TACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 4, pp. 886-905. DOI:10.46586 /tches.v2022.i4.886-905

GE vs GM: Efficient side-channel security
evaluations on full cryptographic keys

Anca Radulescu, Pantelimon G. Popescu and Marios O. Choudary *

University Politehnica of Bucharest, Bucharest, Romania
anca_radulescu96@ymail.com, pgpopescu@yahoo.com,marios.choudary@cs.pub.ro

Abstract.

Security evaluations for full cryptographic keys is a very important research topic
since the past decade. An efficient rank estimation algorithm was proposed at FSE
2015 to approximate the empirical guessing entropy remaining after a side-channel
attack on a full AES key, by combining information from attacks on each byte of
the key independently. However, these could not easily scale to very large keys
over 1024 bits. Hence, at CHES 2017, it was proposed a new approach for scalable
security evaluations based on Massey’s guessing entropy, which was shown tight and
scalable to very large keys, even beyond 8192 bits. Then, at CHES 2020, it was
proposed a new method for estimating the empirical guessing entropy for the case
of full-key evaluations, showing also important divergences between the empirical
guessing entropy and Massey’s guessing entropy. However, there has been some
confusion in recent publications of side-channel evaluation methods relying on these
two variants of the guessing entropy. Furthermore, it remained an open problem to
decide which of these methods should be used and in which context, particularly given
the wide acceptance of the empirical guessing entropy in the side-channel community
and the relatively little use of the other.

In this paper, we tackle this open problem through several contributions. First of
all, we provide an unitary presentation of both versions of the guessing entropy,
allowing an easy comparison of the two metrics. Secondly, we compare the two
metrics using a set of common and relevant indicators, as well as three different
datasets for side-channel evaluations (simulated, AVR XMEGA 8-bit microcontroller
and a 32-bit device). We used these indicators and datasets also to compare the three
full-key evaluation methods from FSE 2015, CHES 2017 and CHES 2020, allowing
us to provide a clear overview of the usefulness and limitations of each method.
Furthermore, our analysis has enabled us to find a new method for verifying the
soundness of a leakage model, by comparing both versions of the guessing entropy.
This method can be easily extended to full-key evaluations, hence leading to a new
useful method for side-channel evaluations.

Keywords: side-channel attacks - security evaluations - guessing entropy - bounds
- scalability

1 Introduction

Power and electromagnetic analysis attacks are powerful tools to extract secret information
from hardware devices, such as modern System-on-Chip processors used in smpartphones
or the cryptographic microcontrollers used in banking smartcards. These side-channel
attacks apply a divide-and-conquer strategy, such that they are able to target each subkey
byte of a cryptographic algorithm independently. This may allow an attacker to mount a

*We thank Christ our God for this work.

Licensed under Creative Commons License CC-BY 4.0. (@) |
Received: 2022-04-15 Accepted: 2022-06-15 Published: 2022-08-31

https://doi.org/10.46586/tches.v2022.i4.886-905
mailto:anca_radulescu96@ymail.com, pgpopescu@yahoo.com, marios.choudary@cs.pub.ro
http://creativecommons.org/licenses/by/4.0/

Anca Radulescu, Pantelimon G. Popescu and Marios O. Choudary 887

practical attack on a block cipher such as AES, when using a key of 128 or 256 bits (16 or
32 bytes, respectively), by targeting each of the 16 or 32 key bytes independently, whereas
a purely brute-force search attack on the full key is computationally infeasible.

While classic side-channel attacks focused on attacking a single key byte, recent advances
in side-channel attacks have focused on the problem of estimating the rank! of the full key
of a cryptographic algorithm, after obtaining sorted lists of probabilities for the different
subkeys that compose the full key (e.g. lists for the 16 subkey bytes of AES, when used
with a 128-bit key). These algorithms represent very useful tools for security evaluators
that need to estimate the security of a given device.

One of the first approaches towards estimating the rank of a full 128-bit key was
proposed by Veyrat-Charvillon et al. [CNG+13], albeit with a considerable error margin.
Afterwards, other algorithms [GCG+15, MPO+15, BJL+15] have reduced the bounds
of this estimation to within one bit for 128-bit keys and can run within seconds of
computation, after being given with a list of sorted probabilities for the individual subkeys.
One of the most efficient such algorithms is the one by Glowacz et al. presented at
FSE 2015 [GCG+15], which allows estimating the empirical guessing entropy introduced
by Standaert et al. [SMY09] in the full-key scenario. However, these algorithms cannot
easily scale for large keys composed of more than 128 bytes (e.g. an RSA 2048 or 4096 bit
key), while at the same time providing tight bounds.

In this context, Choudary and Popescu [CP17] presented at CHES 2017 a new approach,
based on mathematical bounds of Massey’s Guessing Entropy [Mas94], to bound the
guessing entropy remaining after a side-channel attack for very large cryptographic keys
(or other secret data). They showed that their method works for keys of 8192 bits (1024
bytes) and beyond, in almost constant time and memory, which none of the other methods
could do.

Then, at CHES 2020, Zhang et al. [ZZD+20] presented a new approach for estimating
the empirical guessing entropy in full-key evaluations, that may provide advantages over
previous approaches such as the FSE 2015 method.

Concurrent to these publications and also within the paper of Zhang et al., there have
been several observations regarding the limitations of each method and in particular the
observation that the empirical guessing entropy and Massey’s guessing entropy may diverge
considerably, leading to substantially different results [GV18, DW19, AMP+19, ZZD+20].
Nevertheless, it remained an open problem to decide which of the two guessing entropies
that are estimated by the full-key evaluation methods cited above (FSE 2015, CHES 2017,
CHES 2020) is better suited for side-channel evaluations.

In this paper, we give an answer to this open problem, by attentively presenting and
comparing the two guessing entropy metrics as well as these three full-key estimation
algorithms. We show both analytically and experimentally the advantages and weaknesses
of each method, by using a set of common indicators and three side-channel datasets: a sim-
ulated dataset, traces from the hardware AES engine of the AVR XMEGA microcontroller
and traces from a software bitsliced AES implementation on a 32-bit device.

This analysis enables us to provide a guide that can help us decide which method to
use for various side-channel security evaluations. Furthermore, our analysis has enabled
us to develop a new method for deciding whether a leakage model is sound, by actually
combining, rather than choosing, the two variants of the guessing entropy.

In the next section we provide some background on full-key side-channel evaluations.
Then, in Section 3 we provide a detailed presentation of the two guessing entropy variants
used in the side-channel literature: Massey’s guessing entropy and the empirical guessing
entropy. Then, in Section 4 we present the three full-key evaluation methods analysed in
this paper (FSE 2015, CHES 2017, CHES 2020). In Section 5 we present our evaluation

1The position of the correct key in a list sorted by the side-channel attack algorithm. The higher the
correct key in the list, the better the side-channel algorithm performs and hence the worst the security
protection level.

888 GE vs GM: Efficient side-channel security evaluations on full cryptographic keys

context: the key indicators used for comparing implementations as well as our datasets
and the method of Template Attacks used to implement our side-channel attacks. Sections
6 and 7 present our analysis for the guessing entropy metrics as well as for the full-key
evaluation methods, respectively.

2 Background: security evaluations for side-channel at-
tacks on full cryptographic keys

Given a physical device (e.g. a smartcard) that implements a cryptographic algorithm,
such as AES, we may record side-channel traces (power consumption or electromagnetic
emissions) using an oscilloscope. In this case, for each encryption of a plaintext p; with
a key kx, we can obtain a leakage trace x; that contains some information about the
encryption operation.

For the particular case of AES and other similar block ciphers that use a substitution box
(S-Box), a common target for side-channel attacks is the S-box operation v = S-box(kx ®p)
from the first round of the block cipher. Since this operation is done for each subkey
k* in part (for AES each subkey only has 8 bits), we can attack each of the subkeys
separately. And by using information from the leakage traces, a side-channel attack
such as DPA [KJJ99], CPA [BEC+04] or Template Attacks [CRR02] can assign higher
probabilities to the correct subkeys, leading to a very powerful brute-force search on each
subkey.

After obtaining the lists of probabilities for each subkey, we may need to combine
these lists in some way in order to determine what are the most likely values for the
full cryptographic key. One important motivation for this is that secure devices, such
as the microcontrollers used in EMV cards, need to obtain a Common Criteria [Com]
or EMVCo [EMV] certification at some assurance level (e.g. EAL4+). To provide such
certification, evaluation laboratories may need to verify the security of devices against
side-channel attacks also for the case of full-key recovery attacks, in particular where some
subkeys may leak considerably different than others.

For the particular case of AES, we need to combine from 16 bytes (128-bit key)
to 32 bytes (256-bit key). If the target device leaks enough information and sufficient
measurements are done, then the attack may provide a probability close to one for the
correct subkey value, while assigning a very small probability to the other candidate subkey
values. In this case, the combination is trivial, as we only need to use the most likely
value for each subkey. However, in practice, due to noise in the measurements and various
security measures in secured devices, the correct value of each subkey may be ranked
anywhere between the first and the last position. In this case, a trivial direct combination
of all the lists of probabilities is not computationally feasible. Note that this problem
arises in any scenario where we need to combine multiple lists of probabilities.

To deal with this combination problem in the context of side-channel attacks, two
kinds of algorithms have emerged in recent years: key enumeration and rank estimation
algorithms. Key enumeration algorithms [VGR+12, PRS+16] provide a method to output
full keys in decreasing order of likelihood, such that we can minimize the number of keys
we try until finding the correct one (which is typically verified by comparing the encryption
of a known plaintext/ciphertext pair).

The other kind of algorithms, which are the main focus of this paper, are guesswork
estimation algorithms. These algorithms provide an estimate of the level of security
remaining after a side-channel attack targeting a full cryptographic key, i.e. the estimated
number of keys we should try (guess) until finding the correct one if we were to apply a
similar approach to key enumeration. The great advantage of such estimation algorithms
is that we can estimate the guesswork even if this is very high (e.g. 280 or larger), whereas

Anca Radulescu, Pantelimon G. Popescu and Marios O. Choudary 889

enumerating such large number of keys is computationally infeasible.

Veyrat-Charvillon et al. [CNG+13] proposed the first practical guesswork estimation
algorithm for 128-bit keys, known as rank estimation algorithm because it estimates the key
rank [SMY09] (empirical guessing entropy). This algorithm could run in between 5 and 900
seconds. The main drawbacks of this algorithm are that the bounds of the rank estimation
can be up to 20-30 bits apart from the real key rank and the required time to tighten the
bounds increases exponentially. Soon afterwards, many other algorithms, including those
analysed in this paper, provided more efficient and scalable methods to perform guesswork
estimation [GCG+15, MPO+15, BJL+15, CP17, GV18, DW19, ZZD+20, DW21].

Among these, we shall focus on three remarkable methods: a) the rank estimation
from FSE 2015 [GCG+15] — one of the first efficient implementations for rank estimation,
among the best performant methods to this day?; b) the scalable bounds on Massey’s
guessing entropy from CHES 2017 [CP17] — the most scalable solution to date; ¢) the
rank estimation method from CHES 2020 [ZZD+20] — introducing a new approach to rank
estimation: based on estimating the distribution of scores.

We start below with a presentation of the two guesswork metrics (Massey’s guessing
entropy and the empirical guessing entropy), on which the three full-key evaluation methods
mentioned above are based on.

3 Security metrics based on expected guesswork

The methods analysed in this paper estimate or bound two main security metrics: the
key rank (or empirical guessing entropy), which we shall refer to as GE in this paper, and
Massey’s guessing entropy, which we shall refer to as GM. Unfortunately, through the past
decade these metrics have been mixed in several forms, causing some confusion. Hence, in
this section we aim to clarify each metric in the context of side-channel attacks. This will
be useful and necessary to understand better the differences between the three methods
analysed afterwards, in the reminder of the paper. We start with a brief history overview
of these metrics and then provide more details on each of them.

The first description of what we term as Massey’s guessing entropy was most probably
in the paper by James Massey in 1994 [Mas94], where he defined a value G as “the number
of guesses used in the guessing strategy that minimizes E[G]”. A few years later, under
his supervision, Christian Cachin published his PhD thesis on “Entropy measures and
unconditional security in cryptography” [Cac97]. In his thesis, Cachin termed the measure
E[G] (rewritten as E[G(X)]) as the “guessing entropy of X”, where X is the random
variable to be guessed (e.g. the key of a cryptographic algorithm). Also in this thesis,
Cachin presented the “conditional guessing entropy of X given Y”, E[G(X]|Y)], for “the case
of guessing X with knowledge of a correlated random variable Y”. This conditional guessing
entropy was then used in the context of side-channel attacks probably for the first time by
Kopf and Basin [KB07]. Shortly afterwards, Standaert et al. [SMY09] defined an empirical
version of the guessing entropy that they termed as “guessing entropy”. This definition and
measure was then commonly used within the side-channel research community to evaluate
the success of side-channel attacks. However, this also introduced some confusion for
several reasons: (a) the measure is actually a conditional guessing entropy, as it depends
on the side-channel observations; (b) they used the same “guessing entropy” term for a
measure that is computed differently than the previously introduced conditional guessing
entropy, defined by Cachin [Cac97] and used in the side-channel context by Kopf and

2The recent paper of David and Wool [DW21] also states that the FSE 2015 rank estimation algorithm
is the best to date, their advantage over FSE 2015 being that they can prove a bound on the error for
their method, while this is not certain for FSE 2015, particularly when dealing with strange distributions.
However, for our datasets the FSE 2015 bounds are very tight, hence we can resort to use this method,
which is very practical and easy to implement.

890 GE vs GM: Efficient side-channel security evaluations on full cryptographic keys

Basin [KBO07]; (¢) this measure has been called either “guessing entropy” or “rank” or “key
rank” across different publications. As a result, it is not entirely clear what metric should
be used: if we should prefer one metric over the other or in which context we should use
each of them. Throughout this paper, we aim to bring some light into this issue, given the
importance of these metrics for the scalable methods evaluated here.

3.1 Massey’s guessing entropy (GM)

As detailed earlier, James L. Massey proposed in 1994 a metric used to capture the “number
of guesses used in the guessing strategy that minimizes F[G]” [Mas94] (until we find the
desired value, e.g. some cryptographic key). Cachin rewrote this value as E[G(X)] and
termed it as the “guessing entropy of X” [Cac97], specifying the random variable X to be
guessed. This is computed as:

N
Zzi'pm (1)

where p; > po > ... > pn are the probabilities for different values of the random
variable X, in descending order, according to the guessing strategy.

Cachin then defined also G(X|Y), for the case of guessing X with knowledge of a
correlated random variable Y, as the “guessing function for X given Y when G(X|y) is a
guessing function for the probability distribution Pxy—,” In this case, we can compute
the average number of guesses needed to determine X, with knowledge of a correlated
random variable Y, obtaining the conditional guessing entropy of X given Y as:

G(X|Y)] = Py(y)E[G(Xy)). (2)
yey

Kopf and Basin used this conditional guessing entropy in the context of side-channel
attacks (where the correlated random variable Y is the side-channel leakage), stating that
E[G(X|Y)] is “a lower bound on the expected number of off-line guesses that an attacker
must perform for key recovery after having carried out a side-channel attack” [KBO7].

For our side-channel evaluation context, we are interested in the guessing entropy (or
conditional guessing entropy) of a secret key K given the leakage X, i.e. E[G(K|X)]. For
this, we can first compute E[G(K|X = X)] as

S|
EG(K|X =X)] =} i+ P(ls] X = X), (3)
i=1
where |S| represents the number of possible values of K and P(k;|X = X) > P(ko|X =
X) > ... > P(ks/|X = X) represent the conditional probabilities obtained after a side-
channel attack with traces X (see acquisition details in Section 5), sorted in descending
order (according to the guessing strategy). Then, we can compute E[G(K|X)] as

EIG(K|X)] = Y P(X = X)EIG(K|X = X)]. (4)

Since it is often not possible to iterate over all the possibilities of the leakage space, we
often approximate the above expectation using enough experiments (NNV), obtaining the
conditional guessing entropy as follows:

N
E[G(K[X)] Z G(K[X = X,)]. ()

Anca Radulescu, Pantelimon G. Popescu and Marios O. Choudary 891

We shall refer to this value as Massey’s guessing entropy (or GM for short) in the
reminder of the paper. Hence, we have:

1 N
GM = ; E[G(K|X =X,)]. (6)

3.2 Empirical guessing entropy (GE)

From a more empirical perspective, Standaert et al. presented in 2009 another guessing
entropy, based on the position of the correct key in the sorted vector of conditional
probabilities [SMY09]. Let P(ki|X = X) > P(k2|X = X) > ... > P(ki5)|X = X) be
again the conditional probabilities obtained after a side-channel attack with traces X,
sorted in descending order (according to the guessing strategy), for each of the |S| possible
values of the key. Then, we can define this guessing entropy for a single experiment
(typically known as rank) as:

rank(K|X = X) =i, P(ki|X)>...> P(ki|X) = P(k*|X) > ... > P(kis/|X), (7)

where kx represents the correct key and X the side-channel traces. That is, rank(K|X = X)
provides the actual position of the correct key kx in the list of candidate values, sorted
accordingly to the guessing strategy (typically after a side-channel attack, in our context).
Similarly to the case of Massey’s guessing entropy GM (see above), we are also interested
here in obtaining an expected or average value for this rank. We can compute this as:

N
rank(K|X) = > P(X = X)rank(K|X = X) Zrank KIX=X,), (8
XeX q=1

where N is again the number of experiments used for a sufficient approximation of the
rank. We shall refer to this last value as the empirical guessing entropy (or GE for short).
Hence, we have:

N
Z rank(K|X = X,). (9)

We can also compute the expected value of the rank, rank(K|X), based on the
probability that the correct key kx is ranked at a given position (pos,,) in the descendingly
sorted list of possible key values:

S|
rank(K|X) = Y i - P[pos;, =i X], (10)

i=1

although the probabilities P[pos,, = i|X] are difficult to use in scalable security estimation
methods. However, there is another form of the above equation, easier to estimate and
which is used by one of the methods analysed in this paper (see Section 4.3), based on the
probabilities that other keys (k;) are more (or less) likely than the correct one (kx):

rank(K|X) =1+ Z P[pos;,, < pos;,|X] =1+ Z {1 = P[pos;, < pos,|X]}.
{ilki#kx} {ilks#kx}
(11)
This last equation can be more helpful than Equation 10, because the summation here can
be estimated using the normal cumulative density function, as shown in Section 4.3.

892 GE vs GM: Efficient side-channel security evaluations on full cryptographic keys

4 Efficient full-key security evaluation methods

In this section we present the three main guesswork estimators analysed in this paper: the
rank estimation from FSE 2015 [GCG+15], the scalable bounds from CHES 2017 [CP17]
and the recent rank estimation method from CHES 2020 [ZZD+20]. We may rewrite
slightly the original notations in order to harmonize the presentation in this paper.

4.1 FSE 2015 estimator for GE

The rank estimation method of Glowacz et al. [GCG+15], to which we refer as the FSE 2015
estimator in this paper, is one of the fastest such algorithms and scales well for keys up to
128 bytes. To use this algorithm, we must first compute the logarithms of the conditional
probabilities, log P(k}|X = X), for all the ng chunks (1 <4 < |S|, 1 < j < ng) of a full
cryptographic key (e.g. ns = 16 byte chunks for a 16-byte AES key). Then, we can
compute the histograms of the log-probabilities for each key chunk:

H; = histogram(log P(k!| X = X)), (12)

and finally compute a large histogram for the entire key, by combining the individual
histograms through convolution:

Hqu:Hl*HQ*...*HnS. (13)

This is typically computed by first convolving the first two histograms, then the result
with the third histogram and so on.

Having computed the convolution of all the histograms and with knowledge of the
correct key (and hence of the bins containing the correct key chunk in each histogram),
we can estimate the full key rank by adding the values of the bins in the full histogram,
starting with the bin that should contain the correct full-key until the last one:

#bins in Heyn
rankFSE (Kfun|X = X) = Z Hfull(t)- (14)
t=bin(log P(kxfull| X=X))

This basically estimates the number of keys with a log-probability larger than or equal to
the one of the correct key, which essentially estimates the rank of the correct key.

Similar to the empirical guessing entropy (see previous section), we can approximate
the expectation of this rank of the full key using N experiments, obtaining;:

N
1
GEML = ¥ > rankpsp (KM'|X = X,). (15)

q=1

There have been some speed improvements on this method, such as the work of Grosso
from CARDIS 2018 [GV18], which also compares the execution time of the FSE 2015
estimator and the CHES 2017 bounds [GV18, Fig. 6, p.14]. However, as mentioned by the
same author, the performance improvements come at the cost of tightness. Similarly, the
recently published method of David and Wool [DW21] can improve slightly the performance
at the cost of memory consumption, but is also more complicated to implement. Hence, for
generality and simplicity, we shall use the FSE 2015 method in the analysis of this work,
given that it remains one of the representative algorithms for estimating the empirical
guessing entropy GE when targeting full cryptographic keys.

Anca Radulescu, Pantelimon G. Popescu and Marios O. Choudary 893

4.2 CHES 2017 bounds for GM

At CHES 2017, Choudary and Popescu [CP17] showed efficient and scalable bounds for
Massey’s guessing entropy as follows:

2 2
S| S|

1 1/2 1 1/2 1
I E ; <EGKIX=X)< = E ; 4= 1

=1 i=1

where p; = P(k;]X = X) are again the conditional probabilities obtained after a side-
channel attack, but not necessarily sorted. This allows a faster evaluation, as we do not
need to sort the probabilities, as it is necessary e.g. for computing Massey’s guessing
entropy or the empirical guessing entropy (see Section 3). By averaging the terms over
many experiments, we obtain the bounds for the approximation of the expected value of
Massey’s guessing entropy, which was termed GM:

2 2
N |S]| N |S|

Zl+ln\8| Zpl/z SGM< SIS 1w |t (17)

q=1 i=1

where p; ; = P(k;|X = X,) is the conditional probability for key value k; in experiment g.
In the same CHES 2017 paper, the authors also showed that these bounds can be used
for full-key security evaluations [CP17, Theorem 1], providing the following bounds:

Ng \5\ Ng ‘S‘

Z\/pj < E[G(K™| X = X)] Z\/pj +f (18)
—1 =1 =

1—|—ln

where p/ = P(k}|X = X) are the conditional probabilities for the j-th key chunk values
k! (1 < j < ng). We may again average each term over N experiments, to obtain bounds
for Massey’s guessing entropy GM on the full key (GMf”“):

ns | IS] N ns | IS]

f1[sovim| zow <2 o L[S vin] o1

Nzl-l-ln

, , (19)
where pg’ = P(k!|X =X,) are the conditional probabilities for the j-th key chunk values
kf in experiment q.

This is the fastest and most scalable method for full-key evaluation known to date.
We shall refer to these lower and upper bounds on GM as LBgy and UBgy, respectively,
regardless of whether we use them for single byte or full-key evaluations.

4.3 CHES 2020 estimator for GE

At CHES 2020, Zhang et al. [ZZD+20] proposed a new method, termed ‘GEEA’ (guessing
entropy estimation algorithm) to estimate the empirical guessing entropy (GE). Their
method relies on the observations made by Rivain et al. [Riv08, LPR+14], that the success
rate can be computed from the multivariate Gaussian distribution of the ranking score
vectors. Zhang et al. have used this distribution to produce the GEEA estimator, which is
expected to approximate better the value rank(K|X) than the average estimator GE (see
Section 3.2 for details).

Given a list of scores s = {51, 52,..., 5|5/}, obtained after a side-channel attack (e.g.
the probabilities P(k;|X = X) or their logarithm log P(k;|X = X)), we can compute a

894 GE vs GM: Efficient side-channel security evaluations on full cryptographic keys

comparison vector A(K|X = X) having (|S] — 1) elements:
Az(K|X = X) = 8; — Skx, (20)

where the values A; are computed for all the scores values s;, except for s, the score for
the correct key. Then, Rivain et al. [Riv08, LPR~+14] have shown that if the scores from
multiple experiments can be combined through addition®, then this comparison vector
follows a multivariate distribution N (u Ao niaE A)s Where A and X A are the mean vector
and respectively covariance matrix of the comparison vector, and n, represents the data
available to an attacker, for which we wish to estimate the comparison vector. Note that
we need to obtain the side-channel traces over a sufficient number N of experiments to
estimate the mean () and covariance (XA) of the comparison vector. Then, we use
these multivariate parameters to estimate the comparison vector for a given value n,, with
the goal of estimating the guessing entropy obtained by an adversary that has access to n,
attack traces.
From a particular observation of the comparison vector A(K|X = X), we can compute
the rank as:
rank(K|X = X) = Npos(A(K|X = X)) + 1, (21)

where Npos(A(K|X = X)) represents the number of positive components of A(K|X = X),
i.e. the number of components for which s; > sg.. Thus, we can obtain the expected value
of the rank as:

rank(K|X) =14+ > Pls;>sp]=14+ > {1-Plsp.>s]}. (22)
{ilsi#ses} {ilsi#sk}

Based on the above results, Zhang et al. provide the following formula for their GEEA
estimator of the rank:

|S|—1
GEEA,, =1+ Y & (WTA(K'X)> , (23)

— S;i(K|X)
where
N
Ay(K|X) = NZ (KX =X,),
; (24)
Sii(K|X) = N; (KX =X,) — A(K|X))?,

are the estimated mean and variance of the component A;(K|X = X) of A(K|X = X),
®(-) represents the normal cumulative density function and n, is the assumed number of
attack traces available to an attacker for the estimation of the empirical guessing entropy
using GEEA.

The authors of GEEA also provide an extension of their estimator for full-key evaluation.
Given the set of comparison vectors {A', A%, ..., A™} for ng target bytes (e.g. sub-key
values), with their respective estimated mean and variance components A?(K|X) and
S/ (K|X) for each A’, Zhang et al. [ZZD+20] sum these values, assuming that the full key
comparison score is the sum of byte comparison scores*, to obtain the mean and variance

3They term a side-channel attack with this property an “additive distinguisher” and show that popular
attack methods have this property, either directly (e.g. using the correlation coefficient) or indirectly (e.g.
using a score derived from the logarithm of the multivariate Gaussian distribution in the case of Template
Attacks).

4 An assumption that may need more analysis in the context of side-channel attacks.

Anca Radulescu, Pantelimon G. Popescu and Marios O. Choudary 895

of the comparison score vector for each possible full-key candidate kf = (ki*|k?2| ... |k=):
Aps (K|X) = AL (K|X), Sps(K|X) =D Si4,7, (25)
=1 =1

with the observation that each of the values Agj (K|X) and Siﬂ-jj are particular to each
subkey byte j (1 < j < ng). With these values, Zhang et al. compute the estimation of

the full key rank from a (random) set® of M full-key values 8 = {kf kI, ... kI } as:

GEEAfl — 1 4 M *IS[—1 Y o Viad, (K|X)

M kfess Skf(K‘X)
2 V J

We make again a note here that, while for the FSE 2015 and CHES 2017 methods the
approximation of the expected value of the rank (GEML) or Massey’s conditional guessing
entropy (GM™") were obtained through averaging over N individual experiments (see
Equations 15 and 19), for GEEA the approximation of the expected value of the rank is
obtained directly from the estimated mean and covariance parameters (see Equations 23
and 26), but in turn these parameters are also obtained by averaging over N individual
experiments (see Equation 24). Hence, in all cases we need to iterate over N experiments

to estimate acceptably the desired metrics.

(26)

5 Evaluation context

To analyse and compare the methods discussed in this paper, we have used the following
indicators, that we think allow a fair and useful comparison of the methods from different
perspectives:

e Precision: through this indicator, we want to check how well and how fast a given
metric approximates the expected value that is trying to estimate. This will be
typically done by measuring the standard deviation of the given method and by
observing this deviation over a different number of experiments.

e Resource complexity: with this indicator we shall compare the time and memory
complexity of the methods, either from the estimated theoretical bounds or from
practical results.

e Scalability: this indicator is particularly useful for the full-key evaluations. Here,
we aim to measure the possibility of each method to cope with evaluations on
large cryptographic keys. In particular, we shall compare the rate of increasing
time/memory complexity as a function of key length.

o Relevance for side-channel evaluations: this is a (possibly subjective) indicator, that
observes the usefulness of a method for side-channel evaluation. This will be done
through an iteration of possible scenarios where a method seems of interest for such
security evaluations.

Furthermore, in order to provide a more comprehensive analysis of the evaluation
methods, we used three distinct datasets: one from MATLAB simulated data (simulated
dataset), one from the hardware AES co-processor of an AVR XMEGA device (XMEGA
dataset) and one from a 32-bit ARM device (SoC dataset). We provide some more details
below.

5Such random set can be obtained by selecting random values for each sub-key value and then
concatenating these values in order to obtain each full-key candidate.

896 GE vs GM: Efficient side-channel security evaluations on full cryptographic keys

5.1 Simulated dataset

For this dataset, we simply implemented AES and added uniform noise to the output
of the sub-bytes operation and then applied Template Attacks [CK13] to obtain lists of
probabilities for each key byte of the AES key (16 key bytes in total).

The data contains unidimensional leakage samples x; produced as the hamming weight
of the AES S-box output value mixed with Gaussian noise, i.e.

x; = HW(S-box(k @ p;)) + 1, 1 <i < #traces in dataset (27)

where p; is the plaintext byte corresponding to this trace, and r; represents the Gaussian
noise (variance 10). We shall refer to this as the simulated dataset.

5.2 Xmega dataset

This dataset consists of 220 ~ 1M power-supply traces of the AES engine inside an AVR

XMEGA microcontroller, obtained while the cryptographic engine was encrypting different
uniformly distributed plaintexts. The traces correspond to the S-box lookup from the
first round key. Each trace contains m = 5000 oscilloscope samples recorded at 500MS/s,
using a Tektronix TDS7054 oscilloscope, configured at 250 MHz bandwidth in HIRES
mode with Fastframe and 10mV /div vertical resolution, using DC coupling. The XMEGA
microcontroller was powered at 3.3 V from batteries and was run by a 2MHz sinewave
clock. We shall refer to this as the XMEGA dataset.

5.3 SoC dataset

The third dataset consists of 100000 power traces acquired for a bitsliced variant of the
AES-128 algorithm. The 32-bit unprotected implementation covered in [BJG+15] was
used. The acquisition campaign was conducted entirely on a ChipWhisperer-Lite [Lit22],
using the integrated STM32F303 32-bit ARM target architecture and the attached capture
instrument. Each trace consists of 5000 samples recorded at ~ 30MS/s (for a sampling
clock of 29.48 MHz), covering also the processing of the first S-box operation. We shall
refer to this as the SoC dataset.

5.4 Template attacks

To use our datasets with the methods evaluated in this paper, we need to obtain lists of
probabilities for the possible values of the 16 subkeys used with our AES implementations.
For this, we use Template Attacks (TA) [CRR02, CK13] on each subkey during the S-box
lookup of the first AES round, thus obtaining the desired lists of probabilities. The
Template Attacks work in two steps: a profiling and an attack step. In the profiling
step, we first compute a set of profiling parameters that typically estimate a multivariate
distribution for each possible candidate value (e.g. key byte). Then, during the attack
step we compute the likelihood of the attack traces given the template parameters, hence
obtaining (typically via Bayes) probabilities for each possible candidate value.

For each dataset we have between a few hundred thousands and one million traces. We
split the data randomly into profiling and attack sets and we do this for many experiments
(typically we create over 100 such sets). The traces in each pair of sets (profiling and
attack) are randomised prior to the separation into profiling and attack set, so that we
can remove unwanted effects such as temperature influencing consecutive traces. Typically
we use many more traces for profiling, so the profiling parameters are well estimated (e.g.
for the XMEGA dataset we used around 200 traces per byte value in each set). For the
attack set we typically select between a few hundred and a few thousand traces per set.

Anca Radulescu, Pantelimon G. Popescu and Marios O. Choudary

897

GM

GM-STD

~ GM+STD
N ——GE

. |---cEs™
\._|=——GE+sTD

120

100
N

80

60

200

150

40
50 F~

Guessing Entropy

20

0

0 T e

20
10° 10t 102 10° 10° 10t 102
ur attack traces ur attack traces

nr attack traces

Figure 1: GM and GE with one standard deviation above and below across our datasets.
Left: XMEGA; middle: SoC; right: simulated. Mean values and standard deviation
obtained from 100 independent experiments.

In the case of the simulated dataset, the templates were obtained simply by computing
the mean and covariance parameters for the simulated samples (one leakage sample per
trace) and then using these template parameters on the set of attack traces. For the
XMEGA dataset, we first applied a sample selection method equivalent to the SNR and
SOST methods [CK18] in order to compress the traces down to only very few samples per
trace and then applied the Template Attack on these compressed traces. Finally, for the
SoC dataset, we combined stochastic models with Principal Component Analysis [COK14]
in order to improve the profiling step and to reduce the size of the traces.

After executing a side-channel attack using a vector X of leakage traces (e.g. the real
or simulated traces in our case), we obtain a vector of scores or probabilities d(k|X) € RIS|
for each possible key byte value k € {1,...,|S|}, where |S| is the number of possible values
(typically |S| = 256 for one AES subkey byte). In the case of Template Attacks, we obtain
probabilities and we shall often write P(k|X) = d(k|X).5

After obtaining the probabilities P(k|X) for each subkey byte k, we can compute the
security metrics and rank estimation methods presented in the paper.

6 Using GE or GM for security evaluations

Since the FSE 2015 and CHES 2020 methods approximate the expected value of the
rank (i.e. they compute a variant of GE) and the CHES 2017 bounds are obtained for
Massey’s conditional guessing entropy (GM), we start by comparing these two variants of
the guessing entropy. Then, in the next section we analyse the three methods used for
full-key evaluation.

6.1 Precision of GE and GM

It was recently mentioned that the GM might have bad precision [AMP+19], requiring to
average the results of many experiments to get good estimation results. Similarly, Zhang
et al. [ZZD+20, Section 1,p.27] stated that the GM calculation suffers “the same practical
problem of needing to average over many data sets” as the GE.

To verify the extent of this situation, we have used our datasets and computed both
the GE and the GM metrics, with the formulas from Section 3, using ¢ = 100 experiments
and a varying amount of attack traces n, (1 < n, < 100). Using this data we have also
computed the standard deviation of each metric, hence comparing their accuracies. The

6Unprofiled side-channel attacks such as CPA often return a score vector, e.g. based on the correlation
coefficient p € [—1,1] for each possible candidate value k, which might not work very well with rank
estimation methods. However, even in the unprofiled setting is possible to use other methods, such as
linear regression on the fly [COP+16] to obtain pseudo-probabilities that work well with rank estimation
algorithms.

898 GE vs GM: Efficient side-channel security evaluations on full cryptographic keys

Table 1: 5th, 50th and 95th percentile of standard deviation for GE and GM methods.

Method XMEGA SoC simulated
GE 21.92, 65.8, 76.48 0.28, 0.47, 18.95 0.91, 10.79, 67.05
GM 2.26, 6.6, 9.79 0.02, 0.08, 0.5 0.81, 3.52, 16.02

results are shown in Figure 1. We also show in Table 1 the 5th, 50th (median) and 95th
percentile of the standard deviation (across the different values of n, attack traces) for
each method in each experiment. From these results we observe that GE has indeed a large
standard deviation, generally one order of magnitude larger than the standard deviation
of the GM across our experiments. Therefore, methods based on GM may allow security
evaluations even when having access to few attack traces.

The large differences between GE and GM can be explained by the fact that the
calculation of the GE relies on the exact (actual) position of the correct key, which may
fluctuate greatly, while the calculation of GM only depends on the relative magnitude
of probabilities, regardless of the position of the correct key in the sorted vector of
probabilities.

6.2 Resource complexity of GE and GM

As can be seen from their definitions (see Equations 6 and 9), both GE and GM require
first sorting of the probabilities, for computation of the rank (Equation 7) and condi-
tional guessing entropy (Equation 3), respectively. This has a computational complexity
O(|S|1og |S]), where |S] is again the number of possible values of the target candidate kx
(e.g. a key byte or the entire key for full-key evaluations). If we consider also the number
of experiments N required for a good estimation, then the complexity is O(N|S]|log|S|),
although in general the parameter N can be kept relatively small even when dealing with
large key sizes, hence the important factor here is |S].

In any case, it is clear that both metrics have the same computational requirements and
that it becomes impractical to use them for full cryptographic keys (e.g. 128-bit keys), due
to the impossibility of performing the sorting in acceptable time. Hence the requirement
for the full-key evaluation methods evaluated in next section.

In terms of memory, both methods need to store all the probabilities P(k;|X = X) in
order to perform the sorting, hence they require memory linear with |S|. This can again
become impractical for large keys.

6.3 Relevance of GE and GM for side-channel security evaluations

After analysing the definitions, accuracies and performance of GM and GE, we need to
evaluate the usefulness of each measure for security evaluation purposes. For this task, we
shall resort to their original apparition and scope, as presented in Section 3.

As seen, GM approximates the conditional guessing entropy of the key K given the
leakage X. Based on its original definition by Massey [Mas94] and then its further
development by Cachin [Cac97], GM estimates the average number of guesses needed to
determine the correct value of the key variable K when given the side-channel leakage
X. This measure was then applied precisely in the side-channel context by Koépf and
Basin [KBO07], who gave the important statement that this conditional guessing entropy is
a lower bound on the expected number of off-line guesses that an attacker must perform for
key recovery after having carried out a side-channel attack. Hence, we can expect that the
actual number of off-line guesses that an attacker must perform for key recovery after a
side-channel attack is higher than the GM.

Anca Radulescu, Pantelimon G. Popescu and Marios O. Choudary 899

On the other hand, GE was introduced in the side-channel community by Standaert et
al. [SMY09] precisely as an empirical measure, that would provide the exact number of
guesses that an attacker would need to determine the correct value of the key variable K
when given the leakage X.

Given this situation, we may expect that in general GM may provide a lower value than
GE. Hence, an important question is which of them should be used and in which scenario,
given that the GE has been used predominantly so far in the side-channel community,
while GM has been reintroduced only recently, since the development of efficient bounds
for full-key evaluations.

140 120 140
120 GE 100 GE 120 GE
> 100 100
g 80
E 80 80
o 60
£ 60 60
g 40
[
3 40 40
20 20 20
0 0 0
10° 10t 102 108 10° 10t 102 10° 10t 102

nr attack traces nr attack traces nr attack traces

Figure 2: Results of GE and GM targeting one key byte across all our datasets: XMEGA
(left), SoC (middle) and simulated (right).

%104 %104 %104
: : :
—GE —GE —GE
25 25 25
>
5
g 2 2 2
w
215 15 15
2
g 1 1 1
O]
05 0.5 05
0 0 0
10° 10t 102 0% 10° 10t 102 10° 10t 102

nr attack traces nr attack traces nr attack traces

Figure 3: Results of GE and GM targeting two key bytes across all our datasets: XMEGA
(left), SoC (middle) and simulated (right).

To give an answer to the question of which of them should be used and in which
scenarios, we start by evaluating both metrics within our datasets, when targeting one
and two bytes (for full-key evaluations see next section). Our results are shown in Figures
2 and 3 for evaluations on one and two bytes, respectively.

As we can see, indeed the GM is consistently below GE, as expected from the discussion
above. Furthermore, Zhang et al. [ZZD+20, see Appendix| also showed that in general
GM will be lower than GE and that values of GM above GE are generally not observable
in numerical studies. Given these results and observations, we can state the following
conclusions when targeting a small key chunk (one or two bytes):

e GM will likely provide a lower bound on the actual guessing entropy, i.e. an attacker
will generally require more effort than shown by GM.

e GE provides a good approximation of the expected effort needed by a real attacker,
at the cost of some more experiments to obtain a smooth approximation.

Therefore, we may select to use one or the other depending on our evaluation require-
ments. If we must provide an estimate of the difficulty in attacking a device that is as

900 GE vs GM: Efficient side-channel security evaluations on full cryptographic keys

close as possible to the attacker’s perspective, then we should use GE. However, if all we
need is to check whether the security of a device is above a certain threshold, then GM
may also be of use. This will become much more relevant when we focus on the full-key
scenario, in the next section.

Besides the above conclusions regarding the usefulness of each metric individually, we
can observe another very important aspect, based on the results shown above: that the
difference between GE and GM is related to the quality of the leakage model, as also
noticed by Zhang et al. [ZZD+20, Appendix] in their analysis. Examining the figures
above for both, evaluations on a single byte as well as evaluations on two bytes, we can
see that the two metrics almost overlap for the simulated dataset, they diverge slightly
(GM below GE) for the XMEGA dataset and they diverge greatly for the SoC dataset.

Such variations in the difference between GE and GM can be explained as follows. For
the simulated dataset, we have used the exact leakage model that was used to generate
the traces (since they are simulated from the leakage model) and in this case, as noted
also by Zhang et al., the correct key is very well distinguished and hence the order of
probabilities generally matches well with the order of the correct key, leading to GE being
very close to GM. For the XMEGA dataset, we have a leakage model that is not entirely
accurate, due to the noise of the various components influencing the leakage traces used
to attack the hardware AES implementation in the XMEGA device. Finally, for the SoC
dataset, we have a very weak leakage model due to targeting one or two bytes at a time
in the bitsliced AES implementation on a 32-bit device. In this case, only 8 or 16 bits
from the 32 processed by the device are actually relevant (e.g. the first bit of the first 8
key bytes), while the remaining bits produce substantial noise, hence leading to the weak
leakage model and to the large difference between GE and GM.

Hence, rather than using only one metric or the other, these results show that it can
be very useful to compute both and use their difference as a method to verify the quality
of the leakage model used during security evaluations: if the two metrics are close to
each other, then the model is good, otherwise the model may suffer from estimation or
assumption errors [DFS+14].

7 Comparative analysis of full-key evaluation methods

In this section, we analyse the three full-key security evaluation methods presented earlier:
the rank estimation algorithm from FSE 2015 [GCG+15], the scalable bounds for GM from
CHES 2017 [CP17] and the newer rank estimation algorithm from CHES 2020 [ZZD+20],
using the indicators and datasets presented earlier (see Section 5).

7.1 Precision of full-key estimators: the case for low-data complexity
tools.

As Azouaoui et al. [AMP+19] have mentioned, it is very useful to have a tool that can
quickly (e.g. using very few attack traces) determine whether an attack has some chance of
revealing the key with practical computation time and hence whether we should perform key
enumeration (which is not trivial for full cryptographic keys). In this context, evaluating
the precision of each full-key evaluation method seems very relevant.

For this task, we have applied the three full-key evaluation methods on our datasets,
comparing their standard deviation (similarly to what we did in Section 6.1). Our results
are shown in Figure 4. The 5th, 50th and 95th percentile of the standard deviation across
the n, attack traces in bits (i.e. by taking the difference of the logarithms of the measures
with and without a standard deviation) for each method and dataset is shown in Table 2.

For the GEEA method, the computation of the mean and standard deviation need
some explanation, since the GEEA method already produces an estimation based on a

Anca Radulescu, Pantelimon G. Popescu and Marios O. Choudary 901

120 TR T SaL 120 120

100 100

[~
o
e} FSE
< 80 [|-FsESTD 80 80
> —-—-—FSE+STD
g GMLB R
£ 60 GMLB-STD 60 N 60
& GMLB+STD
o GMUB
S 40 | |- _cmussmo 40 40
7R vy 3
3 GEEA
O] 20 (L GEEA-STD 20 20
-~ GEEA+STD
0 0 = 0
10° 10t 102 10° 10° 10t 102 10° 10t 102

nr attack traces nr attack traces nr attack traces

Figure 4: Precision results across the three full-key evaluations methods for all our datasets:
XMEGA (left), SoC (middle) and simulated (right).

Table 2: 5th, 50th and 95th percentile of standard deviation (in bits) for the three full-key
evaluations methods using an AES 128-bit key (16 key bytes).

Method XMEGA SoC simulated

FSE 2015 1.12, 1.84, 3.14 2.11, 2.67, 3.20 2.11, 2.89, 3.41
CHES 2017 LBagum 0.29, 0.74, 2.42 0.67, 1.36, 2.39 0.68, 2.22, 3.22
CHES 2017 UBgum 0.29, 0.74, 2.42 0.5, 1.32, 2.34 0.68, 2.22, 3.22
CHES 2020 0.04, 0.56, 2.88 0, 0.81, 3.46 0.49, 1.77, 2.08

prior use of mean and standard deviation parameters. In order to provide a reasonable
comparison between metrics, we have decided to allow the same amount of data to each
metric. Hence, since the GEEA method estimates the guessing entropy of an attack with
n, traces based on the previously computed parameters, we have used a total of n, traces
per each computation of the GEEA method and then computed the mean and standard
deviation of GEEA over N such computations. Furthermore, in order to provide a fair
comparison also in terms of computing power, we have limited the number of random
keys used by the full-key GEEA estimator (see Equation 26) to M = 10*, which results in
a similar computation time as for the computation of the mean and standard deviation
values for the FSE 2015 and CHES 2017 methods 7.

These results show that both the CHES 2017 and CHES 2020 methods have good
precision overall, while the FSE 2015 method has a somewhat larger standard deviation.
However, we should also notice that unfortunately the CHES 2020 method provides results
quite far from the FSE 2015 method, most likely due to the selected number of random
keys used for its approximation, as detailed above.

7.2 Time/complexity analysis of full-key estimators

To continue our analysis, we show in Table 3 the time required to compute each method
for 16-byte (128-bit), 128-byte (1024-bit) and 1024-byte (8192-bit) keys across all the
datasets. The time includes the computation for all values of number of attack traces and
all iterations. As mentioned before, for the CHES 2020 method it is difficult to set a clear
point, as its computation time depends also on the number of random keys that we want
to use for its approximation. The more we use, the better should be its estimation, but
increasing it too much becomes impractical. For 16 bytes we have used M = 10* and for
128 bytes we used M = 108 values, resulting in the time shown. Nevertheless, the memory
requirements remain the same, since we only need to keep the same list of score vectors,
regardless of the number of random keys that we use.

These results confirm that the CHES 2017 method is faster than the others by one or

"Between 15-30 seconds on our machine: Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz, 16GB RAM.

902

GE vs GM: Efficient side-channel security evaluations on full cryptographic keys

Table 3: Computation time (in seconds) for all the full-key evaluation methods on our
XMEGA /SoC/simulated datasets with different number of key bytes.

Method 16 bytes 128 bytes 1024 bytes
FSE 2015 29/60/172 1027/5336,/4689 N/A
CHES 2017 1/1/1 2/6/6 40
CHES 2020 17/18/26 432/415/473 N/A

1000 1000 1000
g 800 800 800
9
= 600 600 600
“i 400 400 400
o ———FSE15

o ——— GEEA 0 o

10° 10t 10° 10° 10° 10t 102 10° 10* 10?
nr attack traces nr attack traces nr attack traces

Figure 5: Results of all full-key evaluation methods for a 128-byte (1024-bit) key across
all our datasets: XMEGA (left), SoC (middle) and simulated (right).

more orders of magnitude. Nevertheless, one may still prefer one of the other methods, if
the requirements are to estimate precisely the empirical guessing entropy GE.

7.3 Scalability of full-key estimators

In this section we explore the scalability of each method by comparing them using 128
byte keys® across all our datasets. The results of these methods across our datasets are
shown in Figure 5. We make here the following observations:

e All methods can be computed relatively well for 128 byte keys. However, when

trying to compute the results for even larger keys, e.g. 1024 byte keys, we could not
obtain this for the FSE 2015 and CHES 2020 methods, due to their computational
and memory limitations. This was somewhat expected for the FSE 2015 method,
but now it was also seen for the CHES 2020 method. Hence, for such larger keys,
the CHES 2017 method might be the only viable solution.

We see again the difference between the results of the FSE 2015 and CHES 2020
methods, confirming that they do not lead to same results when dealing with large
keys and moderate amount of computation. From previous publications, such as
our CHES 2017 paper [CP17, Figure 5], we observe that the FSE 2015 method
follows closely the empirical guessing entropy GE. Hence, our results imply that
the CHES 2020 method cannot reliably approximate the empirical guessing entropy,
using moderate computation.

These figures also show that the FSE 2015 and CHES 2017 are close for the simulated
and XMEGA datasets, but differ substantially for the SoC dataset, i.e. where the
leakage model is not accurate as described earlier. Hence, this confirms that we may
combine the FSE 2015 and CHES 2017 methods to determine whether a leakage
model is sound.

8For simplicity, we have just replicated the lists of probabilities from the 16 AES keys as many times
as needed. The scalability conclusions would be the same with other lists.

Anca Radulescu, Pantelimon G. Popescu and Marios O. Choudary 903

Table 4: Properties of full-key evaluation methods.

Method Precision | Speed | Scalability | Remarks
FSE 2015 Moderate | Slow | Up to 256- | Good estimate of GE.
byte keys
CHES 2017 | Good Fast | 1024-byte | Good estimate of GM. Generally a

keys and | lower bound for GE. May be used
beyond together with FSE 2015 to assess the
quality of a leakage model.

CHES 2020 | Good Slow | Up to 256- | Good precision. Can deviate from
byte keys | FSE 2015/GE. May be useful with
a large amount of computation if we
need high precision.

7.4 Relevance of full-key estimators for security evaluations

As seen by previous results, each of the full-key estimation methods explored in this paper
has its advantages and limitations. We make a summary of our observations in Table 4.

8 Conclusion

In this paper we have explored the differences between two versions of the guessing entropy,
as used for security evaluations of side-channel attacks: Massey’s guessing entropy and the
empirical guessing entropy. Our analysis has clarified previous confusion on the difference
between these two measures when used for side-channel evaluations, allowing security
evaluators to have a better understanding of each metric and its potential use.

Furthermore, we have analysed three representative full-key estimation methods for
these security metrics, namely the methods presented at FSE 2015, CHES 2017 and
CHES 2020. Our analysis presents a clear overview of the advantages and limitations of
each method, which should be of great utility for any security evaluator.

In addition, we have discovered a new method for verifying the soundness of a leakage
model used in a side-channel attack, by combining the empirical guessing entropy and
Massey’s guessing entropy. This may provide a useful tool for side-channel evaluations of
both small and large keys.

Acknowledgement: We thank very much Professor Virgil Gligor for his profound and
friendly dedication towards helping and improving this paper.

Funding: This research was supported by a grant from the Romanian Ministry of
Education and Research, CNCS-UEFISCDI, project number PN-III-P1-1.1-TE-2019-2245.

References
[Mas94] J.L. Massey, Guessing and Entropy, IEEE ISIT, 1994, p. 204.

[Cac97] Christian Cachin, “Entropy measures and unconditional security in cryptography”,
PhD diss., ETH Zurich, 1997.

[KJJ99] Paul Kocher, Joshua Jaffe and Benjamin Jun, “Differential Power Analysis”,
CRYPTO 1999.

https://www.commoncriteriaportal.org/

904 GE vs GM: Efficient side-channel security evaluations on full cryptographic keys

[CRRO2] S. Chari, J. Rao, and P. Rohatgi, “Template Attacks”, CHES 2002, Springer,
2003, LNCS 2523, pp 51-62.

[BEC+04] Brier, Eric, Christophe Clavier, and Francis Olivier. “Correlation power analysis
with a leakage model.”, Cryptographic Hardware and Embedded Systems-CHES
2004. Springer Berlin Heidelberg, 2004, pp. 16-29.

[KB07] B. Kopf and D. Basin, “An Information-theoretic Model for Adaptive Side-channel
Attacks”, in Proceedings of the 14th ACM Conference on Computer and Commu-
nications Security (CCS), 2007, pp. 286-296.

[SMY09] F.-X. Standaert, T. G. Malkin, and M. Yung, “A Unified Framework for the
Analysis of Side-Channel Key Recovery Attacks”, Eurocrypt 2009, LNCS 5479, pp
443-461.

[Riv08] Matthieu Rivain, “On the exact success rate of side channel analysis in the gaussian
model”, in International Workshop on Selected Areas in Cryptography, pp. 165-183.
Springer, Berlin, Heidelberg, 2008.

[VGR+12] N. Veyrat-Charvillon, B. Gerard, M. Renauld and F.-X. Standaert, “An optimal
Key Enumeration Algorithm and its Application to Side-Channel Attacks”, SAC
2012.

[CNG+13] Veyrat-Charvillon, Nicolas, Benoit Gérard, and Frangois-Xavier Standaert,
“Security Evaluations beyond Computing Power”, EUROCRYPT 2013, LNCS 7881,
pp- 126-41.

[CK13] O. Choudary and M. G. Kuhn, “Efficient Template Attacks”, CARDIS 2013,
Berlin, 27-29 November 2013, LNCS 8419, pp. 253-270.

[COK14] Choudary, Marios O., and Markus G. Kuhn. “Efficient stochastic methods:
profiled attacks beyond 8 bits”. In International Conference on Smart Card Research
and Advanced Applications, pp. 85-103. Springer, Cham, 2014.

[LPR+14] Victor Lomné, Emmanuel Prouff, Matthieu Rivain, Thomas Roche, and Adrian
Thillard, “How to estimate the success rate of higher-order side-channel attacks”,
in International Workshop on Cryptographic Hardware and Embedded Systems
(CHES) 2014, pp. 35-54.

[DFS+14] Durvaux, Francois, Francois-Xavier Standaert, and Nicolas Veyrat-Charvillon,
“How to certify the leakage of a chip?”, In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pp. 459-476, 2014.

[GCG+15] Glowacz, Cezary, Vincent Grosso, Romain Poussier, Joachim Schiith, and
Francois-Xavier Standaert, “Simpler and More Efficient Rank Estimation for Side-
Channel Security Assessment”. Fast Software Encryption 2015, LNCS 9054, pp.
117-29.

[BJL+15] Bernstein, Daniel J., Tanja Lange, and Christine van Vredendaal, “Tighter,
Faster, Simpler Side-Channel Security Evaluations beyond Computing Power”.
https://eprint.iacr.org/2015/221.

[MPO+15] Martin, Daniel P., Jonathan F. O’Connell, Elisabeth Oswald, and Martijn
Stam, “Counting Keys in Parallel After a Side Channel Attack”. ASIACRYPT
2015, LNCS 9453, pp. 313-37.

[BJG+15] Balasch, Josep, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede.
“DPA, bitslicing and masking at 1 GHz”. CHES 2015, pp. 599-619.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.5172&rep=rep1&type=pdf#page=29
https://eprint.iacr.org/2006/139.pdf
https://eprint.iacr.org/2006/139.pdf
http://link.springer.com/chapter/10.1007/978-3-642-38348-9_8
http://www.cl.cam.ac.uk/research/security/datasets/grizzly/efficient_templates.pdf
http://link.springer.com/chapter/10.1007/978-3-662-48116-5_6
http://link.springer.com/chapter/10.1007/978-3-662-48116-5_6
https://eprint.iacr.org/2015/221
https://eprint.iacr.org/2015/221
https://eprint.iacr.org/2015/221
http://link.springer.com/chapter/10.1007/978-3-662-48800-3_13

Anca Radulescu, Pantelimon G. Popescu and Marios O. Choudary 905

[PRS+16] Poussier, Romain, Francois-Xavier Standaert, and Vincent Grosso, “Simple Key
Enumeration (and Rank Estimation) Using Histograms: An Integrated Approach”,
CHES 2016, to appear, http://eprint.iacr.org/2016/571.

[COP+16] Choudary, Marios O., Romain Poussier and Frangois-Xavier Standaert, “Score-
based vs. Probability-based Enumeration — a Cautionary Note —”, Indocrypt 2016,
to appear.

[CP17] Marios O. Choudary and P. G. Popescu, “Back to massey: impressively fast,
scalable and tight security evaluation tools”, CHES 2017, pp. 367-386.

[CK18] M. O. Choudary and M. G. Kuhn, “Efficient, Portable Template Attacks”, in
IEEE Transactions on Information Forensics and Security, vol. 13, no. 2, 2018, pp.
490-501.

[GV18] Grosso, Vincent. “Scalable key rank estimation (and key enumeration) algorithm
for large keys”, In CARDIS 2018, pp. 80-94.

[DW19] Liron David and Avishai Wool. “Poly-logarithmic side channel rank estimation
via exponential sampling”, In Cryptographers’ Track at the RSA Conference, pp.
330-349.

[AMP+19] Azouaoui, Melissa, Romain Poussier, Frangois-Xavier Standaert, and Vincent
Verneuil, “Key Enumeration from the Adversarial Viewpoint”, In CARDIS 2019,
pPpP- 252-267.

[ZZD+20] Zhang, Ziyue, A. Adam Ding, and Yunsi Fei. “A Fast and Accurate Guessing
Entropy Estimation Algorithm for Full-key Recovery”, CHES 2020, pp. 26—48.

[DW21] L. David and A. Wool, “Rank estimation with bounded error via exponential
sampling”, J Cryptogr Eng, Aug. 2021, doi: 10.1007/s13389-021-00269-4.

[Lit22] ChipWhisperer Lite, https://rtfm.newae.com/Starter%20Kits/
ChipWhisperer-Lite/.

[Com] The Common Criteria web site. https://https://www.commoncriteriaportal.
org/

[EMV] The EMVCo Certification Process. https://www.emvco.com/processes-forms/
certification/

http://eprint.iacr.org/2016/571
http://eprint.iacr.org/2016/571
http://eprint.iacr.org/2016/571
https://eprint.iacr.org/2017/623.pdf
https://eprint.iacr.org/2017/623.pdf
https://rtfm.newae.com/Starter%20Kits/ChipWhisperer-Lite/
https://rtfm.newae.com/Starter%20Kits/ChipWhisperer-Lite/
https://https://www.commoncriteriaportal.org/
https://https://www.commoncriteriaportal.org/
https://www.emvco.com/processes-forms/certification/
https://www.emvco.com/processes-forms/certification/

	Introduction
	Background: security evaluations for side-channel attacks on full cryptographic keys
	Security metrics based on expected guesswork
	Massey's guessing entropy (GM)
	Empirical guessing entropy (GE)

	Efficient full-key security evaluation methods
	FSE 2015 estimator for GE
	CHES 2017 bounds for GM
	CHES 2020 estimator for GE

	Evaluation context
	Simulated dataset
	Xmega dataset
	SoC dataset
	Template attacks

	Using GE or GM for security evaluations
	Precision of GE and GM
	Resource complexity of GE and GM
	Relevance of GE and GM for side-channel security evaluations

	Comparative analysis of full-key evaluation methods
	Precision of full-key estimators: the case for low-data complexity tools.
	Time/complexity analysis of full-key estimators
	Scalability of full-key estimators
	Relevance of full-key estimators for security evaluations

	Conclusion

