
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 4, pp. 527–552. DOI:10.46586/tches.v2022.i4.527-552

ECDSA White-Box Implementations:
Attacks and Designs from

CHES 2021 Challenge
Guillaume Barbu1 , Ward Beullens2, Emmanuelle Dottax1 ,
Christophe Giraud1 , Agathe Houzelot1,3 , Chaoyun Li4 ,
Mohammad Mahzoun5, Adrián Ranea4 and Jianrui Xie4

1 IDEMIA, Cryptography & Security Labs, Pessac, France
firstname.lastname@idemia.com

2 IBM Research, Zurich, Switzerland
wbe@zurich.ibm.com

3 LaBRI, CNRS, Université de Bordeaux, Bordeaux, France
4 imec-COSIC, KU Leuven, Leuven, Belgium

firstname.lastname@esat.kuleuven.be
5 Eindhoven University of Technology, Eindhoven, Netherlands

m.mahzoun@tue.nl

Abstract. Despite the growing demand for software implementations of ECDSA
secure against attackers with full control of the execution environment, scientific
literature on ECDSA white-box design is scarce. The CHES 2021 WhibOx contest
was thus held to assess the state-of-the-art and encourage relevant practical research,
inviting developers to submit ECDSA white-box implementations and attackers to
break the corresponding submissions.
In this work, attackers (team TheRealIdefix) and designers (team zerokey) join to
describe several attack techniques and designs used during this contest. We explain
the methods used by the team TheRealIdefix, which broke the most challenges, and we
show the efficiency of each of these methods against all the submitted implementations.
Moreover, we describe the designs of the two winning challenges submitted by the
team zerokey; these designs represent the ECDSA signature algorithm by a sequence
of systems of low-degree equations, which are obfuscated with affine encodings and
extra random variables and equations.
The WhibOx contest has shown that securing ECDSA in the white-box model is an
open and challenging problem, as no implementation survived more than two days.
In this context, our designs provide a starting methodology for further research, and
our attacks highlight the weak points future work should address.
Keywords: ECDSA · White-Box Cryptography · WhibOx Contest

1 Introduction
Cryptographic techniques are primarily designed to be secure in a context where the
confidentiality of secret keys is ensured with black-box access to the algorithm – only inputs
and outputs are available to the attacker. Confidence in security is built from detailed
studies, carefully defined security notions, and security proofs. Such a strong level of
confidence is now a standard expectation. However, real-life scenarios for implementations
might jeopardize initial assumptions, where attackers have access to additional information
via side channels (e.g., timing or power consumption) or can modify the algorithm execution

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-04-15 Accepted: 2022-06-15 Published: 2022-08-31

https://doi.org/10.46586/tches.v2022.i4.527-552
https://orcid.org/0000-0001-9740-8966
https://orcid.org/0000-0001-8717-3462
https://orcid.org/0000-0003-4414-1852
https://orcid.org/0000-0001-7051-7097
https://orcid.org/0000-0001-9917-3419
https://orcid.org/0000-0002-8697-7423
https://orcid.org/0000-0002-4178-9920
mailto:guillaume.barbu@idemia.com, emmanuelle.dottax@idemia.com, christophe.giraud@idemia.com, agathe.houzelot@idemia.com,
mailto:wbe@zurich.ibm.com
mailto:chaoyun.li@esat.kuleuven.be, adrian.ranea@esat.kuleuven.be, jianrui.xie@esat.kuleuven.be
mailto:m.mahzoun@tue.nl
http://creativecommons.org/licenses/by/4.0/

528 Attacks and Designs from CHES 2021 Challenge

and exploit faulty results. This is called the grey-box model. Developers have to put
countermeasures in place to reach the originally expected security level.

In the context of mobile applications – contactless payments, cryptocurrency wallets,
streaming services – or connected objects, devices often lack secure storage to protect
secret keys, and their generally open execution environment exposes a large attack surface.
This hostile environment is captured by the white-box model, which assumes an attacker
having control of every aspect of the implementation: execution flow, memory content
and addresses. The first white-box implementations were proposed in the early 2000s by
Chow et al. [CEJvO02,CEJv03], and the field has continuously developed since then, with
design proposals [BG03,BCD06,XL09,Kar11,DFLM18,RW19,SEL21,BCC21], attacks
[BGEC04,GMQ07,WMGP07,MGH09,DWP10,DRP13,LRD+14,AMR19,GRW20] and
efforts to define security notions [SWP09,DLPR14,AABM20].

The industry shows a growing interest in white-box cryptography owing to the
widespread usage of security-related applications on connected devices. The WhibOx
contest, attached to the CHES conference, has been held biennially since 2017 to encourage
practical experiments both from the designer and attacker perspectives. It lasts several
months, inviting coders to post white-box implementations and attackers to break them.
Participants can remain anonymous and silent about any detail on their work. The first
two editions in 2017 and 2019 focused on white-box implementations of AES and exhibited
the community’s strong interest in this subject. Some candidates survived all attacks
in the second edition in 2019, showing a certain maturity for this algorithm. In 2021,
organisers changed the target and decided to consider the ECDSA signature algorithm,
whose white-box implementation is of substantial interest to the industry but virtually
lacks scientific literature.

From May 17th to August 22nd 2021, 97 candidate implementations were submitted for
scrutiny by 37 (teams of) attackers. All challenges were broken within 35 hours, suggesting
the difficulty of achieving a secure white-box implementation of ECDSA. Thus, studying
the attacks would help to discern weak points inside the implementations. Besides, the
analysis of the design of the most resistant challenges, which successfully defeated most
attackers, would also give directions for future designs.

Contributions. In this paper, teams TheRealIdefix — who broke the most challenges —
and zerokey — who proposed the two winning challenges — join to present how they
proceeded during the contest1. On the attack side, we describe a strategy to achieve
efficient attacks. As reverse engineering is a time-consuming task, automated attacks
are desirable. We consider different attack paths against ECDSA white-boxes: the ones
inherited from traditional cryptanalysis, the extensions of attacks in the grey-box model,
and the logical attacks of the software. We discuss the feasibility of automating each attack
path and provide detailed information regarding which attacks succeeded (or failed) on each
candidate. Our results show that, with few exceptions, it was sufficient to fully recover the
secret value by these automated attacks. On the design side, we describe the methodology
we used to build the two winning challenges, Challenges 226 and 227. It includes modifying
the implicit framework [RVP22] originally proposed for block ciphers, applying techniques
from multivariate public-key cryptosystems, and obfuscating the resulting C code with
a C obfuscator. Our design thus turns the ECDSA signature algorithm into a sequence
of systems of low-degree equations which are obfuscated with large affine encodings and
additional variables and equations. Finally, we show how to break Challenge 226 with
automated attacks and how to break Challenge 227 once reverse-engineered.

1Guillaume Barbu, Emmanuelle Dottax, Christophe Giraud and Agathe Houzelot are part of the team
TheRealIdefix; Ward Beullens, Chaoyun Li, Mohammad Mahzoun, Adrián Ranea and Jianrui Xie compose
the team zerokey.

Barbu et al. 529

Outline. The paper is organized as follows. Section 2 outlines the rules of the WhibOx
2021 contest. Section 3 recalls the ECDSA algorithm and the state-of-the-art regarding
white-box implementations. Section 4 presents the different methods that have been used
by the team TheRealIdefix to break various implementations and some statistics regarding
the success rate of these methods. Section 5 discloses the designs of Challenges 226 and
227 proposed by the team zerokey, and Section 6 concludes this paper.

2 Rules of the WhibOx 2021 Contest
Designers were required to post challenges computing ECDSA signatures on the NIST
P-256 curve under a hard-coded, freely chosen key, and accepting as input any 256-bit
message digest e = H(m). Notice that the cryptographic hash function H is excluded
from the intended white-box implementation of ECDSA and the message m is also not
provided. At the same time, attackers were encouraged to extract the private keys. In
addition, acceptance of submitted implementations was conditioned on some requirements:

• the public key corresponding to the embedded private key, as well as a proof of
knowledge of the private key, had to be provided,

• submissions had to be source code in portable C,

• linking to external libraries was forbidden, except for the GNU Multi Precision
library [Gt20],

• the signature algorithm had to be deterministic,

• the execution time was limited to 3 seconds, the program size to 20 MB, and the
RAM usage to 20 MB as well.

There was an elaborate system with scoreboards to reward designers and attackers.
A challenge gains strawberries as time goes by till broken. Challenges with a higher
performance score (measured in terms of execution time, code size, and RAM usage) gain
strawberries faster. Eventually, the challenge with the highest number of strawberries wins
the competition. Accordingly, when submitting a matching private key to the system,
attackers receive bananas, the number of which is determined by the number of strawberries
of the challenge at the time of the break. More detailed information can be found on the
contest website [CHE].

3 ECDSA and White-box Implementations
3.1 ECDSA
In 1992, Vanstone introduced a variant of DSA based on elliptic curves. The result-
ing public-key signature algorithm is called Elliptic Curve Digital Signature Algorithm
(ECDSA) [Van92]. Its parameters are an elliptic curve E over a field Fq, a point G of prime
order n, and a cryptographic hash function H. The private key d is randomly drawn from
J1, n− 1K, and the public key consists of the point Q = [d]G where [d]G corresponds to the
scalar multiplication of the point G by the scalar d. The ECDSA signature is described in
Algorithm 1, where Rx and Ry denote the coordinates of the point R.

Note that the key d is not the only sensitive value in that scheme. Indeed, the recovery
of the nonce k allows the computation of d from the signature (r, s) and the message m:

d = (ks−H(m))r−1 mod n . (1)

530 Attacks and Designs from CHES 2021 Challenge

Algorithm 1: ECDSA signature
Input : the message m
Output : the signature (r, s)

1 e← H(m)
2 k

$←− J1, n− 1K
3 R = (Rx, Ry)← [k]G
4 r ← Rx mod n
5 s← k−1(e+ rd) mod n
6 if r = 0 or s = 0 then
7 Go to step 2
8 end
9 Return (r, s)

The nonce must not only remain secret but also differ for each execution of the algorithm.
Indeed, an efficient way to recover its value is to find another signature (r′, s′) of a different
message m′ 6= m using the same nonce, that is with k′ = k. In that case, we also have
r′ = r, so the adversary may compute

k = (H(m′)−H(m))(s′ − s)−1 mod n . (2)

In the black-box model, the security of ECDSA is based on the difficulty of the Elliptic
Curve Discrete Logarithm Problem (ECDLP), i.e., on the difficulty of computing the
scalar k (resp. d) from the points G and R = [k]G (resp. Q = [d]G). To ensure that
this problem is difficult to solve, there are several standards to define elliptic curves,
e.g. [Loc10,Sta10,JOR11,FIP13]. However, there is a gap between the security of ECDSA
in theory and that of ECDSA implementations. Many grey-box attacks have been described
in the literature (see for example [FV12]). Some of them directly target the key d while
others aim at recovering some information on the nonce k. As explained previously, the
knowledge of the nonce allows an adversary to compute the secret key. Recovering a few
bits of the nonces associated to different signatures may be enough for an attacker. Indeed,
this allows the construction of a system of equations that can be solved using lattice-based
algorithms [BH19, JSSS20] or Bleichenbacher’s FFT-based approach [ANT+20]. These
bits could, for example, be recovered via side-channel analysis if the implementation is not
protected or simply guessed if the nonce is not drawn uniformly at random. These attacks
show that it is already complicated to achieve a secure implementation of ECDSA in the
grey-box model, and of course, things get worse in the white-box context.

3.2 White-box Implementation of ECDSA
The white-box model assumes that the attacker has total access to the executable: he can
read and modify it at will. He also has access to all the memory used during execution, so
a white-box designer does not only have to protect his implementation against grey-box
attacks but also against an adversary who can dump the memory and search for sensitive
values such as k or d. The first technique to prevent secret data from appearing in plain was
introduced by Chow et al. in [CEJv03]. Their idea is to embed the key into the algorithm,
and each operation is performed with the help of look-up tables protected by carefully
crafted encodings. Informally, the algorithm is split into low-level operations, and each
operation op is replaced by f−1 ◦ op ◦ f ′, where f and f ′ are bijections called respectively
input and output encodings. The drawback of this technique is that the required memory
drastically increases with the algorithm’s complexity. Using it to secure operations as

Barbu et al. 531

complex as scalar multiplications or inversions while remaining efficient is thus a real
challenge.

Another challenge in white-box cryptography is the impossibility of relying on any
external source of randomness. An attacker could simply disable such a source and fix
its output to a constant value. For example, in the context of AES, this renders some
countermeasures against side-channel or fault attacks based on randomization techniques
completely inefficient. When one considers ECDSA signatures, disabling the source of
randomness yields multiple uses of the same nonce and, thus, easy recovery of the private
key, as seen in Sect. 3.1. The solution is to compute k as a function of the only source of
randomness available, the input message: k = f(m). In order to maintain the security of
the signature scheme, this mapping must be computationally indistinguishable from what
a randomly and uniformly chosen function would return. We will see in the next section
that many challenges of the WhibOx competition did not fulfill this requirement.

4 Breaking the Challenges
White-box implementations usually rely on encodings and other theoretically sound
approaches to protect the secret values and their manipulations. It is also very often
the case that code obfuscation techniques are used to make understanding the design a
time-consuming and challenging task. Extensive use of such obfuscation techniques in
the submitted source files causes independently reverse-engineering each challenge to be
overwhelming in time. We thus focused on designing attack methods that could be efficient
and easily automated.

This section looks at the different attacks that can be automated in a white-box context
and gives the rationale for using and discarding them. We then present the results of
applying the selected methods to the whole set of submissions.

4.1 Attack Methods
4.1.1 Hooking Shared Libraries

The contest rules were a clear incentive for developers to use the GMP library for big
number arithmetic operations. A first attempt to break the submitted challenges was then
to search if sensitive values were manipulated in clear by the GMP library. In order to
perform this automatically, our approach has been to hook the calls to GMP functions
thanks to the so-called LD_PRELOAD trick.

Pre-loading is a feature of the dynamic linker on UNIX systems that allows loading a
specific shared library before all other libraries linked to a given executable binary2. In
our specific case, we built a shared library defining the same function as the GMP library
(e.g. mpz_mul, mpz_mod or mpz_invert). Each of these functions simply updates a log of
the given parameters before calling the real GMP function, explicitly using the dynamic
linker (thanks to the <dlfcn.h> module) to ensure the correct execution of the white-box
implementation. It is then only necessary to add our shared library to the LD_PRELOAD
environment variable of the dynamic linker on our system before calling the ECDSA binary
to have our custom functions called in place of the genuine GMP ones. The corresponding
log is analysed in a second step to eventually reveal the secret key if d, k or related values
such as r · d or e+ r · d are found in the log. Such an approach allowed us to break 32% of
the challenges.

As a side note, this technique also jeopardizes implementations relying on system-
dependent random generators such as srand or mpz_XrandomX functions, or on other
sources such as time.

2https://man7.org/linux/man-pages/man8/ld.so.8.html

https://man7.org/linux/man-pages/man8/ld.so.8.html

532 Attacks and Designs from CHES 2021 Challenge

4.1.2 Biased Nonces

As explained in Sect. 3.2, white-box designers usually generate the nonce k from the input.
In the case of the WhibOx contest, the nonce is thus computed as a function of the hash,
i.e. k = f(e). However, if the function f is not carefully selected, it could happen that the
ki’s generated from different ei’s are not uniformly random.

In the worst case, we have collisions such that different hash values e0 and e1 produce
the same nonce (k0 = k1). If such a collision occurs, one can recover the private key d as
explained in Sect. 3.1. Furthermore, collisions can be efficiently detected by looking at
the r part of the signature. To efficiently browse a subset of hash values in search of such
collisions, we limited ourselves to hash values with a Hamming weight equal to 1 or 2. We
thus considered 32 896 hash values and were able to break 60% of the challenges with this
technique.

In those cases where we did not find any collision, we looked for biases in the nonce
generation. We used well-known lattice attacks derived from [NS03] and [FGR13] to exploit
such a potential weakness. Such attacks can recover an ECDSA private key only with the
knowledge of a few bits of the ephemeral keys of several signatures.

A concrete example showing why such techniques can succeed in our context consists in
considering f = Id. Then ki = ei and with providing ei ranging from 0 to 99 we obtained
100 signatures for which the 249 most-significant bits of the nonces are 0. This bias is
more than enough for a lattice attack to recover the private key d.

Lattice-based attacks can also be applied when the ephemeral key is the product of a
small random κ by another (large) constant scalar t. Such a design allows to efficiently
perform the scalar multiplication as R = [κ]T = [k]G, with T = [t]G a precomputed value.
The point is that the small size of κ reduces the cost of the scalar multiplication.

To sum up, the relations we used for our lattice attacks are the following (with ei

ranging from 0 to 999):

• assuming l = 6 known most- or least-significant bits of the ephemeral key:

kmsb2L + klsb = s−1(e+ rd) mod n , (3)

with L = 256− l for the MSB case and L = l for the LSB case (we considered both
cases where the known value is 0 or 63 = 26 − 1),

• assuming the ephemeral keys are ki = tκi:{
t = κ−1

0 (e0 + r0d) mod n,
κi = t−1(s−1

i ei − s−1
i rir

−1
0 e0) + κ0(s−1

i rir
−1
0 s0) mod n, (4)

with κi < 2248 and t an unknown constant scalar.

Such an approach allowed us to break 72% of the challenges.

4.1.3 DCA

In 2016, Bos et al. showed that although firstly described for the grey-box context, the
well-known side-channel attacks could be very well adapted to the white-box model. The
resulting attack [BHMT16] is called Differential Computational Analysis (DCA). The
principle is very similar to classical side-channel attacks: secret values are extracted from
leakage traces obtained during several executions of a cryptographic algorithm with the
help of statistical tools. The only difference relies upon the nature of the traces. Whereas
in the grey-box context, one can record the power consumption of the device in which the
algorithm is implemented, a white-box attacker can simply use software execution traces.
By instrumenting the binary, he can record completely noiseless traces of all accessed
addresses and data over time, leading to much more efficient attacks.

Barbu et al. 533

In theory, this attack is particularly devastating since it can be fully automated and
does not require any earlier reverse engineering step. In practice, it is quite difficult to
apply because of the size of the traces, in particular for cryptosystems such as ECDSA
that have relatively long execution time. Indeed, if the whole white-box execution were to
be recorded, each trace would easily reach several gigabytes. For instance, tracing n 64-bit
registers on a 3GHz machine during 3 seconds would lead to a single trace of 9 ∗ 8 ∗ n Gb.
Therefore, iterating over dozens of traces for a CPA would be overwhelming in time and
memory. A time-consuming step of reverse engineering allowing to select a smaller window
of the implementation before the attack is thus required, which is why we did not use this
technique to break the challenges of the WhibOx contest.

4.1.4 Fault Injections

Another attack method is to disturb the algorithm execution and exploit the resulting
faulty output. In the white-box context, faults can be easily induced since the attacker
can modify the binary or use debugging tools to stop the execution and, for example,
skip an instruction or modify the value of a particular register. Again, this attack can be
automated and does not require an earlier reverse engineering step.

All the fault attacks that can be performed in the grey-box context are obviously also
a potential threat in the white-box context. In the case of ECDSA, different faults can be
induced on different variables to give an exploitable result. The most obvious attack is to
force the use of a weak elliptic curve during the scalar multiplication by disturbing the
curve parameters [BMM00] in order to solve the discrete logarithm problem easily. The
attacker can also force the use of biased nonces, for instance, by sticking a 32-bit word of
k at zero during several executions. The corresponding signatures can then be used to
obtain information on the key using lattice-based algorithms. Finally, modifying one byte
of d during the computation of rd may allow one to recover information on the key, as
shown in [GK04].

In addition, the white-box model offers new possibilities [PSS+18,ABF+18,DGH21].
They arise from the fact that deterministic versions of the scheme have to be implemented
due to the impossibility of relying on a source of randomness in this context. When the
algorithm is used twice on the same message, the same nonce k is derived. The attacker
may thus obtain a correct signature for a given digest e, and an erroneous one by modifying
a second execution of the same signature. To break the challenges of the WhibOx contest,
we mainly disturbed the computation of the first part of the signature r, obtaining faulty
results r̃ and s̃ = k−1(e+ r̃d) mod n. Some secret information can be deduced from the
correct and faulty signatures:

(r − r̃)(s− s̃)−1 ≡ (r − r̃)(k−1d(r − r̃))−1 ≡ kd−1 mod n . (5)

Let α = kd−1 mod n. The adversary can then compute the private key:

d = e(αs− r)−1 mod n . (6)

It is also possible to disturb other variables, but still, the faulty value must be known
to exploit the result. Interestingly, when one modifies the first part of the signature, if no
countermeasure is implemented, the faulty value is just given to the attacker as part of the
output. Furthermore, the attack surface is huge: the fault may happen anywhere during
the scalar multiplication. This is why we considered only this perturbation in the context
of this competition. This approach is the most successful one, allowing us to break 75% of
the challenges.

534 Attacks and Designs from CHES 2021 Challenge

4.2 Attacks Results
When applying the various attack methods described above, we obtain the results presented
in Table 1. We observe that lattice and fault attacks are very efficient. Collision attacks
also give good results.

Table 1: Success rate of each attack on the 97 challenges.

Attack type Percentage of
broken challenges

Hooking 32%
Bad nonce

- Collision 60%
- Lattice 72%

Fault Injection 75%

We give in Appendix A the specific vulnerabilities of each of the 97 submitted challenges
as well as the corresponding private key.

However, we noticed that many challenges had a low level of security, some of which
were even plain implementations. We thus excluded 30 challenges3 where the nonce and/or
the private key were manipulated in plain. Table 2 illustrates the efficiency of the attacks
presented in Sect. 4.1 on the remaining 67 challenges. We observe that hooking gives no
significant result anymore, collision and lattice attacks become less efficient, and fault
injection seems the most powerful attack.

Table 2: Success rate of each attack on the 67 strongest challenges.

Attack type Percentage of
broken challenges

Hooking 1%
Bad nonce

- Collision 49%
- Lattice 61%

Fault Injection 69%

Among the 67 strongest challenges, Challenges 226 and 227 are the winning ones. In
the next section, we present the design of these two white-box implementations.

5 Design of the Winning Challenges
In this section, we describe the designs of the two winning challenges of the WhibOx
contest: Challenges 226 and 227. The designs of both challenges were inspired from
the white-box implicit framework [RVP22], which allows encoding the whole state with
large affine permutations efficiently. We implemented both challenges with the same
methodology; they only differ in some additional countermeasures used.

As mentioned in Sect. 2, in the WhibOx contest, a challenge gains strawberries quadrat-
ically with time before being broken. The rule is that challenges that are either smaller,
faster, or less memory-consuming gain strawberries faster. As a result, we strategically

3The challenges 3, 4, 8, 10, 11, 32, 45, 54, 55, 57, 85, 97, 114, 135, 136, 139, 153, 157, 174, 185, 187,
231, 235, 267, 274, 299, 307, 320, 321, and 323 are considered as weak.

Barbu et al. 535

posted two challenges with different trade-offs between security level and implementa-
tion cost. Challenge 227, our lightweight variant, was the winning implementation of
the contest, obtaining the highest number of strawberries (20.39). On the other hand,
Challenge 226, our hardened but heavier variant, achieved second place in the contest with
the second-highest number of strawberries (11.19). However, it stood unbroken for the
longest time (35 hours).

Note that these challenges were specifically built for the WhibOx contest, where
attackers did not know the design. Against an attacker who knows the design details,
these challenges are easy to break once reverse-engineered.

This section first introduces the implicit framework, then describes the shared design
approach of both challenges, and finally explains the additional countermeasures used in
each challenge. For access to the underlying software used to build these challenges, please
contact the authors from the team zerokey.

5.1 Implicit White-box Implementations
The implicit framework is a method to obtain a white-box implementation of a block
cipher. Its main idea is to represent the round functions of the cipher by implicit functions
of low degree and to protect these implicit functions with large affine encodings. Before
introducing implicit white-box implementations, we need to introduce the notions of
encoding, encoded implementation, and quasilinear implicit functions. While these notions
are originally defined in [RVP22] for vectorial functions over the binary field, we extend
these notions for an arbitrary finite field.

Let Fq be the finite field with q elements. A vectorial function F from the vector space
(Fq)l to (Fq)l′ is called a (l, l′) function over Fq, and its l′ component functions are denoted
by (F1, F2, . . . , Fl′). The degree of an (l, l′) function F denotes the maximum polynomial
degree of the l′ multivariate polynomials uniquely representing the component functions of
F .

Definition 1. Let F be an (l, l′) function over Fq, A be an (l, l) permutation over Fq and
B be an (l′, l′) permutation over Fq. The function F = B ◦ F ◦ A is called an encoded
function of F , and A and B are called the input and output encodings respectively.

Definition 2. Let F = F (t) ◦F (t−1) ◦· · ·◦F (1) be a vectorial function over Fq. An encoded
implementation of F , denoted by F , is an encoded function of F composed of encoded
functions of F (i), that is,

F = F (t) ◦ · · · ◦ F (1) = (B(t) ◦ F (t) ◦A(t)) ◦ · · · ◦ (B(1) ◦ F (1) ◦A(1)) ,

where the input and output encodings (A(i), B(i)) are permutations over Fq such that
A(r+1) =

(
B(r))−1. The first and last encodings (A(1), B(t)) are called the external

encodings.

Definition 3. Let F be an (l, l′) function over Fq. A (l + l′, l′′) function T is called an
implicit function of F if it satisfies

T (u1, u2, . . . , ul, v1, v2, . . . , vl′) = 0 ⇐⇒ F (u1, u2, . . . , ul) = v1, v2, . . . , vl′ .

In this case, T is said to be quasilinear if for any (u1, u2, . . . , ul) ∈ (Fq)l, the function
(v1, v2, . . . , vl′) 7→ T (u1, u2, . . . , ul, v1, v2, . . . , vl′) is affine over Fq.

The following lemma from [RVP22] describes how the composition of affine permutations
translates to implicit functions.

536 Attacks and Designs from CHES 2021 Challenge

Lemma 1. Let F be an (l, l′) function over Fq and T be a quasilinear implicit (l + l′, l′′)
function of F . Let A be an affine (l, l) permutation over Fq, B be an affine (l′, l′)
permutation over Fq, and M be a linear (l′′, l′′) permutation over Fq. Then, T ′ = M ◦ T ◦
(A,B−1) is a quasilinear implicit function of F ′ = B ◦ F ◦A.

The quasilinear property allows the implicit evaluation of F in a point (u1, u2, . . . , ul) by
solving the affine system T (u1, u2, . . . , ul, v1, v2, . . . , vl′) = 0 for the variables v1, v2, . . . , vl′ .
We are ready to present the definition of an implicit implementation.

Definition 4. Let F = F (t) ◦ F (t−1) ◦ · · · ◦ F (1) be a vectorial function over Fq, and let
F = F (t)◦F (t−1)◦· · ·◦F (1) be an encoded implementation of F . An implicit implementation
of F with underlying encoded implementation F is a set of quasilinear implicit functions
{T (1), T (2), . . . , T (t)} where T (i) is an implicit function of F (i).

5.2 White-boxing ECDSA Signature Algorithm Using the Implicit Frame-
work

In the WhibOx contest, designers submitted white-box implementations of the ECDSA
signature algorithm on the NIST P256 curve. As opposed to the standard ECDSA algorithm
(cf. Algorithm 1), the algorithm for the WhibOx contest (hereafter denoted by E) takes
as input the 256-bit message digest. The private key is not an input of the algorithm;
it is freely chosen by the designer, but it is fixed (hard-coded) in the implementation.
Algorithm 2 depicts a high-level overview of this deterministic variant of ECDSA, where
the deterministic nonce derivation mechanism is chosen freely by the designer.

Algorithm 2: Deterministic ECDSA signature algorithm for WhibOx contest
Input : 256-bit message digest e
Output : the signature (r, s)

1 state← e
2 k, state← NonceDerivation(state)
3 R = (Rx, Ry)← [k]G
4 r ← Rx mod n
5 s← k−1(e+ rd) mod n
6 if r = 0 or s = 0 then
7 Go to step 2
8 end
9 Return (r, s)

The main steps of E can be represented by the functions E(1) and E(2). The Fp-function
E(1) is given by

E(1)(e) = (Rx, k, e) , (7)
which takes as input e ∈ Fp and computes the scalar multiplication R = [k]G over Fp. On
the other hand, the Fn-function E(2) can be written as

E(2)(R′x, k′, e′) = (r, s) , (8)

which takes as input (R′x, k′, e′) = (Rx mod n, k mod n, e mod n) and computes (r, s) =
(R′x, k−1(e+ rd)) over Fn.

Inspired from the implicit framework, we built the white-box implementations of
Challenges 226 and 227 by encoding E(1) and E(2) with affine permutations and obtaining
low-degree implicit round functions of E(1) and E(2), the encoded functions of E(1) and
E(2). We will first describe the implicit implementation of E(1) and then that of E(2).

Barbu et al. 537

5.2.1 White-boxing the Scalar Multiplication

To build an implicit implementation of E(1), we need first to decompose E(1) as the
composition of Fp-functions that we call round functions. Then we explain how to encode
these round functions and how to obtain low-degree quasilinear implicit functions of the
encoded round functions.

Decomposing E(1) into round functions. The function E(1)(e) = (Rx, k, e), mainly
consists of the scalar multiplication r = [k]G of the nonce k and the point G. For the
scalar multiplication, we perform the following subroutine. First, we precompute and
store a list of t random point pairs on the curve, i.e., (Gi,0 = [ki,0]G,Gi,1 = [ki,1]G) for
1 ≤ i ≤ t . Then, for each pair we select one of the two points together with its logarithm,
denoted as (Gi,bi

, ki,bi
), where bi ∈ {0, 1} and 1 ≤ i ≤ t . We add the selected points and

the selected logarithms, obtaining the scalar multiplication

G1,b1 + · · ·+Gt,bt
= [k1,b1 + · · ·+ kt,bt

]G = [k]G , (9)

where k = k1,b1 + · · · + kt,bt
. This selection is done in a deterministic way depending

on the bits (e1, e2, . . . , e256) of the hash e, the only source of entropy in the algorithm.
Moreover, the selection is done with Fp-arithmetic operations rather than with conditional
instructions, so that each iteration only performs Fp operations. The subroutine is given
in Algorithm 3.

It is worth pointing out that the values ki,j are chosen such that the sum of max(ki,0, ki,1)
for all i is always smaller than n. That is, we have k < n. Hence, r and s are never 0. In
this way, we avoid the trivial case, i.e., avoid going to Step 7 in Algorithm 2.

Algorithm 3: Round-based scalar multiplication used in E(1)

Input : the bits (e1, e2, . . . , e256) of the hash e (little-endian order)
Output : x-coordinate of [k]G and the message-dependent scalar k
/* Round 1: input e1, k1,0, k1,1, G1,0, G1,1 embedded values */

1 R← [1− e1]G1,0 + [e1]G1,1
2 k ← (1− e1)k1,0 + e1k1,1

/* Round i: input (R, k, ei), ki,0, ki,1, Gi,0, Gi,1 embedded values */
3 for 2 ≤ i ≤ t do
4 R← R+ [1− ei]Gi,0 + [ei]Gi,1
5 k ← k + (1− ei)ki,0 + eiki,1
6 end
7 return Rx, k // (Rx, Ry) = R = [k]G

By considering the precomputed points Gi,j and their logarithms ki,j as fixed values
and by representing the elliptic curve additions by operations over Fp, we can represent
E(1) given by Algorithm 3 as an iterated function over Fp, that is,

E(1) = F (t) ◦ · · · ◦ F (2) ◦ F (1) , (10)

where each (4, 4) round function F (i) is given by the following component functions

F
(i)
1,2(u1, u2, u3, u4) = (u1, u2) + [1− ei]Gi,0 + [ei]Gi,1

F
(i)
3 (u1, u2, u3, u4) = u3 + (1− ei)ki,0 + eiki,1 ,

F
(i)
4 (u1, u2, u3, u4) = u4 + ei2i .

(11)

538 Attacks and Designs from CHES 2021 Challenge

Note that the input value of F (1) is (0, 0, 0, 0), and each round function F (i) takes the
hash bit ei as an additional input value. The pair of component functions F (i)

1,2 return a
point on the elliptic curve with F (i)

1 and F (i)
2 the x- and y- coordinates respectively. The

component function F (i)
3 updates and returns the current nonce, while F (i)

4 updates the
current hash. The hash e is recomputed so that E(1) can output the hash e and provide it
in an encoded form to E(2) .

Encoding the round functions. To protect the round functions, we encode each round
with random Fp-affine permutations A(i), obtaining the encoded round functions

F (i) = A(i) ◦ F (i) ◦ (A(i−1))−1, 1 ≤ i ≤ t . (12)

In other words, the input and output encodings of F (i) are
(
(A(i−1))−1, A(i)), and the

composition of the round functions cancels all intermediate encodings except (A(0))−1 and
A(t), that is,

E(1) = F (t) ◦ · · · ◦ F (2) ◦ F (1) = A(t) ◦ F (t) ◦ · · · ◦ F (2) ◦ F (1) ◦ (A(0))−1 , (13)

where t is the number of rounds. The input encoding (A(0))−1 of F (1) is set as the identity
mapping to preserve the input-output behaviour of E.

Obtaining the implicit round functions. Now we proceed to obtain an implicit round
function T (i) of each encoded round function F (i). To this end, we first show how to derive
an implicit function of the elliptic curve addition.

Let ADD(Px, Py, Qx, Qy) = (Rx, Ry) be the vectorial Fp-function denoting the elliptic
curve addition P +Q = R where P and Q are not the point at infinity and where P and
Q have different x-coordinates4. In this case, R can be written as [KL14]

Rx = (Qy − Py)2((Qx − Px)2)−1 − Px −Qx

Ry = (Qy − Py)(Px −Rx)(Qx − Px)−1 − Py .
(14)

From Eq. (14) it is easy to see that P +Q = R holds if and only if the relations

(Px +Qx +Rx)(Qx − Px)2 = (Qy − Py)2 (15)
(Ry + Py)(Qx − Px) = (Qy − Py)(Px −Rx) (16)

hold. Note that these relations have degree 3 (degree 1 over the variables Rx and Ry),
while Eq. (14) has a high degree due to the inversion over Fp.

Thus, the function IMP(Px, Py, Qx, Qy, Rx, Ry) = (IMP0, IMP1) defined by

IMP0 = (Qy − Py)2 − (Px +Qx +Rx)(Qx − Px)2

IMP1 = (Qy − Py)(Px −Rx)− (Ry + Py)(Qx − Px)
(17)

is a quasilinear implicit round function of ADD with degree 3, assuming none of the points
is the point at infinity and assuming the x-coordinates of the points are different.

From the above implicit function of the elliptic curve addition, it is easy to derive a
quasilinear implicit function T (i) of each round function F (i). Then, we sample a linear
permutation M (i) for each round i, and by Lemma 1 the function

T (i) = M (i) ◦ T (i) ◦
(
(A(i−1))−1, (A(i))−1) (18)

4The only elliptic curve additions performed in E(1) are the additions between the random points Gi,j ,
and the probability that these additions involve points at infinity or points with the same x-coordinate is
negligible.

Barbu et al. 539

is a quasilinear implicit function of F (i) for 1 ≤ i ≤ t.
The white-box implementations of Challenges 226 and 227 contain this implicit imple-

mentation of E(1), with underlying encoded implementation E(1), given by the t implicit
round functions {T (1), . . . , T (t)} in Eq. (18). Moreover, E(1) is evaluated in our white-box
implementations by implicitly evaluating the encoded round functions F (i). In other words,
given the output u of the round i−1, the output v of the ith round is computed by finding
the solution of the affine system T (i)(u;v) = 0 for v.

5.2.2 White-boxing the Computation of s

Now we turn our attention to E(2), the second step of the signing algorithm, where we
compute r = Rx mod n and s = k−1(e + dRx) mod n, and output the signature (r, s).
As opposed to E(1), we do not decompose E(2) but build a single (vectorial) quasilinear
implicit function of E(2) = E(2) ◦ (A(t))−1, the encoded version of E(2).

The vectorial Fn-function T (t+1) defined as{
T

(t+1)
1 (Rx, Ry, k, e; s, r) = ks− e− dRx

T
(t+1)
2 (Rx, Ry, k, e; s, r) = r −Rx

(19)

is a quasilinear implicit function of E(2). In other words, the polynomial system T (t+1) =
{T (t+1)

1 , T
(t+1)
2 } implicitly defines E(2) because (s, r) = E(2)(Rx, Ry, k, e) if and only if

T (t+1)(Rx, Ry, k, e; s, r) = 0. Moreover, the system is affine in r and s, so after plugging
in values for Rx, Ry, k and e, the system can be solved for r, s efficiently.

The encoded version E(2) gets as input u = A(t)(Rx, Ry, k, e), where A(t) is the affine
function that protects the last round of E(1). By Lemma 1, we build the implicit round
function of E(2) as

T (t+1)(u; s, r) = M · T (t+1)((A(t))−1(u); s, r) , (20)

where (A(t))−1 is the inverse of A(t) mod n, and where M is a random invertible 2-by-2
matrix mod n. The function T (t+1) is quasilinear, and we can implicitly evaluate E(2)

on input u = A(t)(Rx, Ry, k, e) by plugging u in the first slot of T (t+1) and solving the
remaining system (which is affine) for r and s over Fn.

However, the fact that E(1) works in Fp while E(2) works in Fn causes a problem. The
input to E(2) is u = A(t)(Rx, Ry, k, e) reduced by mod p, so (A(t))−1(u) is in general not
equal to (Rx, Ry, k, e) mod n if there are overflows in the computation of u. Let o be the
vector of overflows mod p, such that

u = A(t)(Rx, Ry, k, e)− po , (21)

then (A(t))−1(u) = (Rx, Ry, k, e) − pL−1
t (o) mod n, where Lt is the linear part of the

affine map A(t) (i.e., A(t)(x) = Lt(x) + c for some constant term c).
To deal with this problem, we correct for the overflow mod p by guessing the overflow

vector o and setting u′ = u + po before plugging u′ into T (t+1)(u; s, r) to solve for (r, s).
If the guess is correct, then u′ is equal to A(t)(Rx, Ry, k, e) over the integers, so the correct
r, s will be recovered. Therefore, we repeatedly run the last step with random guesses of o
to get a candidate signature (r, s). Then we run the verification algorithm on (r, s) and
output the first (r, s) for which the verification algorithm succeeds. Note that we do not
need to protect the verification algorithm because it does not use secret information.

If A(t) was a random affine map with entries of size up to p, then guessing o correctly
would be very unlikely. Therefore, we choose the affine map A(t) with small entries. For

540 Attacks and Designs from CHES 2021 Challenge

example, we could use

A(t)(Rx, Ry, k, e) =


1 0 1 2
1 1 2 0
0 1 2 1
1 2 0 1



Rx

Ry

k
e

+ c . (22)

With this choice, the weight of each row is four, so there are at most four overflows mod p
in each entry of u, which means o can be guessed more easily. Not all guesses are equally
likely, (e.g., o = [4, 4, 4, 4] only occurs if Rx, Ry, k, e are all quite big, which is unlikely).
Rather than inefficiently guessing o ∈ [0, 4]4 at random, we precompute a list of guesses
L ordered from more likely to be correct to less likely, and we iterate through the list of
guesses in that order.

The white-box implementations of Challenges 226 and 227 contain the implicit function
T (t+1), which allows the implicit evaluation of E(2), together with the correction for the
overflow mod p described above and summarized in Algorithm 4.

Note that the severe restriction on the size of the entries of A(t) makes the conversion
from Fp to Fn one of the most vulnerable points in the white-box implementation. In
particular, an attacker knowing the specifications of the design can easily recover A(t) by
exhaustive search if no additional countermeasures are used.

Algorithm 4: White-box implementation of ECDSA signature algorithm for
winning challenges
Input : 256-bit hashed message digest e
Output : the signature (r, s)

1 e← e mod p

2 (v1, v2, v3)← E(1)(e) // implicit evaluation
3 for o in L do
4 (u1, u2, u3)← (v1, v2, v3) + p · o
5 (r, s)← E(2)(u1, u2, u3) // implicit evaluation
6 if VerifySignature(r, s, e) = valid then
7 return (r, s)
8 end
9 end

5.3 Additional Countermeasures
The representation of the implicit round functions as systems of multivariate polynomials
allows applying countermeasures from multivariate public-key cryptosystems. In fact,
Challenges 227 and 226 only differ in the additional countermeasures used.

In particular, we considered two techniques. First, we obfuscated the components (seen
as polynomials) of the implicit round functions T (i) by multiplying them with random
polynomials in the input variables. Note that the multiplication of input variables preserves
the quasilinear property. Moreover, the image of a random polynomial is non-zero with
high probability, and multiplying an equation with a non-zero value does not change its
solution set. In the unlikely case that one of the added polynomials vanishes, the output of
the corresponding implicit function will be invalid, and no valid signature will be obtained.
To prevent this extreme case, we made the first implicit round function dependent on an
initial value; if no valid signature is found, we simply repeated the whole process with a
different initial value.

Barbu et al. 541

This first technique increases the degree of the implicit round functions, significantly
increasing the implementation size. Thus, for the lightweight Challenge 227 we only applied
this technique to raise the degree of the components to the total degree of the functions,
but for Challenge 226 we multiplied with polynomials of higher degree to increase the total
degrees of the implicit round functions. The final degrees are listed in Tables 3 and 4.

The second technique we used was adding additional variables and components to
the implicit round functions but preserving the input-output behaviour of the underlying
encoded round functions.

In particular, to avoid the bias in the most significant part of the nonce k due to the
constraint k < n (see Section 5.2.1), we duplicated the nonce variable and its equations so
that E(1) outputs an additional nonce variable k′ similarly to k,

k′ = k′1,b1
+ · · ·+ k′t,bt

,
∑

i

max(k′i,0, k′i,1) < n ,

and E(2) uses the sum of the nonce variables k + k′ as the final nonce. On top of that,
instead of e, the input L(e) is given to E(1) for some hard-coded low-degree encoding L,
and its inverse L(−1) is composed to E(2) to recover e. Note that this is a minor trick since
the encoding L is not merged or composed with other functions (as opposed to the other
encodings A(i)), and the computation L(e) is done in clear.

Since adding additional variables and equations also introduces significant overhead
in the implementation size, we only applied the second technique to Challenge 226. In
particular, we added two variables and two equations in the implicit round functions of
E(1), and two variables and one equation in those of E(2).

We also used Tigress [Col] for both challenges to obfuscate the C source code. Tigress
is an obfuscator for C language that protects programs against dynamic and static reverse
engineering attacks. We used the transformations5 Flatten (flattens the code to remove
structured flow), AntiTaintAnalysis (disrupts tools that make use of dynamic taint
analysis), AddOpaque (adds opaque predicates), EncodeLiterals (replaces integers
and strings with run-time expressions) and CleanUp (renames variables and functions).

5.4 Challenge 227: The Winner
5.4.1 Description

Following the method described in Section 5.2, we built Challenge 227 (keen_ptolemy)
as a lightweight white-box implementation. The only additional countermeasures from
Section 5.3 included in Challenge 227 are the degree increase of each component to the
total degree of the corresponding vectorial function and the code obfuscation by Tigress.
Challenge 227 was the winning implementation of the WhibOx contest; it achieved the
highest number of strawberries (20.39) and stood for 33 hours as the second-longest.

Table 3 describes the memory complexity of Challenge 227 (after applying the additional
countermeasures) by describing {T (1), . . . , T (t)} and T (t+1), the implicit round functions
of E(1) and E(2) respectively. The number of coefficients in Table 3 denotes the maximum
number of non-zero coefficients of a quasilinear vectorial function with a given number of
input variables, components, and degrees. If each coefficient is represented with 256 bits,
{T (1), . . . , T (t)} and T (t+1) require in total roughly 4 MB.

After obfuscating the code with Tigress, the size of the final C source code of Challenge
227 is 4.4 MB. In a modern personal laptop with the environment6 provided by the
competition, the size of the compiled binary is 4.42 MB, and the average running time and

5https://tigress.wtf/transformations.html
6https://github.com/CryptoExperts/whibox_contest_submission_server

https://tigress.wtf/transformations.html
https://github.com/CryptoExperts/whibox_contest_submission_server

542 Attacks and Designs from CHES 2021 Challenge

Table 3: Information of the implicit round functions T (i) of Challenge 227.

T (1) {T (2), . . . , T (t−1)} T (t) T (t+1)

input variables 2+4 5+4 5+3 3+2
number of components 4 4 3 2

degree 3 3 4 2
number of coefficients 27× 4 130× 4 255× 3 18× 2

RAM consumed are 0.04 seconds and 6.14 MB respectively. The code obfuscation did not
impact the running time but increase the binary size by 8% and the average RAM by 3%.

5.4.2 Security Analysis

Challenge 227 can be broken in several ways. Here, we explain how the attacks of Sect. 4
allow one to recover the secret key of Challenge 227 or why they do not work.

Hooking shared libraries. During the implicit evaluation of E(2) for the valid input
u = A(t)(Rx, Ry, k, e), the affine system T (t+1)(u; s, r) is solved for r and s. By denoting

the entries of M as M =
(
m0 m1
m2 m3

)
, it is easy to see that this affine system is given by

the equations {
c1s+ c3r − c5 = 0
c2s+ c4r − c6 = 0

(23)

where the coefficients ci are given by

c1 = m0k, c3 = m1, c5 = m0e−m0dRx −m1Rx

c2 = m2k, c4 = m3, c6 = m2e−m2dRx −m3Rx

. (24)

We stress that k, e, and Rx do not appear in the clear. They are expressed as linear
combinations of the input u = A(t)(Rx, Ry, k, e) of E(2). Nevertheless, the coefficients ci

are operated in the clear during the Gaussian elimination, and the adversary can obtain
their values.

Some of these coefficients are sensitive. In particular, if the attacker manages to find
c1 during the computation of two different signatures (r, s) and (r′, s′), he may solve the
following system of two equations with two unknowns (m0 and d) in Fn:{

m0(e+ rd) = c1s

m0(e′ + r′d) = c1s
′ . (25)

Therefore, recovering the value c1 = m0k mod n for two different signatures allows an
attacker to compute the private key.

Finding the interesting values inside the white-box may seem difficult without a reverse
engineering step. However, the attack turns out to be easily automated on challenges
that use the GMP library, such as Challenge 227. Indeed, one of the coefficients of s, say
c1 = m0k, will be inverted modulo n during the resolution of the system, and finding this
inversion is easy when one can simply trace the calls to the function mpz_invert(). The
team TheRealIdefix was thus able to efficiently apply this attack on Challenge 227 during
the contest without any reverse engineering step.

This attack may seem very specific, but multiplying the nonce with a constant may
appear as an easy way to protect the inversion step, and could very well be used by
designers. This attack shows it is not a robust countermeasure.

Barbu et al. 543

Biased nonces. There exists a more generic way of breaking Challenge 227. Indeed, the
way the ephemeral key is constructed (see Sect. 5.2.1) opens the way for an attack using
lattice reduction techniques.

Given that the ephemeral key k is obtained by summing 256 scalars ki,j according
to each bit of the input, one can obtain the following signatures by selecting a couple of
hashes (e0, ei), with e0 = 0 and ei = 2i :

s0 =
(

255∑
j=0

kj,0

)−1

(e0 + r0d) mod n

si =
(
ki,1 +

255∑
j=0,j 6=i

kj,0

)−1

(ei + rid) mod n
, (26)

which allows us to construct 256 equations involving only one of the ki,j :

ki,1 +
255∑

j=0,j 6=i

kj,0 −
255∑
j=0

kj,0 = s−1
i (ei + rid)− s−1

0 (e0 + r0d) mod n

ki,1 − ki,0 = s−1
i ei − s−1

0 e0 + (s−1
i ri − s−1

0 r0)d mod n
. (27)

Now, the additional constraint k < n lets us estimate that each ki,j is sampled from
J0, bn/256cK. Consequently,

|ki,1 − ki,0|n = |s−1
i ei − s−1

0 e0 + (s−1
i ri − s−1

0 r0)d|n <
⌊ n

256

⌋
, (28)

with |y|n := min
a∈Z
|y − an| to denote the distance of y ∈ R to the closest integer multiple of

n.
We recognize in Eq. (28) an instance of the Hidden Number Problem (HNP) [BV96].

Indeed, we are given many HNP inequalities of the form:

|αti − ui|n <
⌊ n

256

⌋
, (29)

with ti = s−1
i ri − s−1

0 r0, ui = s−1
0 e0 − s−1

i ei and the hidden number α is the private key d.
Solving HNP instances in the context of ECDSA given inequalities such as Eq. (29)

has been described numerous times in the literature. We refer the reader to [JSSS20]
for a more detailed description7. In particular, the authors detail the reduction of the
HNP instance to a Closest Vector Problem instance in a specific lattice as well as the
construction of this lattice.

Finally, we use 75 relations such as Eq. (28) (out of the 255 we can establish) to build
a lattice whose reduction allows us to recover the private key d.

DCA. As explained in Sect. 4, we did not mount this side-channel attack during the
contest. With the design of Challenge 227 in hand, we can see that it would have been
unsuccessful, at least at the first order, thanks to the linear masking scheme used to protect
all the implementation.

Fault injections. None of the faults injected on Challenge 227 during the contest were
exploitable. This can be explained by the presence of the signature verification that is used
to check if the guess for the overflow between E1 and E2 is correct. If a fault is induced,
the signature is rejected and recomputed.

Of course, a reverse engineering step could be performed to get rid of this verification,
but this would be quite time-consuming. Furthermore, even without this verification,

7We also highlight that the authors of [JSSS20] made their code available at https://github.com/crocs-
muni/minerva.

https://github.com/crocs-muni/minerva
https://github.com/crocs-muni/minerva

544 Attacks and Designs from CHES 2021 Challenge

the fault attack is still not trivial to perform because of the linear masking scheme. In
particular, Rx is not manipulated directly in E2. It is expressed as a linear combination of
the input A(t)(Rx, Ry, k, e), so modifying one of the shares would probably also fault e, k
or Ry, making the resulting faulty signature unexploitable.

5.5 Challenge 226: The Most Resistant
5.5.1 Description

Challenge 226 (clever_kare) was the second white-box implementation that we built
following the method described in Section 5.2 and including all the additional countermea-
sures from Section 5.3. While this challenge stood for the longest (35 hours), Challenge
226 achieved the second-highest number of strawberries (11.19) due to its higher time and
memory complexity than Challenge 227.

Table 4 describes the memory complexity of {T (1), . . . , T (t)} and T (t+1) of Challenge
226 after applying the additional countermeasures. Given each coefficient as a 256-bit value,
{T (1), . . . , T (t)} and T (t+1) require in total roughly 15 MB. The impact of the additional
countermeasures on the number of equations, the degree, and the number of variables can
be seen by comparing this table with Table 3.

Table 4: Information of the implicit round functions T (i) of Challenge 226.

T (1) {T (2), . . . , T (t−1)} T (t) T (t+1)

input variables 2+6 7+6 7+5 5+2
number of components 6 6 5 2

degree 3 3 4 5
number of coefficients 37× 6 322× 6 854× 5 504× 2

The size of the final C source code of Challenge 226 is 17.54 MB, the size of the
compiled binary is 15.44 MB, and the average running time and RAM consumed are 0.15
seconds and 17.27 MB, respectively. The code obfuscation did not significantly impact the
performance of Challenge 226; the running time, the binary size, and the average RAM
increased by less than 1%.

5.5.2 Security Analysis

During the WhibOx contest, the team theRealIdefix did not manage to break Challenge 226
with any of the automated attacks presented in Sect. 4.1. DCA and fault injection, which
fail to break Challenge 227, are also not applicable to Challenge 226 since it is designed to
be more secure. Moreover, the two attacks presented in Sect. 5.4.2 also fail to recover any
secret information.

Hooking shared libraries. As mentioned in Sect. 5.3, Challenge 226 implements an
additional countermeasure which consists in multiplying the components of the implicit
round functions T (i) with random polynomials in the input variables. Hence, the coefficients
of s in the system T (t+1)(u; s, r) for the valid input u are no longer fixed multiples of k,
and the attack cannot be mounted anymore.

Biased nonces. Likewise, the additional countermeasures implemented in Challenge 226
makes the lattice attack described in Sect. 5.4.2 fail. The additional variable k′ alone
would only reduce by 1 bit the bias observed in Eq. 29 and the attack would still be

Barbu et al. 545

practical. However, without the knowledge of the encoding L introduced in this challenge
it is impossible to exhibit such a bias leading to key recovery.

As explained, none of the automated attacks that the TheRealIdefix team used during
the contest were successful on Challenge 226. Nevertheless, with the design in hand, one
could easily break this challenge. Indeed, knowing that the matrix M of the last affine
encoding A(t) contains small entries, the attacker could, for example:

• Compute two signatures (r1, s1) and (r2, s2) for two messages e1 and e2 and extract
the two valid E(2) inputs u1 = A(t)(v1) and u2 = A(t)(v2) from the execution. Note
that v1 − v2 contains the nonce difference κ = k1 − k2.

• Find κ by exhaustive search overM ; for each guessM ′, obtain a candidate v1−v2 =
(M ′)−1(u1 − u2) and check if one of its entries κ satisfies (κG)x = r1 − r2.

• Solve the equation
s−1(e1 + r1d)− s−2(e2 + r2d) = κ (30)

in d in order to obtain the secret key.

Therefore, this challenge can be easily broken once reverse-engineered. Nevertheless,
such an attack is quite time-consuming, and resisting TheRealIdefix’s automated attacks
on ECDSA in the white-box contest is already an achievement considering that only 5
challenges resisted these attacks during the contest.

6 Conclusion
This work describes several attack techniques and designs used in the WhibOx 2021 contest.
We explained the attack methods used by the team TheRealIdefix, which broke the most
challenges, and we showed the success of each method against all the implementations in
the contest. Fault attacks were the most efficient and effective ones; collision and lattice
attacks were slightly less efficient, and hooking succeeded against weak implementations
only.

Among the white-box implementations that resisted these attacks, the one with the
highest score was Challenge 226 (clever_kare). This challenge, together with Challenge
227 (keen_ptolemy), was submitted by the team zerokey, and they obtained the second-
highest and the highest score in the contest, respectively. In this work, we described the
design methodology of these two challenges, which was inspired by the implicit white-box
framework.

The large number of implementations broken by our automated attacks and the fact
that no challenge survived more than two days show that securing ECDSA in the white-box
model is a challenging problem. White-box attacks benefit from the huge progress in
side-channel and fault attacks against ECDSA implementations, but not much research
has been done on the design part. To this end, our designs provide insightful examples for
future works, and our attacks highlight the weak points future research should address.

One of the main challenges specific to white-boxing ECDSA is the conversion from Fp to
Fn. While grey-box countermeasures can protect this step (e.g., with Arithmetic-to-Boolean
and Boolean-to-Arithmetic mask conversions), these techniques rely on randomness, which
is ineffective in white-box implementations. In particular, the conversion from Fp to Fn is
one of the weakest points in our designs, and further research in white-boxing the field
conversion is needed.

546 Attacks and Designs from CHES 2021 Challenge

Acknowledgment
The authors would like to thank the other members of the TheRealIdefix team: Yannick
Bequer, Luk Bettale, Laurent Castelnovi, Thomas Chabrier, Nicolas Debande, Roch
Lescuyer, Sarah Lopez and Nathan Reboud. Adrián Ranea is supported by a PhD
Fellowship from the Research Foundation – Flanders (FWO) under grant No. 11E1921N.
Chaoyun Li is an FWO post-doctoral fellow under grant No. 1283121N. Ward Beullens is
an FWO post-doctoral fellow under grant No. 1S95620N.

References
[AABM20] Estuardo Alpirez Bock, Alessandro Amadori, Chris Brzuska, and Wil Michiels.

On the security goals of white-box cryptography. IACR TCHES, 2020(2):327–
357, 2020. https://tches.iacr.org/index.php/TCHES/article/view/
8554.

[ABF+18] Christopher Ambrose, Joppe W Bos, Björn Fay, Marc Joye, Manfred Lochter,
and Bruce Murray. Differential attacks on deterministic signatures. In
Cryptographers’ Track at the RSA Conference, pages 339–353. Springer, 2018.

[AMR19] Alessandro Amadori, Wil Michiels, and Peter Roelse. A DFA attack on
white-box implementations of AES with external encodings. In Kenneth G.
Paterson and Douglas Stebila, editors, SAC 2019, volume 11959 of LNCS,
pages 591–617. Springer, Heidelberg, August 2019.

[ANT+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. LadderLeak: Breaking ECDSA with less than one bit of
nonce leakage. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 20, pages 225–242. ACM Press, November 2020.

[BCC21] Alberto Battistello, Laurent Castelnovi, and Thomas Chabrier. Enhanced En-
codings for White-Box Designs. In Vincent Grosso and Thomas Pöppelmann,
editors, CARDIS 2021, volume 13173 of LNCS, pages 254–274. Springer, 2021.

[BCD06] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. White box cryp-
tography: Another attempt. Cryptology ePrint Archive, Report 2006/468,
2006. https://eprint.iacr.org/2006/468.

[BG03] Olivier Billet and Henri Gilbert. A traceable block cipher. In Chi-Sung Laih,
editor, ASIACRYPT 2003, volume 2894 of LNCS, pages 331–346. Springer,
Heidelberg, November / December 2003.

[BGEC04] Olivier Billet, Henri Gilbert, and Charaf Ech-Chatbi. Cryptanalysis of a white
box AES implementation. In Helena Handschuh and Anwar Hasan, editors,
SAC 2004, volume 3357 of LNCS, pages 227–240. Springer, Heidelberg, August
2004.

[BH19] Joachim Breitner and Nadia Heninger. Biased nonce sense: Lattice attacks
against weak ECDSA signatures in cryptocurrencies. In Ian Goldberg and
Tyler Moore, editors, FC 2019, volume 11598 of LNCS, pages 3–20. Springer,
Heidelberg, February 2019.

[BHMT16] Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen. Differ-
ential computation analysis: Hiding your white-box designs is not enough.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016, volume
9813 of LNCS, pages 215–236. Springer, Heidelberg, August 2016.

https://tches.iacr.org/index.php/TCHES/article/view/8554
https://tches.iacr.org/index.php/TCHES/article/view/8554
https://eprint.iacr.org/2006/468

Barbu et al. 547

[BMM00] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks on
elliptic curve cryptosystems. In Mihir Bellare, editor, CRYPTO 2000, volume
1880 of LNCS, pages 131–146. Springer, Heidelberg, August 2000.

[BV96] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the most
significant bits of secret keys in Diffie-Hellman and related schemes. In Neal
Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 129–142. Springer,
Heidelberg, August 1996.

[CEJv03] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot.
White-box cryptography and an AES implementation. In Kaisa Nyberg and
Howard M. Heys, editors, SAC 2002, volume 2595 of LNCS, pages 250–270.
Springer, Heidelberg, August 2003.

[CEJvO02] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. A
white-box DES implementation for DRM applications. In Joan Feigenbaum,
editor, Security and Privacy in Digital Rights Management, ACM CCS-9
Workshop, DRM 2002, volume 2696 of LNCS, pages 1–15. Springer, Heidelberg,
Nov. 2002.

[CHE] CHES 2021 Challenge - WhibOx Contest. https://whibox.io/contests/
2021/.

[Col] Christian Collberg. The Tigress C Diversifier/Obfuscator. https://tigress.
wtf.

[DFLM18] Patrick Derbez, Pierre-Alain Fouque, Baptiste Lambin, and Brice Minaud.
On recovering affine encodings in white-box implementations. IACR
TCHES, 2018(3):121–149, 2018. https://tches.iacr.org/index.php/
TCHES/article/view/7271.

[DGH21] Emmanuelle Dottax, Christophe Giraud, and Agathe Houzelot. White-box
ECDSA: challenges and existing solutions. In Shivam Bhasin and Fabrizio De
Santis, editors, COSADE 2021, volume 12910 of LNCS, pages 184–201.
Springer, 2021.

[DLPR14] Cécile Delerablée, Tancrède Lepoint, Pascal Paillier, and Matthieu Rivain.
White-box security notions for symmetric encryption schemes. In Tanja Lange,
Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS,
pages 247–264. Springer, Heidelberg, August 2014.

[DRP13] Yoni De Mulder, Peter Roelse, and Bart Preneel. Cryptanalysis of the Xiao-
Lai white-box AES implementation. In Lars R. Knudsen and Huapeng Wu,
editors, SAC 2012, volume 7707 of LNCS, pages 34–49. Springer, Heidelberg,
August 2013.

[DWP10] Yoni De Mulder, Brecht Wyseur, and Bart Preneel. Cryptanalysis of a pertur-
bated white-box AES implementation. In Guang Gong and Kishan Chand
Gupta, editors, INDOCRYPT 2010, volume 6498 of LNCS, pages 292–310.
Springer, Heidelberg, December 2010.

[FGR13] Jean-Charles Faugère, Christopher Goyet, and Guénaël Renault. Attacking
(EC)DSA given only an implicit hint. In Lars R. Knudsen and Huapeng Wu,
editors, SAC 2012, volume 7707 of LNCS, pages 252–274. Springer, Heidelberg,
August 2013.

https://whibox.io/contests/2021/
https://whibox.io/contests/2021/
https://tigress.wtf
https://tigress.wtf
https://tches.iacr.org/index.php/TCHES/article/view/7271
https://tches.iacr.org/index.php/TCHES/article/view/7271

548 Attacks and Designs from CHES 2021 Challenge

[FIP13] FIPS PUB 186-4. Digital Signature Standard. National Institute of Standards
and Technology, July 2013.

[FV12] Junfeng Fan and Ingrid Verbauwhede. An updated survey on secure ecc
implementations: Attacks, countermeasures and cost. In Cryptography and
Security: From Theory to Applications, pages 265–282. Springer, 2012.

[GK04] Christophe Giraud and Erik Woodward Knudsen. Fault attacks on signature
schemes. In Huaxiong Wang, Josef Pieprzyk, and Vijay Varadharajan, editors,
ACISP 04, volume 3108 of LNCS, pages 478–491. Springer, Heidelberg, July
2004.

[GMQ07] Louis Goubin, Jean-Michel Masereel, and Michaël Quisquater. Cryptanalysis
of white box DES implementations. In Carlisle M. Adams, Ali Miri, and
Michael J. Wiener, editors, SAC 2007, volume 4876 of LNCS, pages 278–295.
Springer, Heidelberg, August 2007.

[GRW20] Louis Goubin, Matthieu Rivain, and Junwei Wang. Defeating state-of-the-art
white-box countermeasures. IACR TCHES, 2020(3):454–482, 2020. https:
//tches.iacr.org/index.php/TCHES/article/view/8597.

[Gt20] Torbjörn Granlund and the GMP development team. GNU MP: The GNU
Multiple Precision Arithmetic Library, 6.2.1 edition, 2020. http://gmplib.
org/.

[JOR11] JORF n°0241. Avis relatif aux paramètres de courbes elliptiques définis par
l’État français, October 2011.

[JSSS20] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sys. Minerva: The
curse of ECDSA nonces. IACR TCHES, 2020(4):281–308, 2020. https:
//tches.iacr.org/index.php/TCHES/article/view/8684.

[Kar11] Mohamed Karroumi. Protecting white-box AES with dual ciphers. In
Kyung Hyune Rhee and DaeHun Nyang, editors, ICISC 10, volume 6829 of
LNCS, pages 278–291. Springer, Heidelberg, December 2011.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. CRC Press, 2014.

[Loc10] M. Lochter. RFC 5639: ECC Brainpool Standard Curves and Curve Genera-
tion, 2010. https://tools.ietf.org/pdf/rfc5639.pdf.

[LRD+14] Tancrède Lepoint, Matthieu Rivain, Yoni De Mulder, Peter Roelse, and Bart
Preneel. Two attacks on a white-box AES implementation. In Tanja Lange,
Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS,
pages 265–285. Springer, Heidelberg, August 2014.

[MGH09] Wil Michiels, Paul Gorissen, and Henk D. L. Hollmann. Cryptanalysis of a
generic class of white-box implementations. In Roberto Maria Avanzi, Liam
Keliher, and Francesco Sica, editors, SAC 2008, volume 5381 of LNCS, pages
414–428. Springer, Heidelberg, August 2009.

[NS03] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the elliptic curve
digital signature algorithm with partially known nonces. Des. Codes Cryptogr.,
30(2):201–217, 2003.

https://tches.iacr.org/index.php/TCHES/article/view/8597
https://tches.iacr.org/index.php/TCHES/article/view/8597
http://gmplib.org/
http://gmplib.org/
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://tools.ietf.org/pdf/rfc5639.pdf

Barbu et al. 549

[PSS+18] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Manfred Lochter,
and Paul Rösler. Attacking deterministic signature schemes using fault attacks.
In 2018 IEEE European Symposium on Security and Privacy (EuroS&P), pages
338–352. IEEE, 2018.

[RVP22] Adrián Ranea, Joachim Vandersmissen, and Bart Preneel. Implicit white-box
implementations: White-boxing ARX ciphers. In CRYPTO, Lecture Notes in
Computer Science. Springer, 2022.

[RW19] Matthieu Rivain and Junwei Wang. Analysis and improvement of differential
computation attacks against internally-encoded white-box implementations.
IACR TCHES, 2019(2):225–255, 2019. https://tches.iacr.org/index.
php/TCHES/article/view/7391.

[SEL21] Okan Seker, Thomas Eisenbarth, and Maciej Liskiewicz. A white-box
masking scheme resisting computational and algebraic attacks. IACR
TCHES, 2021(2):61–105, 2021. https://tches.iacr.org/index.php/
TCHES/article/view/8788.

[Sta10] Standards for Efficient Cryptography Group (SECG). SEC 2 Ver 2.0 :
Recommended Elliptic Curve Domain Parameters. Certicom Research, January
2010.

[SWP09] Amitabh Saxena, Brecht Wyseur, and Bart Preneel. Towards security notions
for white-box cryptography. In Pierangela Samarati, Moti Yung, Fabio Mar-
tinelli, and Claudio Agostino Ardagna, editors, ISC 2009, volume 5735 of
LNCS, pages 49–58. Springer, Heidelberg, September 2009.

[Van92] Scott Vanstone. Responses to NIST’s Proposal. Communications of the ACM,
35:50–52, 1992.

[WMGP07] Brecht Wyseur, Wil Michiels, Paul Gorissen, and Bart Preneel. Cryptanalysis
of white-box DES implementations with arbitrary external encodings. In
Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, SAC 2007,
volume 4876 of LNCS, pages 264–277. Springer, Heidelberg, August 2007.

[XL09] Yaying Xiao and Xuejia Lai. A secure implementation of white-box aes. In
2nd International Conference on Computer Science and its Applications, pages
1–6. IEEE, 2009.

https://tches.iacr.org/index.php/TCHES/article/view/7391
https://tches.iacr.org/index.php/TCHES/article/view/7391
https://tches.iacr.org/index.php/TCHES/article/view/8788
https://tches.iacr.org/index.php/TCHES/article/view/8788

550 Attacks and Designs from CHES 2021 Challenge

A Attacks Summary Table
Table 5 presents for each challenge submitted to WhibOx 2021 the successful attacks and
the value of the corresponding key. During the contest, we broke 92 out of 97 challenges.
The 5 remaining challenges have been broken a posteriori.

Table 5: Vulnerabilities of the various challenges.

C
ha

lle
ng

e

H
oo

ki
ng

C
ol

lis
io

n

Fa
ul

t

La
tt

ic
e

K
ey

3 X X X X 45189C81EADEE03202BFA06EAA15831789F0C76575508A563E1A739CA37B87BE
4 X X X X 22BEF7AC4C31B2B98227D95B5EB49AF23343004CF2713FED48BEC3B5B7C3D24D
8 X X X X F484955872415A32B1B5B731EA1A8C729458055C17DC5FE9C57BCB39D1A40BFE

10 X X X X 32D67733DF0D0257DA78E92752494CFD5112E303BA1413388126EA33BB60AEFC
11 X X X X E7F3287D91B528D78BF19D5E62828C845E1A4027A3E1F988B62B7407EBF5CF38
12 X X 773F0C0FFACB531F50FAE0987D2B8972FE1B9231BBF46859F475BAFB45257FED
13 X X 034332A23341538143FDB88F314FD942501FF8B6BA6A14D5013F1FC0984924BE
15 X X 3F77C51259E1C8CC48217A66998CCF3212A17120B0FCA09163E300576DFCD9E7
16 X 23773F0BECFACB534250FAE0987D2B8969D1AFD7EF942F148746DC73A3C6B39A
32 X X X 32D67733DF0D0257DA78E92752494FFD5112E303BA14133FF126EA33BB60AEFC
33 X CD9540B70C2F92B2894594CABC4E724203A615B9144C459714758BC3CAA12242
34 X X X 70253E6587D04D7A9A30A1461A80FCD235B28FBFC11FE8534CDFCE0A341C9257
36 X 10D7EF92F06DF6EB94F2F344085DAD51D3A550E24A4569922460F579CB5DF11A
38 X 70C3A9F11773C8DD795FD7942B5DB448FDFA5D12E6EC387691A19B6E523AE6AE
42 X 1BEDDC1DD79F8856BF2E1FD66EB194073D60FEC658C5D0E2C8BAE02DC72ADF65
44 X B519BB44EC5BF3380CB2DF555F39ED836CDBF4961E43A66C218FADB211BF468C
45 X X X X 32D67733DF3D0257DA78E92752494FFD5112E303BA14133FF126EA33BB60AEFC
50 X 7A7AA97370B1EE16D64C71C7C5BC8C9F9456FBEA603780883399D89DA43F8A15
54 X X X X 32D67733DF3D0257DA78E92752494FFD5112E22222222222F126EA33F6E49790
55 X X X X 00498594859849584954E92752494FFD5112E2222222EE22F126EA33F6E49790
57 X X X X 7D1BBD475A8EB5AF7DDB238CD8A67F86B601E0EA101C04036849B31F96CA6083
58 X X X BD3026C700A75B5970807802E2B47C2A892DF85E3CE57366D335EEBABCAAE255
61 X X X F4DDC95A88146CF52DEC752E737F8E3FB16AE4F6B7E726068946F3B0BA0C8E95
62 X X X 0A99EB20F9DE4DD7607288B8B766F6217FE5D2CE6DDD51C6159941066AF192ED
66 X X X 8836AC84AA148440A20628810CA65EB038BB625841275CC11590D8F5BC7F1BAC
70 X X X 21A35C57E23B2D23ADDA19EA30325F1B532DA645489E29E47A13E92CA1F6670C
71 X X X 588BEED930355AF54EEBAFAA46A7D26DA378A36EF5CD15D1F876D753A395F8AF
72 X X X B7A9B0F7661FC9A1DEC001F2C2C9EAE08748AEB187E1247726663E3DD1AB36BF
73 X X X 4DAA29CBD634F28137499B9557104FDD36D4D4EFDFE87EFC0D8BD03555F8497F
74 X X X 12691AAC55A079F529FE81205DF775EF297A14CA81499BF0857643E694CF8816
76 X X X F5178EEC7A9779E13CE01B35C8264BF32C094B172051CA32156DC61485718318
77 X X X A0543814F86D1C4AF6A08094CD0246F606F7E76CEE47EC052B62328038146D93
78 X X X 511128DCBF369E985B99D07CC1668A2D28F4BA535CF7AC7926D4C5F696C3D35F
79 X X X 595AD4C8A0EB2FDA798BC01D322F4C5ED098A2E749004B2B54FD815215F46686
80 X X X 8E938EA9BE9E51A28DFD30BD6EDB9D6765C1272B8F7048CE81021194759C3E52
81 X X X F134975C5A989635F1D9FA7469C848A953622E9DA1BED7E12455DCD2AFA070BE
84 X X X 36A990B9F35B79934FB25C64681DE3A83FC178DC2383C585FFCFDDD7C1F6C2B7
85 X X X X AB700D75274336FD26A1FE49D400ACEAE89F0FDBFE4BDE9A70373CA693003CA8
87 X X X 9A4D4A94A1FE0FA1C559764C85D06496BD752498E0B5A2459624211013B9A088
89 X X C80682FCB2D78B2515A70A70D17C47A8512E24A127E797C073566D54586B9482
94 X X A04B6199A1DFE39EF35F6302454D71C872771A2F02A27AB5EC8130DA226F6F90
96 X X AFAAABE59B2EBB4FE15274E4EB5D1999C0554CC2D498BC92C59A3F6CD8FE2BC0
97 X X X X 0754CA8EA936675EC3F64782A14E1A75B3D357044D4B2C434C6011279D17E829

100 X 7F58EDB783C1F3FA7FF424CF7F5DF6D4BCDCF18D8A98CE4559EC22EB17030578
101 X 25D31D3AFF5773799ECF43DEC1882B8F05D9231697BDDA5482DE05B14FB8A63B
103 X X CC977E0748722D615B845C1B10EA554B69DFCA640440CA5C468BBEF84B8C0442
104 X X X 638C9DFBF9F376CBB3E3B01DF27960EC53A689D2FF4DFF23D97EE5351ED4A3D0
105 X X X D29E9D130016D930BF830BCAD071BC6503F877FB207922A9E495CF71A79631FE

Barbu et al. 551

C
ha

lle
ng

e

H
oo

ki
ng

C
ol

lis
io

n

Fa
ul

t

La
tt

ic
e

K
ey

107 X X X 4E420B6AA9E9F07F19CF7ED97497871C1223BC2A68E83716575C235DE6D63E17
108 X 60609404F0B9086D3A995AF0680D048724CF2B1AF2B33CEA8DD4AF4B62A5DDBB
114 X X X 0005
127 X 1144D82B9568581405D10CF8B219FF7E94E4559E0832B06056F1F87D43C75777
135 X X X X 0C2A5692FE1A7F9B8EE7EB4A7CD59CD62BCE33576B3123CECBB6406837BF51F5
136 X X X 0C2A5692FE1A7F9B8EE7EB4A7CD59CD62BCE33476B3123CECBB6406837BF51F4
139 X X X 000000000000000000000000000000004319055358E8617B0C46353D039CDAA9
153 X X 9C29EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875C3
157 X X X X F04DBFD1147F9D43747538C1C9256DD2BC20562F9D92B83E9AFA751299B160A4
165 X X X 84DAF8B6620FC6669BF1EE264D1B214A4FBECACEADDFDC0DCBC89CF4B6E3232B
166 X X C746740A4A6BCBD462D9041023A0FEF5CCF0328FF80D9C50132682030D77D33C
172 X X X 285E57F7BDDAAA6201D8870A0B9B168C7A5D8200085F62504EE3EBFCC11EF150
174 X X X X 9C29EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875EC
185 X X X X 7729EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875EC
187 X X X X 7779EDDAEF2C2B4452052B668B83BE6365004278068884FA1AC3F6D0622875EC
192 X 09302BDFA5313312B9A665316F7E9365DCC57DA7E21FD8612CDCD553BABB51FE
193 X E0FE06BE0684455EDD2F5134A3AE8B9F6852561C821672FA16606986233BF811
209 X 6E3A09F8EC613B8A524F7608CB80B2D3C510E27506AD84FA14C3B6D018E659F7
212 X D663E156F036F11D4E73CC0EC09A952DEAED316947DF73EB28467EC623C5740D
2268 6F1D9093F3D5AE7C5F133659295914C9AF22E54B4ADE38CA421CA9BBD3D48A50
227 X X ADA6C6A1049825989811C9495D83681A68C67AB5E8EBDDC126CEE77056A7BB27
228 X EA7BA345EB9D99F54261D01AE6319B184769E5745621706D77018E0DB46DDAFA
231 X X X X 8ADE24EE6413C6E408784DBB4D81D04F33238AB503CBE35C77400517EE5ABC96
235 X X X X 00D0FACADE0DEFACED
251 X X X DDE098A74086ECBB4DBA1848511BEA924145D1A9ED2EC9E64E0C5934BAAC97AE
253 X X B22DB44C9E66D567B3B2CBB3C720309D1EEAD38717017F5E79F05274F289A52C
256 X F1662664E7E303740C0CA3927F9870A789978DAE95892302E73C85E3993B4CC9
261 X X 3266C9F6379DFDAE4AA763E8E6BA94526504CA364C482306829D4BF1E97BFF92
262 X A0F00DCAA5DAB169FD4DFE2186BCBCBD22631AB68BFEFF1FC19306174EAF8970
264 X D0EE17829A397C18074EA3888057AE815B5336773F9668E6CE4464D4B2B05F1F
267 X X X X C17536B60BCF94326A9C8CA17E0FC4EDBD76822532B350E8237CA2D8CF9C74B0
274 X X X X 0080ECD2A00080ECD2A00080ECD2A00080ECD2A00080ECD2A00080ECD2A00080
283 X 79FE8D884DC2F7440824DE79C9F7C513C2B4549631D343523C73CB8F85983A4F
299 X X X X 3A0F803A874CD5B826023F2073FF200371D399E76E66B05E1241AA787B0564D6
304 X EE8942A527CA1A58B8A8EA369441CB8518836DDB98F6380B8008B6053BC8182C
305 X 311EA92FBCDD3C6A29D269589A9E71F13A231FFEC85FF36B398967EC9934805E
307 X X FA3FCDE70679E7E44391F7157E2B5822F5B9B9C93ADD95C2BA90FF4B95C8A6BB
308 X X 84CCCAA904CB397F41A36FF9E05D4EB6C58B8E203E02373C465B6C3F03280C82
314 X 7E045DB89DD77BD6B2EAF23172A89A656B5084748642DB82BBAE931E737560C2
320 X X X D235C2B1D089F158A0AE4E7799C2DCA9985E3D44C8F243BAD8B5E1A4EB647E1B
321 X X X X BA15757E1B0DB122F349C0C50C97071A4CFFF4FD2875B4A092FBDD985E8595DE
323 X X X X C7491BBC530FFA9DDCF3E7D732536FACF04239693D549C50DDAD41931A6244C2
325 X X 6902CD65AE124A45B9DD16BAEFD26D9CFFB5C291DC1E256D9CCE17BE3CF11775
327 X 2BC6F2467C7F8DFA164EDC68DDCF65E795B8A2153182565481D8D6878D80EA81
328 X 37170CF851A89AAFD3511234BE2B96C89B783A44D7A6C22E9A150872809F7CDF
335 X EC90CC12DC70E3C5A7D47B6083A988F3F6C6B2B63EB0D8991F84B19E21ACC061
3368 D2E2AE325946DDADC9A67A2DFE8EE74065D8D39968707F5D818D7B62910894EA
345 X 3266C9F6378DFDAE4AA763E9166B131E6514CA364C482306829D4BF1E97BFF92
346 X 5EE43950837D0ABA419FE5B586D1A7AA44DDAAC6327DADC3133F18A850211B9F

8This challenge has not been broken by our automatic tools so we have used reverse engineering techniques.

552 Attacks and Designs from CHES 2021 Challenge

B Some Remarks on the Challenges
Among the various submissions, we notice the following facts:

• Challenges 15 and 16 have a very small code size, only 194 bytes! To obtain such
tiny implementations, the designers use a fixed nonce k = 1 (i.e. r = Gx) and a
private key d such that dr ≡ 2i mod n. In such a case, the signature of a hash e is
equal to (Gx, e+ 2i).

• Challenge 114 uses a very small private key, indeed d114 = 5

• Some designer teams modify a few bits only of the private key in several challenges
(cf. Challenges 174, 185 and 187 for instance). In such a case, if one implementation
is broken, then the private keys of the other challenges of the same team could be
recovered by brute force search.

• Despite what is indicated in the rules (cf. Sect. 2), some challenges are not deter-
ministic9, i.e. the two signatures of the same message could be different. All these
challenges use the time() function to obtain some randomness. However, it is easy
to hook such calls and return a constant value.

9Challenges 54, 55, 57, 58, 61, 62, 66, 70, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 84, 87, 89, 94, 96, 103,
104, 105, 107, 136 and 139 are not deterministic.

	Introduction
	Rules of the WhibOx 2021 Contest
	ECDSA and White-box Implementations
	ECDSA
	White-box Implementation of ECDSA

	Breaking the Challenges
	Attack Methods
	Attacks Results

	Design of the Winning Challenges
	Implicit White-box Implementations
	White-boxing ECDSA Signature Algorithm Using the Implicit Framework
	Additional Countermeasures
	Challenge 227: The Winner
	Challenge 226: The Most Resistant

	Conclusion
	Attacks Summary Table
	Some Remarks on the Challenges

