
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 4, pp. 110–134. DOI:10.46586/tches.v2022.i4.110-134

Faster Constant-Time Decoder for MDPC
Codes and Applications to BIKE KEM

Thales B. Paiva and Routo Terada

University of Sao Paulo, Sao Paulo, Brazil, {tpaiva,rt}@ime.usp.br

Abstract. BIKE is a code-based key encapsulation mechanism (KEM) that was
recently selected as an alternate candidate by the NIST’s standardization process
on post-quantum cryptography. This KEM is based on the Niederreiter scheme
instantiated with QC-MDPC codes, and it uses the BGF decoder for key decapsulation.
We discovered important limitations of BGF that we describe in detail, and then we
propose a new decoding algorithm for QC-MDPC codes called PickyFix. Our decoder
uses two auxiliary iterations that are significantly different from previous approaches
and we show how they can be implemented efficiently. We analyze our decoder with
respect to both its error correction capacity and its performance in practice. When
compared to BGF, our constant-time implementation of PickyFix achieves speedups
of 1.18, 1.29, and 1.47 for the security levels 128, 192 and 256, respectively.
Keywords: Post-quantum cryptography · BIKE · MDPC · LDPC · constant-time
decoding

1 Introduction
BIKE [ABB+21] is a code-based key encapsulation mechanism (KEM) selected as an
alternate candidate for the NIST post quantum standardization process. The scheme
consists of a variant of the Niederreiter [Nie86] scheme using quasi-cyclic moderate-density
parity-check (QC-MDPC) codes instead of Goppa codes. As such, BIKE can be seen as a
refinement of Misoczki’s et al. QC-MDPC McEliece [MTSB13].

The use of QC-MDCP [MTSB13] codes yields two advantages. The first one is that
the public key is much smaller, since one needs only one row to represent a quasi-cyclic
matrix in systematic form. The second is that matrix multiplication, and thus encoding, is
much faster for quasi-cyclic matrices. However, QC-MDPC codes comes with an important
disadvantage: their decoding algorithms have a non-zero probability of failure. This fact
was exploited in the famous GJS [GJS16] key-recovery reaction attack, that provided the
ground for side-channel attacks against QC-MDPC [RHHM17] and further attacks against
other code-based encryption schemes [SSPB19,FHS+17].

To deal with this problem, BIKE’s original proposal [ABB+17] used ephemeral keys.
However, recent approaches on obtaining negligible decryption failure rate (DFR) [Til18,
SV20a, Vas21], together with Hofheinz et al. [HHK17] CCA security conversions that
accounts for decryption errors, motivated BIKE proponents to consider key-reuse. In
particular, Sendrier and Vasseur [SV20a,Vas21] propose a framework that, under reason-
able assumptions, allows them to find parameters where the DFR should be negligible
using experiments and statistical analysis. This framework was used in BIKE’s last re-
vision [ABB+21], which uses the state-of-the-art BGF decoder [DGK20c,DGK19] with
parameters that supposedly achieve negligible DFR.

While trying to improve BGF’s performance, we noticed two limitations. The first one
is that its performance cannot be improved by considering a lower number of iterations,

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-04-15 Accepted: 2022-06-15 Published: 2022-08-31

https://doi.org/10.46586/tches.v2022.i4.110-134
mailto:tpaiva@ime.usp.br, rt@ime.usp.br
http://creativecommons.org/licenses/by/4.0/

Thales B. Paiva and Routo Terada 111

otherwise it breaks the main hypothesis for using Vasseur’s extrapolation framework [Vas21].
The second is that some of its iterations can be made more efficient by merging them into
one iteration. After analyzing BGF’s strengths and weaknesses, we were able to derive a
new and more efficient decoder.

Contribution. We propose a new decoding algorithm for QC-MDPC codes, called Picky-
Fix. This decoder uses two auxiliary iterations that are significantly different from previous
approaches: the FixFlip iteration, which flips a fixed number of bits, and the PickyFlip
iteration, which uses different thresholds to flip ones and zeros. These iterations allow
PickyFix to work with a lower number of iterations than BGF, which, together with our
constant-time implementation, makes PickyFix achieve speedups of 1.18, 1.29, and 1.47 for
the security levels 128, 192 and 256, respectively. The code and data are publicly available
at https://github.com/thalespaiva/pickyfix.

Organization. We begin by quickly reminding some basic concepts from coding theory
and QC-MDPC decoding in Section 2. BIKE and its security parameters are presented
in Section 3. Then, in Section 4, we analyze BGF in detail to show its strengths and
weaknesses. Our proposed decoder PickyFix is introduced in Section 5, and then we analyze
its parameters and decoding performance in Section 6. In Section 7, we discuss how to
implement PickyFix efficiently and in constant-time and then compare its performance
with BGF. Finally, we conclude and discuss interesting future work in Section 8.

2 Background
A binary [n, k]-linear code is a k-dimensional linear subspace of Fn2 , where F2 denotes the
binary field. If C is a binary [n, k]-linear code spanned by the rows of a matrix G of Fk×n2 ,
we say that G is a generator matrix of C. Similarly, if C is the kernel of a matrix H of
Fr×n2 , we say that H is a parity-check matrix of C. The Hamming weight of a vector v,
denoted by |v|, is the number of its non-zero entries. The syndrome z of a vector e with
respect to a parity check matrix H is the vector z = eH>. If the vector e is sufficiently
sparse and the linear code defined by H is sufficiently good, it may be possible to recover
e from the syndrome z by using efficient decoding algorithms. The support of a binary
vector v, denoted as supp (v), is the set supp (v) = {i : vi = 1}.

A moderate-density parity-check (MDPC) code [MTSB13] is a linear code that admits
a moderately sparse parity-check matrix H ∈ Fr×n2 . The weight of each column of H is
set to be all equal to a fixed value d, and require that d = O(

√
n). For applications in

cryptography, it is particularly useful to consider quasi-cyclic MDPC (QC-MDPC) codes,
because they allow for smaller keys and more efficient operations. BIKE [ABB+21] is
defined over QC-MDPC codes with two circulant blocks, which are MDPC codes that
admit a sparse parity check matrix of the form H = [H0|H1], where each r × r binary
matrix H0 and H1 is circulant.

MDPC codes admit very efficient decoders, which are called bit-flipping decoders [Gal62].
All variants of bit-flipping decoders work based on the following observations. Let e be a
sparse vector whose syndrome with respect to the sparse matrix H is z = eH>. Suppose
we do not know e but want to recover it from z using our knowledge from H. We know
that z =

∑
i∈supp(e) H>i , where H>i denotes the transpose of the i-th column of H.

Now, since e and each column H>i are sparse, we can estimate the likelihood that
ei = 1 by checking how closely z matches with column i of H: the more they are similar,
the higher is the probability that ei = 1. The similarity measure for each column i is what
is known as the unsatisfied parity-check (UPC) counter, denoted as upci, and it is equal
to the size of the intersection of supp (z) and supp

(
H>i
)
. The name UPC comes from the

https://github.com/thalespaiva/pickyfix

112 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

Algorithm 1 General bit-flipping decoding algorithm.
1: procedure GeneralBitFlipping(z,H)
2: Start with the partial error vector ê← 0 ∈ Fn2
3: Initialize the number of iterations it← 0
4: Let the partial syndrome s← z + êH = z
5: while s 6= 0 and it < maximum number of iterations do
6: Compute the UPC counters upci with respect to s and H, for i = 1 to n
7: For each i = 1 to n, flip bit êi if upci is above a certain threshold
8: Update the partial syndrome s← z + êH
9: it← it + 1
10: if s = 0 then
11: return ê
12: else
13: return ⊥, indicating that the maximum number of iterations was reached

fact that the set supp (z) is sometimes called the set of unsatisfied equations, and therefore
upci counts the number of unsatisfied equations that are caught by H>i .

Algorithm 1 shows the steps that a general bit-flipping algorithm performs when trying
to obtain e from z and H. The algorithm stops when it finds a vector ê with the same
syndrome as e, or if the number of iterations exceeds some limit. Notice that the partial
syndrome defines the objective syndrome in each iteration, and in the ideal case, vector ê
gets closer and closer to e after each iteration. Although most bit-flipping algorithms used
in cryptography [Gal62,MTSB13,DGK19,SV19] can be framed in the general description
above, they can vary significantly with respect to how the threshold for flipping bits is
selected in each iteration.

3 BIKE
The purpose of a key encapsulation mechanism is to use public-key encryption algorithms
to securely exchange a key between two parties. These parties can then use secret-key
algorithms, which are much more efficient, to exchange large messages.

For a clearer presentation, we describe BIKE algorithms without the implicit-rejection
Fujisaki-Okamoto transformation [HHK17], usually denoted by FO6⊥. However, notice
that when discussing the experimental performance of our algorithm in Section 7.3, we
consider the full decapsulation with the FO6⊥ transformation applied.

3.1 Parameters and Algorithms
Setup. On input 1λ, where λ is the security level, the setup algorithm returns parameters
r, w and t taken from the parameter Table 1. Parameters r and w will define the family of
QC-MDPC codes to be used while t controls the weight of the error used for encryption, as
will be detailed in the following sections. The table also provides the estimated decryption
failure rates (DFR) for each parameters set according to Vasseur’s framework [Vas21].

Table 1: BIKE parameters for each security level.

Parameter set Security
level λ r w d = w/2 t Decoder DFR estimate

BIKE Level 1 128 12,323 142 71 134 BGF 2−128

BIKE Level 3 192 24,659 206 103 199 BGF 2−192

BIKE Level 5 256 40,973 274 137 264 BGF 2−256

Thales B. Paiva and Routo Terada 113

Key Generation. Let h0 and h1 be two vectors of r bits of odd weight d = w/2. Build
the circulant matrices H0 and H1 by taking h0 and h1 as their first rows, correspondingly.
If H1 is not invertible, restart the process by selecting another h1. Then the secret key is
the sparse matrix H = [H0 |H1] ∈ Fr×2r

2 and the public key is the dense circulant matrix
HPub = H1H−1

0 .
Notice that matrices H and [I |HPub] are both parity checks of the same quasi-cyclic

linear code. However, the sparsity of the first one allows for efficient syndrome decoding
using bit-flipping algorithms.

Encapsulation. Select two random binary vectors e0 and e1 such that |e0| + |e1| = t.
Then the key to be shared is kShared = H ([e0|e1]), for some cryptographic hash function
H. To encapsulate the key kShared, compute the ciphertext c = e0 + e1H>Pub ∈ Fr2. Notice
that ciphertext c then corresponds to the syndrome of the low weight vector [e0|e1] with
respect to the public parity-check matrix [I |HPub].

Decapsulation. Given the ciphertext c, the receiver, who knows the sparse parity-check
matrix H, first compute the secret syndrome z = cH>0 . Notice that

z = cH>0 =
(
e0 + e1H>Pub

)
H>0 = e0H>0 + e1H>PubH>0 = e0H>0 + e1H>1 .

Therefore, as mentioned by the end of Section 2, the receiver can use some QC-MDPC
bit-flipping decoding algorithm, together with their knowledge of the secret matrix H to
recover the sparse vector [e0|e1] and compute the shared key kShared = H ([e0|e1]).

In the last revision of BIKE [ABB+21], the authors recommend the BGF decoding
algorithm [DGK20c], which is the state-of-the art QC-MDPC decoder. Before introducing
BGF, let us first discuss the security of BIKE and, in particular, why good decoders are
very important to ensure BIKE’s security.

3.2 Security and Negligible Decryption Failure Rate
The security of the scheme is based on three hypotheses. The first two are standard
conjectures for quasi-cyclic codes, namely the hardness of the syndrome decoding problem
and the hardness of finding codewords of a fixed low weight. This ensures that one can
neither recover the secret sparse matrices H0 and H1 from H, nor the secret message
[e0|e1] from ciphertext c. The third hypothesis is that the decryption failure rate (DFR)
is negligible with respect to the security parameter. Although we cannot prove the third
hypothesis, Vasseur [Vas21] proposed a framework that, under weaker hypothesis, allows
one to get confident that some decoders achieve negligible DFR for selected parameter
sets.

It is shown [TS16, Sen11] that parameters t and w are the most important when
determining the security level, since they control the weight of the sparse vectors. Intuitively,
if w or t are too small, it is easy to find h0 or the partial encryption error e0 by enumerating
low weight vectors. But they may not be so large, with respect to r, otherwise the probability
of failing to decrypt a ciphertext would be too high. Therefore, to define parameters
(t, w, r), one typically fixes (t, w) sufficiently large to achieve high security levels, and then
define r such that the decryption failure rate is low enough for the desired application.

In 2016, Guo et al. [GJS16] showed that decryption failures could lead to a full key
recovery attack against schemes based on QC-MDPC codes. To deal with the poten-
tial vulnerability faced by schemes within which decryption failures occur, Hofheinz et
al. [HHK17] refined the Fujisaki-Okamoto [FO99] transformation showing that a scheme
whose decryption failure rate is below 2−λ can be transformed into a CCA secure one.

Unlike for algebraic codes, such as Goppa or Reed-Solomon codes, whose decoders are
guaranteed to decode all errors in vectors up to a given weight, we cannot yet give strong

114 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

9500 10000 10500 11000 11500 12000

Parameter r

−200

−150

−100

−50

0
lo

g
2
(D

F
R

)

DFR = 2−128

rext = 11159

(rA, pA)
(rB , pB)

DFR from simulations

Real DFR

Extrapolated DFR

Figure 1: Illustration of Vasseur’s [Vas21] DFR extrapolation framework considering 128
bits of security and a hypothetical decoder.

mathematical guarantees on the error correction capability of decoders for QC-MDPC
codes. Recently, Sendrier and Vasseur [SV20a,Vas21] proposed a method that, under
reasonable hypotheses, allows one to use simulations and simple statistical analysis to find
parameters (r, t, w) such that a QC-MDPC decoder fails with negligible probability with
respect to some security parameters λ.

Let t and w be fixed positive integers and let us consider a hypothetical QC-MDPC
decoder D. Let DFRD(r) denote the decryption failure rate of D when decrypting a
ciphertext generated at random with respect to a random QC-MDPC key with param-
eters (r, t, w). The main observation by Sendrier and Vasseur [SV20a] is that the curve
log2(DFRD(r)) is typically concave for practical QC-MDPC decoders and for all values
of r such that DFRD(r) is high enough so that failures can be observed in simulations.
Vasseur’s [Vas21] model then makes the following assumption: for a given decoder D and
security level λ, the curve log2(DFRD(r)) is concave in the region where DFRD(r) ≥ 2−λ.
This assumption is somewhat consistent with Tillich’s [Til18] asymptotic theoretical model
for MDPC codes, which shows that the dominating term in log2(DFRD(r)) decreases
linearly with r.

Figure 1 illustrates how Vasseur’s [Vas21] model can be used to estimate the block
parameter r that allows for negligible failure rate with respect to the security parameter
λ = 128. First, one performs DFR simulations for increasing values of r until it cannot
see any decoding failure. Then, they take the last two points (rA, pA) and (rB , pB) in the
log2 DFR plot such that a number of failures were observed and compute the line passing
through them. According to the extrapolation hypothesis, the decoder fails with negligible
probability for r = rext, the point where the line intercepts DFR = 2−λ. Finally, choose
parameter r to be the least prime r ≥ rext such that 2 is primitive modulo r. This avoids
both squaring attacks [LJS+16] and other potential attacks based on the factorization of
the cyclic polynomial ring1 F2[X]/(Xr − 1).

Since there is always some error in the DFR estimates, Vasseur [Vas21] uses confidence
intervals for the observed DFR and compute a conservative extrapolation for r as follows.
Let pA and pB be the DFRs for rA and rB , respectively, where rA < rB . Consider p−A and
p+
B to be the lower and upper limit for pA and pB according to Binomial confidence intervals

for pA and pB . Then a conservative extrapolation for rext is obtained by considering the
1The cyclic polynomial ring F2[X]/(Xr − 1) is isomorphic to the ring of circulant matrices used in

BIKE.

Thales B. Paiva and Routo Terada 115

line passing through (rA, p−A) and (rB , p+
B). Vasseur [Vas21] uses the Clopper-Pearson

confidence interval together with posterior probabilities to obtain a narrower interval, with
confidence level α = 0.01. In this work we use the same α with the Clopper-Pearson
interval, but we do not use the posterior probabilities. Even though this tends to give
slightly more conservative estimates, it is easier to compute.

3.3 BGF: State-of-the-art QC-MDPC Decoder
BGF [DGK20c], which stands for Black-Gray-Flip, is one of the most efficient known
decoders for QC-MDPC codes. This decoder is an improvement of the Black-Gray decoder
first proposed by Sendrier and Misoczki in a previous version2 of CAKE [BGG+17], a
predecessor of BIKE.

As a decoding algorithm, BGF’s goal is to, given a syndrome ciphertext c = e0+e1H>Pub,
recover the sparse error vector e = [e0|e1] using the secret sparse matrix H. The algorithm
first computes the secret syndrome z = cH>0 , then starts with e ← 0 and performs a
sequence of NIter iterations, each of which updates its knowledge on e until either z = eH>
or the number of iterations exceeds a certain limit NIter and a decoding failure occurs.
Before introducing BGF, let us first define its auxiliary procedures.

BGF Auxiliary Algorithms. BGF uses two bit-flipping auxiliary procedures: BitFlipIter
and BitFlipMaskedIter, which are formally described in Algorithm 2. These procedures
are very similar to other iterative decoders, such as the original Gallager’s bit-flipping
algorithm [Gal62].

Both algorithms flip bits of the partial error vector e when their corresponding UPC
counters are above some threshold, τ0 for BitFlipIter and τ1 for BitFlipMaskedIter.
However they differ in some important points. First, BitFlipIter not only flips the bits,
but it also marks the bits in either black or gray, using bit-masks BlackMask and GrayMask.
Black bits are the ones that are flipped with a somewhat high confidence (upcj ≥ τ0),
while gray bits are the ones that were almost selected for flipping (τ0 > upcj ≥ τ0− δ), but
did not make it because of a minor difference δ. On the other hand, BitFlipMaskedIter
is a simple bit flip iteration based on the UPC value, but it only flips bits that are marked
1 in a given mask Mask.

The BGF algorithm. BGF is defined as Algorithm 3. Intuitively, the first call to
BitFlipIter flips the bits for which it has a high confidence that they are wrong, by
using a selective threshold function Thresh. Then it comes the two regret steps: first
the black and then the gray. In the black regret, all the 1 bits added in the previous step
that have an UPC strictly greater3 than (d + 1)/2 will be flipped back to 0. The gray
regret step is analogous, but now over the bits marked in GrayMask, which are called gray
bits. These consist of 0 bits that were not flipped in the first step because their UPC were
smaller than, but somewhat close to, the selected threshold.

After the first and most costly iteration ensured a good start, hopefully with only a
small number of errors left to be corrected, BGF continues with NIter − 1 iterations of
BitFlipIter that will try to correct the remaining errors. Notice that the masks are not
needed after this point, and thus, are ignored.

BGF Parameters. Table 2 shows the parameters δ, NIter and threshold function Thresh
proposed for the different security levels together with their performance under our
platform4. We considered the constant-time implementation provided in BIKE Additional

2Unfortunately, there appears to be no reference to the version in which the Black-Gray decoder
appeared.

3Notice that this is done by choosing τ1 = (d+ 1)/2 + 1, since the flipping condition is upcj ≥ τ1.
4Intel® XeonTM Gold 5118 CPU at 2.30GHz.

116 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

Algorithm 2 Auxiliary iterations used by BGF.
1: procedure BitFlipIter(H, z, e, s, τ0)
2: BlackMask← 0 ∈ F2r

2
3: GrayMask← 0 ∈ F2r

2
4: for j = 1 to 2r do
5: upcj ←

∣∣supp (s) ∩ supp
(
H>
j

)∣∣
6: if upcj ≥ τ0 then
7: ej ← ej . Flips coordinate j of e
8: BlackMaskj ← 1
9: else if upcj ≥ τ0 − δ then
10: GrayMaskj ← 1
11: s← z + eH> . Recomputes the partial syndrome
12: return e, s, BlackMask, GrayMask

13: procedure BitFlipMaskedIter(H, z, e, s, Mask, τ1)
14: for j = 1 to 2r do
15: upcj ←

∣∣supp (s) ∩ supp
(
H>
j

)∣∣
16: if Maskj = 1 and upcj ≥ τ1 then
17: ej ← ej . Flips coordinate j of e
18: s← z + eH> . Recomputes the partial syndrome
19: return e, s

Implementation [DGK20a] with minor changes to account for the updated threshold
function in BIKE’s last revision [ABB+21].

Notice how δ and NIter are the same in all security levels. The threshold function is an
increasing linear function on the syndrome weight truncated above the minimum value
(d+ 1)/2. Since the threshold function is used to determine when to flip a bit, this means
that when the weight of the syndrome s is large, fewer bits will be flipped.

Table 2: BGF parameters and their corresponding performance when considering the
portable and AVX512 implementations.
Security
level λ δ NIter Thresh(s) Cycles

Portable
Cycles

AVX512
128 3 5 max (36, b0.00697220 |s|+ 13.5300c) 10,955,732 1,323,322
192 3 5 max (52, b0.00526500 |s|+ 15.2588c) 32,982,825 4,130,087
256 3 5 max (69, b0.00402312 |s|+ 17.8785c) 94,902,236 11,497,288

4 Critical Analysis of BGF
In this section, we dive a little deeper into the BGF decoding algorithm. This allows
us to better understand why BGF is effective, but, more importantly, it will show some
of BGF’s weaknesses and lay the ground over which a better decoder can be designed.
It is well-known to be difficult to provide a theoretical analysis for QC-MDPC iterative
decoders, because of the inherent dependency caused by the circulant matrices involved.
Therefore, our analysis is based on observations of BGF’s behavior in practice.

4.1 BGF’s First Iteration: The Black-Gray Step
Let us first discuss BGF’s first iteration and its importance for the extrapolation framework.
As described in the previous section, in the first iteration, BGF performs a sequence of 3

Thales B. Paiva and Routo Terada 117

Algorithm 3 The BGF decoding algorithm.
1: procedure BGF(H = [H0|H1], z = cH>

0)
2: e← 0 ∈ F2r

2 . Initializes the partial error vector
3: s← z . Initializes the partial syndrome
4: for i = 1 to NIter do
5: . Every time e and s are updated, it holds that s = z + eH>

6: if i = 1 then
7: e, s, BlackMask, GrayMask← BitFlipIter(H, z, e, s, τ0 = Thresh(s))
8: e, s← BitFlipMaskedIter(H, z, e, s, BlackMask, τ1 = (d+ 1)/2 + 1)
9: e, s← BitFlipMaskedIter(H, z, e, s, GrayMask, τ1 = (d+ 1)/2 + 1)
10: else
11: e, s← BitFlipIter(H, z, e, s, τ0 = Thresh(s)) . Ignores the black-gray masks
12: if eH> = z then . This condition is equivalent to s = 0
13: return e
14: else
15: return ⊥ . Decoding failure

bit-flipping calls: one BitFlipIter followed by two BitFlipMaskedIter.
We know that BitFlipIter flips all bits whose UPC counters are above a certain

threshold. This makes it very sensible to the threshold selected, as illustrated in Figure 2.
Consider the difference if, by chance, the threshold τ0 = 76 was selected, then the number
of errors made after calling BitFlipIter, that is, correct bits that would be incorrectly
flipped, would be twice the number if τ0 = 77 were selected.

This problem is particularly important under the extrapolation framework, where the
algorithm needs not only to perform well, but also to improve its performance at a very
fast rate for small, but increasing, values of r. Therefore, BGF uses a very conservative
threshold in the first iteration BitFlipIter. Additionally, the black and gray regretting
phases, corresponding to the two calls of BitFlipMaskedIter, also work by flipping a
controlled number of bits: only those bits in the black or gray masks whose UPC is above
(d+ 1)/2. This makes the whole first iteration very conservative.

40 50 60 70 80 90

UPC counter

0

10

20

30

40

50

N
u

m
b

er
of

o
cc

u
rr

en
ce

s

UPC = 76
UPC = 77

Correct bit

Incorrect bit

Figure 2: Histogram of the UPC counters for each of the 2r bits in the partial error vector
e = 0, in the beginning of the first iteration, separated by the cases when the bit is right
or wrong. The values correspond to a real observation corresponding to the BIKE Level 5
security parameters.

118 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

9600 9800 10000 10200 10400 10600

Parameter r

2−13

2−10

2−7

2−4

2−1

D
ec

ry
p

ti
on

F
ai

lu
re

R
at

e

Iterations

2

3

4

5

Figure 3: The impact of the number of BGF iterations on the DFR, considering parameter
set BIKE Level 1 (t = 134, w = 142).

Even though a conservative first iteration is important to ensure a fast DFR decay when
r increases, it may result in useless iterations when r is close to the value when negligible
DFR is reached. In particular, for the case presented in Figure 2, where r = 40,973,
Thresh returned τ0 = 86. This would result in no error being made after BitFlipIter,
but at the cost of flipping only a small number of bits, compared to the case where τ0 = 80,
for example.

This suggests that removing the black regret step may be a good starting point for
optimization. For example, we could merge both black and gray regret steps into one
iteration in such a way that the black regret is critical for small r, but when r gets larger,
the gray regret steps gets more important than the black one. This is the key idea behind
our PickyFlip iteration that we introduce in Section 5.

4.2 The Number of Iterations and the Threshold Function
One straightforward method to improve the decapsulation performance would be to
decrease the number of BGF iterations, at the cost of increasing the key sizes. Intuitively,
one may think that there is a direct trade-off between the number of iterations and the
block length parameter r: the DFR may not decay as fast when using a lower number of
iterations, but one might be lucky to obtain a reasonable value of r after the extrapolation.
However, as discussed in the previous section, since the thresholds are so conservative, if
the number of iterations is too small, the decoder may not be able to fully correct the
errors even for large values of r.

Figure 3 shows how the number of iterations affects the decay of the DFR as a function
of r. Notice how 2 iterations are not enough to allow for a complete decoding of errors of
weight t = 134. Furthermore, the curve for 3 iterations does not appear to be concave,
therefore it is not safe to use the extrapolation framework for this value. This odd behavior
of the DFR curves for 2 and 3 iterations is caused by the following problem. On the
one hand, increasing r should make it easier to correct more errors, since there is more
redundancy, but, for large values of r, the threshold τ0 used in the first iteration is so high
that only very few errors are corrected in the first iteration.

Let us analyze the thresholds τ0 in more detail. The average values of the thresholds τ0
used in each of BGF’s iteration are shown in Figure 4, considering 10,000 decapsulations
under BIKE Level 1 parameter set. We make three observations. First notice how the first

Thales B. Paiva and Routo Terada 119

9000 9500 10000 10500 11000 11500 12000 12500 13000

Parameter r

37.5

40.0

42.5

45.0

47.5

T
h

re
sh

ol
d
τ 0

Iteration

1

2

3

4

5

Figure 4: Average values of threshold τ0 in each of the 5 iterations of BGF, considering
parameter set BIKE Level 1 (t = 134, w = 142).

threshold increases as r increases. This is a consequence of the linear dependency of τ0 on
the syndrome weight |s|, which turns out to increase with r. The second observation is that
the thresholds used in iterations 2 to 5 appear to converge to the floor (d+ 1)/2 = 36. This
happens because the first iteration, in general, is able to flip a sufficiently large number of
errors, and leave only fine adjustments for the next iterations to deal with. The third is
that τ0, for the second iteration, starts increasing after r = 11,500. This is caused by the
threshold in the first iteration being too high, which leaves a lot of errors to be corrected
by the second iteration.

4.3 Impact of the Threshold on the Concavity Assumption
Back to the DFR curves, the non-concave behavior of the curves for 2 and 3 iterations
raises a potentially deep problem with the BGF threshold: why should we expect the
curves for 4 and 5 iterations to be concave as well? It is possible that we just cannot see
an inflection point because it is located at a DFR smaller than what we can simulate.

To evaluate the concavity of the DFR curves for 5 iterations, we propose the following
experiment. Consider BIKE Level 1 parameter set. Since we cannot see the inflection
points for t = 134, we can exaggerate the error weight t so that we can see the DFR
curve in the interval of interest. Ideally, it should be concave at least within all values of
r < 12,323, since this is the extrapolated value of r for BIKE Level 1.

As we can see in Figure 5, this is not what happens for t = 151, 153 and 155, for BGF
with 5 iterations. Therefore, considering our results regarding the non-concavity of BGF
with 2 and 3 iterations, together with the non-concavity of BGF with 2 to 5 iterations
when t = 151, we believe that it is not conservative to assume that the DFR curve for
BGF is concave. We also tested BGF for levels 3 and 5, observing an analogous behavior
for t = 220 and t = 300, respectively.

The main cause for this behavior appears to be the threshold function that depends on
|s|. We conclude that it is not safe to use it for the first, and most important, iteration,
but Figure 4 suggests that it might be used in further iterations, since it converges to
(d+ 1)/2. Initially, we though that the threshold problem would be fixed by defining a
maximum value for τ0. In our exploratory tests, this indeed make concave DFR curves for
exaggerated values of t, but the error correction was negatively affected. Therefore, we
leave the problem of finding better thresholds for future work.

120 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

10000 10500 11000 11500 12000 12500

Parameter r

2−14

2−11

2−8

2−5

2−2

21
D

F
R

Parameter t

155

153

151

Figure 5: The DFR plot for different values of t considering BIKE Level 1 parameter set.

Our approach to deal with the first iteration is simple: we do not use a simple threshold
to flip bits. Instead of starting with a BitFlip iteration, we propose to start with FixFlip,
a new type of iteration that works by flipping a predetermined number of bits that have
the largest corresponding UPC.

5 PickyFix
In this section, we describe a new BIKE decoder called PickyFix. Similar to other
iterative decoders for LDPC codes, PickyFix works by performing a sequence of iterations
that progressively increases the knowledge of the secret sparse error used for encrypting.
However, it differs significantly in how it chooses which bits to flip in its iterations. We
begin by defining two new types of auxiliary procedures: the FixFlip and PickyFlip
iterations, that are the building blocks of our decoder.

5.1 The FixFlip Auxiliary Iteration
While the majority of previous bit-flip approaches are based on flipping all bits whose
UPC counters are above a certain threshold, FixFlip flips a predetermined number of bits,
denoted by nFlips, that have the highest UPC counters. The formal description of a full
iteration of FixFlip is described as Algorithm 4.

Almost every step of the algorithm is standard for other bit-flipping algorithms. How-
ever, despite its simplicity, one has to be careful with line 3 when implementing the FixFlip
iteration, In Section 7 we discuss this issue and show how this can be done efficiently in
linear time on r by using important observations on QC-MDPC parameters.

Algorithm 4 The FixFlip iteration.
1: procedure FixFlipIter(H, z, e, s, nFlips)
2: upc←

[∣∣supp (s) ∩ supp
(
H>
j

)∣∣ for j = 1 to 2r
]

. We need the full UPC array
3: worst_indexes← list of the indexes j of the nFlips largest values of upc
4: for j in worst_indexes do
5: ej ← ej . Flips coordinate j of e
6: s← z + eH> . Recomputes the partial syndrome
7: return e, s

Thales B. Paiva and Routo Terada 121

This iteration is very useful at the start of the decoding process, when there is a lot of
uncertainty about the correctness of the bits. We can point two immediate advantages of
using FixFlip. First, since the number of flips is fixed, the number of wrong flips done
by this iteration is limited. This makes FixFlip useful for small values of r, which is
an important property for decoders to be used in Vasseur’s [Vas21] DFR extrapolation
framework. Second, and most important, FixFlip is immune to the problem of BGF’s first
threshold that gets larger as r grows, since it does not rely on a generic threshold function
that depends only on |s|. In fact, the threshold function for FixFlip depends directly on
the UPC values and the target number nFlips of bits to flip.

5.2 The PickyFlip Auxiliary Iteration

PickyFlip is very similar to the BitFlip iteration, except that it uses 2 different threshold:
τIn is used to flip zeros to ones and τOut to flip ones to zeros. In particular, PickyFlip
requires that the threshold to flip a zero to a one is greater than or equal to the threshold
to flip a one to zero. This makes it picky with respect to the support of e and explains
why we use in and out to differentiate the thresholds. The iteration is formally described
as Algorithm 5.

The power of this iteration is that the weight of e does not grow too much in one
iteration because it is easier to give up on a 1 in the partial error vector e than to accept
one more. Additionally, the effect of one PickyFlip iteration is similar to the sequence of
black regret and gray regret steps, for a sufficiently high r. Luckily, because of its similarity
with the BitFlip iteration, it can be easily implemented by small adjustments of the code
by Drucker et al. [DGK20a] in BIKE Additional Implementation.

5.3 The PickyFix Decoder

We are now ready to define a full decoder, which is described as Algorithm 6. To allow
for a direct comparison between PickyFix and BGF, we decided to define it in a similar
fashion: the first iteration makes 3 calls of the auxiliary steps, which are then followed by
single calls in the next NIter − 1 iterations.

The threshold τOut for PickyFix is fixed as (d+ 1)/2 in every iteration, which is the
value typically used as the minimum threshold for flipping bits. For the value of τIn, we
decided to use the BGF’s auxiliary function Thresh which was carefully built by the
BIKE team and is sufficiently restrictive for our use case.

FixFlip depends on the following parameters: the number nFlips of flips to be done by
FixFlipIter and the number NIter of iterations. These parameters depend on the security
level and significantly impact the decoder’s performance. We analyze these parameters in
the next section.

Algorithm 5 The PickyFlip iteration.
1: procedure PickyFlipIter(H, z, e, s, τIn, τOut)
2: for j = 1 to 2r do
3: upcj =

∣∣supp (s) ∩ supp
(
H>
j

)∣∣
4: if ej = 0 and upcj ≥ τIn then
5: ej ← ej
6: else if ej = 1 and upcj ≥ τOut then
7: ej ← ej
8: s← z + eH> . Recomputes the partial syndrome
9: return e, s

122 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

Algorithm 6 The PickyFix decoding algorithm.
1: procedure PickyFix(H = [H0|H1], z = cH>

0)
2: e← 0 ∈ F2r

2 . Initializes the partial error vector
3: s← z . Initializes the partial syndrome
4: for i = 1 to NIter do
5: . Every time e and s are updated, it holds that s = z + eH>

6: if i = 1 then
7: e, s← FixFlipIter(H, z, e, s, nFlips)
8: e, s← PickyFlipIter(H, z, e, s, τIn = Thresh(s), τOut = (d+ 1)/2)
9: e, s← PickyFlipIter(H, z, e, s, τIn = Thresh(s), τOut = (d+ 1)/2)
10: else
11: e, s← PickyFlipIter(H, z, e, s, τIn = Thresh(s), τOut = (d+ 1)/2)
12: if eH> = z then . This condition is equivalent to s = 0
13: return e
14: else
15: return ⊥ . Decoding failure

6 Analysis
The main problem when searching for good parameters (nFlips, NIter) is that they are not
independent. For example, if nFlips is too small, we may need a large number NIter of
iterations to compensate. To simplify our search, we will take a greedy approach and break
the search into two parts.

In this section, first we find good values for nFlips by focusing only on the first iteration
and then show that these values indeed yield decoders with a concave DFR curve. Finally,
we proceed to evaluate the decoder performance for different number NIter of iterations.

6.1 Choosing the FixFlip Parameter
Intuitively, the best value of nFlips is the one that minimizes the number of errors left to
be corrected by further PickyFlip iterations. Ideally, one could see how each possible value
of nFlips affects the DFR curves following the extrapolation framework, and choose the
one that has the fastest decay. The problem of this approach is that these experiments are
very expensive and could easily take months of computing power.

To deal with this problem, instead of counting decoding failures, we count the average
number of uncorrected errors left, which can be estimated with a much smaller sample
than what is needed for the DFR estimation. Consider the curves PickyFixnFlips1 (r) that
represent the average number of errors left after the first iteration of PickyFix when the
FixFlip iteration performs nFlips bit flips. Similarly, define the curve BGF1(r) as the
average number of errors left after the first iteration of BGF.

Figure 6 shows selected curves, where the average number of errors left was obtained
by simulations of 10,000 runs. Notice how each PickyFlip curve eventually leaves about 0
errors after the first iteration. Furthermore, we can see that BGF appears to stall its error
correction in its first iteration as r increases. In Level 1, BGF even starts to leave more
errors for sufficiently large values of r, which is a consequence of the very conservative
threshold used in the first iteration that we discuss in Section 4.1.

To obtain the best value of nFlips we used the following criteria: for each security level,
select the value nFlips such that

PickyFixnFlips1 (r) = 0, (1)

for the lowest value of r. Furthermore, we restricted the search for nFlips to multiples of 5

Thales B. Paiva and Routo Terada 123

9600 9800 10000 10200 10400 10600 10800 11000

Parameter r

0

100

200

300
E

rr
or

s
le

ft
Level 1

BGF1

PickyFix25
1

PickyFix55
1

PickyFix80
1

19200 19400 19600 19800 20000 20200 20400 20600 20800 21000

Parameter r

0

200

400

E
rr

or
s

le
ft

Level 3

BGF1

PickyFix30
1

PickyFix65
1

PickyFix95
1

33200 33400 33600 33800 34000 34200 34400 34600 34800 35000

Parameter r

0

200

400

600

E
rr

or
s

le
ft

Level 5

BGF1

PickyFix50
1

PickyFix100
1

PickyFix150
1

Figure 6: Comparison of the number of uncorrected errors after the first iteration for
BGF and FixFlip using different values of nFlips, for the three BIKE parameter sets. The
different values of nFlips are indicated by the label format FixFlipnFlips1 .

to speed up the search. The best values of nFlips obtained for each security level are shown
in Table 3, where 10,000 tests were performed to estimate PickyFixnFlips1 (r) for each r.

Let us now see how PickyFix behaves with respect to the concavity with an experiment
similar to the one done in Section 4.3 for BGF. First notice that we could not use t = 155
because PickyFix was much better than BGF’s and its DFR quickly got to the point where
no failure could be observed in our simulation. Therefore, we had to consider t = 160.
Figure 7 shows our results for this experiment. We invite the reader to compare this figure
with Figure 4.3 and see that, not only PickyFix’s DFR appears to be concave in the same
interval, but it also outperforms BGF with 5 iterations for a higher value of t. Furthermore,
we also tested PickyFix for levels 3 and 5, using t = 240 and t = 330, respectively, and the
DFR curves appear to be concave, unlike the ones for BGF.

124 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

Table 3: The best values of nFlips for each security level. Value r0 denotes the first value
of r when Equation 1 is satisfied.

Parameter set Security level Value r0 nFlips PickyFixnFlips1 (r0) BGF1(r0)
BIKE Level 1 128 11,001 55 0.0 63.97
BIKE Level 3 192 21,201 65 0.0 109.06
BIKE Level 5 256 35,001 100 0.0 105.79

10000 10500 11000 11500 12000 12500

Parameter r

2−18

2−14

2−10

2−6

2−2

D
F

R Iterations

2

3

4

5

Figure 7: The DFR curves for PickyFix when using 2 to 5 iterations considering the BIKE
Level 1 parameter set with t = 160.

6.2 Achieving Negligible DFR

Now comes the most important evaluation of PickyFix, which consists of its decoding
performance under the extrapolation framework. Our results are shown in Figure 8. The
number of tests to determine each DFR estimate was selected to be enough to obtain
approximately 1000 failures (at least) for each point and can be found in data/setup/
dfr_experiment.csv.

Table 5 shows the results for the DFR extrapolation of the curves considered in Figure 8,
together with the performance of our constant-time implementations. The extrapolation
was done for the last two points (rA, pA) and (rB , pB) where more than 1000 failures were
observed and considered α = 0.01 for the Clopper-Pearson method to build the confidence
interval for pA and pB .

We can see, from Table 5, that even with less than 5 iterations, the extrapolated
parameter r for each security level does not differ by much from the parameters proposed
by the BIKE team using BGF (Table 1). However, since PickyFix also works with a
reduced number of iterations, its performance can be significantly better.

From the results presented in this section, PickyFix looks like a promising decoder
for BIKE. However, remember that the FixFlip auxiliary iteration used by PickyFix is
inherently more complex than those used by BGF. In the next section, we describe how
to efficiently implement PickyFix in constant-time and show that our decoder provides a
major speedup over BGF for all security levels.

Thales B. Paiva and Routo Terada 125

9600 9800 10000 10200 10400 10600

Parameter r

20

2−4

2−8

2−12

2−16

2−20

D
F

R
Level 1

Iterations

2

3

4

5

19200 19400 19600 19800 20000 20200 20400 20600

Parameter r

20

2−4

2−8

2−12

2−16

2−20

D
F

R

Level 3

Iterations

2

3

4

5

33400 33600 33800 34000 34200 34400 34600

Parameter r

20

2−4

2−8

2−12

2−16

2−20

D
F

R

Level 5

Iterations

2

3

4

5

Figure 8: The DFR for PickyFix when using 2 to 5 iterations, considering all security
levels.

7 Efficient Implementation in Constant Time
The efficient constant-time implementation proposed by the BIKE team is based on
Chou’s [Cho16] QcBits with further improvements by Guimarães et al. [GAB19] and
Drucker et al. [DGK20b,DG19]. Using these ideas, Drucker et al. [DGK19,DGK20c]
proposed the BGF implementation that is the best performing decoder up to this day,
which is implemented in BIKE’s Additional Implementation [DGK20a].

We based our PickyFix implementation on Drucker’s et al. [DGK20a] code, which im-
plements, in constant-time, most of the procedures required for both PickyFlip and FixFlip
iterations. This includes, for example, the syndrome and UPC counters computations, and
algorithms to flip bits given a threshold.

This section begins with a high-level description on how to adapt Drucker’s et al.
[DGK20a] implementation to perform the PickyFlip iteration in constant-time. Then we
give a more detailed explanation on how to implement the procedures needed by FixFlip
that are significantly different from what is used by previous decoders. We end this section

126 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

with a performance evaluation of our constant-time implementation, which is available at
https://github.com/thalespaiva/pickyfix.

7.1 Implementing the PickyFlip Iteration
Remember that PickyFlip is similar to the BitFlip iteration, except that it uses a different
threshold to flip zeros and ones. More specifically, consider the BitFlipIter described in
Algorithm 2. Notice how if upcj ≥ τ0 it inverts ej , but if τ0 − δ ≤ upcj < τ0, it updates
GrayMaskj = 1. BitFlip behavior is then very similar to PickyFix if we let τ0 = τIn and
δ = τIn − τOut.

BIKE’s efficient implementation of BitFlip is based on QcBits [Cho16], and we imple-
mented PickyFix by reusing their implementation. Since the details of this implementation
are already described by Chou [Cho16], we give here only a brief description of how it
works.

Suppose we want to flip all bits in e whose UPC counters are above a threshold τIn.
First, all UPC counters are computed in bitsliced form. Since the UPC counters are lower
than or equal to d = w/2, then dlog2(d)e slices are enough. Second, the implementation
performs a bitsliced subtraction of τIn over all UPC counters. Therefore, the 0 bits in the
last slice, which contains the most significant bits, indicate that the UPC was greater than
or equal to τIn, and thus the corresponding bit in e should be flipped.

Notice that PickyFix performs the procedure above two times: one for τIn and other
to τOut. However, the computation of UPC counters, which is the most costly step, is
only done once for the two thresholds. The cost of the call is then very similar to the
complexity of BitFlipIter.

7.2 Implementing the FixFlip Iteration
Most of the steps needed by the FixFlip algorithm are common to all variants of the
original bit-flipping decoder proposed by Gallager [Gal62]. Therefore, we can base our
implementation in the most efficient constant-time implementations of QC-MDPC decoders,
if we can efficiently implement the sorting step of FixFlip, corresponding to line 3 of
Algorithm 4.

Simply put, the main problem we need to solve is: given a list of UPC counters, flip
the nFlips bits that have the largest counters. This motivates us to call the set of indexes
of entries to be flipped as a FixFlip set, which is formally defined bellow.

Definition 1 (FixFlip set). Consider a list of UPC counters U = (u1, . . . , u2r). A FixFlip
set S with respect to U and nFlips is a set of nFlips indexes such that ui ≥ us for all i /∈ S
and for all s ∈ S.

Notice that, in general, there are more than 1 FixFlip set for the same list of UPC
counters. For example, for a list of UPC counters U = (3, 5, 2, 3, 7, 1, 3, 1) and nFlips = 4,
then S1 = {1, 2, 4, 5} and S2 = {1, 2, 5, 7} are two valid FixFlip sets. Furthermore, notice
that any FixFlip set S for U can be constructed by the threshold τ = 3 and the integer
nτ = 1 by taking every index i whose UPC is strictly greater than τ and also taking nτ
indexes whose UPC is equal to τ . The pair (τ, nτ) is then called a FixFlip threshold, and
is formally defined next.

Definition 2 (FixFlip threshold). Let U = (u1, . . . , u2r) be a list of UPC counters. A pair
(τ, nτ) is a FixFlip threshold with respect to U and nFlips if, for any FixFlip set S can be
partitioned into S = S>τ ∪S=τ such that S>τ = {s ∈ S : us > τ }, S=τ = {s ∈ S : us = τ }
and |S=τ | = nτ .

This notion helps us to reduce the problem of flipping the bits with the largest UPC
values to finding a FixFlip threshold, as shown in Algorithm 7. The idea of the algorithm

https://github.com/thalespaiva/pickyfix

Thales B. Paiva and Routo Terada 127

Algorithm 7 Algorithm to flip the nFlips entries of e with largest UPC counters.
1: procedure FlipWorstFitEntries(nFlips, upc)
2: τ, nτ ← FixFlipThreshold(nFlips, upc)
3: Nτ ← |{i : upci = τ }|
4: FlipFlagsForThreshold← Random binary vector of Nτ bits with weight nτ
5: η ← 0 . Counts the number of bits seen whose upc is τ
6: for i = 1 to 2r do
7: if upci > τ then
8: ei = ei
9: else if upci = τ then
10: η ← η + 1
11: if FlipFlagsForThresholdη = 1 then
12: ei = ei
13: return e

is to flip all bits whose UPC is above τ , and use the array FlipFlagsForThreshold to
control which set of nτ bits should be flipped among all of the Nτ bits whose UPC is τ .

The conditionals in Algorithm 7 can be implemented in constant-time using condition
masks. However, there are two aspects that are important to notice when converting the
algorithm to a constant-time implementation. The first is that it is not trivial to implement
FixFlipThreshold in constant-time. The second is that, to generate the random vector
FlipFlagsForThreshold of fixed weight in line 4, and to hide the accesses to index η in
line 11, we need a tight upper bound on Nτ . In the next two sections, we describe how
our constant-time implementation deals with these concerns.

7.2.1 Computing the FixFlip Threshold

The straightforward solution is to use general sorting algorithms, such as quicksort, to sort
the indexes based on the corresponding UPC counters’ values, and then return the first
nFlips indexes. There are two problems with this approach. The first is that the average
complexity would be O(r log r) which would result in an iteration much costlier than that
of BGF or BG. The second, and most problematic one, is that the algorithm would not be
constant-time and timing attacks would be practical.

Notice that the values of the UPC counters are always in {0, . . . , d}, which is a relatively
small range, and therefore counting sort is an interesting option that allows for linear
sort. The problem with using counting sort in this cryptographic setting is that the
constant-time implementation would not be efficient: for every counter, we need to touch
all the d+ 1 buckets to avoid cache timing attacks, resulting in O(wr) complexity.

We can do better by analyzing the context in which FixFlip iteration is used. Since
the weight t of the error vector is at most t = 264, considering security level 5, then it is
not necessary to allow for more than 264 flips in each FixFlip iteration. Furthermore, we
already saw in Section 6.1 that, in practice, nFlips is typically much lower than t for all
security levels, and we can safely assume nFlips < 256. This means that, when performing
the counting sort, we only need to count up to 255, since we need only to return the
indexes corresponding to the nFlips largest counters. Therefore, 8 bits are needed for each
bucket.

Still, even if we can pack 8 buckets into one 64-bit register, we would need to touch all
d(d+ 1)/8e registers for each counting update. The number of registers would result in
9× 2r and 18× 2r operations, considering parameters for levels 1 and 5. But remember
that we do not need to count all entries, and we can take what we call the reduced UPC
counters approach, which is described next.

Figure 9 shows how the algorithm works in a real decoding instance considering BIKE
Level 5. Suppose we are given a list U = (u1, . . . , u2r) of UPC counters and we want to find

128 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

255+ 255+ 0 0 0 0 0 0
0 – 63 64 – 127 128 – 191 192 – 255 256 – 319 320 – 383 384 – 447 448 – 511

255+ 255+ 127 30 1 0 0 0
64 – 71 72 – 79 80 – 87 88 – 95 96 – 103 104 – 111 112 – 119 120 – 127

20 21 20 19 18 15 8 6
80 81 82 83 84 85 86 87

8-bit counters:
UPC Buckets:

8-bit counters:
UPC Buckets:

8-bit counters:
UPC Buckets:

64 bits

Figure 9: Using 3 levels of partial counting sorts to find the FixFlip threshold for
nFlips = 40, considering a real execution of the procedure under BIKE Level 5 parameter
set. In this example, the FixFlip threshold corresponds to τ = 86 and nτ = 3.

the FixFlip threshold for U and nFlips < 256. To show our concrete efficient implementation,
we assume the following conditions, that hold in the real world parameters.

1. Each UPC counter ui ≤ d < 512.

2. The number of bits to flip is nFlips < 256.

The FixFlip threshold is found in 3 counting steps, and each step uses only 8 buckets.
For the first step, each bucket i, where i goes from 0 to 7, corresponds to the UPC
counters in the interval [64i, 64i+ 63]. The algorithm then runs from u1 to u2r counting
the occurrences into the buckets, but with the following rule: the counting is done only in
8 bits, and it should not overflow. That is, the maximum count is 255 for each bucket.
Now suppose the resulting counts for each bucket is [255, 255, 0, 0, 0, 0, 0, 0], and consider
the case nFlips = 40, just like in Figure 9. Then the bucket where the FixFlip threshold
lives must be Bucket 1, since Buckets 3 to 7 do not have any entry, and there are more
than nFlips entries in Bucket 1. Using Bucket b1 = 1 selected in this step, the algorithm
proceeds to the next step.

In the second step, the algorithm expands Bucket b1, and the 8 counting buckets are
zeroed. Now, each bucket i will count the UPC counters in the interval [B2 +8i, B2 +8i+7],
where B2 = 64b1. Again, the algorithm runs through the counters in reversed order until
it finds where the FixFlip threshold lives. In the case considered in Figure 9, Bucket 3 is
not enough to contain the threshold since it separates at most 31 UPC counters from the
rest. Therefore, the search continues using Bucket b2 = 2.

In the third and last step, Bucket b2 is expanded, and now each counting bucket will
correspond to one UPC value. Formally, each Bucket i will count occurrences of the UPC
counter B3 + i, where B3 = B2 + 8b2. If we consider the search in Figure 9, we can see
that it stops at τ = 86, since it has found 6 + 30 + 1 = 37 UPC values above τ and nτ = 3
UPC values equal to τ complete the nFlips = 40 bits to be flipped.

Now let us analyze why this algorithm is useful. Since each bucket uses only 8 bits, we
can pack all the 8 buckets into a single 64-bits register. Therefore, each update on the
counters updates a single register, which avoids the cache-timing attacks. Since 3 rounds
are necessary, the threshold is found in about 3× 2r touches on the counting registers.

Thales B. Paiva and Routo Terada 129

Furthermore, let us check that computing the corresponding bucket for an UPC counter
is made using constant-time operations. Suppose we want to find the bucket b corresponding
to the UPC counter ui on step `. Then

b =
{
⊥ if ui < B` or ui ≥ B` + 84−`,⌊
(ui −B`)/83−`⌋ otherwise.

Both conditions can be evaluated in constant time, since they involve simple unsigned
integer comparisons, additions, and the computation of 84−` does not involve any secrets.
Now for the actual values, if we use 8 bits to represent the buckets, we can let 0xFF denote
the symbol ⊥. Furthermore, since denominator of the division involving secrets is a power
of 8, we can compute (ui − B`)/83−` in constant time by using a right shift by 3(3− `)
bits, assuming the processor uses a barrel shifter. This observation is particularly useful
when considering the vectorized implementation using AVX512 instructions: the bucket
computation can be done in parallel for multiple UPC counters, as they involve simple
additions, comparisons and right shifts by a fixed amount.

7.2.2 Generating FlipFlagsForThreshold and Accessing it in Constant Time

The generation of a random binary vector of a given weight appears frequently in code-
based cryptography. For example, both HQC [MAB+18] and BIKE [ABB+21] itself require
such a procedure when generating error vectors or secret keys. There is, however, a key
difference between our setup and the constant-weight sampling algorithms used by BIKE:
FixFlip must hide both the weight nτ and the size of the vector Nτ .

Let us first see, in Algorithm 8, how the naive Fisher-Yates shuffle works in our case,
and then discuss how to make it run in constant-time. We start with a vector of Nτ bits,
in which the first nτ are set to 1 and the rest are set to 0. Then, the algorithm performs
nτ random swaps to shuffle the first nτ bits of the array. By the end, if each random
integer j generated for the swap is unbiased, then each vector of length Nτ and weight nτ
should be generated with uniform probability 1/

(
Nτ

nτ

)
.

To implement Algorithm 8 in constant-time, we need upper bounds on nτ , to limit the
loops, and on Nτ , to hide the accesses to vector FlipFlagsForThreshold when swapping
bits in line 9. Notice that, when swapping bits, we only need to hide access to position
j, since i is already known in each iteration. Furthermore, notice that we do not use
rejection-sampling when selecting the index j because its rejection rate would depend on
Nτ . Instead, we use a constant-time modulo reduction of the λ-bit random number, where
λ is equal to the security level, to achieve negligible bias.

A trivial upper bound on nτ is nτ ≤ nFlips. This allows us to run the loops in lines 3
and 6 in constant time by performing nFlips iterations and using condition masks. Now, to
bound Nτ we can focus on the distribution of UPC counters of the wrong bits, that is,

Algorithm 8 Generate a random vector of fixed weight using the Fisher-Yates algorithm.
1: procedure GenVectorOfFixedWeight(nτ , Nτ)
2: FlipFlagsForThreshold← 0 ∈ FNτ

2
3: for i = 1 to nτ do
4: . In the constant-time implementation, bit i is set to 1 only if Nτ ≤ 2κ
5: FlipFlagsForThresholdi ← 1
6: for i = 1 to nτ do
7: u← Random number of λ bits
8: j ← i+ (u mod (Nτ − i+ 1)) . j is a random integer in range i ≤ j ≤ Nτ
9: Swap bits i and j of FlipFlagsForThreshold
10: return FlipFlagsForThreshold

130 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

those that should be flipped. Let Uτ be the random variable that counts the number of
UPC counters, among the wrong bits, that are equal to τ . Notice that, when Nτ > 2Uτ ,
then flipping bits whose UPC are equal to τ is more likely to result in a wrong flip. Suppose
that we find the smallest value κ, in the interval 0 ≤ κ ≤ t, such that Pr (Uτ > κ) ≤ 2−λ,
where λ is the security level. Then we only care about flipping bits whose UPC are equal
to τ in the case when Nτ ≤ 2κ, as pointed by the comment in line 4 of Algorithm 8.

To find this value κ for each parameter set, we can use Sendrier and Vasseur’s [SV19]
model for the distributions of UPC counters. Under their model, the UPC counters’
distribution for the wrong and right bits are accurately modeled by Binomial distributions
with different parameters that are easy to compute. Since we want to consider all possible
values of τ , we can search for the smallest κ satisfying the rightmost inequality

Pr (Uτ > κ) ≤
∑

0≤θ≤w/2

Pr (Uθ > κ) ≤ 2−λ,

where the distribution of each Uθ is computed using Sendrier and Vasseur’s [SV19] model.
Table 4 shows the upper bounds on Nτ that we found for each security level. Our

implementation uses an array of 64-bit integers to represent FlipFlagsForThreshold,
and the total number of 64-bit blocks required for 2κ bits is shown in the last column.
Notice that, for security levels 128 and 192, it is possible to simultaneously compute Nτ
and the FixFlip threshold, since 2κ < 255. To compute κ, we consider the smallest values
of r achieving each security level λ, which are taken from Table 5. This is a conservative
approach, since κ gets smaller for higher r within a fixed security level.

Table 4: Upper bounds on Nτ .
Security
level λ r w t κ Pr (Uτ > κ) Upper bound

2κ on Nτ
Number of

64-bit blocks
128 12,413 142 134 73 < 2−128.69 146 3
192 24,677 206 199 103 < 2−195.54 206 4
256 39,019 274 264 130 < 2−259.13 260 5

7.3 Performance Evaluation
We now evaluate the decoder with respect to the full decapsulation time5, when using
PickyFix as a subroutine. For this test, we considered the constant-time implementations
of BIKE decapsulation using BGF from BIKE Additional Implementation [DGK20a] and
our constant-time PickyFix implementation over their code.

The algorithms are implemented in two modes: the portable implementation and
the accelerated one using AVX512 instructions. The testing platform consists of an
Intel® XeonTM Gold 5118 CPU at 2.30GHz. Notice that the decoding step is the most
important part of the decapsulation. In our setup, the decoding step consists of 90% of
the decapsulation, for the portable implementation, and between 80% and 90%, for the
AVX512 implementation6.

Table 5 shows the performance of our constant-time implementation of PickyFix. The
basis for the speedup comparison over BGF comes from Table 2, for the corresponding
security levels. Notice how PickyFix provides major speedups with respect to BGF for
all security levels for one very important reason: it can work with a smaller number of
iterations. Even if parameter r suffers a slight increase when using only 2 iterations,
between 1% (λ = 256) and 14% (λ = 128), this is compensated by speedups from 1.47 to
1.18, correspondingly.

5This includes the hashes computations required by the FO6⊥ transformation.
6These number are considering the PickyFix or BGF decoder with 2 iterations.

Thales B. Paiva and Routo Terada 131

Table 5: The performance of PickyFix considering the parameters achieving negligible
failure rate for each security level. Both the portable and AVX512 implementations were
considered, and the speedup is computed with respect to BGF for each level.

Security level Iterations r
Portable AVX512

Cycles Speedup Cycles Speedup

128 2 13,829 9,088,162 1.21 1,117,958 1.18
3 13,109 10,244,537 1.07 1,221,821 1.08
4 12,739 11,465,955 0.96 1,327,721 1.00
5 12,413 12,859,593 0.85 1,442,976 0.92

192 2 27,397 25,221,598 1.31 3,196,844 1.29
3 25,867 28,879,874 1.14 3,577,988 1.15
4 25,189 32,580,637 1.01 3,935,606 1.05
5 24,677 36,715,044 0.90 4,350,719 0.95

256 2 41,411 65,388,610 1.45 7,843,855 1.47
3 39,901 76,892,364 1.23 8,928,026 1.29
4 39,163 87,393,964 1.09 10,136,052 1.13
5 39,019 99,706,189 0.95 11,494,770 1.00

8 Conclusion and Future Work
The evidence provided in this paper suggests that PickyFix outperforms BGF both with
respect to security and performance. Moreover, we show how PickyFix can be efficiently
implemented in constant-time. The only drawback appears to be that the implementation
of FixFlip, one of PickyFix’s auxiliary iterations, is more involved than that of simple
bit-flipping algorithms.

There are several directions one may take to extend this work. It would be interesting
to perform a broader exploration of the thresholds used by PickyFlip. For example, to
consider looser thresholds for rejecting or accepting ones. On the FixFlip side, notice
that we tried to be as general as possible in our implementation. However it may be
possible to make it simpler and faster by using the fact that FixFlip is used only in the
first iteration. Therefore, one could use statistical analysis to limit the range in which the
FixFlip threshold should be searched.

It would be fascinating to see if our implementation of FixFlip can be used to compute
better and more complex thresholds. For example, one could use the partial counting of
UPC counters to compute thresholds based on the separation of the distributions of UPC
for right and wrong bits. On the security side, it is important to understand how PickyFix
compares with other decoders in corner cases, such as when using weak keys or decoding
near-codeword error patterns [DGK19,SV20b,Vas21]. Finally, it may be interesting to
evaluate PickyFix as a decoder for low-density parity-check (LDPC) codes [Gal62].

Acknowledgments
We thank the Continuous Optimization group of Unicamp that provided access to their
computer lab to perform the experiments. The lab is supported by FAPESP grant
2018/24293-0. This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. This research is part of
the INCT of the Future Internet for Smart Cities funded by CNPq proc. 465446/2014-0,
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance
Code 001, FAPESP proc. 14/50937-1, and FAPESP proc. 15/24485-9.

132 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

References
[ABB+17] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier

Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim
Guneysu, Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Nico-
las Sendrier, Jean-Pierre Tillich, and Gilles Zémor. BIKE: Bit flipping key
encapsulation, 2017. https://bikesuite.org/files/BIKE.2017.11.30.pdf.
Cited on page 110.

[ABB+21] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Santosh Ghosh, Shay
Gueron, Tim Güneysu, Carlos Aguilar-Melchor, Rafael Misoczki, Edoardo
Persichetti, Jan Richter-Brockmann, Nicolas Sendrier, Jean-Pierre Tillich,
Valentin Vasseur, and Gilles Zémor. BIKE: Bit flipping key encapsulation,
2021. https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf.
Cited on pages 110, 111, 113, 116, and 129.

[BGG+17] Paulo S. L. M. Barreto, Shay Gueron, Tim Gueneysu, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, and Jean-Pierre Tillich. CAKE: Code-based
algorithm for key encapsulation. Cryptology ePrint Archive, Report 2017/757,
2017. https://ia.cr/2017/757. Cited on page 115.

[Cho16] Tung Chou. QcBits: constant-time small-key code-based cryptography. In
International Conference on Cryptographic Hardware and Embedded Systems,
pages 280–300. Springer, 2016. Cited on pages 125 and 126.

[DG19] Nir Drucker and Shay Gueron. A toolbox for software optimization of QC-
MDPC code-based cryptosystems. Journal of Cryptographic Engineering,
9(4):341–357, 2019. Cited on page 125.

[DGK19] Nir Drucker, Shay Gueron, and Dusan Kostic. On constant-time QC-MDPC
decoding with negligible failure rate. IACR Cryptol. ePrint Arch., 2019:1289,
2019. Cited on pages 110, 112, 125, and 131.

[DGK20a] Nir Drucker, Shay Gueron, and Dusan Kostic. BIKE Additional Imple-
mentation, 2020. https://bikesuite.org/files/round2/add-impl/BIKE_
Additional.2020.02.09.zip. Cited on pages 116, 121, 125, and 130.

[DGK20b] Nir Drucker, Shay Gueron, and Dusan Kostic. Fast polynomial inversion for
post quantum QC-MDPC cryptography. In International Symposium on Cyber
Security Cryptography and Machine Learning, pages 110–127. Springer, 2020.
Cited on page 125.

[DGK20c] Nir Drucker, Shay Gueron, and Dusan Kostic. QC-MDPC decoders with several
shades of gray. In International Conference on Post-Quantum Cryptography,
pages 35–50. Springer, 2020. Cited on pages 110, 113, 115, and 125.

[FHS+17] T. Fabšič, V. Hromada, P. Stankovski, P. Zajac, Q. Guo, and T. Johansson.
A reaction attack on the QC-LDPC McEliece cryptosystem. In International
Workshop on Post-Quantum Cryptography, pages 51–68. Springer, 2017. Cited
on page 110.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. In Annual International Cryptology Conference,
pages 537–554. Springer, 1999. Cited on page 113.

https://bikesuite.org/files/BIKE.2017.11.30.pdf
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
https://ia.cr/2017/757
https://bikesuite.org/files/round2/add-impl/BIKE_Additional.2020.02.09.zip
https://bikesuite.org/files/round2/add-impl/BIKE_Additional.2020.02.09.zip

Thales B. Paiva and Routo Terada 133

[GAB19] Antonio Guimarães, Diego F. Aranha, and Edson Borin. Optimized implemen-
tation of QC-MDPC code-based cryptography. Concurrency and Computation:
Practice and Experience, 31(18):e5089, 2019. Cited on page 125.

[Gal62] Robert Gallager. Low-density parity-check codes. IRE Transactions on
information theory, 8(1):21–28, 1962. Cited on pages 111, 112, 115, 126,
and 131.

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on
MDPC with CCA security using decoding errors. In 22nd Annual International
Conference on the Theory and Applications of Cryptology and Information
Security (ASIACRYPT), 2016. Cited on pages 110 and 113.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of
the Fujisaki-Okamoto transformation. In Theory of Cryptography Conference,
pages 341–371. Springer, 2017. Cited on pages 110, 112, and 113.

[LJS+16] Carl Löndahl, Thomas Johansson, Masoumeh Koochak Shooshtari, Mahmoud
Ahmadian-Attari, and Mohammad Reza Aref. Squaring attacks on McEliece
public-key cryptosystems using quasi-cyclic codes of even dimension. Designs,
Codes and Cryptography, 80(2):359–377, 2016. Cited on page 114.

[MAB+18] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loıc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, and INSA-CVL Bourges. Hamming quasi-cyclic (HQC). Techni-
cal report, Technical report, National Institute of Standards and Technology,
2018. Cited on page 129.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M.
Barreto. MDPC-McEliece: New McEliece variants from moderate density
parity-check codes. In Information Theory Proceedings (ISIT), 2013 IEEE
International Symposium on, pages 2069–2073. IEEE, 2013. Cited on pages
110, 111, and 112.

[Nie86] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159–166, 1986. Cited on
page 110.

[RHHM17] Mélissa Rossi, Mike Hamburg, Michael Hutter, and Mark E Marson. A
side-channel assisted cryptanalytic attack against QcBits. In International
Conference on Cryptographic Hardware and Embedded Systems, pages 3–23.
Springer, 2017. Cited on page 110.

[Sen11] Nicolas Sendrier. Decoding one out of many. In International Workshop on
Post-Quantum Cryptography, pages 51–67. Springer, 2011. Cited on page 113.

[SSPB19] Simona Samardjiska, Paolo Santini, Edoardo Persichetti, and Gustavo Banegas.
A reaction attack against cryptosystems based on LRPC codes. In International
Conference on Cryptology and Information Security in Latin America, pages
197–216. Springer, 2019. Cited on page 110.

[SV19] Nicolas Sendrier and Valentin Vasseur. On the decoding failure rate of QC-
MDPC bit-flipping decoders. In International Conference on Post-Quantum
Cryptography, pages 404–416. Springer, 2019. Cited on pages 112 and 130.

134 Faster Constant-Time Decoder for MDPC Codes and Applications to BIKE KEM

[SV20a] Nicolas Sendrier and Valentin Vasseur. About low DFR for QC-MDPC
decoding. In PQCrypto 2020-Post-Quantum Cryptography 11th International
Conference, volume 12100, pages 20–34. Springer, 2020. Cited on pages 110
and 114.

[SV20b] Nicolas Sendrier and Valentin Vasseur. On the existence of weak keys for qc-
mdpc decoding. Cryptology ePrint Archive, Report 2020/1232, 2020. https:
//ia.cr/2020/1232. Cited on page 131.

[Til18] Jean-Pierre Tillich. The decoding failure probability of MDPC codes. In 2018
IEEE International Symposium on Information Theory (ISIT), pages 941–945.
IEEE, 2018. Cited on pages 110 and 114.

[TS16] Rodolfo Canto Torres and Nicolas Sendrier. Analysis of information set
decoding for a sub-linear error weight. In Post-Quantum Cryptography, pages
144–161. Springer, 2016. Cited on page 113.

[Vas21] Valentin Vasseur. QC-MDPC codes DFR and the IND-CCA security of BIKE.
Cryptology ePrint Archive, Report 2021/1458, 2021. https://ia.cr/2021/
1458. Cited on pages 110, 111, 112, 113, 114, 115, 121, and 131.

https://ia.cr/2020/1232
https://ia.cr/2020/1232
https://ia.cr/2021/1458
https://ia.cr/2021/1458

	Introduction
	Background
	BIKE
	Parameters and Algorithms
	Security and Negligible Decryption Failure Rate
	BGF: State-of-the-art QC-MDPC Decoder

	Critical Analysis of BGF
	BGF's First Iteration: The Black-Gray Step
	The Number of Iterations and the Threshold Function
	Impact of the Threshold on the Concavity Assumption

	PickyFix
	The FixFlip Auxiliary Iteration
	The PickyFlip Auxiliary Iteration
	The PickyFix Decoder

	Analysis
	Choosing the FixFlip Parameter
	Achieving Negligible DFR

	Efficient Implementation in Constant Time
	Implementing the PickyFlip Iteration
	Implementing the FixFlip Iteration
	Performance Evaluation

	Conclusion and Future Work

