TACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 1, pp. 277-300. DOI:10.46586 /tches.v2023.i1.277-300

MCRank: Monte Carlo Key Rank
Estimation for Side-Channel Security Evaluations

Giovanni Camurati!, Matteo Dell’Amico? and Francois-Xavier Standaert?

L ETH Zurich, Zurich, Switzerland, giovanni .camurati@inf .ethz.ch
2 University of Genoa, Genoa, Italy, natteo.dellamico@unige.it
3 UC Louvain, Louvain, Belgium, fxstandae@uclouvain.be

Abstract. Key rank estimation provides a measure of the effort that the attacker has
to spend bruteforcing the key of a cryptographic algorithm, after having gained some
information from a side channel attack. We present MCRank, a novel method for key
rank estimation based on Monte Carlo sampling. MCRank provides an unbiased estimate
of the rank and a confidence interval. Its bounds rapidly become tight for increasing
sample size, with a corresponding linear increase of the execution time. When applied
to evaluate an AES-128 implementation, MCRank can be orders of magnitude faster
than the state-of-the-art histogram-based enumeration method for comparable bound
tightness. It also scales better than previous work for large keys, up to 2048 bytes.
Besides its conceptual simplicity and efficiency, MCRank can assess for the first time the
security of large keys even if the probability distributions given the side channel leakage
are not independent between subkeys, which occurs, for example, when evaluating the
leakage security of an AES-256 implementation.
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1 Introduction

Side-channel attacks leverage some physical leakage (e.g., power consumption [KJJ99],
electromagnetic emissions [AARRO3], acoustic emissions [GST14]) to recover information
about secrets like cryptographic keys manipulated by concrete devices. Such attacks can be
non-profiled such as Brier et al’s Correlation Power Analysis (CPA) [BCOO04] or profiled such
as Chari et al’s template attack [CRR03]. These attacks are divide-and-conquer, meaning
that they return the probabilities of some enumerable parts of a master key (sometimes call
subkeys) one by one. For example, in the AES-128 case, one typically gathers information
byte per byte. In the best case for the attacker, sorting the probability lists and selecting the
highest value for each byte returns the correct key. However, if the attack was not completely
successful, the right key has lower probability and is not selected. To recover it, the attacker
then has to enumerate keys by decreasing probability, until the right one is found [VGRS13].
Quite naturally, such an enumeration work is limited by the computational power of the
evaluator and it can be prohibitive as the attack’s complexity increases, up to the point
where it becomes the bottleneck of a security evaluation. As a result, key rank estimation
algorithms have been introduced [VGS13]. The key rank is defined as the number of keys
with higher probability than the right key (already known by the evaluator), and it provides
an interesting measure of the computation effort the attacker should spend to fully recover
the key. Key rank estimation is an active research field with many algorithms proposed
[BLv15, GGPT15, MOOS15, MMOS16, CP17, Grol8, DW19¢, DW19b, DW21].

Key rank algorithms generally compete in terms of execution time, tightness of the bounds
provided, and memory requirements. Most of the published algorithms are both efficient
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and accurate enough to deal with standard symmetric cryptography key sizes (e.g., 128-bit
keys), and they return an upper and lower bound on the rank. The histogram enumeration
approach proposed by Glowacz et al. [GGPT15] is a popular example due to its simplicity,
and it can be extended to scale well for very large keys (e.g., key-load attack on RSA) [Gro18].

Interestingly, the problem of key rank estimation shares several similarities with the
problem of password strength evaluation in the field of system security. In short, a password
is strong with respect to a probabilistic model for password generation if the model generates
many other passwords with higher probability than the right one. Hence the similarity
between key rank estimation (i.e., estimating how many keys have higher probability than
the right one after a side channel attack) and password strength evaluation (i.e., estimating
how many passwords are generated with higher probability than the right one by a model
for password generation). By splitting the password in multiple dimensions (similar to
subkeys in side channel attacks), a recent work by David and Wool proposed to estimate
password strength using a key rank estimation approach borrowed from the literature on side
channels [DW19a]. In this paper, we take the opposite approach and ask ourselves whether
it is possible to improve the state of the art for side channels by leveraging the advantages
of algorithms proposed for password strength estimation.

We answer this question positively by proposing a novel method for key rank estimation
based on Monte Carlo sampling, denoted as MCRank, which is inspired by literature on
password strength [DF15], but which also take into account some specific challenges in side
channel analysis. In particular, MCRank accepts both scores and probabilities as input, and
it uses a rescaling algorithm to adjust the sampling probability and achieve high accuracy
even if the input scores/probabilities are unbalanced. We show that MCRank provides an
unbiased estimate of the rank, and we compute probabilistic bounds for it (e.g., a £30
interval corresponding to 99.7 % confidence for a Gaussian distribution). We also show that
MCRank quickly achieves good tightness (e.g., less than 1 bit) by tuning the sample size n,
and can be orders of magnitude faster than the state of the art histogram method [GGP*15]
for comparable tightness (with an execution time growing linearly with the sample size).
MCRank is evaluated with both template and profiled correlation attacks on simulated traces,
and deep-learning attacks on real traces from a protected implementation from the well
known ASCADv2 dataset. In addition, MCRank scales better than previous solutions that
optimize for large keys [CP17, Grol8], achieving high accuracy in low execution time for
key-load attack on RSA with keys up to 2048 bytes. Despite other state of the art solutions
are admittedly sufficient to deal with most practical cases (in particular for symmetric cryp-
tography), this first part of the paper provides a handy complement to previous work, with
a rank estimation algorithm that combines conceptual simplicity and excellent performances
(even for very large keys that could not be dealt with efficiently before).

More interestingly, the second contribution of the paper deals with the analysis of rank
estimation even when the probability distributions (given the side channel leakage) are
non-independent among subkeys. This happens, for example, when evaluating an AES-256
implementation. While solutions were proposed in specific contexts, such as key enumeration
for attacks on elliptic curves [LvVW14] and collision attacks [WLW17], we are not aware of
a generic solution for symmetric key algorithms like AES-256. In this case, the second part
of the key is used in a second round so that a successful attack requires attacking the first
round and then using the result to attack the second round. For each possible key explored
in the first round, the attack on the second round should be repeated to find the probabilities
for the second part of the key (more details in Section 2). We show that MCRank can be used
to efficiently evaluate such contexts.

We note that one reason for the complexity of key rank estimation algorithms is requiring
deterministic bounds. So the reason why our approach improves performances primarily
comes from the probabilistic nature of MCRank. While such a probabilistic result can some-



Giovanni Camurati, Matteo Dell’Amico and Francgois-Xavier Standaert 279

times be a drawback, we believe that probabilistic rank estimation can be just as useful in
practice, when combined with appropriate confidence intervals. We note also that some
existing algorithms leverage statistical sampling approaches as a post-processing step to
tighten the bounds found by the classical approach [BLv15].

2 Background and Related Work

Side Channel Attacks When a cryptographic algorithm is implemented in software or
hardware, its execution might produce data-dependent physical emissions that can reveal
information about the secret key. Examples side channel leakage are power consump-
tion [KJJ99], and electromagnetic [AARRO3] or acoustic [GST14] emissions.

Template Attacks on AES-128 In this paper we focus on template attacks [CRR03] on
the Advanced Encryption Standard (AES) [Pub01]. Let p; and k; be a byte of the plaintext
p=(po,---,p15) and of the key k= (ko,...,k15), respectively. We denote the secret key as k* =
(kg ,...,k35), to distinguish it from a generic key k. At the first round of AES-128, p; and &} are
xored and passed to a substitution box Spos (i-€., ¥ = Spoz [i ®kF]). The goal of the attacker is
to recover the value of each byte k} of the secret key, given the leaking variable y; = Spos [p; Dk} ]
and many measurements (physical observations) [ of the corresponding physical leakage.

In a first step, the attacker characterizes (a copy of) the target device by measuring
the leakage for a large number of known random p; and k;. For each possible value y of
the leaking variable Y, the attacker estimates the mean and covariance of the physical
leakage L. Under the further assumption of Gaussian distribution, the attacker computes
the conditional probability density function of L given Y (i.e., pdf (L=I|Y =v;).

In a second step, the attacker collects a leakage trace [y on the target device for known
p; and unknown (secret) k. Using the conditional probability density function computed
before, the attacker can assign a probability to each possible guess k7 of the value of k;, by
computing pdf (L=1|Y =yJ) (with yJ = Spox[pi ®k?]). The result can be improved using
multiple attack traces [; (corresponding to the same secret k) and computing the maximum
likelihood d(k]) =]1,pdf (L=1;|Y =y). By collecting more and more traces, the attacker
will gather information that will likely increase the probability of £} and therefore lower its
rank among the possible values of k;.

To recover the full AES-128 key, the attacker repeats 16 independent template attacks
on the first round (one for each byte p; and &} of the plaintext and key). Finally, the attacker
performs a key enumeration [VGRS13] to find the key even when the side channel attack
has not fully recovered all bits, as explained in Section 1.

For software implementations, it is common to assume that the leakage is proportional
to the Hamming Weight of y; (i.e., leakage function HW{y;]) with the addition of Gaussian
noise. This assumption is commonly used for simulations. On the attack side, using HW [y;]
allows building only 9 templates for all possible values of HW [y;] instead of 256 templates
for all possible values of y;.

Extension to AES-256 In AES-256, the first 128 bits of the key can be recovered by
applying the same template attack on the first round as for AES-128. However, the second
128 bits of the key are xored with the output of the first round that is unknown to the attacker
(it depends on the secret key). The simplest extension of the template attack to the AES-256
case consists in first attacking the first round to recover the first half of the key, and then
using the result to attack the second round and recover the second half of the key. Clearly,
the success of the second step depends on the success of the first. Consequently, enumeration
becomes more complex. The attacker tries Dq values of the first part of the key. For each
of these values, the attacker has to repeat the attack on the second round, and enumerate
Dy values of the second part of the key. This requires a total of 1+ D; template attacks and



280 MCRank: Monte Carlo Key Rank Estimation for Side-Channel Security Evaluations

it leads to a guessing space of D;- Dy values. This is an interesting example of side channel
attack in which the key is recovered in multiple steps that are not independent. Improvements
in the case of known plaintext and ciphertext have been shown by Wurcker [Wur19].

Key-load attack on RSA Template attacks are also useful to recover the key or the plaintext
from the leakage produced when it is loaded in memory. In this case, each independent byte
k; of the key is attacked directly (i.e., y9 =k;). In this case, it is better to use the identity
leakage y9 =k; instead of the Hamming Weight model, since using the Hamming Weight
directly on k means that it is impossible to distinguish key bytes k; that have the same
Hamming Weight. Key-load attacks on large RSA keys are a common scenario targeted by
key enumeration algorithms [CP17, Gro18].

Profiled correlation attacks Profiled correlation attacks [DS16] are a simple extension of
correlation attacks. During the profiling step, the attacker estimates the average value of
the leakage for each possible value of y;. This serves as a model m(y;) of the leakage. During
the attack phase, the attacker uses Pearson’s correlation coefficient between leakage and
model d(k?)=p(m(y),l) to assign a score to each possible value k7. Ideally, with enough
attack traces the real value k] emerges as the one with the highest correlation score. The
profiling step does not necessarily require a set of profiling traces, it can also be performed
on a subset of the attack traces. Profiled correlation attacks are different from templates
because (i) they capture only a first order relationship between leakage and model, and (ii)
they return correlation scores instead of probabilities. However, scores can be transformed
in probabilities following the Bayesian extension proposed in [CPS16].

Deep-Learning attacks and the ASCADv2 dataset In recent years, side channel attacks
based on Deep-Learning have gained traction. In essence, they formulate the problem of
profiled side channel attacks (e.g., template attacks) as a classification problem that can
be solved with a deep neural network [BPST20]. For example, during learning the deep
neural network is trained to find an approximation g(l,y) of the conditional probability
P(Y =y|L =1). During attack, each byte value is assigned a maximum likelihood score
d(kf) =11;9(Y =y/,L =1;). Ideally, with enough attack traces the real k; emerges as
the one with highest score. To facilitate reproducible research on deep learning attacks,
ASCAD [MS21] has been proposed as a reference benchmark consisting of a protected
implementation of AES-128, datasets of pre-recorded traces, and reference attacks. In this
paper, we use its improved version ASCADv2 [MS21], which proposes two attacks against
an implementation of AES-128 protected by affine masking and shuffling.

Key rank Let us assume that the attacker has learned the probabilities p(k;) for each pos-
sible value of k; and each sub-key using a side channel attack. Assuming independent events,
the probability of a full key k= (ko,k1,...,km—1) is the product of the sub-key probabilities
p(k)= Hiyi_olp(ki) and the rank of the real key is defined as Ry~ = |{k'|p(k’) >p(k*)}|. These
are reasonable assumptions, for example, when attacking AES-128 with an independent
template attack for each subkey. Correlation attacks return scores d(k;) which are not
directly probabilities. The rank of a full key can still be defined as d(k) = H?:Old(ki), and
the rank becomes Ry~ = [{k'|d(k') > d(k*)}|. However, enumeration strategies based on
scores may not be optimal [CPS16]. The key rank defined on scores is a good measure of
the attempts that the attacker has to make to find the key based on the specific attack
that returned the scores, but is not necessarily the smaller one, as an attacker working with
probabilities might find a better result. In practice, key rank estimation algorithms such
as [GGPT15] work well with both probabilities and scores. While it is recommended to
improve the attack so that it returns balanced probabilities (for example, using a simple
Bayesian extension of a correlation attack [CPS16]), we focus on computing Ry« from the
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output of an attack (be it scores or probabilities), leaving aside the orthogonal problem of
finding the optimal attack strategy. We will also devise a strategy to estimate the rank for
AES-256, where the attacks on first and second half of the key are not independent.

State-of-the-art key rank estimation algorithms Over the last decade, several key rank
estimation algorithms have been proposed. In the seminal work of Veyrat et al. [VGS13],
the key space is organized as a multi-dimensional volume in which keys with higher/lower
probability than the real key are separated by a convex surface. Upper and lower bounds
on the key rank can be estimated by iteratively carving sub-volumes from both sides.

The Histogram Enumeration method [GGPT15] is generally regarded as the state-of-
the-art solution, for both its efficiency and conceptual simplicity. In short, the Histogram
Enumeration method approximates the probability density function of the key k with an
histogram H having a limited number of bins. It is simply computed as the convolution
of the histograms H; built for each subkey, that is, H = ((Ho* Hy)*...)* H,—1. Each bin
contains the number of key candidates whose log probability log(p(k)) falls in a given range.
The real known key £* will fall in one of the bins. The lower bound on the rank can be simply
computed by summing the number of elements of each bin having a probability range higher
than the real key. The higher bound can be simply computed by further adding the number
of elements of the bin containing the real key. Clearly, the higher the number of bins, the
tighter the bounds, the higher the complexity and execution time.

The Polynomial Rank Outlining Algorithm (PRO) [BLv15] solves the problem of esti-
mating arbitrarily tight bounds for the key rank by observing its similarity with the problem
of estimating arbitrarily tight bounds on the number of y-smooth integers (i.e., integers that
are decomposed in primes less or equal that y) lower than a certain value, for which efficient
solutions exist. Results are similar to [GGPT15].

After mapping floating point scores to integers with desired precision, the Key Rank
method [MOOS15] formulates the key ranking problem as a counting knapsack problem,
and solves it with path-counting in a directed acyclic graph. It is used in [MMOS16] to study
the distribution of the rank over multiple experiments. It is mathematically equivalent to
the histogram method [GGP*15], as proven by Martin et al. [MMO18].

A recent solution, named ESRank [DW19c, DW21], introduces the idea of approximating
the probability distributions of subkeys using exponential sampling. That is, a given prob-
ability distribution P[i] is approximated with P[SI[i]], where ST is a set of indices such as
SIMi]=|vSI[i—1]] and vyisaconstant. For similarly tight bounds, ESrank achieves a good per-
formance that is on-par with that of the Histogram Enumeration method, regarded in the pa-
per as the best rank estimation algorithm to date [DW21]. An advantage of ESRank is that the
tightness of its bounds can be chosen arbitrarily, while the tightness of the Histogram Enumer-
ation method depends not only on the number of bins but also on the probability distribution.

PRank [DW19b] estimates only an upper bound on the rank via a closed-formula, by
first approximating the probabilities of each subkey with a Pareto-like analytical function.

Grosso [Gro18] observed that key rank estimation algorithms do not scale well (or even
do not scale at all) for large key size (e.g., RSA keys with up to 1024 bytes), and proposed
an improvement of the Histogram Method that increases scalability. Both time and space
complexity of the histogram convolution are reduced for large keys, while keeping a good
tightness, by taking the following strategy. First, the final histogram for the entire key is
constructed from the histograms of each subkey by recursively performing the convolution
of pairs of histograms in a tree-like fashion. That is, the histograms H; are regarded as the
leaves of a binary tree and the final result is computed at the root by recursively performing
a convolution at each node. Second, each time two histograms are convolved, a batching
step is performed to merge bins two by two. This way, the number of bins after convolution
remains constant (though their size doubles). At large key size this method performs better
than the original histogram approach and was shown to work for keys up to 1024 bytes
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(though the difference between upper and lower bound increases up to around 200 bits).

Choudary et al. [CP17, TCRP21] propose an efficient method to bound Massey’s guess-
ing entropy (GM) that scales well with large keys, though GM and rank are different
metrics [Grol8]. Radulescu et al. [RPC22] show that GM is generally a lower bound to the
empirical guessing entropy computed as the average rank over multiple experiments (each
using [GGPT15]) or the Guessing Entropy Estimation Algorithm by Zhang et al. [ZDF20],
which Young et al. [YMO22] outperform with classic rank estimation (based on [MOOS15]).

The methods that we have discussed generally assume that the probability distributions
(given the side channel leakage) are independent for each subkey, as it is the case for AES-128
and RSA, but not for AES-256. In the specific case of template attacks on Diffie-Hellman key
echange in Elliptic Curve Cryptography, Lange et al. [LvV'W14] propose a key enumeration
algorithm that can deal with non-independency, using a variation of Pollard’s kangaroo
methods. Wang et al. [WLW17] extend rank estimation to the case of Correlation-Enhanced
Power Analysis Collision Attack (CECA) [MME10] on AES-128, where the attacker learns
both the scores of individual subkeys d(k;) and the scores of subkey differences d(k; ; =k; & k;).
For each value m € [0,255] of ky and for each other subkey j € [1,15], the score d(k;) is
replaced with d(k;)+d(k; j=m®k;), and the rank is computed. The final rank is the sum
of all ranks. The process could be expanded to consider all values n € [0,255] of k1, but
enumerating further subkeys would quickly become computationally infeasible.

Early attempts at applying a statistical sampling (Monte Carlo) strategy All the
rank estimation approaches that we have described compute deterministic bounds with a
deterministic algorithm. One early attempt at using a statistical sampling (Monte Carlo)
approach was proposed by Van Vredendaal [vV14]. Tt is based on the following idea. A number
N of samples k = (ko,...,km—1) is uniformly drawn from the space K of all possible keys,
forming a sample S. For each sample k, the corresponding probability is computed as p(k) =
17 pi(k;). Forasufficiently large samplessize N, the ratio | {k’ € S|p(k’) <k*}| /N converges
to |[{k' € K|p(k') <k*)}|/|K|= Rk~ /|K|. Hence, the rank can be estimated from the ratio
between the number of key in the sample that have higher probability than the real key and the
size of the sample. Unfortunately, it has been noted that such approaches may be applied to toy
examples with small key spaces, but will require impractically large sample sizes to converge
because, using real-world cryptographic parameters, Ry« /| K| can become vanishingly small,
making it often unfeasible to have even a single sample in {k’ € S|p(k’) < k*} [VGS13].
Nevertheless, Bernstein et al. [BLv15] still find a use of this method as a refinement technique
to tighten the bounds computed with the seminal algorithm of Veryrat et al. [VGS13].

3 Monte Carlo Rank Estimation

In the following we present MCRank, a key rank estimation algorithm based on non-uniform
statistical sampling. Initially based on the method proposed by Dell’Amico and Filip-
pone [DF15] for the similar problem of password strength estimation [DMR10], MCRank
addresses some challenges specific to key rank estimation. In particular, it uses automated
rescaling of the input probabilities to deal with attacks that return scores or uncalibrated
probabilities. In addition, it can be extended to deal with the interesting case of non-
independent probability distributions which occurs with AES-256. MCRank is the first rank
estimation method to effectively employ a Monte Carlo approach, as previous work generally
computes deterministic bounds, while early attempts at using uniform sampling [vV14]
would require impractical sample size to converge.
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Algorithm 1 Rank estimation with independent probability distributions

procedure INDEPENDENT _MCRANK(p,n,k*)
> p;(x): (sampling) probability that a sample of subkey j has value N
> In the simplest case, p;(x) =d;(x) where d;(x) is the probability or normalized

score returned by a side channel attack. See Algorithm 2 for a possible rescaling. <
> n: sample size N
> k*: known key consisting of m t-bit subkeys kg,....k}, 4 N
> 1,7 indices of the i-th sample and j-th subkey, respectively N
Pt ngolpj (k3) > Probability of k*
> Matriz holding the cumulative sum of probabilities for each subkey N

for j€0,....,m—1do
L for x<0,....2¢ 1 do
x—1
G2 opilq)

R+0 > current value for the sum of Equation 1
weaker <0 > samples with probability higher than the real key
for i€0,...n—1do > sample element 1
P+1 > probability of element i of our sample
for j€0,..m—1do > subkey j
r<random value uniformly taken from [0,1)
k; <—value of x such that C . <7 <Cj 411 > value of the subkey
Py« Pixp;(k;)
if P,> P* then
L R+ R+1/P;
weaker < weaker+1

> Return estimated rank and ratio of keys with higher score than k* in the sample <
return R/n,weaker/n

3.1 Independent Probability Distributions

Let us consider the case of keys having size m-t bits, that we represent as m subkeys of ¢ bits
each. For example, in our AES-128 case, we have a key having 128 bits, split in m =16 subkeys
of t =8 bit each. We represent a key k as a tuple of m subkeys: k= (ko,k1,...,km—1); hence, the
set of values a subkey can have is T'={0,...,2! =1} and the set of all possible keys K is K =T"™.

Let K be the set of all possible keys; we consider a situation where an attacker has learned
a scoring function d; : T'— [0,1] for each subkey k;, where )~ _,.d;(z)=1." We are currently
considering the case of independent attacks on each subkey, so the global scoring function
d: K —10,1] for each key k= (ko,k1,....km—1) € K is simply computed as the product of all
its subkeys: d(k)=T].",d;(k;) as discussed in Section 2.

For a multi-set X (i.e., a generalization of a set allowing for duplicate elements), we
define W (X,k) as the multi-set of keys having score larger than d(k),? i.e.,

W(X.k)={{K e X|d(k')>d(k)}}

using the double brackets {{}} to denote multi-sets. We formalize the rank estimation
problem as efficiently finding the rank Ry« of a known key k* € K, which is the number of
keys having probability larger than the known key’s score d(k*), i.e.,

Ry =W (K k).

IWhen the attack learns a probability distribution rather than a set of scores, we consider the probability
distribution for a subkey to be the scoring function.

2In some pieces of work (e.g., Grosso [Gro18]) the rank definition considers keys that have score larger
than or equal to p(k). The difference between the definitions essentially does not matter for practical
purposes, except for pathological cases in which large numbers of keys have the exact same rank.
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If we choose X to be the set K of all keys (so that K and W (K ,k*) do not have duplicates),
then we can write Ry =|W (K,k*)|=|{{¥'|d(k') >d(k*)}}|=|{k'|d(k") >d(k*)}|) and this
formulation is equivalent to the classic definition of rank presented in Section 2. However, the
definition of W (X k) as a multi-set now also allows choosing X as a sample with replacement
(i.e., with possible duplicates) of the keys, which will be useful to explain Monte Carlo methods.

As we have seen in Section 2, previously considered Monte Carlo approaches with uniform
sampling [vV14] are impractical because they would need a very large sample size to converge
and estimate the rank. The crucial difference that allows us to have a fast and practical Monte
Carlo method is non-uniform sampling, in particular by using the scores returned by the attack
to generate a sample S of keys. By sampling with higher probability keys that have a high score,
we ensure that S will contain a much larger number of keys belonging to W (K ,k*), thereby
vastly improving convergence speed. We will then need to adopt a simple normalization
mechanism to correct for the non-uniform sampling, i.e., dividing the weight of each sampled
element by its probability to be sampled, with an approach that is reminiscent of well-known
statistical techniques such as stratified sampling [HT52] and importance sampling [KvD78].

Our Monte Carlo method requires being able to generate a sample with replacement S
of size n=|S| such that the sampling probability p: K — [0,1] preserves the ordering induced
by d, i.e., Va,y € K : p(x) > p(y) <= d(z) > d(y). The original approach by Dell’Amico
and Filippone only considers the case where p=d, i.e., the sampling probability of a given
password is its score; this is effective when a method outputs well-calibrated probabilities
(i.e., the probability that a key is k* given the information observed from the side channel),
but falls short when the models outputs a score that is not representative of probabilities
or the probabilities are not calibrated. Allowing for p#d allows us to efficiently handle a
more generic use case through the rescaling technique described in the following. Since

W(X k) ={{F € X|d(K') > d(k)}} = {{K € X|p(K') >p(k)}}

due to the order-preserving property defined above, modifying the sampling probability in
this way does not affect our final result.
The estimated rank Ry~ of the known key £* is computed as

51 (p(s)>p(R7)] 1 1
Ry =— s A _ 1
S D Py W
using the Iverson bracket notation where [...] evaluates to 1 if it contains a true condition
and 0 otherwise. Dell’Amico and Filippone [DF15] prove that this estimation is unbiased,
i.e., the expected value of Ry~ is indeed Ry-; the proof comes from verifying that each key
in W (K k*) has an expected contribution of 1 to E(Ry-).

In Algorithm 1 we provide a simple pseudocode implementation of our approach, in which
we sample non-uniformly from the set of possible keys. In essence, for each byte j we are
given a sampling probability p;(z) that k; is sampled with value z. As explained above, in
the simplest case p;(z) =d,;(x) where d;(x) is the normalized score (or, ideally, probability)
that k; has value z according to the output of the side channel attack. To draw a sample
x with probability p;(x), we first draw a sample r from a uniform distribution, and then we
find x by inverting the cumulative sum of probabilities C; .. Repeating this for m subkeys
generates the i —th sample k; = (k; 0,...,ki,m—1) with probability P; = H;”:})lpj (k;). We
remark that it is not necessary to memorize the sampled keys; the only information needed
to compute result from Equation 1 are the probabilities P; for each item in the sample.

Estimation Error Analysis The estimation error is known to be O(1/y/n); however, the
expression provided in the original piece of work proving it [DF15] is unfeasible to explicitly
evaluate, since it would require enumerating all keys in W (K k*)—the very task that rank
estimation ought to accelerate. Here, we show how to compute confidence intervals. We
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note that Equation 1 can be seen as the average of n independent estimates with sample size
1. Such estimates have finite variance (in fact, they can never be larger than 1/p(k) since
elements in W (.S,k) have probability larger than p(k)). Because this is the average of indepen-
dent estimates with finite variance, the central limit theorem applies: for n— oo the errors
follow a Gaussian distribution. We compute the Standard Error of Measurement (SEM) by
taking the corrected sample standard deviation divided by the square root of n, that is:

2
P [p(s)>p(k*)]
2ises (R’f* p(s) ) o (2)
n—1 NS
We can use this value to compute confidence intervals as usual (e.g., in 99.7% of the
cases, Ry € R, =3 SEM). We should note that, even if we use sample sizes n that should
be large enough to guarantee that our error distribution is Gaussian (e.g., n>1,000), the

error distribution might be extremely skewed. To double check that our confidence intervals
are reliable, we validate them via the bootstrap percentile method [ET86] as well.

SEM =

Evaluation Metrics We are interested in two key dimensions: tightness of the bounds and
speed. We use the term uncertainty (as in measurement theory) as a synonym of tightness,
as it is more appropriate for the probabilistic bounds provided by MCRank. We define it as:

upper bound ) Ry-+3SEM

:1 —_— S —
U=1082 lower bound 82 Ry« —3SEM

[bits] (3)
It is equivalent to the definition of tightness used in existing work [VGS13]. Note that, the
lower the uncertainty, the better. We measure speed as the runtime in seconds.

Unbalanced Sampling Policy and Rescaling The scores/probabilities d generated by a side
channel attack might not be a well-calibrated estimation of the probability that a key is the
real one given the observed side channel. This issue could happen, for example, when using
correlation scores instead of the posterior probabilities of template attacks. More in general,
for a profiled attack in a real-world setting, wrong assumptions or estimations errors when
profiling the leakage model (e.g., wrongly assuming a linear model, or using a dataset where
one class is under-represented) might render the model incapable of producing well-calibrated
posterior probabilities, because the classes do not produce good predictions. In addition,
the model estimated on one device could be sub-optimal for an attack on a different device
and/or when aging or other environmental factors alter the victim’s hardware. Finally, the
output of some attacks cannot be easily translated in posterior probabilities (e.g., linear
regression attacks that return the predicted Hamming Weight as a floating point number).

In such cases, a p=d sampling policy in which scores are used as sampling probability
might be unbalanced. That is, it might produce a sample in which there are prevalently keys
with probability higher than the real key, or vice-versa prevalently keys with lower prob-
ability. This leads to poor convergence, requiring an extremely large sample size to reduce
the uncertainty below an acceptable threshold. We solve this problem by (automatically)
rescaling the sampling probabilities so that our sampling policy is balanced.

For some (positive) value of delta, we re-define the sampling probability as

p(k)=d(k)’/D_d(K')’ (4)
m

The rank is unaltered, as rescaling preserves the ordering Va,y € K :p(z) > p(y) < d(z) >
d(y), but we can now choose ¢ to re-balance the sampling policy, as shown in Algorithm 2.

We start with § =1, and loop until we find a suitable value for it. At every iteration, we
create a small sample S, with a sampling probability p(k) =d(k)® />, d(k')’ and compute
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the ratio r of keys in the sample that are weaker than k*: r=|W(S,,k*)|/|S|. If the keys are
reasonably well distributed between weaker and stronger than k* (e.g., 0.05 <r<0.95), we
are satisfied with the current value of §. Otherwise, we update d to a lower value if r is close to
1 (increasing the probability to sample lower-ranked keys) or to a higher value if, vice versa, r
is close to 0 (increasing the probability to sample higher-ranked keys). Once the desired 0 is
found, rank estimation can be performed on a larger sample. We have found that this simple
method is effective in adapting our sampling strategy to make MCRank converge quickly.
Excepting the corner cases where k* is exactly the highest or lowest-score key, an ap-
propriate value for § with an acceptable expected value for r must exist. Consider that
0 — oo results in p(k) — 1 iff k is the highest-score key, and hence r — 1; on the other end
of our spectrum, as § — 0" we move towards the uniform sampling which is suitable when
the attack is essentially not informative about the key. Moreover, consider the expected

5
ratio between the number of samples of a key k against those of k*, i.e., ;’((kﬁ)) = ( dd((kk*))> .

p(k)
p(k*)
each key with higher score than k* (score ratio larger than one) and conversely decreases

for each key with lower score than k* (score ratio lower than one). Of course probabilities
must sum up to 1, so the expected value of r, i.e., the ratio of samples from W (K k*), must
grow monotonously as a function of §. As a consequence of this, our algorithm eventually
converges by creating a sample, evaluating r and accordingly updating ¢ if r is too small
or too large, in a feedback loop fashion that stops at a suitable value for 6.

Algorithm 2 performs a grid search to find a suitable value for §. A bad choice of the
increment parameter could make it converge slowly (if too small) or not at all (too large);
moreover, the randomness due to sampling could also in principle cause problems. In our
experiments, we used a value of 0.1 for which we observed no such problems in practice; we
leave an improvement of the algorithm (e.g., using binary search) to give better theoretical
guarantees to further work. Another issue might arise when, due to very unlucky scenarios
or buggy models, k* is among the keys with lowest score. In that case, we can allow for § <0
which essentially inverts the problem, because the algorithm returns the number of keys
with p(k) > p(k*), that is those with score lower than k* (d(k) <d(k*)). In this case, the
estimation of k£*’s rank is found by subtracting | K| from the result.

It is apparent that, for increasing values of delta, the ratio increases smoothly for

Implementation Details Our own implementation is written in Python and it is accelerated
(and made concise) thanks to the vectorization provided by the NumPy library [HMvdW*20].
It differs from the pseudocode described in Algorithm 1 for a few details: (i) we update the
probabilities by inverting the order of the for loops: first iterating over subkeys and then
sample elements, because this yields better performance (binary search to generate subkeys
of many sample elements at once is parallelized); (ii) we represent probabilities as their
logarithms (log-probabilities) to avoid numerical issues for very small probabilities and to
accelerate computation because products of probabilities become sums of their logarithms.
When working with very large RSA keys, the rank and some intermediate values in the
calculation of the SEM might be too big to be represented with the IEEE 754 double-precision
floating point values used in Python. To solve this problem, we use the mpmath library [J*13]
to represent the rank with arbitrary precision, with minimal impact on performance as all
other variables (e.g., probabilities) are not impacted.

Visualization with Toy Example We show how MCRank works on a low-dimensional toy
example. We consider an attack where the key is 2-byte long, mimicking an attack on a much
smaller key space. We run a template attack on simulated traces to obtain the probabilities
(Section 4 provides more details on how we simulate traces). Given the small size of the
search space (| K|=65,536), we can easily enumerate all the possible keys k € K and their
probability p(k). The rank of the known key k* is simply given by the size of the set W (K ,k*)
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Algorithm 2 Rank estimation with rescaling

procedure RESCALING_ MCRANK(d,n,k* ,maziter,threshold,increment,percentage)
> dj(x): score indicating the likelihood that subkey j has value x

> n: sample size

> k*: known key consisting of m t-bit subkeys k§,....k,_;

> maxiter: mazrimum number of iterations for rescaling

> threshold: mazimum deviation from 50% balance

> increment: increment/decrement step of the rescaling factor

> percentage: percentage of samples on which rescaling is performed

01 > Rescaling factor
> Run MCRank on a subset of samples until |r—0.5| <threshold N
while ¢ < maxiter do

A AN AN AN A A A

> Rescale the scores and normalize them so that they sum to 1 N
for j€0,..m—1do
s+0

for z<0,...2'—1 do
pj(x) = d;(z)°
s¢s+p;(x)

for 2€0,...2—1 do

 pi@)pi(@)/s

> 1 is the ratio of samples with higher score than k* N
_,r+ Independent_MCRank(p,percentage-n,k*)
if |r—0.5| < threshold then > We found a suitable value for §

| Break out of the while loop
if r > 0.5 then

> Too many samples with higher score than k*: reduce § N
040 —increment

else

L > Not enough samples with higher score than k*: increase § N
0 <0+ increment

qg+—q+1

> Return estimated rank and ratio of keys with higher score than k* in the sample <
return Independent_MCRank(p,n,k*)

of keys with probability larger than the known real key, that is: Ry« =|W (K,k*)|=212-40,
We then apply MCRank to this setting, extracting n=|5|=1,500 samples and selecting those
with higher probability than the real key (i.e., W(S,k*)). Finally, we can estimate the rank
Ry-= W (S,k) ﬁ =212:3% with uncertainty 0.37 bits (the real rank falls in the 99.7 %

confidence interval [212:15 215-52]). Increasing the sample size to n = |S| = 4,000 improves
the estimate to Ry~ =220 with uncertainty 0.23 bits. In Figure 1 we compare the results
of exhaustive enumeration and MCRank’s sampling for smaller (a) and larger (b) sample size,
and with rescaling (c).

In the exhaustive search we can observe that |W (K,k*)| > |K\W (K,k*)|. Instead, in
all cases (a,b,c) the sample S used by MCRank is intentionally chosen to have samples falling
close the real key, with |W(S,k*)| similar to |S\W(S,k*)|. This sampling policy, achieved
by sampling based on the (rescaled) output probabilities/scores of the side channel attack,
is what makes MCRank able to quickly converge and compute the rank using a small sample
size |S| < | K|. When the sample size |S| is bigger (b) the uncertainty is lower (i.e., better)
than when the sample size is lower (a). In (a) and (b), |W(S,k*)| is not exactly equal to
|S\W(S,k*)|, because the input probabilities are not perfectly balanced. To counter this
problem, we rescale the probabilities by elevating them to a rescaling factor §. The rescaling
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(c) Bigger sample size and rescaling (6 ~0.52)

Figure 1: Visualization of the MCRank method for a 2-byte key toy example. MCRank
computes an accurate estimate of the rank of the known key k£* from a small subset S of the
keys K, sampled according to their probability. The non-uniform sampling strategy results
in fewer low-probability keys in the sample. Increasing the sample size from 1,500 (a) to 4,000
(b) reduces the uncertainty. The input probabilities can be rescaled to ensure |W(S,k*)| =
|S\W (S,k*)| even if input probabilities were not balanced further reducing the uncertainty (c).
Note that, no matter which rescaling we use for sampling, we are still computing the same rank.

factor is updated until |W(S,k*)|~|S\W (S,k*)| (happening at 6 ~0.52). As shown in (c),
rescaling does not alter the rank because it preserves the ordering of the keys. However, the
better balance results in a better (i.e., lower) uncertainty.
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Algorithm 3 Rank estimation with dependent probability distributions

procedure DEPENDENT__MCRANK(p,n,k™)

> p;(x): probability that subkey j has value x (defined only for j€[0,m/2)) N
> n: sample size <
> k*: known key consisting of m t-bit subkeys kg,....k», _; N
> 1,7 indices of the i-th sample and j-th subkey, respectively. N
compute p; ;- where kj = (k;,...,k:n/Q_l)
P15 s (RTT b i
for j€0,....m/2—1do > cumulative sum of probabilities for each subkey
for £€0,...2°—1 do
L G onil)
R+0 > current value for the sum of Equation 1
fori€0,...n—1do > sample element 1
Pi+1 > probability of element i of our sample
for j€0,..m/2—1do > sample subkey j (left half)
r < random value uniformly taken from [0,1)
k; <—value of x such that C; , <r <C ;41 > value of the subkey
By Pixp; (k)
compute p; ,k, Where kj = (ko,....kp2-1) > run a template attack based on k;
for jem/2,..m—1do > sample subkey j (right dependent half)
for z€0,...,2'—1 do
t Cjzé Ez;épj,qlkz
r<—random value uniformly taken from [0,1)
k; <—value of x such that C; , <r <Cj 41 > value of the subkey
_ PiePixpj(ky)
if P,> P* then
| R<R+1/P
> Return estimated rank. return R/n N

3.2 Dependent Probability Distributions

As we have discussed in Section 2, a major use case for MCRank is that of attacks that return
non-independent probabilities for different bytes of the key. This happens for example in an
algorithm like AES-256, because, as we have seen in Section 2, the attack on the second half
of the key depends on the attack on the first half. We refer to this case as having dependent
probability distributions among subkeys (where these probabilities are those returned by the
attack given the leakage, and not the original probabilities with which bytes were drawn). This
is a very challenging problem for existing rank estimation techniques such as the histogram
approach, because directly adopting it would require repeating the template attack for each
single possible value of the first (left) half of the key. For the AES-256 algorithm, the number
of template attacks one would need to compute could be up to 2'2®, which is clearly unfeasible.
Conversely, we show that our approach only requires computing a number of template attacks
proportional to the number of samples, which is much lower (i.e., |S| <<|K]).

We can consider that the first template attack only gives us probability distributions
for the left half of subkeys po,...,pp 2—1. For a known left half of the key k; = (ko,...,km /2-1),
we can however compute a new template attack giving us values p; ,x, for j € [m/2,m),
representing the probability of subkey j having value x given that k; is the left half of the
key and given the measured value of the leakage L. In more formal terms,

pj@“;l:IP’(kj:ﬂkl:fcl,L) vie{m/2,..m—1}zeT.

The key difference with the independent-probabilities approach we have seen so far is that
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here we will need to recompute the template attack based on each left half of a key we encounter—
both for the known key k* and for each key in the sample. In Algorithm 3, we present it in
pseudocode. We can see that here we need O(n) template attacks—one for the left half of £*,
and one for each element in the sample. In Section 4 we observe that the amount of computa-
tion due to recomputing the template probabilities dwarfs the rest of the process, increasing
the runtimes we observe from a milliseconds to tens of seconds. In our implementation, we per-
form the additional optimization of generating all the first halves of the keys at once and group
the ones that coincide, to avoid running multiple times a template attack for the same key.

4 Experimental Evaluation

MCRank is simple, fast (the execution time is O(n) with the sample size n), accurate (the
SEM is O(1/+/n)), and it scales well for very large keys (e.g., RSA 2048 bytes). It can also
work with non-independent probability distributions (e.g., AES-256).

Baseline As explained in Section 2, the state-of-the-art references for comparison are
the Histogram Enumeration method [GGP*15] for AES-128 and its extension for large
keys [Grol8] for RSA. GMBounds [CP17] is also relevant for the RSA case, though it
computes Massey’s guessing entropy that is a different metric than the rank, so that the
comparison is only qualitative. None of the previous algorithms deals with the case of
dependent probabilities distributions occurring in the AES-256 case.

Setup We use our Python implementation (Section 3). For [GGP15] we use a C++
implementation with a Python wrapper [Gro20]. The comparison is fair because: (i) the
baseline uses the fastest language, (ii) execution time excludes the overhead of the Python
wrapper, (iii) execution times are significantly different for AES-128, and (iv) for AES-256
[GGPT15] cannot even be applied because of non-independency. We write a Python wrapper
(with similar considerations) for the C++ code of [Grol8] (obtained from the author) and
for the Matlab implementation [Chol7] of [CP17]. We use simulated traces, with the
leakage [ following the Hamming Weight model plus Gaussian noise (i.e., [(y) = HW [y]+n,
n~N(u,0?)). For AES-128 y is the output of the Sy, at the first round. For AES-256, we
simulate the first round to compute y as the output of the Sy, at the second round. We
implemented template attacks on AES-128 and AES-256. For each key byte, these attacks
return a probability (in logarithm) for each of the 256 possible values. We also implemented a
profiled correlation attack, which returns scores, to show how MCRank can handle this case, too.
We also evaluate MCRank in the case of state-of-the-art Deep Learning attacks on real traces
(ASCADv2 [MS21]). We run our experiments on an HP ENVY laptop (Intel(R) Core(TM)
i7-4700MQ CPU @2.40GHz, 11GiB Memory, Ubuntu 22.04) in a Conda environment.

Uncertainty The uncertainty of MCRank can be tuned by controlling the sample size n,
because the SEM is O(1/4/n) as explained in Section 3.

MCRank rapidly achieves excellent accuracy (low uncertainty), as the confidence
interval on the rank estimate quickly becomes tighter for increasing sample size.

To show the uncertainty of MCRank we run a template attack on AES-128 with 5,000 tem-
plate traces, 2 attack traces, and standard deviation of the noise in the simulated leakage equal
t02. Toestablish a ground truth we run the Histogram Enumeration method (with parameters
merge=2, bins=2,048), obtaining that the rank lies in the interval 219-17 to 2199-39 We then
run MCRank for increasing sample size (200 to 50,000). Figure 2a shows how the 99.7 % confi-
dence interval quickly becomes tighter as the sample size increases. The uncertainty follows a
similar trend, shown in Figure 2c. With as few as 23,800 samples, the uncertainty of MCRank
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Figure 2: AFES-128. MCRank quickly converges to accurate rank estimates for increasing
sample size. Confidence interval (a), relative SEM (b), and uncertainty (c) (i.e., logarithm of
the ratio between upper and lower bound) rapidly become smaller. The confidence interval
is computed from the SEM: under the assumption that the error is normally distributed (d),
the rank falls in the £3 SEM interval with 99.7 % confidence. Using the bootstrap method
with & =0.003 provides the same bounds (a).

becomes lower (i.e., better) than that of the Histogram Enumeration method. The confidence
interval is computed starting from the SEM, whose relative value is depicted in Figure 2b. As
explained in Section 3, based on the central limit theorem we can assume that the error follows
a normal distribution. Therefore, we compute the 99.7 % confidence interval as Ry +£3SEM.
To further validate this assumption, we compute the upper and lower bounds of the confidence
interval using the bootstrap percentile method [ET86] with a=0.003. As it can be seen in
Figure 2a, the bounds computed with the two methods almost coincide. To visualize the uncer-
tainty of MCRank from another perspective, in Figure 2d we draw the distribution of the rank es-
timate for multiple runs (1,000) for varying sample size (100, 1,000, 10,000). As the sample size
increases the width of the distribution decreases (lower SEM, lower, i.e, better, uncertainty).

Execution Time The execution time of MCRank depends linearly on the sample size. This ex-
perimentally confirms our O(n) computational complexity; higher ranks imply slightly more
computation because the W (S k) set of Equation 1 becomes larger and thus requires opera-
tions on larger datasets. MCRank’s output is a probabilistic confidence interval, as opposed to
the Histogram Enumeration method’s certain bounds. We consider here a case that we deem
equivalent to “almost certainty” in practical settings: to do so, we run 10 different template at-
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Figure 3: AES-128. Comparison between Histogram Enumeration and MCRank. MCRank
is orders of magnitude faster (b) while achieving comparable uncertainty (a).
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Figure 4: AES-256. Uncertainty (a) and execution time (b) for increasing sample size.

tacks, each for 6 different values of the noise variance, for a total of 60 cases. For each case, we
run the Histogram Enumeration method (with merge=2) increasing the number of bins until
the uncertainty value becomes lower then 1 (HEL Uncertainty<1). Then, we run MCRank for
increasing samplesize, until the uncertainty is lower (i.e., better) than that of the Histogram
Enumeration method (MCRank Uncertainty< HEL Uncertainty) for 10 consecutive times.

MCRank is orders of magnitude faster than the Histogram Enumeration method,
for comparable uncertainty.

We demonstrate this with the experiment reported in Figure 3, after recording the uncer-
tainty and execution time of both techniques for 10 times. As we can see, with uncertainty
that is comparable for practical purposes, MCRank is orders of magnitude faster than the
Histogram Enumeration method.

Probability distributions given the leakage non-independent among subkeys: One of the
main advantages of MCRank is that it easily scales to scenarios in which: (i) the key is large;
(ii) the probabilities of subkeys are not all independent; (iii) the search space is too large to be
treatable with conventional techniques. We demonstrate this with the example of template
attacks on AES-256 with known random plaintext and unknown key. In this case, the key is 32-
byte long. Besides the size, the main difference with AES-128 is that the second half of the key
is processed at the second round. Asexplained in Section 2 this requires first attacking the first
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Figure 5: RSA key-load attack. Comparison with CARDIS18 [Grol8]. MCRank has lower
(i.e., better) uncertainty (a) for similar execution speed (b). For similar accuracy (c), MCRank
is faster (d). For keys larger than 512 bytes, CARDIS18 cannot achieve the same accuracy
as MCRank because, due to the large number of bins, the program exceeds the memory limits
and is killed by the operating system.

round and then using the result to attack also the second round. As a consequence, the proba-
bilities of the last 16 bytes are dependent on the success of the first 16. Here, we pessimistically
consider a perfect enumeration strategy that can still guess all keys by descending probability.

The statistical sampling approach of MCRank excels in the conditions of large guess-
ing space and non-independent attack steps. Indeed, MCRank can compute a limited
number of template attacks and still return an accurate estimate of the rank.

MCRank requires at most n+1 template attacks where n is the sample size, which can
be kept significantly smaller than the rank. Since sampling and ranking with MCRank are
orders of magnitude times faster than a template attack, the execution time is dominated
by the O(n) template attacks needed, independently from the rank.

We repeat a similar evaluation as we did for AES-128. Results are similar, though the
execution time moves from tens of milliseconds to up to a few minutes due to the cost of
executing template attacks (at most, one per sample), as shown in Figure 4. We repeat the
experiment for different ranks. A sample size of 10,000 is, as in the AES-128 case, enough
to obtain an uncertainty of less than 0.5 bits for high ranks ranging from 21%° to 2249 with
an execution time of less than 25s.
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Figure 6: Qualitative comparison between GMBounds [CP17] (Massey’s guessing entropy)
and MCRank (key rank) for the RSA key-load attack. MCRank has higher /similar execution time
(b), but lower uncertainty (a) even with a small sample size (GMBounds’ uncertainty cannot be
controlled). Experiments are run for increasing key size and fixed sample size (1000). For large
keys, [CP17] uses Matlab’s symbolic values for variable precision, with a significant slowdown.

Very large keys: We now consider RSA key-load attacks, where each subkey is attacked
independently, but where the number of subkeys can be very large. In general, key ranking al-
gorithms are slow for large keys (see, for example, the comparison by Grosso [Gro18]). Recent
work has improved scalability, optimizing the Histogram Enumeration method to obtain lin-
ear scaling with respect to the key size [Gro18], or taking the different approach of computing
bounds for Massey’s guessing entropy [CP17, TCRP21]. We compare MCRank with both ap-
proaches, but the comparison with [CP17, TCRP21] is only qualitative, because the Guessing
Entropy is a different metric than the rank [Grol8]. Accuracy and execution speed for increas-
ing number of key bytes are reported in Figure 5 and Figure 6. We are the first to show results
for keys up to 2048 bytes (previous work stops at 1024 bytes). For similar execution time (Fig-
ure 5b), the uncertainty of MCRank is orders of magnitude smaller and grows slower than that
of [Grol18] (Figure 5a). To achieve the same low (i.e., good) uncertainty as MCRank (Figure 5c¢),
the number of bins in [Gro18] has to be increased with the key size, leading to a higher execu-
tion time, or even leading the process to be killed by the operating system because of an exces-
sive memory consumption (Figure 5d). For large key size, MCRank’s accuracy is one order of
magnitude lower (i.e., better) than [CP17] for similar execution time (Figure 6). For lower key
size [CP17] does not have to use symbolic variables with arbitrary precision and can be faster.

MCRank can easily scale to 2048-byte keys achieving much lower (i.e., better)
uncertainty than previous work for similar execution time. Previous work is slower
(or cannot execute due to excessive memory consumption) for similar uncertainty.

In all these experiments, MCRank uses automatic rescaling on 100 % of the sample size, to
keep the percentage of samples with probability higher than the real key in the 5 %-95 % range.

Scores instead of probabilities: To show MCRank’s ability to work with scores, we compare
again with [GGPT15] using profiled correlation attacks. We use MCRank without rescaling
and with automatic rescaling on 100 % of the sample size to keep the percentage of samples
with higher probability than the real key in the 25 %75 % range.

With rescaling, MCRank works also with scores instead of probabilities.

Results are shown in Figure 7. Despite rescaling, MCRank is still faster than the Histogram
Enumeration method for similar or lower (i.e., better) uncertainty. Without rescaling (gray),
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Figure 7: AES-128 with profiled correlation attack. Comparison between Histogram
Enumeration and MCRank. MCRank is faster (b) while achieving comparable uncertainty (a),
as long as rescaling is used (blue). Rescaling is necessary (blue vs. gray).

Table 1: Comparison with State-Of-The-Art (SOTA).

Case | Traces Attack Challenge SOTA MCRank Results
AES-128 | Sim. Templates Classic problem [GGPT15]  Faster Figure 3
AES-128 | Sim. Profiled . Unbalanced scores  [GGP1T15]  Faster Figure 7

Correlation
AES-128 | Real Deep Learning  Real-world [GGPT15]  Faster Figure 8
AES-256 | Sim. Templates Non independency  Unsolved g;rsstt fo solve Figure 4
RSA .
16-2048 | Sim. Templates Scalability [Gro18] First to 2048 Figure 5
bytes Faster

Faster: faster execution for same uncertainty, lower uncertainty in same execution time.

MCRank is not able to achieve the desired accuracy because of a high imbalance in the
sampling, but rescaling (blue) solves the problem.

Deep-learning attacks on real traces: We evaluate MCRank with two Deep Learning attacks
on the real traces of a protected implementation provided in ASCADv2 (see Section 2) and
compare with Histogram Enumeration, showing higher speed for similar accuracy.

MCRank is faster than previous work also when evaluated with modern Deep
Learning attacks on a real protected implementation, provided rescaling is used.

Results are shown Figure 8 with both no rescaling and rescaling on 2% of the samples to
keep the number of samples with higher probability than the real key in the 5 %-95 % range.

Summary: Table 1 compares MCRank to previous work. MCRank is faster than [GGP T 15] for
AES-128, it is the first approach to solve the case of dependent probability distributions (found,
e.g., in AES-256), and it scales better than [Gro18] for large keys, even reaching 2048 bytes.

5 Conclusion

We have presented MCRank, an approach to rank estimation based on Monte Carlo sampling.
MCRank provides an unbiased estimate of the rank with a probabilistic confidence interval
on its bounds. The tightness of the confidence interval quickly increases with the sample
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Figure 8: Deep-learning attacks on real traces of a protected implementation of AES-128
(ASCADv2) for increasing number of attack traces. MCRank is faster (b,d) for similar or
lower (i.e., better) uncertainty (a,c) than Histogram Enumeration also in this case. (a,b) and
(¢,d) correspond to two different attacks presented in [MS21] (with and without knowledge
of the permutation index). With rescaling (blue) MCRank achieves the desired accuracy
below 1 bit, while without rescaling (gray) this is often not possible (missing gray points).

size n (the SEM is O(1/+/n)), whereas execution time is only linear with it (O(n)). As a
result, MCRank is orders of magnitude faster than the state-of-the-art Histogram Enumeration
method in the case of AES-128. This was demonstrated with template and profiled corre-
lation attacks on simulated traces, and deep-learning attacks on real traces from a protected
implementation. The gains in simplicity and speed justify the use of probabilistic bounds.
Most importantly, the sampling approach allows MCRank to treat for the first time the case of
subkeys whose probability distributions given the side channel leakage are not independent,
as it happens with AES-256. The same approach could be applied in the future to other
similarly challenging cases in public key cryptography. MCRank scales well also for large keys
(with independent attacks on each subkey), as it happens for key-load attacks on RSA. For
the first time, we report excellent accuracy and low execution time for keys up to 2048 bytes.
When necessary, MCRank rescales the input scores/probabilities to provide good accuracy
even if they are unbalanced. While the rescaling algorithm that we propose is automatic, it
requires selecting a few hyperparameters (e.g., the threshold on the balance of the samples).
In conclusion, we have shown that Monte Carlo sampling is a profitable approach to key
rank estimation. MCRank is available at https://github.com/giocamurati/mcrank.
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