A is greater than B.
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4 Instruction Scheduling
In the previous section, we describe how complex computations in the NUDUPL algorithm
are designed in low-latency hardware. After designing the computation modules, we use the
compact instruction scheduling method to utilize these modules fully, and the scheduling
scheme is detailed in this section.

The proposed high-level architecture of squaring in the class group using the NUDUPL
algorithm is depicted in Figure 10. The high-level architecture includes a ROM file that
stores instructions, a control unit that reads instructions from ROM and output controls,
a computation unit that contains mainly computation modules, MUXs that determine
the order of written and read data, and four memories implemented by RAM or registers.
The memories are used to store intermediate values within the NUDUPL algorithm and
the final result of each squaring operation. Since the bit-width of the discriminant ∆ of
the binary quadratic form is 2048, and the proposed design uses the RSD representation,
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the bit-width of memories is set to 4096. The instructions were issued in advance and
stored in the ROM, and the size depends on the bit-width and the number of instructions
needed. When the start squaring signal arrives, the first instruction "LOAD" in the ROM
is loaded into the control unit, and the input is fed into the memory. The control unit
generates control signals according to the instructions in the ROM and reads the data
from memories to the computation unit to perform the corresponding operations. When
the computation is done, the results are controlled to write to the specified address in the
memory. After the last instruction is executed, the final result can be fetched from the
given address.

Instruction
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Figure 10: Proposed high-level architecture of squaring in the class group.
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OP code Twiddle Write enable Read address Write address

Figure 11: The format of the instruction.

The ROM file stores 42 instructions and each instruction is 31 bits long. The instruction
format is shown in Figure 11. Bits 0-7 indicate the write address used by memories, bits 0-1
for memory 0, bits 2-3 for memory 1, bits 4-5 for memory 2, and bits 6-7 for memory 3. Bits
8-15 indicate the read address for the corresponding memory. Bits 16-19 indicate whether
the current data can be written into the corresponding memory. Bits 20-25 indicate which
memory the data is being written/read to, where bits 20-22 for read selection and bits
23-25 for write selection. Bits 26-30 are used to place the operation (OP) codes.

The control unit reads the instruction based on the program counter (PC) and controls
the operation in the computation unit by OP codes. The computation unit is shown
in Figure 12, which contains XGCD and partial XGCD modules, a compare module, a
Goldschmidt module for calculating the reciprocal of input, an LOD for preprocessing in
the GS module, two 1024-digit RSD multipliers, some RSD adders and other MUXs for
controlling. The MUX_0 generates control signals "CTRL"(includes xgcd_ctrl, pxgcd_ctrl,
cmp_ctrl, cmp_ctrl, etc) for the corresponding computing module based on the OP codes.
The input of the XGCD module, the partial XGCD module, and the compare module
are read from the memories, with no data interaction with each other. The Goldschmidt
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Figure 12: Proposed calculation modules in the computation unit.

module calculates the reciprocal of a number, e.g., a−1, and the number needs to be
preprocessed using the LOD. Besides, the Di+1 = Di ∗ Fi and Ni+1 = Ni ∗ Fi in the
Goldschmidt iteration are performed using the external RSD multipliers. These RSD
multipliers also perform the remaining multiplications in the NUDUPL algorithm, and
MUX_1 and MUX_2 control their inputs. It is also necessary to instantiate several RSD
adders/subtractors of different bit widths to calculate additions/subtractions of the whole
NUDUPL algorithm. The input of RSD adders come from RSD multipliers or memories,
and MUX_3 controls this.

There are many multiplications involved in the NUDUPL algorithm and the sizes of
these multiplications are not unique. We use two 1024-digit RSD multipliers and implement
all multiplications efficiently by scheduling these two multipliers. The main multiplication
operations and the corresponding schedule methods are as follows:

• The multiplications in Goldschmidt algorithm. Two 1024-digit RSD multipliers
calculate 1024-digit multiplications Di+1 = Di ∗ Fi and Ni+1 = Ni ∗ Fi in parallel
shown in Algorithm 2.

• The 2048 × 1024 multiplications. For example, the multiplication c × y in step 4
of Algorithm 1, where c is a 2048-digit number and y is a 1024-digit number. This
multiplication can be written as: c[2047 : 1024]× y << 1024 + c[1023 : 0]× y and
calculated with the two 1024-digit RSD multipliers in parallel.

• The 1024-digit squares. For example, the squares b2
y and b2

x in steps 8 and 27 of
Algorithm 1, where by and bx are both 1024-digit number. These squares can be
calculated with two 1024-digit RSD multipliers in parallel.

• Other 1024-digit multiplications. For example, the multiplication by ×Dy in step 7
of Algorithm 1, where by and Dy are both 1024-digit numbers. These multiplications
can be calculated with either 1024-digit RSD multipliers.
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As a result, we obtain a high utilization for the RSD multiplier through careful
scheduling while reducing the computation time.

Table 4: The typical OP symbols and their operation descriptions.
OP symbol Description

LOAD Load the initial input (a, b, c) into specified
memories.

LOD This operation is the first computation step,
calculating the effective bits of a. The XGCD
module is also start at this step.

WFGS Use GS module to calculate the reciprocal of
a: a−1.

CALQ, CALR, ADQR Calculate the quotient q by: q = N ∗ a−1;
Calculate the remainder r by: r = c− a ∗ q;
Make small adjustments to slightly deviated
quotients and remainders.

LOADP Load data into the partial XGCD module.

WFGCD, WFPGCD Wait for XGCD calculation done; Wait for
partial XGCD calculation done.

COMP Compare the two input a and L and output
the flag.

MUL, SQUA, ADDMUL, SUBMUL,... Control RSD multipliers and RSD adders to
perform arithmetic operations of specified bit
width.

DONE This indicates the calculation is done, and the
final result (A, B, C) can be retrieved from
the given address.

The OP codes determine the operations in the computation unit, and we define 21
different OP codes in advance. We describe each OP code as an OP symbol to illustrate the
process. For example, we define OP code "00110" as "MUL", representing multiplication.
The typical OP symbols and their corresponding operations are classified and described as
Table 4.

5 Experimental Results and Comparisons
The proposed architecture of the NUDUPL algorithm is coded in SystemVerilog language
and synthesized under TSMC 28-nm CMOS technology. The design is synthesized by
Synopsys Design Compiler. We use Vivado 2018.3 EDA platform for behavioral-level
simulation, and the correctness of the register-transfer level (RTL) model is verified by the
software results provided by Chia’s Network [Chi19].

5.1 Implementation Results and Discussion
One complete reduced squaring in the class group requires a squaring and a reduction
operation. For squaring operation, one option is to use the squaring algorithm summarized
in [Lon18], which is also the algorithm adopted by [ZTLW22], and another is to use the
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NUDUPL algorithm which is the algorithm adopted in this work. For these two algorithms,
the computation time required and the ratio of computation time of squaring are different.
We run the code of two algorithms provided by Chia’s competition [Chi19] on the same
platform, Intel(R) Core(TM) i9-9900X @3.50GHz CPU. We run the code for 221 iterations,
and the average runtime for squaring and reduction is shown in Table 5. The results
show that the total runtime is decreased by almost 30% by using the NUDUPL algorithm.
Although it takes more time to compute the squarings when using the NUDUPL algorithm
than the original squaring algorithm, the reduction almost takes no time (2%) by using
the NUDUPL algorithm.

Table 5: The software runtime for two squaring algorithms.

Algorithm Total runtime (µs) Proportion of Proportion of
squaring reduction

Squaring in [Lon18] 25.6 38% 62%+ Fast reduction
NUDUPL 18.2 98% 2%+ Fast reduction

As shown in Table 5, the NUDUPL algorithm takes up almost all time for the squaring,
so the design of NUDUPL is much more important than the design of reduction. We
chose the reduction design in [ZTLW22] to obtain a complete hardware simulation result.
We coded the overall design and run the code on the EDA platform for simulation. In
the behavioral-level simulation, we randomly chose 1000 sets of inputs for simulation
and calculated the average number of clock cycles for each squaring. According to the
simulation results, a reduced squaring requires 1765 cycles, including 1726 (98%) for the
NUDUPL algorithm and 33 (2%) for the fast reduction.

Table 6: Implementation results of the proposed NUDUPL architecture and XGCD
architecture on TSMC 28-nm CMOS technology.

Module name Area (mm2) Freq (MHz) Latency (cc) Total time (ns)
NUDUPL 5.237 847 1726 2038

-XGCD (unfolded) 0.336 847 601 709
XGCD only 0.216 2041 1202 589

We synthesized the proposed XGCD architecture under TSMC 28-nm CMOS technology
separately, and the implementation result is shown in row "XGCD only" of Table 6. Since
the critical path delay is significantly lower than that of other modules in the NUDUPL, we
performed one unfolding operation on the XGCD module when placed it in the NUDUPL
module. The proposed NUDUPL architecture was also synthesized under TSMC 28-nm
CMOS technology and the implementation results of the proposed NUDUPL architecture
and unfolded XGCD architecture in the overall design are shown in Table 6. As shown in
Table 6, the critical path delay of the XGCD module is increased but the clock cycles for
XGCD computation is decreased.

5.2 Comparison to Previous Work
We compare our implementation with existing hardware implementation for reduced
squaring in the class group and the optimized software implementation over an Intel(R)
Core(TM) i9-9900X @3.50GHz CPU. The comparison of implementations is shown in
Table 7. Compared to the squaring implementation result in [ZST+20], we achieve a 3.2x
speedup, even if the NUDUPL algorithm we use is more complex. Compared to the only
existing complete implementation of reduced squaring in [ZTLW22], we achieve a 3.6x
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speedup. Compared to the optimized software implementation over an advanced CPU, our
implementation is 9.1x faster. In summary, we achieve the fastest implementation for the
squaring in the class group. Moreover, compared to the implementation of squaring under
TSMC 28nm CMOS technology in [ZST+20] and [ZTLW22], the area of our implementation
is the smallest, because we avoid the time-consuming division in the XGCD and the partial
XGCD and design the compact instruction to reuse the resources.

Table 7: Comparison to implementations of the reduced squaring in the class group.

Work Platform Area of Freq (MHz) Time (µs)
squaring (mm2) Squaring Total time

[ZST+20] TSMC 28nm 9.895 500 6.3 \
[ZTLW22] TSMC 28nm 6.474 454 3.5 7.1

[Chi19] Intel i9-9900X \ 3500 17.6 18.2
This work TSMC 28nm 5.237 847 2.0 2.0

Table 8: Comparison to implementations of the XGCD.
Work Platform Freq (MHz) Latency (cc) Total time (ns)

[ZST+20] TSMC 28nm 500 3000 6000
[ZTLW22] TSMC 28nm 454 1283 2825
[ZTW21] TSMC 28nm 250 1623 6492
[SHT22] TSMC 16nm 3890 (1525∗) 1143 295 (750∗)
[Chi19] Intel i9-9900X 3500 \ 8159

This work TSMC 28nm 2041 1202 589
∗ Normalized to the 28nm technology based on the inverter fanout-of-4 (FO4) delay
according to [SB17]. The delay is 9ps under TSMC 16nm [SHT22] and 22.5ps under
TSMC 28nm, so the scale factor is: 22.5/9 = 2.5.

The computation of XGCD served as the most time-consuming operation in the squaring
in the class group, and we compare our implementation for the XGCD with the existing
work. The comparison to the implementation of the XGCD is shown in Table 8. Our
implementation is about 1.3x faster than the implementation in [SHT22] and significantly
faster than the other implementations. Our implementation and the implementation in
[SHT22] and both adopt the two-bit PM algorithm in [YZ86], but we implement it using
the RSD representation and [SHT22] using the C-S representation. The reason for using
RSD representation is stated in Section 2.3, and this is why our implementation is faster
than the implementation in [SHT22].

6 Conclusion
This paper presents an ultra-low latency architecture of the squaring in class groups for
VDF applications using redundant representation. The fastest implementation of the
squaring in the class group is achieved by optimization at both algorithmic and architectural
levels. We present low-latency arithmetic architectures, efficient XGCD and partial XGCD
architectures, and scheduling methods with high resource utilization. Through optimization
of both computational logic and control logic, the squaring architecture dramatically reduces
the computation time and increases the area efficiency. Our implementation achieves a
squaring speedup of 3.6x compared to the SOTA hardware implementation and a 9.1x
speedup compared to the optimal software implementation over an advanced CPU. This
result can be a reference for VDF applications. Besides, our implementation can facilitate
other cryptographic applications without a trusted setup, such as timed commitments
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and zero-knowledge. Future work could consider calculating XGCD and partial XGCD
with the same hardware or reducing the calculation time for the partial XGCD. It is also
possible to consider adding RSD multipliers to reduce the multiplication time.
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