
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 3, pp. 413–437. DOI:10.46586/tches.v2022.i3.413-437

The Best of Two Worlds: Deep Learning-assisted
Template Attack

Lichao Wu1, Guilherme Perin1 and Stjepan Picek2,1

1 Delft University of Technology, The Netherlands
2 Radboud University, The Netherlands

Abstract. In the last decade, machine learning-based side-channel attacks have
become a standard option when investigating profiling side-channel attacks. At the
same time, the previous state-of-the-art technique, template attack, started losing its
importance and was more considered a baseline to compare against. As such, most
of the results reported that machine learning (and especially deep learning) could
significantly outperform the template attack. Nevertheless, the template attack still
has certain advantages even compared to deep learning. The most significant one is
that it has only a few hyperparameters to tune, making it easier to use.
We take another look at the template attack, and we devise a feature engineering
phase allowing the template attack to compete or even outperform state-of-the-art
deep learning-based side-channel attacks. More precisely, with a novel distance metric
customized for side-channel analysis, we show how a deep learning technique called
similarity learning can be used to find highly efficient embeddings of input data
with one-epoch training, which can then be fed into the template attack resulting in
powerful attacks.
Keywords: Side-channel Analysis · Similarity learning · Triplet network · Deep
learning · Template attack.

1 Introduction
Side-channel attacks (SCA) exploit weaknesses in the physical implementation of cryp-
tographic algorithms rather than the algorithms themselves [MOP06]. One standard
division of SCAs is based on the assumed attacker power and divides SCAs into direct
(non-profiling) and two-stage (profiling) attacks. Depending on the profiling attack settings,
profiling side-channel attacks could consider the worst-case security evaluation. There, the
attacker has access to a clone device used to build a model of a device under attack. After
building a model, the attacker uses it to attack an identical (or at least similar) copy of
that device and obtain the secret information. The first proposed profiling SCA is the
template attack [CRR02, LPB+15], while many real-world settings showed its limitations.
Indeed, protected targets often result in settings where machine learning and deep learning
techniques significantly outperform template attack [MPP16, PHJ+17, PHJ+18, WP20].

However, certain advantages of the template attack cannot be ignored. Template attack
is easier to deploy as it has only a few hyperparameters compared to the deep learning-based
approaches. Indeed, the main hyperparameters for the template attack are the number of
features to use and the technique to select those features. On the other hand, a large part of
the deep learning-based SCA research is oriented toward hyperparameter tuning and finding
efficient neural network architectures [ZBHV19, WAGP20, RWPP21, LZC+21]. While
those works manage to find powerful neural network architectures, the search can take
significant time, and the architectures are commonly dataset-specific. Those drawbacks can
result in difficulties for the evaluators/attackers when deploying such methods in real-world

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-01-15 Accepted: 2022-03-15 Published: 2022-06-08

https://doi.org/10.46586/tches.v2022.i3.413-437
http://creativecommons.org/licenses/by/4.0/

414 Deep Learning-assisted Template Attack

applications. However, the fact that the template attack has only a few hyperparameters
does not necessarily mean it becomes trivial to tune them. Certainly, a perspective that
requires consideration in the context of the template attack is the points of interest selection
(i.e., feature engineering). Since the template attack requires a relatively small number
of features (or many side-channel measurements), one needs to select (craft) the most
informative features carefully. This step naturally leads to information loss compared to
deep learning that works with raw signals [LZC+21, PWP21a].

Consequently, it sounds intuitive that any improvement in the template attack perfor-
mance concerning the feature engineering phase, especially making it a competitive choice
compared to deep learning, would be highly relevant. While during the years, variants of
the template attack appeared (as discussed in Section 3), they were commonly not aimed
at improving the attack performance but at making the template attack more stable and
efficient. The current state-of-the-art template attack uses Principal Component Analysis
(PCA) [BHvW12, LPB+15], Linear Discriminant Analysis (LDA) [SA08], Sum of Squared
Pairwise T-differences (SOST) [GLRP06] for feature engineering, which, while powerful,
struggles when dealing with protected leakages [BPS+20].

This work proposes a novel combination of deep learning and template attack that
we denote deep learning-assisted template attack. We use a deep learning approach called
similarity learning to find the most relevant data embedding (transformed features) and
then use such data as the input to a template attack. Our main contributions are:

1. We propose a similarity learning-based approach capable of extracting an efficient
embedding of side-channel traces in the latent space. We use the triplet model for
this goal, and we obtain a compact data representation resulting in an outstanding
attack performance.

2. We propose a novel distance metric, denoted the Hybrid Distance, that takes into
consideration both embedding distance and label distance. This new distance metric
significantly improves the quality of extracted features from the attack perspective.

3. We validate the time efficiency and attack performance on dynamic attack settings
(datasets, leakage models, traces desynchronization). As a result, with one epoch
training (around 20 seconds on a GPU in our setting), our results are comparable
to or better than state-of-the-art deep learning architectures and feature reduction
techniques in all scenarios.

4. We systematically evaluate the influence of several critical hyperparameters in the
proposed attack scheme, which can serve as a guideline for potential evaluators/at-
tackers.

We conduct experiments on three publicly available datasets and three leakage models. The
source code is available in the Github https://github.com/AISyLab/Triplet-attack.

The rest of this paper is organized as follows. In Section 2, we discuss the notation
we follow, profiling side-channel analysis, and how to evaluate the attack performance,
datasets, and leakage models. Section 3 provides an overview of related works. Section 4
introduces the triplet attack, the novel distance we consider, and the neural network
architectures used in the experiments. Section 5 presents experimental results with various
datasets and leakage models. Additionally, we provide a detailed evaluation of various
hyperparameters and general observations. Finally, in Section 6, we conclude the paper
and provide several possible future research directions.

2 Preliminaries
This section starts by introducing the notation we follow. Next, we discuss the profiling
side-channel analysis and give details about the template attack and deep learning-based
SCAs. Then, we provide details on how to evaluate the performance of side-channel attacks.
Finally, we discuss the datasets and leakage models considered in this work.

https://github.com/AISyLab/Triplet-attack

Lichao Wu, Guilherme Perin and Stjepan Picek 415

2.1 Notation

We use calligraphic letters like X to denote sets. The corresponding upper-case letters
denote random variables (X) and random vectors (X) over X . The corresponding lower-case
letters (x, x) represent realizations of X and X, respectively.

A side-channel dataset T represents a collection of side-channel measurements, with
each measurement (trace) ti associated with an input value (plaintext or ciphertext) di

and a key ki. We denote with k a key candidate taking its value from the keyspace K. k∗
denotes the correct key. Each trace ti consists of a number of features (samples, points
of interest). We divide the dataset into a training (profiling) set of size O and an attack
(test) set of size Q.

2.2 Profiling Side-channel Analysis

We consider a scenario where a powerful attacker has a clone device identical (or at least
similar) to the device to be attacked. The attacker uses O measurements from the profiling
device to build a model and then Q measurements from the device to be attacked to infer
the secret information. A general principle of the profiling attack is depicted in Figure 1.
Depending on the profiling technique, one builds different types of profiling models. The
two most common types are a template for the template attack and machine learning
models.

1. Profiling

2: Attack

Profiling model

Profiling
traces

Profiling
labels

Attack
traces

Rank keys based
on predictions

Figure 1: Profiling side-channel attack.

2.2.1 Template Attack

The best-known profiling attack is the template attack (TA) that uses the Bayes’ theorem
to obtain predictions, dealing with multivariate probability distributions as the leakage over
consecutive time samples is not independent [CRR02]. In the state-of-the-art, template
attack relies mostly on a (multivariate) normal distribution and is parameterized by the
mean and covariance matrix. The template attack consists of two phases: the offline phase
during which the templates are built and the online phase where the matching between
the templates and unseen power leakage happens.

In practice, the covariance matrices’ estimation for each class value y can be ill-posed
mainly due to insufficient traces for each class. To prevent this issue, it is possible to
combine all covariance matrices into a single one, reaching the version of the template
attack commonly known as the pooled template attack. Some related works showed that
the pooled TA could be more efficient, in particular for a smaller number of traces in the
profiling phase [CK13, PHJ+17].

416 Deep Learning-assisted Template Attack

2.2.2 Deep Learning-based SCA

As commonly done in the state-of-the-art [ZBHV19, ZBD+21], we consider supervised
machine learning and the classification task. More precisely, the goal is to learn a function
f mapping an input to the discrete output (f : X → Y)) based on examples of input-output
pairs. The number of classes c for the discrete output depends on the leakage model and
the cryptographic algorithm.

The function f is parameterized by θ ∈ Rz, where z represents the number of trainable
parameters and θ denotes the vector of parameters learned in a profiling model. The
profiling phase aims to learn the parameters θ, minimizing the empirical risk represented
by a loss function on a dataset of size O. In the attack phase, the goal is to predict classes
(more precisely, the probabilities that a certain class would be predicted) y based on the
previously unseen set of traces x of size Q and the trained model f .

2.3 Evaluating the Attack Performance
Once a profiling attack is finished, the result is a two-dimensional matrix with dimensions
equal to Q× c. Then, it is common to use the maximum log-likelihood distinguisher, which
is a cumulative sum S(k) for any key candidate k:

S(k) =
Q∑

i=1
log(pi,y). (1)

The value pi,y represents the probability that for a key k and input di, the result is class
y (derived from the key and input through a cryptographic function and a leakage model).

The result of an attack is a key guessing vector g = [g1, g2, . . . , g|K|] calculated for Q
traces in the attack phase. This vector contains the key candidates in decreasing order of
probability: g1 is the most likely, and g|K| is the least likely key candidate. To reduce the
effect of selected measurements (as commonly, one evaluates the attack performance for
different subsets of Q measurements), it is usual to estimate the effort to obtain the secret
key k∗ with the guessing entropy (GE) metric [SMY09]. Guessing entropy represents the
average position of k∗ in g.

2.4 Datasets
2.4.1 ASCAD

The ASCAD datasets represent a common target for profiling SCA as they contain
measurements protected with a masking countermeasure and settings with fixed or random
keys [BPS+20]. More precisely, the ASCAD datasets contain the measurements from
an 8-bit AVR microcontroller running a masked AES-128 implementation. Currently,
there are two versions of the ASCAD dataset. The datasets are available at https:
//github.com/ANSSI-FR/ASCAD.

ASCAD_F: This dataset version has a fixed key and consists of 50 000 traces for
profiling and 10 000 for the attack. Note that traces with 700 features (requires knowledge
of r mask share) are commonly used in related works. To make our work closer to realistic
settings, we increase the time window including the signal-to-noise ratio (SNR) peaks of
both secret shares sr,2 = Sbox(p2 ⊕ k2) ⊕ r2 and r2 (shown in Figure 2a). Finally, we
select a time window with 4 000 features, corresponding to the processing of key byte 3,
the first masked key byte.

ASCAD_R: This dataset version has random keys, with 200 000 traces for profiling and
100 000 for the attack. Similarly, instead of attacking traces with 1 400 features that rely
on knowledge of r mask share (commonly used in literature), we extend the pre-selected
window to 4 000 features corresponding to the processing of third masked key byte based

https://github.com/ANSSI-FR/ASCAD
https://github.com/ANSSI-FR/ASCAD

Lichao Wu, Guilherme Perin and Stjepan Picek 417

on SNR of the Sbox output. The corresponding SNR is shown in Figure 2b.
We use 50 000 traces for profiling, and 10 000 traces for the attack for both datasets.

2.4.2 AES_HD

This dataset is first introduced in [KPH+19], targeting an unprotected hardware imple-
mentation of AES-128 written in VHDL in a round-based architecture. Side-channel
traces were measured using a high sensitivity near-field EM probe, placed over a decou-
pling capacitor on the power line on Xilinx Virtex-5 FPGA of a SASEBO GII evaluation
board. In this paper, the Hamming distance (HD) leakage model is used and it considers
Sbox−1(c7⊕ k7)⊕ c11 in the last AES round. 45 000 traces are used for profiling, and 5 000
traces are used for the attack. Each trace has 1 250 features. The SNR is shown in Figure 2c.
The dataset is available at http://aisylabdatasets.ewi.tudelft.nl/aes_hd.h5.

(a) ASCAD_F. (b) ASCAD_R. (c) AES_HD.

Figure 2: SNR of the three datasets.

2.5 Leakage Models and the Number of Classes
Our work considers three leakage models:

1. The Hamming Weight (HW) and Hamming Distance (HD) leakage mod-
els. For the Hamming weight leakage model, the attacker assumes the leakage is
proportional to the sensitive variable’s Hamming weight. For the Hamming distance
leakage model, the attacker assumes the leakage is proportional to the XOR of two
sensitive variables’ Hamming weights. These leakage models result in nine classes
for a single intermediate byte for the AES cipher (c = 9).

2. The Identity (ID) leakage model. In this leakage model, the attacker considers
the leakage in the form of an intermediate value of the cipher. This leakage model
results in 256 classes for a single intermediate byte for the AES cipher (c = 256).

3 Related Works
Chari et al., in their seminal work in 2002, proposed the template attack, representing
the beginnings of profiling SCA [CRR02]. While powerful, the template attack also relies
on unrealistic assumptions: an unlimited number of profiling traces and noise following
the Gaussian distribution [LPB+15]. Afterward, Schindler et al. proposed stochastic
models where the authors approximated the real leakage function within a suitable vector
subspace [SLP05]. Next, to resolve the issues stemming from the insufficient number of
measurements per class for TA, it is also possible to pool all covariance matrices into a
single one [JW02]. For instance, Choudhary and Kuhn investigated the pooled template
attack and achieved performance improvements, both in terms of the extracted information
and computational cost [CK13].

http://aisylabdatasets.ewi.tudelft.nl/aes_hd.h5

418 Deep Learning-assisted Template Attack

For a number of years, those techniques represented state-of-the-art for profiling SCA.
Besides good attack performance, the limited hyperparameters make them easier to deploy
in real-world cases. Nevertheless, it is commonly necessary to conduct a feature engineering
phase to reduce the number of points of interest by using, e.g., machine learning-based
feature selection [PHJB19], dimensionality reduction like Principal Component Analysis
(PCA) [WEG87, APSQ06, BHvW12], Linear Discriminant Analysis (LDA) [SA08], or Sum
of Squared Pairwise T-differences (SOST) [GLRP06].

Several years later, machine learning-based SCA became popular due to many re-
sults surpassing the performance of the template attack. The most common examples of
the machine learning methods are support vector machines [HGM+11, HZ12, PHJ+17],
random forest [LMBM13, MPP16], Naive Bayes [PHG17, HPGM16], and multilayer per-
ceptron [GHO15, MZ13]. While the results for machine learning techniques were generally
favorable compared to the previous ones (e.g., template attack), the complexity of running
such attacks was higher. Indeed, the best attack performance could only be achieved when
hyperparameters in machine learning techniques are properly tuned. At the same time,
feature engineering techniques are commonly required in the same manner as before to
reduce computational complexity.

Finally, in the last few years, profiling SCA mostly moved toward deep learning
techniques that provided even better results than machine learning or template at-
tack [CDP17, KPH+19]. Additionally, deep learning does not require feature engineering,
making the attack preparation simpler. Unfortunately, deep learning algorithms have sig-
nificantly more hyperparameters to tune than other techniques in profiling SCA, increasing
the complexity of deploying those attacks. The first significant progress was showcasing
that convolutional neural networks can efficiently break targets [MPP16]. Additionally,
the authors showed that deep learning works well with raw traces (or at least many more
points of interest than before), removing the need for feature engineering. Cagli et al.
demonstrated how deep learning could break implementations protected with a jitter
countermeasure [CDP17]. Additionally, they introduced the data augmentation approach
to profiling SCA. Kim et al. designed a deep learning architecture that gave excellent
results for several publicly available datasets [KPH+19]. While the developed architectures
differ due to different dataset dimensions (number of features), it is possible to recognize a
common design principle used for all experimental settings.

While the performance of the first deep learning-based side-channel attacks was very
good, the SCA community quickly realized it could be further improved by following a
careful hyperparameter tuning phase. Benadjila et al. investigated hyperparameter tuning
for the ASCAD dataset and proposed several well-performing neural network architec-
tures [BPS+20]. Zaid et al. proposed the first methodology to tune the hyperparameters
related to the size (number of learnable parameters, i.e., weights and biases) of layers in con-
volutional neural networks [ZBHV19]. Starting from the work from Zaid et al. [ZBHV19],
Wouters et al. showed how to reach similar attack performance with data regularization
and even smaller neural network architectures [WAGP20]. Perin et al. investigated deep
learning model generalization and demonstrated how ensembles of random models could
perform better than a single carefully tuned neural network model [PCP20]. Rijsdijk et al.
explored the reinforcement learning paradigm to find small neural networks that perform
well [RWPP21]. While their approach requires a significant tuning effort (computational
time), the authors improved state-of-the-art results.

Lu et al. made a significant step forward in the deep learning-based SCA as they
investigated the performance of deep learning with raw traces (while the previous works
actually considered pre-selected windows of features) [LZC+21]. Their results showed even
better attack performance but at the cost of significantly more complex neural networks
(e.g., having around 30 layers). Finally, Perin et al. showed how simple re-sampling of
raw traces could result in extremely powerful attacks (requiring only a single attack trace)

Lichao Wu, Guilherme Perin and Stjepan Picek 419

while using simple neural networks with only a few hidden layers [PWP21b].
All those works have in common that they design a specific architecture for each dataset

and leakage model. For some works, i.e., [KPH+19], the difference in the architecture
design is a natural consequence of different dataset shapes (the number of features in each
trace). For others, e.g., [ZBHV19, RWPP21], the architectures are finely tuned for each
experimental setting, and they differ significantly.

4 Triplet Attack
In this section, we introduce the general concept of the triplet model, and afterward, we
discuss how we adapt it to the context of profiling side-channel analysis.

4.1 Similarity Learning and Triplet Network
Similarity learning belongs to supervised machine learning, where the goal is to learn a
similarity function that measures how similar or related two objects are. One option for
this task is to use a triplet network model to learn useful data representations by distance
comparisons [HA15]. Triplet network was evolved from the Siamese network [MKR16,
GFZ+17] and was first proposed by Wang et al. [WSL+14] in 2014. Then, based on
the triplet network, Schroff et al. developed the well-known Facenet network for face
recognition and clustering [SKP15].

A depiction of a triplet network is shown in Figure 3. A triplet input consists of three
samples 1: positive, anchor, and negative. Positive and anchor samples have the same label
i, while that label is different from the negative samples. By training the deep network
with the shared weights, three embeddings 2 (Embp, Emba, and Embn), corresponding to
their input are outputted by the deep network and used for the triplet loss calculation.
Weight vectors are updated using shared architecture during back-propagation. During
training, we follow the online triplet mining method proposed in [SKP15], meaning that
triplets are generated in real-time within a training batch. Compared with offline triplet
mining, which fits the manually-created triplets to the network, the randomly-generated
triplets increase the chance to find triplets with high triplet loss, thus speeding up the
learning process.

An embedding represents a (relatively) low-dimensional space into which high-dimensional
vectors can be translated. Ideally, an embedding would capture some input semantics
by placing semantically similar inputs close together in the embedding space. A triplet
model aims to extract these features while enlarging their inter-class differences. The
conventional triplet loss function is defined in Eq. (2). The evaluation and benchmark
between different loss functions is presented in Section 5.2.1. Among all of the considered
loss functions, triplet loss performs the best.

loss = max(d (a, p)− d (a, n) +margin, 0), (2)

where d denotes the Euclidean distance 3 between two feature vectors. a, p, and n stand
for anchor, positive (with the label same as the anchor), and negative samples (with a label
different from the anchor); margin is enforced between the positive and negative pairs.

Based on the loss definition, there are three categories of triplets:
• Easy triplets: d(a, p) +margin < d(a, n).
• Hard triplets: d(a, n) < d(a, p).
• Semi-hard triplets: d(a, p) < d(a, n) < d(a, p) +margin.
1For SCA, samples are leakage traces.
2For SCA, the embeddings are extracted features used for attacks.
3The Euclidean distance between two points in Euclidean space is the length of a line segment between

the two points.

420 Deep Learning-assisted Template Attack

Deep network

Deep network
𝐸𝑚𝑏𝑝

𝑆ℎ𝑎𝑟𝑒𝑑
𝑤𝑒𝑖𝑔ℎ𝑡𝑠

Deep network

𝐸𝑚𝑏𝑎

𝐸𝑚𝑏𝑛

Triplet
loss

Positive

(label = 𝑖)

Anchor

(label = 𝑖)

Negative

(label ≠ 𝑖)

𝑆ℎ𝑎𝑟𝑒𝑑
𝑤𝑒𝑖𝑔ℎ𝑡𝑠

Figure 3: The structure of the triplet network. Each deep network is identical to the others.
From the implementation perspective, any of these networks can be used to generate
embeddings for anchor, positive, and negative inputs.

Clearly,margin defines the boundary between the three types of triplets. Whenmargin
reaches zero, only easy and hard triplets exist. From the feature learning perspective,
training on easy triplets could easily reach a low loss value as p and n are easy to distinguish.
However, it may result in the model converging to the local optima and struggling in
differentiating the samples belonging to the different clusters but with a close Euclidean
distance. Training directly on the hard triplets whose negative sample is closer to the
anchor than the positive may also lead the model to stop learning or collapse (the embedded
output collapses to one feature) [SKP15]. On the other hand, training on semi-hard triplets
increases the learning difficulties in a reasonable range, leading to more representative
extracted embeddings features. We set the margin to 0.4 for all of the following experiments,
enabling us to choose a random semi-hard negative (the negative lies inside the margin)
for every pair of anchor and positive and train on these triplets. The influence of margin
is discussed in Section 5.2.3.

4.2 Triplet Loss with Hybrid Distance
Based on Eq. (2), once the anchor’s label is set, the rest of the samples can be binary
classified based on their label: positives and negatives. However, these embedding-based
semi-hard triplets ignore the diversity of labels in negatives. Indeed, for a dataset with c
classes, negatives contains c− 1 classes. Within all embedding-based semi-hard triplets,
if one can use negative’s label information to find negatives that are potentially closer
to the anchor than other negatives, the newly formed (semi-hard) triplets could include
negatives that could be more ’difficult’, thus leading to more efficient learning. From the
classification perspective, focusing on differentiating with neighboring clusters would help
in improving classification performance.

Unfortunately, for the triplet learning tasks such as images or audio feature extraction,
it is challenging to judge the similarity between the anchor and negatives based on their
labels [HA15, CR19]. For instance, imagine images with the labels ’Alice’, ’Bob’, and ’Eve’.
One can hardly tell which two clusters are similar by only seeing the name. On the other
hand, the correlation between label distance and embedding distance is stronger for SCA.
Indeed, the SCA’s labels are determined by intermediate data processed by the target, and
we apply leakage models to these labels to simulate and correlate with measured leakages.

Lichao Wu, Guilherme Perin and Stjepan Picek 421

Naturally, a smaller label distance may indicate similar leakage traces (smaller feature
distance). For instance, as defined in Section 2.5, the Hamming weight leakage model
assumes that the leakage is proportional to the sensitive variable’s Hamming weight. For
a device that leaks byte-wise Hamming weight, intermediate values with closer Hamming
weight values would generate similar leakages.

Following this, we optimize the distance metric (Euclidean distance) to enforce the
triplet learning based not only on embedding distance but also on label distance. We
denote it as Hybrid Distance. The newly proposed embedding distance calculation method
is defined in Eq. (3).

Hybrid Distance = d(ala
, blb

)
αd′ (la,lb)

, α ∈ (0, 1]. (3)

Here, d(ala , blb
) stands for the squared Euclidean distance between embedding a and b

with their corresponding labels la and lb (determined by the used leakage model). d′(.)
denotes the normalized Euclidean distance between labels (ranges from zero to one); α is
a constant that need to be tuned (detailed evaluation in Section 5.2.1). Following Eq. (3),
the Hybrid Distance ranges from d(ala

, blb
) to d(ala

, blb
)/α based on the label distance.

When α equals one, the squared Euclidean distance is calculated.
An illustration of the conventional and newly proposed embedding distance calculation

methods is shown in Figure 4. a, p, and n are used to represent anchor, positive, and
negative samples, respectively; the corresponding labels are denoted by their subscript i,
i + 1, and i + 2. The margin range is highlighted in pink. As defined in Eq. (2), only
negative samples within this range can be counted as the semi-hard triplet and used later
for learning. The left graph indicates the conventional method where the embedding
distance is purely based on the extracted features; the right graph takes into consideration
the label distance so that ni+2 is pushed out of the margin range. Consequently, the
triplet model will learn from ni+1 that is semi-hard both embedding-wise and label-wise.

𝑛𝑛𝑖𝑖+1

𝑛𝑛𝑖𝑖+2

𝑝𝑝𝑖𝑖

𝑎𝑎𝑖𝑖 𝑛𝑛𝑖𝑖+1

𝑛𝑛𝑖𝑖+2

𝑝𝑝𝑖𝑖

𝑎𝑎𝑖𝑖

Figure 4: Comparison of two embedding distance calculation methods. Compared with
the Euclidean distance (left), the Hybrid Distance (right) introduces a larger distance
value when the label distance increases.

4.3 Attack Scheme
The correctly trained triplet model outputs embeddings with a larger distance between
each cluster than the raw inputs. Our attack scheme can be divided into two steps: 1) train
a triplet model and extract the embeddings features for the profiling and attack traces, 2)
launch standard profiling attacks using these embeddings features. A demonstration of
the attack scheme is shown in Figure 5.

422 Deep Learning-assisted Template Attack

Leakage
traces

𝐸𝐸𝐸𝐸𝐸𝐸1

...

Labels

Profiling
attack

𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛

𝐸𝐸𝐸𝐸𝐸𝐸2

Triplet training Attack

Triplet
network

Figure 5: Triplet-assisted profiling attack.

Compared with the traditional dimensionality reduction methods such as PCA or
autoencoders [VLL+10, WP20, RAD20], the triplet network is more task-specific: the label
information utilized by the triplet network forces the network to focus on differentiating
leakages (or point of interests), which is directly helpful for the SCA attack. Considering
LDA and SOST, the triplet network combines features in a nonlinear manner, which is
beneficial when the leakage traces are noisy or protected by countermeasures.

Additionally, since it is based on constructing a Probability Density Function (PDF), a
template attack can benefit from using the extracted features as the input. First, the small
triplet embeddings size reduces the computation complexity of the template attack. Second,
the triplet network outputs Gaussian-distributed embeddings with a greater inter-class
difference, thus leading to more separated PDFs. As a result, it can help to retrieve the
key with fewer attack traces. Therefore, after training the triplet network, we use the
extracted embeddings and corresponding labels to perform the template attack. Since
our attack scheme is partially based on deep learning, better neural network tuning will
help to achieve powerful attack performance. Still, with a single model, we demonstrate
that our method is more robust than conventional DL-SCA toward hyperparameter and
datasets changes, thus reducing the bar for launching such attacks. Besides, note that
template attack is only one of many methods that can be used for attack. Still, we believe
template attack is a more general attack method considering the difficulties of classifying
the leakages protected by countermeasures and tuning the hyperparameters.

4.4 Neural Network Architectures
The main body of the triplet network is designed based on the VGG neural network [SZ14].
The design principle from related works [KPH+19, BPS+20] is applied to tune the specific
hyperparameters. The neural network tuning is based on the combination of different
hyperparameters to reach the best attack performance on all test settings (datasets, leakage
models, noise resilience). The search space is listed in Table 1. Note that the architecture
of the triplet model is flexible. In Section 5.1.2, we modify different state-of-the-art models
to build triplet networks and reach outstanding performance with minimal training effort.

Since the goal of the triplet network is to extract useful embeddings from side-channel
leakages, several adjustments were needed. First, the large dense layers and the final
classification layer are replaced with a single embedding (dense) layer as the goal is feature
extraction and not classification. Note that the size of the embeddings layer is essential
for the triplet network: either too large or too small embeddings size may have side effects
on the extracted embeddings, influencing the attack performance (see Section 5.2.3 for

Lichao Wu, Guilherme Perin and Stjepan Picek 423

Table 1: Hyperparameters search space for the triplet network.
Hyperparameter Options

Convolution layers 1 to 13 in a step of 1

Convolution size 1 to 128 in a step of 1

Pooling size/stride 2 to 80 in a step of 1

Embedding size 16 to 128 in a step of 16

Learning Rate 1e-3, 5e-4, 1e-4, 5e-5, 1e-5

Margin 0.2 to 1 in a step of 0.2

Loss function RMSProb, Adam

Batch size 32 to 512 in a step of 32

Training epoch 1, 5, 10, 15, 20, 25, 30

detailed discussion). We set the size of the embedding to 32 based on the grid search
results (discussion in Section 5.2.2). Besides, we use average pooling as it performs better
for the tested datasets [BPS+20, WP21]. SeLU is used as the activation function to avoid
vanishing and exploding gradient problems [KUMH17]. To provide a sufficient number of
valid triplets per batch, the batch size is set to 512 for all experiments. The optimizer is
Adam with a learning rate of 5e-4. The detailed description of the neural network is listed
in Table 2.

Table 2: Triplet architectures used in the experiments.
Layer Kernel number/size Pooling stride/size Neurons

Conv+AvgPooling 64/15 15/15 -

Conv+AvgPooling 128/3 2/2 -

Dense - - 32

To verify that the reported attack performance is due to the proposed attack scheme
and not just to a choice of neural network architecture that happens to suit the evaluated
attack scenarios, the model presented in Table 2 is directly used for profiling by adding
one additional prediction layer. As a result, the attack performance becomes significantly
worse than state-of-the-art attack results.

4.5 The Environment
The machine learning models were implemented in Python version 3.6, using TensorFlow
library version 2.4.1. The model training algorithms were run on an Nvidia GTX 1080
graphics processing unit (GPU), managed by Slurm workload manager version 19.05.4.

5 Experimental Results
This section evaluates our attack scheme from two aspects: side-channel attack performance
and triplet hyperparameters’ influence. The analysis is conducted on three publicly available
datasets described in Section 2.4. We consider the HW, HD (for AES_HD), and ID leakage
models. The training epoch is set to one, which requires around 20 seconds of training time.
The detailed discussion about the required number of training epochs is in Section 5.2.4.

To evaluate the attack performance, we report the number of traces required to reach
GE equal to zero, which is denoted as TGE0. TGE0 metric is derived from guessing entropy,
aiming at evaluating the key recovery capacity of profiling models by setting a limited

424 Deep Learning-assisted Template Attack

number of attack traces. Specifically, TGE0 is designed for cases where the models require
fewer traces (than the maximum number of attack traces) to retrieve the secret key. In
this case, even if guessing entropy equals zero for different settings, we can better estimate
the attack performance by evaluating the required number of attack traces to reach it.

The algorithmic randomness stemming from the weight initialization for neural networks
could have a significant impact on the attack performance [WPP21]. Besides, simulat-
ing noise (Section 5.1.2) with different random seeds would cause attack performance
fluctuation. To provide representative results and a fair benchmark, all considered test
scenarios (datasets, leakage models, deep learning models, dimensionality reduction tech-
niques) in the following section are trained/executed and attacked 20 times independently.
The medium-performing model is used to represent the attack efficiency in the following
sections.

5.1 Performance Evaluation
First, we show results for the original (publicly available) datasets, and afterward, we test
the perturbation resilience with different desynchronization levels.

5.1.1 Attack Capability

The attack performance of triplet attacks is benchmarked with the state-of-the-art
MLPs [WPP20] and CNNs [ZBHV19, RWPP21, PCP20] models (SOTAs). Note that
those neural networks are designed for the pre-selected windows of features (700 for
ASCAD_F and 1 400 for ASCAD_R). Since our work adjusts their input layers with
dimensions defined in Section 2.4 4, the attack performance of the modified architectures
does not correspond to the different numbers given in the respective works. Still, we
expect targets can still be broken and even reach better attack performance [LZC+21].
The references are kept in the tables for readability.

Besides offering insight into how these networks perform on (much) longer traces,
various dimensionality reduction techniques, such as PCA, LDA, SOST, and autoencoder
(AE) [WP20] are considered in this paper. The feature size is set to be optimal 5. The
implementation details for the autoencoder are presented in Appendix A. The extracted
features/latent space are then used for the template attack.

The benchmarks for all datasets with the TGE0 metric are shown in Tables 3, 4, and 5.
Here, ’-’ indicates that GE does not reach zero with a given number of attack traces. The
best values are denoted in bold font.

For ASCAD_F and ASCAD_R, the increased number of input features leads to similar
or even significantly better performance compared to the original papers (SOTA model
from [RWPP21] with the ID leakage model now requires only seven traces to break the
target). Still, the proposed attack scheme generates the best performance in four out of
five scenarios with a single model presented in Table 2, confirming the generality and
transferability of the triplet model and the attack method. On the other hand, compared
with PCA and AE, the usage of the label information significantly increases the quality of
the extracted features by the triplet network, thus leading to a better attack performance.
Although LDA and SOST also consider the labels, the high sensitivity to the embedding
size (i.e., they may only work with a specific embedding size setting), the linear combination
of raw features, and the absence of the mask knowledge [BCS21] could be the reason

4We also evaluate the performance with the pre-selected windows of feature with sizes 700/1 400 to
provide a better comparison with related works.

5We experimentally test multiple feature sizes ranges from 8 to 128. The one with the best attack
performance is considered to be optimal. The detailed settings for each dataset and leakage model are listed
as follows, and the results for the HW and ID leakage models are separated by ’/’. ASCAD_F: PCA=16/16;
LDA=8/128; SOST=32/64; AE=16/16. ASCAD_R: PCA=16/16; LDA=8/32; SOST=128/8; AE=16/16.
AES_HD: PCA=8, LDA=8; SOST=8; AE=16.

Lichao Wu, Guilherme Perin and Stjepan Picek 425

for their mediocre performance. Finally, for [PCP20], the hyperparameter space used to
generate ensembles could be non-optimal due to an increased number of input dimensions,
thus leading to unsuccessful attacks.

Besides the results listed in the tables, we verify the generality of the proposed method
by varying the input dimension size. Specifically, we attack ASCAD_F and ASCAD_R
with commonly-used feature settings (700 and 1 400). As a result, for ASCAD_F, a median
model requires 353 (HW) and 632 (ID) traces to break the target. For ASCAD_R, the
required number of traces for two leakage models are 533 and 1 228. Consequently, we can
observe that more attack traces are required when the input dimension is smaller. Still,
the secret information can be retrieved with one-epoch training.

Table 3: Benchmark the attack performance (TGE0) with the ASCAD_F dataset.
[ZBHV19] [WPP20] [RWPP21] PCA LDA SOST AE This work

HW 174 225 294 187 - 1 123 239 159

ID 191 160 7 193 - 5 294 183 64

Table 4: Benchmark the attack performance (TGE0) with the ASCAD_R dataset.
[PCP20] [WPP20] [RWPP21] PCA LDA SOST AE This work

HW - 864 519 416 - - 686 197

ID - 3 144 4 244 577 - - 1 183 188

Table 5: Benchmark the attack performance (TGE0) with the AES_HD dataset.
[KPH+19] [ZBHV19] 6 PCA LDA SOST AE This work

HD - 4 415 - 19 23 1 860 - 1 768

The template attack used as the final stage of triplet attacks could also be switched
to other profiling attack methods. For instance, the trained triplet model can be used
for transfer learning: adapting one or more hidden layers and a prediction layer with
additional training epochs could also break the target. Still, we believe a template attack
represents a robust and straightforward solution. In addition, we also tested the pooled
template attack on features extracted by the triplet network. This technique fails to break
the protected dataset (ASCAD_F and ASCAD_R) with the given number of attack traces
but performs very well on AES_HD (reaches zero GE with around 600 attack traces).
Indeed, pooled template attack can only reach a higher precision estimate if each cluster
has a different mean but the same covariance matrix. The introduction of the masking
countermeasure in ASCAD_F and ASCAD_R would break this assumption, thus leading
to worse attack performance.

5.1.2 Perturbation Resilience

The well-synchronized traces significantly improve the correlation of the intermediate
data and trace values. Therefore, the alignment of the traces is an essential step for the
side-channel attack. Two desynchronization levels (50 and 100) were simulated and tested
to show the effect of trace desynchronization. The model is trained for one epoch for

6Although using the same profiling model, our attack settings, such as round key and label calculation,
are different from Zaid et al. [ZBHV19] for AES_HD (they assume the subkeys of the last round are all
zeros due to the lack of plaintext and ciphertext). This causes performance variation when compared with
the original paper. Since the intermediate data we used is the real data corresponding to the cryptographic
calculation, we suggest using these result as a reference.

426 Deep Learning-assisted Template Attack

triplet attack, aligned with the previous section. To counter the added noise, the kernel
size of the first convolution layer and the pooling size/stride of the first pooling layer is
increased to 55 for all test settings based on grid search results. Finally, the methods that
failed in the previous section are excluded from the experiments, as the addition of noise
further increases the attack difficulties.

For AE, we train with noisy-noisy traces pair as our goal is to test the feature extraction
capability of AE. 7Consequently, this method failed in key recovery with all noise levels.

We modify SOTAs from [RWPP21, ZBHV19] to build triplet models and compare the
noise resilience of conventional deep learning-based method and triplet-based training
method. More specifically, all dense layers were replaced by the embedding layer with a
size of 32. The rest of the settings are aligned with previous experiments.

The median attack performance over 20 independent training is listed in Tables 6, 7,
and 8, the corresponding models are referred as median model. The perturbation in the
time domain significantly reduces the attack performance with the conventional deep
learning-based methods. Meanwhile, since the leakage traces are not perfectly aligned
(common in realistic settings), valid features become more difficult to extract with the
dimensionality reduction techniques. On the other hand, with only one-epoch training, the
triplet-based method shows its perturbation resilience: the triplet-based SOTA attacks
break the target in some attack scenarios, while their counterparts failed in all test cases.

In addition, we tested the noise resilience of the triplet attack with a reduced number
of input features for ASCAD_F (700) and ASCAD_R (1 400). For both ASCAD_F and
ASCAD_R, except for the desynchronization level 100 and the ID leakage model, the
median model can retrieve the secret information within 10 000 traces. More precisely, for
ASCAD_F and desynchronization 50, we require 751/6 097, while for desynchronization
100, we need 2 641/- attack traces. For ASCAD_R and desynchronization 50, we need
1 449/8 478 attack traces, and for desynchronization 100, 7 936/- attack traces. Therefore,
we can confirm the superior perturbation resilience of the triplet-based attack method.

Table 6: Benchmark the attack performance (TGE0) with the ASCAD_F dataset perturbed
with desynchronization. Attack results for the HW and ID leakage models are separated
by ’/’.
Noise [ZBHV19] 8 [WPP20] [RWPP21] PCA SOST Triplet-[RWPP21] This work

50 -/- -/- -/- -/- -/- -/2 850 251/191

100 -/- -/- -/- -/- -/- -/- 382/582

Table 7: Benchmark the attack performance (TGE0) with the ASCAD_R dataset perturbed
with desynchronization. Attack results for the HW and ID leakage models are separated
by ’/’.

Noise [WPP20] [RWPP21] PCA Triplet-[RWPP21] This work

50 -/- -/- -/- 7 805/3 715 2 251/3 385

100 -/- -/- -/- -/- 6 386/9 932

7Training with noisy-clean traces pairs (as done in denoising autoencoder approach [WP20]) may reach
better attack performance. However, this method is not considered here because clean traces are difficult
to obtain in realistic settings.

8For consistency, the same model from [ZBHV19] used in the previous benchmarks is considered here
as well. In addition, we have also the models optimized for different levels of desynchronization. As a
result, it reaches comparable performance with our attack method.

Lichao Wu, Guilherme Perin and Stjepan Picek 427

Table 8: Benchmark the attack performance (TGE0) with the AES_HD dataset perturbed
with desynchronization.

Noise [ZBHV19] LDA SOST Triplet-[ZBHV19] This work

50 - - - - 4 662

100 - - - - -

5.2 Hyperparameter Evaluation
This section concentrates on evaluating several critical hyperparameters for the triplet
network model. Besides better understanding their influence on the attack performance,
we hope the detailed evaluations could serve as guidelines for potential users to design
their triplet models. This section considers the setting where each trace has 4 000 features
for ASCAD both versions and 1 250 for AES_HD.

5.2.1 Loss Function

Recall that the proposed loss function introduces a new hyperparameter α. To better
understand the effect of this hyperparameter, we tune α from 0.1 to 1 in a step of 0.1
and attack all considered datasets. Note that the Hybrid Distance is equivalent to the
Euclidean distance when α equals one. The rest of the training settings are aligned with
the previous sections.

(a) ASCAD_F. (b) ASCAD_R. (c) AES_HD.

Figure 6: The effect of α.

The attack results for three datasets are shown in Figure 6. First, we can confirm
that introducing α and Hybrid Distance helps increase the attack performance. On the
other hand, the optimal α varies for each dataset: the best α is 0.9 for AES_HD, while
this value drops to 0.1 for the other two datasets. For AES_HD, the attack performance
becomes worse than the default distance metric (α = 1) when α is below 0.6. Indeed,
although smaller α strengthens the influence of the label distance, it reduces the number of
valid triplets to be learned. As a result, it causes quick overfitting (ASCAD both versions)
or the degradation of attack performance (AES_HD). Note that each alpha parameter is
averaged from 20 independent tests, and we expect limited performance fluctuation even
with a greater resolution of the tested α value.

Next, we benchmark the attack performance of the proposed loss function with some
other loss functions used for similarity learning. More specifically, we considered Contrastive
loss [HCL06], Lifted Structure loss [OSXJS16], Pinball loss [SC11], and Hard triplet loss.
Besides, the Semi-hard triplet loss with the default distance metric (Euclidean distance) is
included in this benchmark. Loss functions that contain hyperparameters are tuned to be
optimal 9. The model and training hyperparameters are kept the same.

9We experimentally test multiple τ (for Pinball loss) and margin (for the rest except the Hard triplet
loss) ranging from 0.2 to 1.0. The one with the best attack performance is considered to be optimal. The

428 Deep Learning-assisted Template Attack

Table 9: Benchmark different loss functions with TGE0. Attack results for the HW and
ID leakage models are separated by ’/’.

Contrastive Lifted Structure Pinball Hard Semi-hard This work

ASCAD_F 4174/230 744/324 432/332 -/8600 296/124 159/64

ASCAD_R 5376/904 999/1457 651/983 -/- 775/713 197/188

AES_HD 3849 3 486 3 279 - 2 910 1 768

The attack results are shown in Table 9. Although the model trained with almost
all loss functions can generate features that lead to zero guessing entropy within the
given number of attack traces, our proposed loss function outperforms all considered loss
functions in all attack scenarios. Specifically, one can observe a significant improvement in
the attack performance from the Hard triplet loss to the Semi-hard triplet loss, indicating
the importance of learning from the semi-hard triplets. On top of that, besides the
embedding distance, we introduce label distance in the distance metric calculation. With
the help of the Hybrid Distance metric proposed in this paper, our loss function reaches
the best attack performance. The attack performance with other loss functions could
increase with more training epochs or profiling traces, but the computation complexity is
increased as a trade-off.

5.2.2 Embedding Size

The embedding size directly impacts the template attack performance as it determines
the dimension of the extracted features. In this section, we tune this hyperparameter
and analyze its effect on the attack performance. The tuning range is from 16 to 128 in
a step of 16. We set the maximal embedding size to 128, as there are only around 140
measurements for the least represented class for the ASCAD dataset, so higher values
would trigger a singular matrix problem, and the template attack would fail.

The embedding tuning results are shown in Figure 7. From the results, a larger
embedding size could lead to worse attack performance. Indeed, the additional features
introduced by a larger embedding size could harm the overall attack performance as they
may contain noise learned from the irrelevant raw features. Moreover, more embedding
features would either dilute the features extracted by the triplet model or require more
training effort, thus reducing the attack performance.

(a) ASCAD_F. (b) ASCAD_R. (c) AES_HD.

Figure 7: The effect of embedding size.

When evaluating smaller embedding sizes, size 32 performs comparable (Figure 7b)
or even better than size 16. As expected, an overly small embedding size would not

detailed settings for each loss function and leakage model are listed as follows, and the results for the HW
and ID leakage models are separated by ’/’. ASCAD_F: Contrastive=1.0/0.2; Lifted Structure: 0.4/0.2;
Pinball: 0.2/0.2. ASCAD_R: Contrastive=1.0/0.6; Lifted Structure: 0.8/0.6; Pinball: 1.0/0.4. AES_HD:
Contrastive=0.8; Lifted Structure: 0.8; Pinball: 1.0.

Lichao Wu, Guilherme Perin and Stjepan Picek 429

have enough dimensions to represent the characteristic of the raw features. Although the
optimal embedding size would be different when testing other datasets, we believe the
relationship between the embedding size and attack performance follows the observations
in this section. Since it is common to conduct feature engineering when running the
template attack, we do not consider the effort required to tune the embedding size more
substantial.

5.2.3 Triplet Margin

In this section, we vary the triplet margin and investigate its influence on the attack
performance. The test setting is the same as in the previous sections. The minimum
margin is set to be 0.2, which is aligned with [SKP15].

The experimental results are shown in Figure 8. From the results, the increase of the
margin value could slightly degrade the attack performance in some cases (Figure 8a).
When the margin becomes too large, since too many simple triplets are involved in training,
the model can easily converge to the local optima and stop learning. Still, compared with
the effect of the size of the embedding shown in Figure 7, the margin has a limited effect
on the attack performance.

(a) ASCAD_F. (b) ASCAD_R. (c) AES_HD.

Figure 8: The effect of margin.

5.2.4 Training Epochs

Accuracy is one of the core metrics to evaluate a deep learning model in the deep learning
domain. Most of the individual examples must be correctly classified to reach high accuracy.
As a consequence, when using the triplet network to extract the features, a high training
effort is required to extract meaningful embeddings (1 000 to 2 000 CPU hours according
to [SKP15]). This section explores the influence of the number of training epochs on
attack performance. Same as in the previous sections, the results are averaged over 20
independently trained models. As mentioned, each epoch training requires around 20
seconds with a single GPU.

As shown in Figure 9, more training epochs lead to worse attack performance for
ASCAD_F and ASCAD_R, indicating they suffer more from overfitting. Indeed, although
the introduction of α in the distance metric increases the difficulties of the selected triplets,
it reduces the number of valid triplets that can be used for learning. If the profiling traces
are limited or well-protected by countermeasures, a too small alpha could significantly
contribute to the observed effect. The most straightforward approach to prevent/delay
such an effect is to increase the pooling size/stride of the triplet model. The triplet model
could focus on more general features from input by doing this. As a demonstration, we
increase the pooling size/stride of the first pooling layer from 15 to 60 in Table 2. As
shown in Figure 10, although overfitting still occurs, the performance remains stable with
more training epochs without a performance loss.

430 Deep Learning-assisted Template Attack

(a) ASCAD_F. (b) ASCAD_R. (c) AES_HD.

Figure 9: The effect of training epoch.

(a) ASCAD_F. (b) ASCAD_R. (c) AES_HD.

Figure 10: The effect of training epoch with the increased pooling size and stride.

Compared with other deep learning attacks that generally require more than 50 training
epochs [BPS+20, KPH+19, ZBD+21], our triplet-based method dramatically speeds up
the feature learning process. Indeed, the DL-based SCA attacks aim at training an efficient
classifier that should work well in both efficient feature extraction and precise classification.
To reach both goals, careful hyperparameter tuning and an increased training effort are
required. On the other hand, the triplet-based method splits the feature extraction and
classification into separate steps (same as the conventional profiling SCA attack method).
Therefore, the task of the triplet model is much simpler and straightforward: transfer and
combine raw features that can maximize the embedding distance between different clusters.
The triplet model can extract meaningful features more efficiently with the SCA-optimized
distance metric. For the same reason, the hyperparameter’s flexibility in designing a triplet
model is significantly increased.

5.2.5 Training Set Size

Similar to other deep learning-based methods, the triplet model can require large quantities
of data to perform well. However, the training sets for the triplet network have more
constraints: 1) a single training set for a triplet network consists of three individual samples
(anchor, positive, and negative), and 2) the selection of the positive and negative samples is
limited by the margin value. Following this, the triplet network training may require more
traces than the conventional deep learning attacks. To investigate the relation between
the number of training traces and the attack performance, we vary the number of the
profiling traces from 10 000 to 50 000 with a step of 5 000 traces. The results are shown in
Figure 11. Note that for the ID leakage model, due to the lack of training data, training
with 10 000 traces always leads to an unsuccessful template attack (singular matrix), so
the results are not presented.

In all test scenarios, more training traces lead to better attack performance. Besides, a
significant performance leap can be observed when the number of training traces increases
from 10 000 to 20 000 for the HW leakage model. For the HD leakage model, this trend

Lichao Wu, Guilherme Perin and Stjepan Picek 431

(a) ASCAD_F. (b) ASCAD_R. (c) AES_HD.

Figure 11: The effect of training set size.

extends to 25 000 profiling traces. Indeed, with a 10 000 training set, the smallest cluster
has very limited samples (i.e., 35 for HW and 20 for ID). Knowing that not all of them can
form a triplet due to triplet margin restriction, the triplet network cannot generalize well
for the minority clusters, thus leading to poor performance or even attack failure for both
leakage models. On the other hand, the performance increases slower when the traces are
above 20 000, indicating that the triplet model reaches its maximum feature extraction
capability.

5.3 What Can We Learn?
Based on the conducted experiments, we provide several general observations:

• When attacking the original datasets (without noise addition), with a single deep
learning model, triplet-assisted template attack performs comparably to or better
than the state-of-the-art models from the literature that consider pre-selected windows
of features.

• With a single deep learning model, triplet-assisted template attack can be more
resilient to noise in horizontal and vertical dimensions than deep learning-based
attack and commonly used feature engineering techniques.

• The optimal α values are different for different datasets, but starting with a larger
value (i.e., 0.9) would be a good starting point.

• The newly proposed Hybrid Distance helps the semi-hard loss function to outperform
other loss functions for SCA tasks.

• The embedding size has a dominant influence on the attack performance. Either
too large or too small embedding size would lead to the degradation of the attack
performance.

• Increasing margin will increase the triplet loss and provide additional capability
to the triplet network to learn from the data. However, since the semi-hard triplet
selection is also based on the margin value (the negatives lie inside the margin), a
greater margin would also include more easy triplet being formed. In general, the
triplet network still has a high tolerance towards the variation of the margin value.

• The number of training traces has a significant impact on the attack performance.
• The triplet network is highly efficient in extracting the leakage-related features.

One-epoch training is sufficient to train a triplet network for the evaluated datasets.

6 Conclusions and Future Work
This work investigates how to extract useful features from side-channel leakages for efficient
template attacks. To accomplish this, we use the concept of triplet networks that have
the task of finding a well-performing embedding based on the input traces. We conduct
experiments on three publicly available datasets and three leakage models, showing that our

432 Deep Learning-assisted Template Attack

deep learning-assisted template attack can effectively break targets (even with the addition
of noise) with significantly reduced training effort. This result is especially significant
as we compared it with a number of deep learning architectures that were specifically
tuned for different experimental settings. Additionally, we show that our approach is
rather resilient to desynchronization. Finally, we systematically investigate the influence of
multiple hyperparameters in the proposed attack scheme, which could be helpful in future
research.

We plan to extend our approach to raw traces (and not pre-selected windows as used
now). Since the raw traces are significantly larger (e.g., 100 000 features vs. 4 000 features),
it would be interesting to explore the limitations of triplet networks. Additionally, we aim
to explore the combinations of triplet networks with simpler machine learning techniques
like the random forest or support vector machines. Finally, it would be interesting to see
whether continuous encoding of labels would be beneficial for the proposed method.

Acknowledgements
This work received funding in the framework of the NWA Cybersecurity Call with project
name PROACT with project number NWA.1215.18.014, which is (partly) financed by
the Netherlands Organisation for Scientific Research (NWO). Additionally, this work was
supported in part by the Netherlands Organization for Scientific Research NWO project
DISTANT (CS.019).
The authors thank our anonymous reviewers and our shepherd, Alexandre Venelli, for
their valuable comments and suggestions.

References
[APSQ06] Cédric Archambeau, Eric Peeters, F-X Standaert, and J-J Quisquater. Tem-

plate attacks in principal subspaces. In International Workshop on Crypto-
graphic Hardware and Embedded Systems, pages 1–14. Springer, 2006.

[BCS21] Olivier Bronchain, Gaëtan Cassiers, and François-Xavier Standaert. Give me 5
minutes: Attacking ascad with a single side-channel trace. Cryptology ePrint
Archive, 2021.

[BHvW12] Lejla Batina, Jip Hogenboom, and Jasper GJ van Woudenberg. Getting more
from pca: First results of using principal component analysis for extensive
power analysis. In Cryptographers’ track at the RSA conference, pages 383–397.
Springer, 2012.

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. J. Cryptographic Engineering, 10(2):163–188, 2020.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neu-
ral networks with data augmentation against jitter-based countermeasures.
In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware
and Embedded Systems – CHES 2017, pages 45–68, Cham, 2017. Springer
International Publishing.

[CK13] Omar Choudary and Markus G. Kuhn. Efficient template attacks. In Aurélien
Francillon and Pankaj Rohatgi, editors, Smart Card Research and Advanced
Applications - 12th International Conference, CARDIS 2013, Berlin, Germany,
November 27-29, 2013. Revised Selected Papers, volume 8419 of LNCS, pages
253–270. Springer, 2013.

Lichao Wu, Guilherme Perin and Stjepan Picek 433

[CR19] Anurag Chowdhury and Arun Ross. Fusing mfcc and lpc features using 1d
triplet cnn for speaker recognition in severely degraded audio signals. IEEE
transactions on information forensics and security, 15:1616–1629, 2019.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template Attacks. In
CHES, volume 2523 of LNCS, pages 13–28. Springer, August 2002. San
Francisco Bay (Redwood City), USA.

[GFZ+17] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and Song Wang.
Learning dynamic siamese network for visual object tracking. In Proceedings
of the IEEE international conference on computer vision, pages 1763–1771,
2017.

[GHO15] Richard Gilmore, Neil Hanley, and Maire O’Neill. Neural network based attack
on a masked implementation of AES. In 2015 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 106–111, May 2015.

[GLRP06] Benedikt Gierlichs, Kerstin Lemke-Rust, and Christof Paar. Templates vs.
stochastic methods. In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 15–29. Springer, 2006.

[HA15] Elad Hoffer and Nir Ailon. Deep metric learning using triplet network. In
International workshop on similarity-based pattern recognition, pages 84–92.
Springer, 2015.

[HCL06] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by
learning an invariant mapping. In 2006 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’06), volume 2, pages
1735–1742. IEEE, 2006.

[HGM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
J. Cryptogr. Eng., 1(4):293–302, 2011.

[HPGM16] Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens. Side-
channel analysis of lightweight ciphers: Does lightweight equal easy? In
Gerhard P. Hancke and Konstantinos Markantonakis, editors, Radio Frequency
Identification and IoT Security - 12th International Workshop, RFIDSec 2016,
Hong Kong, China, November 30 - December 2, 2016, Revised Selected Papers,
volume 10155 of Lecture Notes in Computer Science, pages 91–104. Springer,
2016.

[HZ12] Annelie Heuser and Michael Zohner. Intelligent Machine Homicide - Breaking
Cryptographic Devices Using Support Vector Machines. In Werner Schindler
and Sorin A. Huss, editors, COSADE, volume 7275 of LNCS, pages 249–264.
Springer, 2012.

[JW02] Richard Arnold Johnson and Dean W. Wichern. Applied multivariate statistical
analysis. Prentice Hall, Upper Saddle River, NJ, 5. ed edition, 2002.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan Hanjalic.
Make some noise. unleashing the power of convolutional neural networks for
profiled side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 148–179, 2019.

[KUMH17] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
Self-normalizing neural networks. In Advances in neural information processing
systems, pages 971–980, 2017.

434 Deep Learning-assisted Template Attack

[LMBM13] Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bontempi, and Olivier
Markowitch. A Machine Learning Approach Against a Masked AES. In
CARDIS, Lecture Notes in Computer Science. Springer, November 2013. Berlin,
Germany.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch, and
François-Xavier Standaert. Template attacks vs. machine learning revisited
(and the curse of dimensionality in side-channel analysis). In International
Workshop on Constructive Side-Channel Analysis and Secure Design, pages
20–33. Springer, 2015.

[LZC+21] Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention
to raw traces: A deep learning architecture for end-to-end profiling attacks.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
235–274, 2021.

[MKR16] Iaroslav Melekhov, Juho Kannala, and Esa Rahtu. Siamese network features for
image matching. In 2016 23rd International Conference on Pattern Recognition
(ICPR), pages 378–383. IEEE, 2016.

[MOP06] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Springer, December 2006. ISBN 0-387-
30857-1, http://www.dpabook.org/.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In International
Conference on Security, Privacy, and Applied Cryptography Engineering, pages
3–26. Springer, 2016.

[MZ13] Zdenek Martinasek and Vaclav Zeman. Innovative method of the power analysis.
Radioengineering, 22(2), 2013.

[OSXJS16] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric
learning via lifted structured feature embedding. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 4004–4012, 2016.

[PCP20] Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek. Strength in numbers:
Improving generalization with ensembles in machine learning-based profiled
side-channel analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(4):337–364, Aug. 2020.

[PHG17] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Template attack versus
bayes classifier. J. Cryptogr. Eng., 7(4):343–351, 2017.

[PHJ+17] Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Sylvain Guilley,
Domagoj Jakobovic, and Nele Mentens. Side-channel analysis and machine
learning: A practical perspective. In 2017 International Joint Conference on
Neural Networks, IJCNN 2017, Anchorage, AK, USA, May 14-19, 2017, pages
4095–4102, 2017.

[PHJ+18] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and Francesco
Regazzoni. The curse of class imbalance and conflicting metrics with machine
learning for side-channel evaluations. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2019(1):209–237, Nov. 2018.

[PHJB19] Stjepan Picek, Annelie Heuser, Alan Jovic, and Lejla Batina. A systematic
evaluation of profiling through focused feature selection. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 27(12):2802–2815, 2019.

http://www.dpabook.org/

Lichao Wu, Guilherme Perin and Stjepan Picek 435

[PWP21a] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection
scenarios for deep learning-based side-channel analysis. Cryptology ePrint
Archive, Report 2021/1414, 2021. https://ia.cr/2021/1414.

[PWP21b] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring feature selection
scenarios for deep learning-based side-channel analysis. Cryptology ePrint
Archive, 2021.

[RAD20] Keyvan Ramezanpour, Paul Ampadu, and William Diehl. SCARL: side-channel
analysis with reinforcement learning on the ascon authenticated cipher. CoRR,
abs/2006.03995, 2020.

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforcement
learning for hyperparameter tuning in deep learning-based side-channel analy-
sis. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):677–707, Jul. 2021.

[SA08] François-Xavier Standaert and Cédric Archambeau. Using subspace-based
template attacks to compare and combine power and electromagnetic infor-
mation leakages. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 411–425. Springer, 2008.

[SC11] Ingo Steinwart and Andreas Christmann. Estimating conditional quantiles
with the help of the pinball loss. Bernoulli, 17(1):211–225, 2011.

[SKP15] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified
embedding for face recognition and clustering. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 815–823, 2015.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model for
differential side channel cryptanalysis. In Josyula R. Rao and Berk Sunar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2005, pages
30–46, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A unified frame-
work for the analysis of side-channel key recovery attacks. In Antoine Joux,
editor, Advances in Cryptology - EUROCRYPT 2009, pages 443–461, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[VLL+10] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, Pierre-
Antoine Manzagol, and Léon Bottou. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising criterion. Journal
of machine learning research, 11(12), 2010.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel. Revis-
iting a methodology for efficient cnn architectures in profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(3):147–
168, Jun. 2020.

[WEG87] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis.
Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987.

[WP20] Lichao Wu and Stjepan Picek. Remove some noise: On pre-processing of
side-channel measurements with autoencoders. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2020(4):389–415, Aug. 2020.

https://ia.cr/2021/1414

436 Deep Learning-assisted Template Attack

[WP21] Lichao Wu and Guilherme Perin. On the importance of pooling layer tuning
for profiling side-channel analysis. IACR Cryptol. ePrint Arch., 2021:525, 2021.

[WPP20] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated
hyperparameter tuning for deep learning-based side-channel analysis. Cryp-
tology ePrint Archive, Report 2020/1293, 2020. https://eprint.iacr.org/
2020/1293.

[WPP21] Lichao Wu, Guilherme Perin, and Stjepan Picek. On the evaluation of deep
learning-based side-channel analysis. Cryptology ePrint Archive, Report
2021/952, 2021. https://ia.cr/2021/952.

[WSL+14] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang,
James Philbin, Bo Chen, and Ying Wu. Learning fine-grained image similarity
with deep ranking. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1386–1393, 2014.

[ZBD+21] Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard, and Alexan-
dre Venelli. Ranking loss: Maximizing the success rate in deep learning side-
channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(1):25–55,
2021.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli. Method-
ology for efficient cnn architectures in profiling attacks. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2020(1):1–36, Nov. 2019.

A Autoencoder Implementation
The design of the autoencoder used in this work follows [WP20]. We simplify the original
denoising autoencoder as our goal is not to remove noise from the traces but to extract
the embeddings from the latent space. Intuitively, the latent space can be considered the
representation of compressed data. For an autoencoder, the dimension of the latent space
is usually defined by the layer in the middle. The implementation details are listed in
Table 10 (BN stands for the batch normalization layer). We use SeLU as the activation
function, the loss function is Adam with a learning rate of 1e-4, and the number of training
epochs is set to 50.

https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/1293
https://ia.cr/2021/952

Lichao Wu, Guilherme Perin and Stjepan Picek 437

Table 10: Autoencoder architecture used in the experiments.
Layer kernel number/size neurons

Conv*2+BN+AvgPooling 256/2 -

Conv*2+BN+AvgPooling 256/2 -

Conv+BN+AvgPooling 128/2 -

Conv+BN+AvgPooling 128/2 -

Conv+BN+AvgPooling 64/2 -

Dense - 8 to 128

Deconv+BN+UpSampling 64/2 -

Deconv+BN+UpSampling 128/2 -

Deconv+BN+UpSampling 128/2 -

Deconv*2+BN+UpSampling 256/2 -

Deconv*2+BN+UpSampling 256/2 -

Deconv 1/2 -

Crop - -

	Introduction
	Preliminaries
	Notation
	Profiling Side-channel Analysis
	Evaluating the Attack Performance
	Datasets
	Leakage Models and the Number of Classes

	Related Works
	Triplet Attack
	Similarity Learning and Triplet Network
	Triplet Loss with Hybrid Distance
	Attack Scheme
	Neural Network Architectures
	The Environment

	Experimental Results
	Performance Evaluation
	Hyperparameter Evaluation
	What Can We Learn?

	Conclusions and Future Work
	Autoencoder Implementation

