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Abstract. In this paper, we propose the first key-recovery side-channel attack on
Classic McEliece, a KEM finalist in the NIST Post-quantum Cryptography Standard-
ization Project. Our novel idea is to design an attack algorithm where we submit
special ciphertexts to the decryption oracle that correspond to cases of single errors.
Decoding of such ciphertexts involves only a single entry in a large secret permutation,
which is part of the secret key. Through an identified leakage in the additive FFT step
used to evaluate the error locator polynomial, a single entry of the secret permutation
can be determined. Iterating this for other entries leads to full secret key recovery.
The attack is described using power analysis both on the FPGA reference imple-
mentation and a software implementation running on an ARM Cortex-M4. We
use a machine-learning-based classification algorithm to determine the error locator
polynomial from a single trace. The attack is fully implemented and evaluated in the
Chipwhisperer framework and is successful in practice. For the smallest parameter
set, it is using about 300 traces for partial key recovery and less than 800 traces for
full key recovery, in the FPGA case. A similar number of traces are required for a
successful attack on the ARM software implementation.
Keywords: Code-based cryptography · NIST post-quantum standardization · side-
channel attacks · Classic McEliece

1 Introduction
The promise of quantum computing has rapidly changed the focus of research and industry
in many areas. The growing interest in applications of quantum computing has led to rapid
development of quantum computers in recent years. Experimental quantum computers are
developed in the labs of companies such as IBM, Google and Microsoft.

The current solutions for information security are threatened by this progress. In
particular, cryptographic primitives that base their security on the difficulty of factoring
or the discrete log problem, are no longer secure. Shor’s algorithm [Sho94] can be used
to break these schemes in polynomial time. Even though a sufficiently large quantum
computer may still be many years into the future, information processed today must remain
secure also in 10 or 20 years from now. So the development of new security solutions that
can withstand the threat of quantum computers is both urgent and of utmost importance.

As a major step in the direction, NIST initiated a few years ago the NIST Post-quantum
Cryptography Standardization Project [NIS], here called the NIST PQ project. This is an
ongoing evaluation and standardization project for two types of cryptographic primitives,
KEMs (Key Encapsulation Mechanisms) and digital signatures. It will eventually set new
world standards (technically, US Federal Government standards) for post-quantum secure
primitives, in a similar manner as was previously done in the development of AES and
SHA-3.
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Post-quantum secure primitives are most commonly constructed based on either lattice
problems or decoding problems in the Hamming metric, referred to as lattice-based crypto
or code-based crypto (but there are also e.g. hash-based, multi-variate, isogeny-based).
The NIST PQ project is now in its final round (round 3) before standardization and we
can find one code-based KEM as finalist and two code-based KEMs as alternate candidates
(classified roughly as promising candidates that need more study), BIKE [ABB+20] and
HQC [AAB+20].

This paper is about Classic McEliece [ABC+20], which is the code-based KEM finalist,
together with three lattice-based KEM finalists, Saber, Kyber, and NTRU [DKR+20,
SAB+20, CDH+20]. The Classic McEliece KEM proposal is a modified version of the old
McEliece PKC construction from the 70’s, using the so-called Niederreiter PKC version
and scrambled parity-check matrices from Goppa codes. The security is mainly related to
the hardness of decoding random codes as well as distinguishing scrambled Goppa codes
from random codes.

Classic McEliece is regarded as a conservative design based on a well-studied problem.
It is less efficient compared to lattice-based schemes in implementation and key size but
has high confidence in its security. The German Federal Office for Information Security
(BSI) in [Ger] suggests to use Classic McEliece [ABC+20] and FrodoKEM [NAB+20] for
“long-term confidentiality protection”.

While the theoretical security of these post-quantum secure primitives is intensively
investigated and small steps forward are continuously taken, the study on the implementa-
tion security of these schemes is of equal importance. From a practical perspective, it may
even be more important, as information leakage from implementations often lead to actual
practical attacks, whereas a successful theoretical attack on a proposed scheme may still
be very far from an attack that can actually be done in practice.

Side-channel attacks on implementations of cryptographic primitives, initiated by
Kocher [Koc96], contain a plethora of different approaches, such as timing attacks and
power attacks, etc. There are also the related fault injection attacks. In a power attack,
as used in this paper, the continuous power consumption of the target device with the
crypto implementation is measured while the device is executing. The measured power
consumption can provide information on secret values in the cryptographic scheme. A
successful attack both needs to identify where in the execution to measure, i.e. identifying a
useful leakage point, and then to describe an algorithm that uses the received side-channel
information and determines secret information in the attacked crypto scheme.

The most powerful and common side-channel attack model is of profiling type, meaning
that it is assumed that the adversary has access to the target device or some form of a
copy of the target device. The adversary can then in an initial profiling step characterize
and measure on the device to learn possible dependencies, etc. Whereas so-called template
attacks have traditionally been the common approach to profiled attacks, a recently
developed and now very common approach is to use machine-learning algorithms. In
particular, side-channel attacks based on deep learning have recently gained a lot of
attention [MPP16, ZBHV19, KPH+19, NDGJ21, PPM+21]. There are also non-profiled
side-channel attacks with deep learning [Tim18, PCBP21].

All the lattice-based KEM finalists in the NIST PQ project have been subjects of
side-channel attacks that can recover the secret key [RRCB20, XPRO20, NDGJ21, AR21,
REB+22, UXT+22] There are also attacks recovering the secret message [SKL+20]. We
now see a race between researchers trying to provide better-protected implementations
both in hardware and in software, and researchers trying to find even more sophisticated
ways of attacking protected implementations of the finalists [BDK+20, NDGJ21, BDH+21,
BGR+21, ABH+22]. However, no key-recovery side-channel attack on Classic McEliece
implementations is known, only message recovery attacks. This paper proposes the first
key-recovery side-channel attack on Classic McEliece implementations.
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1.1 Related works
The first code-based cryptosystem was proposed by McEliece [McE78]. Classic McEliece is
a modified version of this original scheme and its latest version is described in [ABC+20].
The official submission of the proposal to round 3 of the NIST PQ project contains also
implementations. Other published implementations of Classic McEliece can be found, e.g.,
FPGA implementations in [WSN17, WSN18] and an ARM Cortex-M4 implementation in
[CC21].

Side-channel attacks on McEliece PKC with Goppa codes have previously appeared in
[STM+08], which presents an implemented timing attack as well as two other side-channel
attacks and related countermeasures: a power attack on the construction of the parity check
matrix during key generation and a cache attack on the permutation of code words during
decryption. See also improvements in [AHPT11]. Power analysis of an implementation of
McEliece PKC on an 8-bit AVR microprocessor was presented in [HMP10].

Side-channel attacks on Classic McEliece have previously appeared as a message-recovery
attack using a type of reaction attack in [LNPS20]. There has also been a message-recovery
laser fault-injection attack described in [CCD+21]. In [LNPS20] the attack is based
on [SSMS10] but adapting it to an EM side-channel on a constant-time Berlekamp-Massey
decoder. The attack targets the FPGA implementation of Classic McEliece as in [WSN18].
A new message-recovery attack [CDCG22] targeting the encryption process of Classic
McEliece was proposed very recently.

Key-recovery reaction attacks have appeared on code-based primitives, most notably
on QC-MDPC [GJS16, GJW19] and on QC-LDPC [FHS+17]. These attacks have a close
connection to side-channel attacks and have appeared on the NIST PQ project candidate
HQC [GJ20] and key-recovery timing attacks have appeared on BIKE and HQC [GHJ+21].

Relevant general timing attacks on schemes using the FO transformation appeared
in [GJN20]. Ueno et al. concluded in [UXT+22] that all round-3 NIST PQC candidates
but Classic McEliece are vulnerable to implementation attacks by focusing on the FO
transformation.

1.2 Contributions
In this paper, we propose the first key-recovery side-channel attacks on Classic McEliece
implementations. This is based on an identified general vulnerability caused by the current
algorithm design, that can be explored in a side-channel attack. The vulnerability comes
from the fact that if the error locator polynomial is fixed, then the additive FFT evaluation
procedure in the decoding step behaves the same. We list some main contributions of the
paper as follows.

• We present the first key-recovery side-channel attacks on implementations of Classic
McEliece both in hardware (FPGA) and in software (ARM Cortex-M4)

• We highlight an identified side-channel vulnerability in the constant-time (Goppa)
decoding step that involves an FFT computation for the evaluation of the error locator
polynomial. This has to be addressed when designing a protected implementation of
Classic McEliece or similar schemes.

• We show the design of a detailed attack algorithm that finds ways of minimizing the
number of required traces.

We have applied this attack to the FPGA reference implementation1 of Classic McEliece
and fully implemented and evaluated the different steps. We also apply it to a third-

1This hardware implementation is referenced in the official document [ABC+20] of round-3 Classic
McEliece and is named “reference implementation” in [LNPS20].
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party implementation for the ARM Cortex-M4 CPU [CC21] with full implementation and
evaluation.

1.2.1 New techniques

The main idea of the attack is that if the error locator polynomial is fixed, then the later step
of an additive FFT to evaluate the error locator polynomial over all the 2m points (m = 12
or 13) is a fixed process. In the FPGA implementation, it corresponds to 1095 clock cycles
of computation. If we generate error vectors with only one position in error, in position i,
then there exit only 2m possible error locator polynomials since it is a polynomial of the
form x−αi, where αi is an unknown value. We use a machine-learning-based classification
algorithm to determine the error locator polynomial from power measurements. The error
locator polynomial outputted by the Berlekamp-Massey algorithm is given by a selected
error location after the secret mapping, related to the secret αi values. We can thus recover
parts of the secret support by repeatedly submitting ciphertexts with a single error in
different positions and after a few hundred such submissions we can successfully recover
the entire secret Goppa polynomial. To do full secret key recovery, we need additional
traces.

1.3 Organization
The remaining of the paper is organized as follows. In Section 2, we give the necessary
background in coding theory and code-based cryptography. We then describe the novel
ideas in Section 3 and present the new attack in detail in Section 4. This is followed by
Section 5 showing the experimental results. We conclude the paper and discuss possible
improvements and future works in Section 6.

2 Background
In this section, we briefly introduce background information including basics in coding
theory, code-based cryptography, and side-channel analysis.

2.1 Notations
We adopt some of the notations in the design document of round-3 Classic McEliece [ABC+20].
We employ bold-face capital characters for matrices and bold-face low-case characters for
vectors throughout the paper. Let q be a prime or a power of prime. We denote Fq the
finite field of order q and Fq[x] the polynomial ring over Fq. The notation #{A} means the
number of elements in the set A. The Hamming weight of a vector v (denoted wH (v)) is
defined as the number of non-zero coordinates of v. The Hamming distance of two vectors
v1 and v2 (denoted dH (v1,v2)) is defined to be the number of coordinates in which v1
and v2 differ. We use |x| to denote the absolute value of x.

2.2 Coding theory
Linear codes Let C be a subspace of Fn

q with dimension k. Then C is called an [n, k]q
linear code of length n and dimension k. The redundancy of C is then r = n− k. We call
a vector c = (c1, . . . , cn) ∈ C a codeword of C, and the support of a codeword c is defined
as the index set I(c) that

I(c) = {i : i ∈ {1, . . . , n} and ci 6= 0}.

Thus, we have wH (c) = #{I(c)}. The minimum distance of a linear code C is defined as
the smallest Hamming distance between two distinct codewords. Let G be a k × n matrix
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Table 1: Classic McEliece parameter sets.

m t n k = n−mt level
kem/mceliece348864 12 64 3488 2720 1
kem/mceliece460896 13 96 4608 3360 3
kem/mceliece6688128 13 128 6688 5024 5
kem/mceliece6960119 13 119 6960 5413 5
kem/mceliece8192128 13 128 8192 6528 5

over Fq whose rows are the vectors of a basis of C. We call G a generator matrix and the
linear code C is generated by

C = {uG : u ∈ Fk
q}.

We can also define C by an r × n matrix H, called parity-check matrix, as

C = {c ∈ Fn
q : HcT = 0},

i.e. C is the kernel of H. The syndrome of a vector v ∈ Fn
q is defined as HvT.

Binary Goppa codes Classic McEliece employs irreducible binary Goppa codes defined
as follows.

Definition 1 (Binary Goppa Codes). The binary Goppa code C over F2m is defined by a
support vector p = (α1, . . . , αn) ∈ Fn

2m , where αi 6= αj for i 6= j and the Goppa polynomial
g(x) ∈ F2m [x] with degree t. The code C is the set of codewords c = (c1, . . . , cn) ∈ Fn

2 such
that

n∑
i=1

ci

x− αi
≡ 0 mod g(x). (1)

We say that the code C is defined by Γ = (g, (α1, . . . , αn)). If the Goppa polynomial
g(x) is irreducible, then the Goppa code C has minimum distance 2t+ 1 and is called an
irreducible binary Goppa code.

For more information on Goppa codes and their related decoding algorithms, we refer
to any textbook on the subject, like [MS78].

2.3 Classic McEliece
The first code-based cryptosystem was proposed by McEliece in 1978 [McE78] using a
randomly chosen irreducible binary Goppa code. Later in 1986, Niederreiter [Nie86]
proposed a dual variant of the McEliece cryptosystem that uses a parity-check matrix
for encryption (rather than using a generator matrix). His original version employing
Reed-Solomon codes was attacked in [SS92], but the version with irreducible binary Goppa
codes is still secure. Also, it was proven in [LDW94] that McEliece and Niederreiter
cryptosystems are equivalent.

Classic McEliece, one of the three KEM/PKE finalists in the NIST PQ project, is built
upon the Niederreiter framework. The proposal [ABC+20] provides an IND-CCA2-secure
KEM called the Classic McEliece KEM, which is obtained after a standard transformation
of an IND-CPA-secure Niederreiter-style PKE (Public-Key Encryption scheme). The
parameters of Classic McEliece2 are shown in Table 1, where m determines the size of the

2The Classic McEliece KEM also designed another type of parameter sets marked by “-f”, e.g. kem/m-
celiece8192128f. The difference is in the key generation procedure. The new attack also applies to the
parameter sets in the “-f” class, since there is no difference in the encryption and decryption when the key
pair is generated.
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binary field, t represents the number of correctable errors, and n the length of the code.
Next, we describe the IND-CPA-secure PKE.

Key generation First choose a random irreducible polynomial g(x) ∈ F2m [x] of degree
t and a list of distinct elements (α1, . . . , αn) ∈ Fn

2m . Thus, we have picked a random
binary irreducible binary Goppa code, which serves as the private key of the PKE. We
then compute a t× n parity check matrix Hgoppa over F2m and transform it to a tm× n
binary matrix H′goppa via replacing each entry in Hgoppa by an m-bit column over F2. We
write the matrix H′goppa in the systematic form H′′goppa = [Imt|Tmt×(n−mt)] and set the
public key to be T. This step of systematizing H′goppa reduces the public key size since it
is unnecessary to store or communicate the identity matrix.

The private key of the Classic McEliece KEM contains an additional uniform random
n-bit string, which is only used in the CCA transform in case the decapsulation fails.

Algorithm 1 Ken Generation for the PKE

Input: The Classic McEliece parameters: m, t, and n
Output: The secret key (g(x), (α1, α2, . . . , αn)) and public key T
1: Randomly choose a list of distinct elements (α1, . . . , αn) ∈ Fn

2m as support
2: Choose a random irreducible polynomial g(x) ∈ F2m [x] of degree t
3: Compute the t× n parity-check matrix

Hgoppa =


1/g(α1) 1/g(α2) · · · 1/g(αn)
α1/g(α1) α2/g(α2) · · · αn/g(αn)

...
...

. . .
...

αt−1
1 /g(α1) αt−1

2 /g(α2) · · · αt−1
n /g(αn)


4: Transform Hgoppa to a tm× n binary matrix H′goppa via replacing each entry

in Hgoppa by an m-bit column over F2
5: Transform H′goppa in the systematic form H′′goppa = [I|T]
6: Return the secret key (g(x), (α1, α2, . . . , αn)) and public key T

Encryption From the public key T, the sender can re-construct the Goppa parity check
matrix H′′goppa in the systematic form [Imt|Tmt×(n−mt)]. The sender then chooses an error
vector e ∈ Fn

2 with wH (e) = t as the plaintext and produces the syndrome s = [I|T]eT as
the ciphertext.

Algorithm 2 Encryption for the PKE

Input: Plaintext e ∈ Fn
2 with wH (e) = t and the public key T

Output: Ciphertext s
1: Return s = [I|T]eT

Decryption The decryption is equivalent to the syndrome decoding of binary Goppa
codes, including the steps of computing the syndrome polynomial and the error locator
polynomial and that of evaluating the error locator polynomial at the points in F2m . As
in [BCS13, WSN18], official implementations of Classic McEliece employ a decoder from the
constant-time Berlekamp-Massey (BM) algorithm. Thanks to a trick attributed to Sendrier
in [HG13], one could correct t errors by computing a double-size 2t×n parity-check matrix
H(2)

goppa over F2m . We transform H(2)
goppa to a 2mt × n binary parity check matrix H′(2)

goppa
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by replacing each entry with a column of m bits. The double-size syndrome s(2) is then
computed as H′(2)

goppa[s|0]T, where we append n−mt zeros to the syndrome s. We then use
the constant-time BM algorithm to compute the error locator polynomial σ(x) ∈ F2m [x] of
s(2) and evaluate σ(x) in all elements in F2m . This polynomial evaluation over the whole
finite field F2m can be efficiently implemented through the additive FFT (Fast Fourier
Transform) procedure. In the last step, we read the partial secret key (α1, . . . , αn) and
check whether σ(αi) = 0. We set the ith bit ei = 1 if σ(αi) = 0 and ei = 0 otherwise.

Algorithm 3 Decryption for the PKE

Input: Ciphertext s and the secret key (g(x), (α1, α2, . . . , αn))
Output: Plaintext e
1: Compute a double-size 2t× n parity-check matrix

H(2)
goppa =


1/g2(α1) 1/g2(α2) · · · 1/g2(αn)
α1/g

2(α1) α2/g
2(α2) · · · αn/g

2(αn)
...

...
. . .

...
α2t−1

1 /g2(α1) α2t−1
2 /g2(α2) · · · α2t−1

n /g2(αn)


2: Transform H(2)

goppa to a 2mt×n binary parity check matrix H′(2)
goppa by replacing

each entry with a column of m bits
3: Compute the double-size syndrome s(2) = H′(2)

goppa[s|0]T

4: Use the BM algorithm to compute the error locator polynomial σ(x)
5: Evaluate the polynomial σ(x) at (α1, . . . , αn) and recover the plaintext e
6: Return the plaintext e

Berlekamp-Massey algorithm and the additive FFT Given a double-size syndrome
vector s(2), Berlekamp-Massey algorithm [Mas69] is employed for computing the error
locator polynomial whose roots are the error locations. The error correction capability is t
since the size of the double-size syndrome vector s(2) is 2t. The BM algorithm can be made
constant-time due to its simplicity. We compute the syndrome polynomial from s(2), which
is the input to the BM algorithm. The algorithm initializes polynomials σ(x) = 1 ∈ F2m [x],
β(x) = x ∈ F2m [x], integers l = 0 and δ = 1 ∈ F2m and updates the 4-tuple (σ(x), β(x), l, δ)
during the kth iteration for 0 ≤ k ≤ 2t− 1, according to certain updating rules. The final
output, i.e., the found error locator polynomial, is the updated polynomial σ(x) after the
2t iterations.

Another important problem is to evaluate a polynomial at multiple points, which is
solved by the additive FFT algorithm in the Classic McEliece. We focus on the decryption
algorithm, in which one needs to evaluate the error locator polynomial at the secret
support (α1, . . . , αn). The additive FFT procedure includes two steps, the radix conversion
and twisting step transferring the input polynomial σ(x) to many 1-coefficient constant
polynomials and the reduction step iteratively evaluating at the input points using these
constant polynomials.

2.4 Relations between secret key parts in Classic McEliece
If you know the public key T and some part of the secret key (g(x), (α1, α2, . . . , αn)), can
you then efficiently determine other parts of the secret key? Some brief facts are described.

The support splitting algorithm The support splitting algorithm [Sen00] proposed
by Sendrier is designed to solve the code equivalence problem of determining if a linear
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code C1 can be obtained by the index permutation of another linear code C2. The input
to the support splitting algorithm is two generator matrices and the output is the found
permutation. For random linear codes, the dominant cost of the support splitting algorithm
is O

(
n3) with overwhelming probability, where n is the length of the code.

Key recovery The key recovery problem of Classic McEliece is the recovery of the
Goppa polynomial g(x) and the vector p = (α1, . . . , αn) since such information is sufficient
for decrypting ciphertexts. The key recovery problem has been investigated in [Sen00,
LS01, OS09]. We can determine the polynomial g(x) from the vector p or determine the
vector p from g(x) and the set {α1, α2, . . . , αn}. If n = 2m, the set {α1, α2, . . . , αn} is
the whole finite field F2m , and thus, it is sufficient to recover g(x). The whole secret key
(g(x),p = (α1, . . . , αn)) can then be recovered by the support splitting algorithm. We just
construct a generator matrix G0 of the Goppa codes from g(x) and an arbitrary support
p0 over the set {α1, α2, . . . , αn}. Feeding G0 and a generator matrix Ggoppa from H′′goppa
to the support splitting algorithm, we could reconstruct the secret support.

The Classic McEliece submission proposed four parameter sets with n < 2m, which can
provide additional security against key recovery attacks since it is non-trivial to recover
the set {α1, α2, . . . , αn} from g(x) if 2m − n is not small. We return to this problem in
Section 4.2.

2.5 Information set decoding (ISD)
A fundamental problem in code-based cryptography is the syndrome decoding problem,
where one needs to find an unknown e0 with wH (e0) = w, assuming that a parity-check
matrix H and a syndrome s = He0

T are given.
Prange [Pra62] initiated the research line called information set decoding, where the

basic idea is to find k error-free coordinates that carry sufficient information to recover
the full error vector e. These k coordinates are called the information set. This algorithm
was further improved by a number of algorithms (e.g., [LB88, Ste88, MMT11, BJMM12,
MO15]). Since one part of the new attack is based on an ISD algorithm and we instantiate
it with Stern’s algorithm [Ste88] for simplicity, we involve a detailed description and
complexity analysis of Stern’s variant as follows.

Stern’s algorithm [Ste88] Stern firstly introduced the idea of using the birthday
paradox in information set decoding. We start with a permutation to write the parity
check matrix H in a systematic form (H0, I), so the first k coordinates form an information
set. We denote Ĥ0 (or ŝ) the first l columns of H0 (or rows of s). We then enumerate
e of dimension k/2 and weight p, compute Ĥ0(e,0)T and ŝ − Ĥ0(0, e)T, and search for
collisions. Last, we check whether the weight of remaining (r − l) coordinates of the
obtained error vector is (w − 2p).

The list size is
(

k/2
p

)
. The complexity of one iteration of Stern’s algorithm is

W = CGauss + 2(n− k) ·
(
k/2
p

)
+ (n− k − l) ·

(
k/2
p

)2
2−l,

where CGauss is the cost of Gauss Elimination that can be set as 0.5 · (n− k)k2, if we use a
basic school book form of the algorithm.

The complexity of Stern’s algorithm can be written as W/P , where P is the probability
that we find one solution in one iteration. Since in our problem setting the weight w is
larger than a threshold called GV-bound, there exist many solutions. Then, the probability
P can be estimated as

P ≈
(
k/2
p

)2(
n− k − l
w − 2p

)
2−(n−k).
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2.6 Neural-network-aided profiled side-channel analysis
A profiled side-channel attack consists of a profiling stage and an attack stage. Typically,
a device ideally identical to the intended target is used during profiling where the attacker
has full control and can set the inputs to the device, like the secret key and the ciphertext.
A large number of traces are captured through side-channel leakage while the device
performs a cryptographic operation with inputs picked by the attacker. Each trace is
labeled with a piece of information that is related to the selected input. The set of traces
and labels are then used to construct a model, that based on an observed trace estimates
the true label of the trace. At the attack stage, the model is used to classify traces captured
from the device under attack that could be the same or different from the profiling device.

For profiling, templates introduced by [CRR03] have been used to model the relation
between observed traces and labels. For this type of profiling, the estimated noise of a
trace is used to determine the most probable label. Machine learning techniques, such as
support vector machines and random forest has been used for profiling to get around some
of the shortcomings of the template techniques [LPB+15]. With the rapid development
of deep learning, neural networks have shown promising results for profiled side-channel
attacks [KPH+19].

Common architectures for neural networks in the context of side-channel attacks are
the convolutional neural network (CNN) and the multilayer perceptron (MLP). CNN’s
have shown to be less sensitive to jitter, i.e., when traces are misaligned due to clock phase
variation or intentional phase variations introduced as countermeasures [CDP17]. In the
case of well-synchronized traces, the MLP has shown to be effective for profiling [RJJ+19,
Mag19].

An MLP consists of several layers where the first layer is called the input layer and the
last is called the output layer. Layers in between, are called hidden layers. Rather simple
MLP’s i.e., shallow neural networks with only a few hidden layers, have successfully been
used to conduct side-channel attacks [NDGJ21]. Each layer in an MLP consists of several
neurons that are fully connected to neurons in the previous layer. During a supervised
training of an MLP, traces are fed to the input layer and the predicted labels at the output
layer are compared to the true labels. An optimizer is then used to tune the connection
between the neurons such that the MLP becomes more accurate in predicting labels of
traces.

2.7 Test vector leakage assessment
During the NIST Non-Invasive Attack Testing Workshop in 2011, Goodwill et al. [GJJR11]
presented the Test Vector Leakage Assessment (TVLA) as a metric to evaluate side-channel
leakage. The TVLA has been used to evaluate implemented side-channel countermeasures
[BGN+14, BGG+15], and to locate points of interest during attacks [RJJ+19].

During a TVLA, side-channel measurements are divided into two sets and Welch’s t-test
is applied at each sampling point to determine if the two sets are different by evaluating
the null hypothesis that the two sets have equal mean. To perform the t-test on the two
sets of measurements T0 and T1, the test statistic tobs of Welch’s t-test is calculated as

tobs = µ̂0 − µ̂1√
s2

0
n0

+ s2
1

n1

where µ̂i, si, and ni are the mean, standard deviation, and cardinality of Ti. If |tobs| ≥ 4.5,
the null hypothesis is rejected at a confidence level of 99.998% if s0 ≈ s1, and n0 ≈ n1 ≥ 100.
In the context of side-channel analysis, a rejected null hypothesis suggests that the two sets
of measurements are noticeably different and leak side-channel information that possibly
could be exploited.
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3 A basic description of the new attack idea
In this section, we briefly describe the new attacking idea. We start with the attack model
and then give the essence of the new key-recovery attack.

3.1 The threat model
The Classic McEliece KEM is designed for IND-CCA2 security. In this paper, we further
study its side-channel resilience when being implemented in low-end devices and assume
that the adversary is capable of measuring the power traces during the decapsulation
process. The adversary aims to recover the secret key via:

1. the adversary firstly selects ciphertexts satisfying certain properties and sends these
ciphertexts to the Classic McEliece KEM decapsulation device;

2. the adversary could physically observe the power traces.

Furthermore, the adversary is assumed to have a similar device/environment running
the Classic McEliece KEM, and thus the adversary could perform profiling activities. Note
that we do NOT assume the same secret key is cloned to the profiling environment. The
difficulty of the attack is to design ciphertext properties for profiling to facilitate the key
recovery via side channels.

3.2 The essence of the attack
The secret key of the classic McEliece KEM consists of an irreducible polynomial g(x),
a vector p = (α1, α2, . . . , αn) where αi ∈ F2m and αi 6= αj for i 6= j, and one uniform
random n-bit string. As the random string is only used when the KEM fails, the key
recovery problem is to recover the polynomial g(x) and the secret support p = (α1, . . . , αn).
We aim to first partially recover the secret support p = (α1, . . . , αn) and list the main
observation below.

Observation 1. A long part of the computation in the decapsulation algorithm behaves
the same if the error locator polynomial is fixed. For instance, the additive FFT procedure
to evaluate the error locator polynomial σ(x) over the whole finite field only depends on
σ(x).

This fact generally holds for common implementations of Classic McEliece decryption,
including the known FPGA and ARM Cortex-M4 implementations considered in this paper.
We show as an example the leakage in a recent Cortex-M4 implementation published at
CHES 2021 [CC21], given in Listing 1.

1 int decrypt_n3488_t64 ( unsigned char *e, const unsigned char *sk , const
unsigned char *s){

2 ...
3 bm( locator , s_priv ); // find error locator
4 fft_p64_v4096_u32 ( temp , locator ); // find the root of error locator
5

6 // need to know the position only
7 for(i=0;i <128; i++) error [i] = get_nonzero_mask_u32 ( temp[i] , GFBITS ) ^ 0

xffffffff ;
8 ...
9 }

Listing 1: Part of the decryption function in [CC21]

In Line 3, the Berlekamp-Massey (BM) algorithm computes the error locator polynomial
σ(x) stored in a variable called “locator”. Then, the computations in Line 4 and Line 7
only depend on the value stored in the “locator”, i.e., σ(x).
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To evaluate σ(x) at all elements of F2m , both the FPGA and ARM Cortex-M4 im-
plementations considered in this paper make use of an additive FFT to speed up the
computation. The additive FFT algorithm takes as input, the polynomial σ(x) of degree
at most t, and outputs the value of σ(β) for all β ∈ F2m . The main idea of the additive
FFT, is to exploit that (β + 1)2 + (β + 1) = β2 + β for β ∈ F2m . Thus, by doing a radix
conversion and writing σ(x) = σ(0)(x2 + x) + xσ(1)(x2 + x) where deg(σ(0)) = bdeg(σ)/2c
and deg(σ(1)) = b(deg(σ)−1)/2c, the value of σ(β+ 1) can be easily calculated by first cal-
culating σ(β) = σ(0)(β2 +β)+βσ(1)(β2 +β), and then using σ(β+1) = σ(β)+σ(1)(β2 +β).
Thus, σ(x) only needs to be evaluated at half of the elements of F2m , since the other
half, which contains ”1”, can easily be calculated from the first half. By twisting the
basis of σ(0)(x) and σ(1)(x), half of the elements where the polynomials should be eval-
uated will contain the ”...+ 1”. Thus, the radix conversion can performed again to get
σ(0)(x) = σ(0,0)(x2 + x) + xσ(0,1)(x2 + x) and σ(1)(x) = σ(1,0)(x2 + x) + xσ(1,1)(x2 + x).

The additive FFT repeats the twisting and radix conversion recursively until we are
left with constant polynomials. These constants are then read and we recursively evaluate
σ(x). For our attack, the important point is that the value of the constants, as well as the
calculation of all intermediate polynomials, only depends on the σ(x) that we feed to the
additive FFT.

New idea for a profiled attack Based on Observation 1, we create ciphertexts from
plaintexts e’s with wH (e) = 1; for the decryption of such a ciphertext, the computed
error locator polynomial σ(x) is a monic polynomial of degree 1 and up to q error locator
polynomials are possible. We then could design a profiled attack to recover σ(x). The
basic idea of the attack is described in two phases as follows.

Profiling phase: We randomly sample secret supports ppub. We then sample error vectors
ei such that all the entries are zero except for the ith one. Then, the non-zero
position will lead to an error locator polynomial σ(x) = (x − ppub(i)). Thus, we
have q = 2m different error locator polynomials and could allocate all the traces
in q categories according to the corresponding error locator polynomial. We then
train a neural network to classify the traces from the q different categories, that are
expected to have distinctive traces as explained later.

Attacking phase: In each decryption oracle call, we send an error vector ei. The error
locator polynomial can be computed as σ(x) = x− αi. By the classification model
built in the profiling phase, we could detect σ(x) and therefore recover αi. After
trying all the possible i’s, we could recover the secret support p, so the required
number of traces in the attack phase is at least n. However, not all of the αi’s in the
secret support are required to re-build the irreducible polynomial g(x). With this
observation, we could reduce the required number of test traces.

Recover g(x) by polynomial factorization Next, we show how to determine the
irreducible polynomial g(x), once the partial secret-key p is recovered. We use one valid
ciphertext c = (c1, c2, . . . , cn) and compute

c(x) =
n∑

i=1

ci

x− αi

∏
j∈I(c)

(x− αj), (2)

where I(c) denotes the support of the codeword c. Since we know from the definition of
Goppa codes that,

n∑
i=1

ci

x− αi
= 0 mod g(x),
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we can compute the irreducible polynomial g(x) by factoring the polynomial c(x) in F2m [x]
and choosing an irreducible factor with the weight t.

Factoring a polynomial over a finite field to irreducibles is a well-studied prob-
lem [Sho05] and can be efficiently solved by the Cantor-Zassenhaus algorithm with ex-
pected complexity O

(
l2+o(1) ·m

)
or by the Berlekamp algorithm with expected complexity

O
(
l3 + l1+o(1) ·m

)
. For the new attack targeting the parameter sets of the Classic McEliece

KEM, the polynomial degree l is bounded to a few hundred. Thus, the complexity for such
polynomial factorization is low. The factorization procedure is efficiently implemented, for
example, in the open-source software SageMath [The20]. We show in the next section that
the task of computing c(x) and factoring it to irreducibles can be performed at a negligible
cost compared with the main complexity cost.

Note. To recover the polynomial c(x) in Equation 2, one only needs to determine αi

where the corresponding ci is non-zero. Thus, the weight of the codeword determines the
sample complexity of recovering the irreducible polynomial g(x). We therefore try to find
a low-weight codeword as further explained in Section 4.3.

4 Detailed attacks
In this section, we describe a concrete instantiation of the new attack. We first propose a
partial key-recovery attack to recover the irreducible polynomial g(x), which is sketched in
Algorithm 4. We then extend the partial key recovery to full key recovery.

Algorithm 4 The partial key-recovery side-channel attack

Input: The Classic McEliece KEM parameters; the public key H′′goppa
Output: The partial secret key g(x).
1: Find a low-weight codeword c with weight w.
2: Recover the αi’s for i in a chosen index set I(c) with side-channel information

of decrypting the chosen ciphertexts
3: Compute the polynomial c(x) defined in Equation 2 and recover the irreducible

polynomial g(x) by factoring c(x) in F2m [x]

4.1 Partial key recovery
We now describe the new attack algorithm in steps. We start with producing one binary
Goppa codeword with a small weight. The support of c is denoted by I(c). From the
systematic parity check matrix H′′goppa, we could easily construct a generator matrix Ggoppa
in the systematic form. Thus, the easier method to find a codeword is to randomly pick
one row in the generator matrix Ggoppa, the expected weight of the chosen codeword is
r/2 + 1.

A more advanced approach is to use an Information Set Decoding algorithm. With
Stern’s algorithm as discussed in Section 2.5, we can achieve a codeword with a smaller
weight.

Recovering αi for i ∈ I(c) Denote pc the set that pc = {(i, αi) : i ∈ I(c)}. We aim to
recover pc with side-channel leakages. We choose an error vector ei with all but the ith

position zero, prepare for the corresponding ciphertext, and send it to the decryption oracle.
With the trained deep-learning model, we can get soft information of the corresponding
αi, i.e., a normalized vector (l1, l2, . . . , lq) ∈ Rq with

∑
li = 1. A simple approach, called

the naive approach, is to pick the guess with the maximized likelihood. We could design a
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more advanced approach, called the threshold approach, by picking a threshold τ for the
obtained normalized likelihood values. If the largest likelihood value is still below the
threshold τ , then we can repeat the test for ei and get another normalized likelihood vector
(l′1, l′2, . . . , l′q) ∈ Rq. We can multiply the two vectors component-wisely and normalize the
new vector. We repeat until the obtained largest likelihood value becomes larger than the
threshold τ . With this method, we could recover all the αi’s for i ∈ I(c). The advantage
of the threshold approach is that one could adaptively increase the number of decryption
attempts for the obtained unreliable αi’s. Thus, if most of the positions are reliable, then
the increased number of traces is limited.

Recovering the irreducible polynomial g(x) As has been described in Section 3, we
could compute the polynomial c(x) ∈ F2m [x] in Equation (2) if the codeword c and the
corresponding αi’s for i ∈ I(c) are all determined. We recover the irreducible polynomial
by factoring c(x) and choosing an irreducible factor with weight t.

Last, even if we cannot uniquely determine g(x), we can prepare a small list of g(x)’s
and recover the full key for all the candidates in the list. We can find the correct one
in the list since the wrong guess of g(x) can be easily detected and discarded with the
encryption and decryption tests.

4.2 Full key recovery
Recovering the full secret support when n = 2m After recovering the irreducible
polynomial g(x), if n = 2m, i.e., for the parameter set kem/mceliece8192128, it is clear
that the support splitting algorithm [Sen00] can be used to recover the full secret support.
Since Goppa codes behave like random codes, the complexity of the support splitting
algorithm is O

(
n3), which is a small cost. We refer the interested readers to [OS09] for

details.

4.2.1 Attack variant when n < 2m

When n = 2m, the key recovery problem is equivalent to the problem of recovering the
irreducible polynomial g(x) and it is beneficial to find a codeword of low weight. But
this is not true in a more general case, where n < 2m, since it is difficult to guess the set
{α1, . . . , αn} and we need to design a new approach to recover the full secret support p.

We first recover the matrix P that is the first r = mt columns of H′goppa. Assuming
the partial support (α1, . . . , αr) and the irreducible polynomial g(x) is known, we could
compute P′ where the element in the ith row and the jth column is αi−1

j /g(αj) ∈ F2m . We
then compute P by replacing each entry in P′ with an m-bit column over F2. Then, since

P−1H′goppa = H′′goppa = [Imt|T],

one could recover H′goppa by computing PH′′goppa.
We then build a table storing pairs (α,TABLE(α)), where α runs through all the 2m

elements in F2m . For each α ∈ F2m , we compute a column vector K ∈ Ft
2m , where the ith

entry in K is αi−1/g(α). We obtain a new vector K′ ∈ Fmt
2 by replacing one entry in K

with an m-bit column over F2. We put TABLE(α) = K′. For each column in H′goppa, we
can check the table and find the corresponding value of α.

Based on this new approach, we could slightly modify the attack described in Section 4.1
to make it more efficient for the parameter sets with n < 2m.

Firstly, instead of minimizing the weight of the codeword, we aim to find a codeword c
minimizing #{I(c) \ {1, . . . , r}}. An easy solution is to generate Ggoppa = [TT|Ik×k] and
to select one row in the matrix. We select the index set I = I(c) ∪ {1, . . . , r} and recover
such (r + 1) αi’s with i ∈ I by observing the side-channel leakages from decrypting the
chosen ciphertexts. Similar to the method described in Section 4.1, we compute c(x) and
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Table 2: The predicted weight of the low-weight codeword using Stern’s algorithm.

r + 1 Estimation ≈ 2 min
random ≈ 240 ≈ 250

kem/mceliece348864 769 385 300 282 287
kem/mceliece460896 1249 625 523 500 508
kem/mceliece6688128 1665 833 717 690 693
kem/mceliece6960119 1548 775 662 635 646
kem/mceliece8192128 1665 833 717 688 695

obtain the irreducible polynomial g(x) by polynomial factorization. Last, we compute the
mt×mt matrix P, construct the secret parity-check matrix H′goppa and reconstruct the
whole p = (α1, . . . , αn) by checking the table (α,TABLE(α)) for all α ∈ F2m .

Overall, the sample complexity is (r + 1) and the computation cost is also small. The
computation of g(x) by factoring c(x) can be done in seconds; We build a table of size 2m,
which is small since m is only 12 or 13. The rest is dominated by the matrix multiplication
of PH′′goppa, which is less than 240 bit-operations.

4.3 Complexity analysis and verification
We conclude this section with the complexity analysis of the new algorithm and present
some experimental verification. Since the profiling stage is irrelevant to the targeted
public-secret keypair, we treat it as a pre-computation step.

Verifying the ISD step The weight of the found codeword c is a key parameter for the
partial key recovery of g(x) since it determines the number of α’s that need to be recovered
in the profiled side-channel attacking step. For the Classic McEliece KEM parameters,
we compute the expected weight of the low-weight codeword with the complexity formula
presented in Section 2.5 for Stern’s algorithm. We show the results in the “Estimation”
columns in Table 2. The column “random” shows the expected weight numbers computed
by r/2 + 1, i.e., when the codeword is generated by randomly picking a row in a systematic
generator matrix; the column “≈ 240” shows the expected weight number when the
computation cost is about 240 bit operations; the column “≈ 250” shows the case with
about 250 bit operations.

The complexity analysis for Stern’s algorithm is well-established. One question is how
to interpret the bit operation numbers as actual CPU clock cycles since modern CPUs can
do more than one bit operation in a clock cycle. Since the binary Goppa codes behave like
binary random linear codes, we generate parity check matrices for random linear codes with
dimension same to the Classic McEliece KEM parameters and test the actual performance
of Stern’s algorithm. We slightly modified a C implementation [Vas05] from Vasseur that
employs the AVX2 instruction set. We use eight threads in a desktop with CPU Intel(R)
Core(TM) i7-10700K @3.8GHz, run the ISD algorithm for about 2 minutes, and report the
obtained weights under the column “≈ 2 min” in Table 2. Thus, the numbers presented in
the column “≈ 250” could be achieved easily on a normal desktop.

We have also performed a large instance against a random public key generated by
the round-3 reference implementation of kem/mceliece8192128 submitted to NIST. Using
twelve threads of the same desktop, we found a codeword of weight 690 after 103 seconds of
computation, which supports the numbers claimed in Table 2. After 22858 seconds (≈ 6.3
hours), we obtained a codeword of weight 679. For a public key of kem/mceliece348864,
after 47855 seconds (≈ 13 hours), we obtained a codeword of weight 273.

Verifying the factorization method Given a low-weight codeword c, we assume that
the corresponding partial secret support pc = {(i, αi) : i ∈ I(c)} has been recovered
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through side channels. We have verified that the procedure of computing the polynomial
c(x) and then factoring c(x) to find g(x) as the irreducible factor of weight t can be done
efficiently. We implemented this procedure with the SageMath software. For instance,
using a single thread in the desktop with CPU Intel(R) Core(TM) i7-10700K @3.8GHz,
we performed this procedure ten times, targeting a secret Goppa code for the largest
parameter set kem/mceliece8192128. We found the correct irreducible polynomial g(x)
of weight 128 ten times, so the empirical success probability is 100%. The average time
consumed for each run is only 16.3 seconds.

The overall complexity We verified in Section 5 that when the KEM kem/mceliece348864
is implemented on our real (FPGA and ARM Cortex-M4) platforms, one decryption oracle
call in the attack phase is sufficient to recover one error locator polynomial (which is
equivalent to one αi value in our setting), due to the significant leakages detected. Thus,
the attack stage is quite efficient. For partial key recovery of g(x), one can make the
computation dominated by the initial information set decoding (ISD) step. This ISD step
can be seen as a time-sample trade-off since heavier ISD computation can lead to an attack
that requires fewer traces (i.e., accessing time) to the targeted device.

Thus, one can get an estimation of the sample complexity of the new partial key recovery
of g(x) targeting different Classic McEliece parameters, by checking the weight prediction
shown in Table 2. When aiming for the full key recovery, for the KEM kem/mceliece8192128,
the sample complexity is the same as that of the partial key recovery, i.e., we need 688
traces when the computation cost is bounded to 250 bit operations with Stern’s algorithm.
For the parameter sets other than the KEM kem/mceliece8192128, we need r+ 1 traces to
perform the full key recovery. The numbers r + 1 for different parameter sets are shown in
the column marked by “r + 1” of Table 2.

5 Experimental results
In this section, we present the detailed results of our side-channel key-recovery attack
against a hardware and a software implementation of Classic McEliece. To capture traces,
we make use of the open-source Chipwhisperer system that consists of hardware modules
and software specifically developed by NewAE for evaluating hardware security [New].

5.1 On the reference FPGA implementation
For the attack on the hardware implementation, we use the CW305 from NewAE that
contains a XC7A100T2FTG256 Artix 7 FPGA. The implementation of [WSN18] is syn-
thesized with the parameter set kem/mceliece348864 and implemented on the FPGA. To
capture traces, we use the Chipwhisperer-lite (CWL) from NewAE that measures power
consumption of the FPGA by the voltage drop over a shunt resistor placed inline with the
supply to the FPGA. Both the FPGA and the CWL are driven by a common 5 MHz clock
and the measured power is amplified by 46 dB before being digitized.

5.1.1 Leakage assessment

To evaluate whether the hardware implementation leaks sensitive side-channel information,
we perform fixed-vs-random TVLA. More specifically, we want to determine if the power
consumption during processing a specific σ(x) of degree 1 differs from a random σ(x) of
degree 1. Initially, we randomly pick an element γ ∈ F2m . Then, we construct a set of
random keys KL where for each kL ∈ KL, p = (α1, α2, . . . , αn) such that γ = pi for some
i ∈ (1, 2, . . . , n). During trace capture, we randomly decide to either capture a fixed or a
random trace. For a fixed trace, we randomly select a kL ∈ KL and determine i such that
γ = pi. In the case of a random trace, we randomly pick a kL ∈ KL and an integer i such
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Figure 1: TVLA performed on traces of the hardware implementation where each set
consists of 300 traces. The areas marked in the graph corresponds to the decryption steps;
calculate 1/g2(x), BM, additive FFT, and error reconstruction. The double syndrome
calculation is removed from traces as this step is of non-constant time.

that γ 6= pi. In both cases, we create a plaintext e where the ith bit ei = 1 and all other
bits are zero. The secret key and the ciphertext s are then transferred to the FPGA. We
then capture a trace while the FPGA runs the decryption algorithm.

Traces are then split into two sets T0 and T1, where T0 contains all fixed traces and
T1 contains all random traces. Finally, we apply Welch’s t-test on the two sets. We then
repeat the same procedure for multiple γ’s. In Fig. 1 the test statistic is shown for one of
the γ’s. It can be seen that, possibly exploitable, side-channel information leaks during
the additive FFT step. Note that the double syndrome construction step was stripped
from traces before the TVLA as the execution time of this step depends on wH (s). Thus,
if this step had been kept, subsequent decryption steps would become misaligned in the
captured traces, which could lead to falsely detected leakage.

5.1.2 Profile phase

In the profile phase, we only capture traces of the additive FFT step as this is the only
step where we could detect leakage for our suggested attack. By focusing on the additive
FFT step and using a sample rate of 1pt/clock cycle, each trace contains 1095 samples.
Initially, we create a set of random keys Kp. We capture a set of traces Tp with cardinality
d = #{Tp}. For each Tj ∈ Tp, j = 1, 2, . . . , d, we pick a random kp ∈ Kp and a random
integer i ∈ (1, . . . , n). We capture Tj while the FPGA performs decryption of the plaintext
e where the ith bit ei = 1 and all other bits are zero. We label each Tj with the support
element at position i of the key kp, i.e. we label a trace with γ = αi.

We use Tp to train a MLP that predicts γ for each trace, i.e. the root of σ(x). We
split Tp into a training set Ttrain and validation set Tval with a ratio of 5:1. We preprocess
all traces by removing the mean and scaling to unit variance before training the MLP.
Parameters used for preprocessing are solely based on Ttrain.

The architecture of our MLP is presented in Table 3. All weights in the network
are initialized by sampling a uniform distribution and all biases are initially set to zero.
We train the MLP by using mini-batches consisting 150 traces each. To evaluate the
performance of the MLP we use the crossentropy loss and we use the Nadam optimizer
with a learning rate of 10−3 to tune weights and biases of the network. We regularize the
training by employing label smoothing with a value of 0.2. We let the training run for a
maximum of 100 epochs with an early stop condition if the validation loss is not reduced
within 4 epochs. For profiling we use #{Kp} = 30 and d = 418560.
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5.1.3 Attack phase

To evaluate our approach, the trained model is used to attack a set of random keys Ka,
where Ka ∪ Kp = ∅ and #{Ka} = 30. For each ka ∈ Ka, we collect a trace corresponding
to the decryption of every possible plaintext ei with only the ith bit set to 1. For each
trace, we also record the value of i. In total, we collect 104640 traces. Next, we employ the
previously trained classifier to predict the value of each γ. Since we recorded the value of
i, we know the position of the predicted γ in p = (α1, α2, · · · , αn). Thus, we can predict
the value of αi. With our attack, we manage to successfully recover the complete secret
support for all attacked keys. This means that the experimental prediction rate was 100%.

5.2 On an ARM Cortex-M4 implementation
For the attack on the software implementation, we use the CW308T-STM32F from
NewAE which contains a STM32F415RGT6 microcontroller that is programmed with
the kem/mceliece348864 implementation of [CC21]. The software implementation is built
using the arm-none-eabi-gcc compiler set with optimization level -O3. We only program
the microcontroller with the decryption function which is the first function called during
decapsulation in [CC21]. During trace capture, the microcontroller and the CWL are
driven by a common 24 MHz clock, and the measured power is amplified by 32 dB.

5.2.1 Leakage assessment

To evaluate possible leakage points for the software implementation, we use a similar
approach as used for the hardware implementation. However, as the software implemen-
tation takes roughly 340 times more clock cycles to execute, the buffer of the CWL is
too small to capture the complete decryption with one sample per clock cycle. We solve
this by performing a piece-wise TVLA of the complete decryption. In Fig. 2 we see that
the software implementation shows a large number of leakage points. Especially, we see
many leakage points during the additive FFT step marked by a gray box in Fig. 2. But
the TVLA also shows leakage during other parts of decryption. The detected leakage
towards the end of decryption is related to the re-encryption of the recovered plaintext.
The re-encryption feature is not implemented in the hardware reference design.

The software implementation makes heavy use of bit-sliced operations to speed up
the decryption process where the coefficients of σ(x) are stored in an array. Each row
of the array represents a coefficient of σ(x) and the columns represent the bits of each
coefficient. During a large part of the additive FFT, operations are carried out on columns,
i.e. on bits of the coefficients rather than the whole coefficients. During our attack, we
make sure that σ(x) has a single root and thus the individual bits of the root should
affect the power consumption at different times during the FFT. To investigate this, we
captured 34880 traces while the additive FFT was fed by a random degree 1 polynomial.
For each bit i of the 12 bits representing elements of F2m we assigned traces to one out of

Table 3: The architecture of the MLP we use to construct a classifier to attack the
hardware reference implementation of Classic McEliece.

Layer type (input, output) shape Activation # Parameters
Dense (1095, 1095) ReLu 1200120
Batch Normalization (1095, 1095) 4380
Dense (1095, 2048) ReLu 2244608
Batch Normalization (2048, 2048) 8192
Dense (2048, 4096) SoftMax 8540160
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Figure 2: TVLA of the software implementation. The gray box corresponds to the additive
FFT evaluation of σ(x).

two sets depending on the value of bit i. Fig. 3 shows the difference between the means
for the two sets for each bit position i. The left part of Fig. 3 shows the difference for
the complete additive FFT where the black dashed lines show where different steps of
the FFT correspond to Lines 2-5 in Listing 2. In the right part of Fig. 3, the second
step of the FFT corresponds to the loops at Lines 3-11 in Listing 3. In this part, all the
degree 1 polynomials from the radix conversion step are evaluated. As seen the power
consumption at different times depends on bits of the σ(x) that we fed to the FFT. This
can be explained by the assignment at Line 8 in Listing 3 where the variable vv gets
assigned the value 0 or 1 depending on a single bit of the input to the function.
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Figure 3: Difference in power consumtion of the Cortex M4 during the additive FFT while
diffrent bits of the coefficient of the degree 1 σ(x) are set to 0 or 1. The left figure shows
the complete additive FFT while the right figure shows a small part of the second step in
the additive FFT.

1 void fft_p64_v4096_u32 ( uint32_t values [][ GFBITS ], uint32_t poly [][ GFBITS
]){

2 radix_conversions_u32 (poly);
3 broadcast_64x_32 (values ,poly);
4 butterflies_6_u32 ( values );
5 add_x64_u32 ( values );
6 }

Listing 2: The additive FFT function in [CC21]

1 static void broadcast_64x_32 ( uint32_t out_32 [][ GFBITS ], uint32_t in_32 [][
GFBITS ]){

2 ...
3 for (j = 0; j < 64; j++) {
4 pos = reversal [j]>>5;
5 idx = reversal [j]&0 x1f;
6 for (i = 0; i < GFBITS ; i++)
7 {
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Table 4: The architecture of the MLP we use to construct a classifier to attack the software
implementation.

Layer type (input, output) shape Activation # Parameters
Dense (22988, 22988) ReLu 528471132
Batch Normalization (22988, 22988) 91952
Dense (4096, 4096) ReLu 94162944
Batch Normalization (22988, 22988) 16384
Dense (4096, 4096) SoftMax 16781312

8 uint32_t vv = ( in_32 [pos ][i] >> idx )&1;
9 vv = -vv;

10 out_32 [j*2][i] = vv;
11 out_32 [j *2+1][ i] = vv;
12 ...
13 }

Listing 3: Part of the second step of the additive function in [CC21]

5.2.2 Profile phase

In the profile phase we only focus on the additive FFT step of the algorithm. As the
duration of the additive FFT part is too long to be sampled with the CWL at every
clock cycle there are two options. We could capture the FFT step in intervals with one
sample per clock cycle, or we could capture the complete FFT step with a lower sample
rate. As the time and memory requirements of the subsequent neural network training
would be higher for the first capture procedure, we decide to test if the later option works.
Therefore, we reduce the sample rate to 1pt/12th microcontroller clock cycle. This results
in traces consisting of 22988 sample points. Apart from the number of sample points, we
use the same procedure to capture traces as for the hardware implementation. We train
the MLP given in table 4 with the same initialization, optimizer and regularization as for
the profiling on the hardware implementation. We let the training run for a maximum
of 100 epochs with an early stop condition if the validation loss is not improved within 3
epochs. For profiling of the software classifier we use #{Kp} = 10 and d = 34880.

5.2.3 Attack phase

We evaluate our classifier by attacking a set of random keys Ka, where Ka ∪ Kp = ∅
and #{Ka} = 90. We use the same procedure to capture traces as for the hardware
implementation, i.e. for each ka ∈ Ka we capture 3488 traces which are then fed to the
classifier. Thus, in total we collect 313920 traces. With our attack against the software
implementation, we manage to successfully recover the complete secret support for all the
attacked keys. Again, the experimental prediction rate was 100%.

5.3 Alternative approach

Since our neural network classifiers performed very well, we also tested if some simple
statistical method could be used instead of the neural network. Here we describe the
attack on the software implementation of Classic McEliece but we also performed the same
type of attack on the hardware implementation.



Qian Guo, Andreas Johansson and Thomas Johansson 819

5.3.1 Profile phase

We capture a set of traces Tp corresponding to Line 3 in Listing 3, i.e. the evaluation of
the degree 1 polynomials outputted by the radix conversion function. For each Tj ∈ Tp,
j = 1, 2, . . . , d, we pick a key kp from a set of random keys Kp and a random integer
i ∈ (1, . . . , n). We capture Tj while the microcontroller performs decryption of the plaintext
e where the ith bit ei = 1 and all other bits are zero. We label each Tj with the known
support element at position i of the key kp, i.e. we label a trace with the field element αi.
Next, we split the set Tp into sets Ak, k = 0, 1, . . . , 4095, based on the label of the traces.
For each Ak, we calculate the mean µAk

of the traces in the set. During the profile phase,
we use #{Tp} = 313920 and #{Kp} = 90.

5.3.2 Attack phase

First we load a random key ka ∈ Ka where Ka ∪ Kp = ∅. Next, we collect traces Ti,
i = 1, 2, . . . , 3488, corresponding to the decryption of every possible plaintext ei with only
the ith bit set to 1. For each trace, we record the value of i and for each key ka we collect
3488 traces. To predict the secret support we compare each trace Ti with all the µAk

from
the profile phase and assign

αi = arg min
k

(|Ti − µAk
|). (3)

Since we recorded the value i this gives us a prediction of the secret support element at
position i, i.e. αi. We evaluate our distinguisher on 10 keys where we manage to fully
recover the secret support of each key. This means that the experimental success rate was
100%.

We performed the same type of attack on the hardware implementation but in this case
the success rate was 0.05 % which is only slightly better than the random guess success
rate of 0.024 %.

6 Discussions and concluding remarks
In this paper, we have presented the first key-recovery side-channel attack on Classic
McEliece, a KEM finalist in the NIST Post-quantum Cryptography Standardization Project.
We have identified a general vulnerability in the decryption algorithm design that the
additive FFT procedure for evaluating a polynomial at many points is deterministic for
a fixed input error locator polynomial. We then designed special ciphertexts generated
by error vectors where the Hamming weight is 1 and captured traces of the decryption of
such ciphertexts. Since the error weight is only 1, there are only q = 2m possible error
locator polynomials. We then used machine-learning algorithms to recover the secret error
locator polynomial, which reveals one entry in the secret support p = (α1, . . . , αn). We
have also designed new algorithms to recover the partial key g(x) and the full secret key,
based on the side-channel leakages.

We implemented and measured the new attack in real FPGA and ARM Cortex-M4
platforms. We have a perfect recovery for recovering the secret αi with one trace, i.e.,
the empirical success probability is 100% with the naive approach. Note that in a noisier
platform, we can use the threshold approach to adaptively send more decryption traces for
the unreliable αi’s.

The sample complexity of the partial key recovery attack depends on the computation
limit of the first ISD step in the proposed attack. We could achieve 273 traces for
kem/mceliece348864 and 679 traces for kem/mceliece8192128. For the case n = q, i.e.
kem/mceliece8192128, a partial key recovery is equivalent to a full key recovery with the
help of the support splitting algorithm.
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The other four parameter sets with n 6= q provide more security against this side-channel
attack. We designed a variant of the full key recovery attack with sample complexity of
r + 1 traces, which is 769 for the KEM kem/mceliece348864. A future work is to study
better algorithms to efficiently recover the full secret support from the recovered g(x) when
n 6= q.

On the one hand, the Classic McEliece KEM still requires more traces compared with
the recent results in attacking lattice-based primitives. For instance, in [NDGJ21], the
secret key of a masked Saber version could be recovered with around 20 traces. On the other
hand, this work shows that protections like masking are necessary, though they may hurt
the performance of the scheme. Thus, research on efficiently protected implementations of
Classic McEliece should be prioritized.

Our key-recovery attack requires slightly more traces than the message-recovery EM
attack reported at Asiacrypt 2020 [LNPS20]. But, we highlight that key-recovery attacks
are much stronger than message-recovery attacks. Also, we could greatly reduce the
sample complexity in a theoretical manner. One approach is to send a ciphertext obtained
from a plaintext of higher weight (of e.g. weight 2). For e with wH (e) = 2, there are
q(q − 1)/2 possible error locator polynomials to profile. The number is about 223 for the
kem/mceliece-348864 KEM and about 225 for the other parameter sets. Then, assuming
that one error locator polynomial can be recovered by one decryption oracle call, each
time we can determine two αi’s. The overall sample complexity can be reduced by a factor
of 2. This improved attack has a high implementation complexity, but is still doable; we
leave it for future work. Last, an interesting future direction is to improve the current
attack without a significant increase in the profiling complexity.

The presented results are limited to the traditional setting in power analysis. Extensions
to EM analysis seem plausible, since the accuracy in the measurements is very high, but
not investigated in this work. Devices facing threats from power analysis would have to
implement countermeasures. A low-order masked hardware implementation may be quite
safe, but still it can severely hurt the performance. We have not found such a protected
implementation. Low-order masked software implementations may on the other hand
be attacked similar to attacks on lattice-based and code-based KEMs. An adversary
using machine learning can perform higher-order attacks since the input traces contain
information related to all the shares [BDK+20, NDGJ21, BDH+21, BGR+21, ABH+22].
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