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Abstract. To counter side-channel attacks, a masking scheme randomly encodes key-
dependent variables into several shares, and transforms operations into the masked
correspondence (called gadget) operating on shares. This provably achieves the de
facto standard notion of probing security.
We continue the long line of works seeking to reduce the overhead of masking. Our
main contribution is a new masking scheme over finite fields in which shares of different
variables have a part in common. This enables the reuse of randomness / variables
across different gadgets, and reduces the total cost of masked implementation. For
security order d and circuit size `, the randomness requirement and computational
complexity of our scheme are Õ(d2) and Õ(`d2) respectively, strictly improving upon
the state-of-the-art Õ(d2) and Õ(`d3) of Coron et al. at Eurocrypt 2020.
A notable feature of our scheme is that it enables a new paradigm in which many
intermediates can be precomputed before executing the masked function. The
precomputation consumes Õ(`d2) and produces Õ(`d) variables to be stored in RAM.
The cost of subsequent (online) computation is reduced to Õ(`d), effectively speeding
up e.g., challenge-response authentication protocols. We showcase our method on
the AES on ARM Cortex M architecture and perform a T-test evaluation. Our
results show a speed-up during the online phase compared with state-of-the-art
implementations, at the cost of acceptable RAM consumption and precomputation
time.
To prove security for our scheme, we propose a new security notion intrinsically
supporting randomness / variables reusing across gadgets, and bridging the security of
parallel compositions of gadgets to general compositions, which may be of independent
interest.
Keywords: Side-Channel Attack · Masking · Cost Amortization · Precomputation

1 Introduction
Side-channel attacks that exploit leakage emitting from devices pose an important threat for
cryptographic implementations. Masking [CJRR99, ISW03] is one of the most investigated
protection techniques. The core idea is to randomly split each secret-dependent variable in
finite fields (e.g., F2) into a vector of d+ 1 shares called sharing, and then implement the
cryptographic algorithm over sharings instead of the raw secrets. This ensures that the
initial secret cannot be rebuilt from any d intermediate variables in the implementation,
which is called d-private security (a.k.a., d-probing security). While the leakages of all the
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x̂[1]ŷ[0], x̂[1]ŷ[1], x̂[1]ŷ[2]
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Figure 1: ISW multiplication with d = 2.

d+ 1 shares enable the reconstruction of secrets theoretically, the intrinsic noise in the
leakages renders secret recovery infeasible in practice, if the leakages of all the shares are
independent [CJRR99, DDF14, GS18, PR13].

To have secure functionalities with shares as input and output, a masking scheme,
sometimes called a private circuit compiler, firstly constructs gadgets over sharings for
various elementary calculations, and then composes the gadgets to obtain the desired
functionality. In 2003 [ISW03], Ishai, Sahai, and Wagner introduced the first d-probing
secure gadget for the multiplication over F2, which is called ISW multiplication1. The
scheme takes the additive sharings where the XOR of the shares gives the secret, and
outputs the additive sharing of the product. In a nutshell, the ISW multiplication is
performed through two steps. First, it calculates the outer product of the input sharings,
resulting in a (d+1)× (d+1) matrix, where the XOR of entries equals the secret output.
The second step compresses the entries with some randomness into the output shares. We
showcase the procedure with d = 2 in Figure 12, where input sharings are x̂ and ŷ, and
output sharing is ẑ.

The ISW multiplication requires (d + 1)d/2 random bits and runs with complexity
(defined by the size of circuit that computes it) O(d2) [ISW03], making any function
of circuit size ` admits a masked implementation using O(`d2) bits of randomness, and
running with complexity O(`d2). Subsequently, plenty of works have emerged to make the
ISW scheme (or its variants) more practical by, e.g., reducing the randomness complex-
ity [BBP+16, BBP+17, KR18, CS19, CS20, BGR18] and ensuring independent leakages
of all the shares [GMK16, RBN+15, MPL+11, FGP+18]. Recently, besides optimizing a
single gadget, the community has noticed the benefits of amortization techniques that
reduce the averaged complexity for several masked operations. This roughly follows two
directions, namely randomness reuse and code-based masking.

The first direction aims at reusing random bits in different gadgets. Faust et al.
introduced a method allowing secure reuse of some random bits among different gadgets
for the threshold implementation [FPS17]. Ishai et al. proposed to expand the randomness
using the so-called robust pseudorandom generator (PRG) [IKL+13], where the number of
random bits (that should be generated from True Random Number Generator) for seeds is
independent of the circuit size. A recent work of Coron et al. describes a very practical
construction, making the number of random bits to be only Õ(d2) and independent of the
circuit size, at the cost of computational complexity growing to Õ(`d3) due to the runs of
PRG [CGZ20].

As for the second direction, recently, Wang et al. showed that a generic type of masking
called code-based masking is able to encode multiple secrets together into one codeword
and calculate parallel operations over these secrets together in the masked domain, which
naturally enables the cost amortization [WMCS20]. Their work resulted in a scheme
using Õ

(
(d+ `)2) random bits with computational complexity Õ

(
`(d+ `)2), which is then

optimized to Õ(d2) and Õ(`d2) respectively in follow-up work [WGS+20]. However, this
direction only allows amortization across parallel operations, which largely restricts the

1Later in [RP10], ISW multiplication was generalized to the case over any finite field.
2For completeness, we recall in Appendix A the full description.
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application.

1.1 Our Contributions
1.1.1 Cost Amortized Masking with Common Shares

We propose a new masking scheme that could effectively combine the advantages of the two
aforementioned directions. In our new scheme, a part of shares of different key-dependent
variables is the same. Thereby, randomness and intermediate variables can be reused
among different operations, achieving cost amortization. Concretely, as shown in Figure 2
with second-order security in probing model, let (x̂i, ŷi) and (x̂j , ŷj) be input sharings of
two multiplication gadgets over a finite field. Before calculating the outer products, our
scheme first refreshes the sharings to (x̂′i, ŷ′i) and (x̂′j , ŷ′j) such that the last two shares of
x̂′i and x̂′j (resp., ŷ′i and ŷ′j) are the same, making the lower right 2× 2 sub-matrices of
outer products the same as well. Then, randomness in the compression and refreshing can
be reused across the two multiplications.

Our temporary sharings x̂′i and x̂′j cannot be additive (which is different from the ISW
multiplication), as otherwise the leakage of {x̂′i[0], x̂′j [0]} gives rise to x⊕ y ≡ x̂′i[0]⊕ x̂′j [0],
where x and y are the secret variables of the sharings x̂′i and x̂′j respectively, and ⊕ is
the field addition. This effectively violates probing security. Similarly, the temporary
sharings (ŷ′i, ŷ′j) cannot be additive either. To address this issue, we follow the idea of inner
product masking [BFG15] and construct the refreshing in such a way that x ≡ 〈x̂′i,ai〉
(resp., y ≡ 〈ŷ′i,ai〉) and x ≡ 〈x̂′j ,aj〉 (resp., x ≡ 〈ŷ′j ,aj〉), where 〈·, ·〉 denotes the inner
product. Probing security is guaranteed if vectors ai and aj are linearly independent. The
above adaptions finally contribute to a new masking scheme using Õ(d2) random bits with
computational complexity Õ(`d2), where ` is the circuit size.

ŷ′i[0], ŷ′[1], ŷ′[2]

x̂′i[0], x̂′[1], x̂′[2]

Outer product
Compress
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x̂′j[0], x̂′[1], x̂′[2]
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Figure 2: Concept of our scheme with security order d = 2.
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Alice Bob

question

· Call online masked encryption:
· answer′ ← E(sharedkey, question, pv)

answer

· Call online masked encryption:
· answer′ ← E(sharedkey, question, pv′)

· Check if answer = answer′

· Generate the randomness
· Perform the precompution
· Output precomputed values: pv

· Generate the randomness
· Perform the precompution
· Output precomputed values: pv′

Figure 3: Precomputation-based design paradigm for challenge–response authentication
protocols.

1.1.2 Precomputation-based Design Paradigm for Masking

A promising feature of our scheme is that, most of the intermediate variables can be
precomputed only by randomness. For example, in Figure 2, the intermediate variables
related to the common part should be independent of the input and only determined by
randomness. Thus, these variables and their functions can be precomputed for each call of
the cryptographic function. Concretely, the masked implementation of a function can be
represented as f̂

(
x̂, ĝ()

)
, where x̂ is the sharing of input, and f̂ and ĝ are deterministic and

randomized functions respectively. In such a way, our masking scheme with common shares
can be divided into two phases: precomputation and online computation. The former
phase uses Õ(d2) random bits, runs in Õ(`d2), and outputs Õ(`d) precomputed variables
required to be stored in RAM. The online computation takes the input sharings and
precomputed variables and performs the functionality of masked cryptographic algorithm
in Õ(`d).

This property can significantly lift our masking scheme in many scenarios. For example,
Figure 3 shows the challenge-response authentication protocols (e.g., the authentication
and key agreement protocol as main building blocks securing 3/4G and some 5G networks)
where Alice presents a question (aka., the “challenge”) and Bob must provide a valid answer
(aka., the “response”) to be authenticated. The answer can be calculated by encryption
from the question and a pre-shared symmetric key. To prevent the side-channel attack,
the encryptions are protected by masking. Both Alice and Bob can call the function ĝ to
produce precomputed variables before the answer or question completely arrive, and then
they call the f̂ . This strategy is quite practical since the transferring of answers/questions
is relatively slow compared with encryption (even with masking countermeasure).

1.1.3 New Security Notion for Proofs: From Parallel to General Compositions

The naive method of d-private proof is to show by enumeration that the joint distributions
of possible tuples of any d intermediate variables are independent of the secret. However,
such an enumeration becomes intricate as the size of the function grows, and it is only
feasible for small circuits such as a single multiplication gadget. This naturally motivates
the composition approach, i.e., proving that under certain conditions, a large circuit built
upon d-private gadgets is d-private. In this respect, several composable security notions
have been introduced, such as Non-Inference (NI), Strong Non-Inference (SNI) [BBD+16]
and Probe-Isolating Non-Inference (PINI) [CS19]. Thanks to those security notions, a
composition of gadgets can be proven to be globally d-private secure. However, in our
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Figure 4: An arbitrary composition (on the right) that can be described a bipartite graph
is RNI, as long as the parallel compositions (on the left) of gadgets in each partition is
RNI.

scheme, due to the common shares, many intermediate variables and randomness are
reused across different gadgets, and thus the previous security notions for single gadgets
are not quite suitable. In this regard, new security notions are needed.

Note that security for the case of parallel composition, in which there is no input-to-
output connection between different gadgets, is easier to prove than the case of general
composition. Inspired by this, first, we put forward a new security notion named Random-
ness Reusable Non-Inference (RNI) 3. Then, we consider the situation that the gadgets can
be divided into two disjoint sets such that: (a) every cross-gadget input-output-connection
crosses the two sets, and (b) randomness/intermediate variable-reuse is limited within
each set, as illustrated in Figure 4. In other words, the composed gadget is a bipartite
graph with gadgets as vertexes and connections of gadgets as edges. With the above, any
composition that can be described as such a bipartite graph is RNI, as long as the parallel
composition of gadgets in each partition is RNI. This enables deducing the proof for any
masked implementation to the parallel composition of our new gadgets. Compared with
other well-know composable security notions such as NI/SNI, RNI intrinsically supports
randomness/variables reusing.

1.1.4 Application to AES

Finally, to show the practical relevance of the new masking, we describe an application of
our countermeasure to the block cipher AES-128 in the precomputation-design paradigm.
We implement masked AES on the ARM Cortex M architecture, and report the performance
results. It shows that our scheme contributes to a speed-up for the online phase compared
with the state-of-the-art implementations. Notably, when the security order is d = 8, our
implementation achieves a gain of up to 141% in the timing, at the cost of 11KB of RAM
for storing precomputed intermediates.

We provide a T-test evaluation for our implementation, which validates the security
order, but also shows that the more complex algebraic structure of our masking (than
the Boolean one) makes it more robust to some lapses (e.g., transitional leakage) in
implementation.

3Strictly speaking, the new notion is associated with a function called share-scale function defined in
Section 3.2. Nevertheless, in introduction, we focus on showing the concept, and omit the technical details.
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Noted that, the implementation secure in the probing model should be regarded as the
first necessary step to a provably side-channel secure implementation. We provide our result
only for illustrative purposes. Many works (e.g., [BDF+17, DFS15, CPR07, MPW21])
have shown that it still challenging to integrate a secure implementation in probing model
to a side-channel secure one for a particular platform or micro-architecture. E.g., the
implementation should involve sufficient noise, which we deem out of scope and do not
investigate in this (already quite long) paper. But, we believe the application result shows
the practical relevance of the new masking w.r.t. the efficiency.

1.2 Related Works on Masking with Common Shares
The idea of using common shares in masking has been put forward by Coron et al.
in [CGPZ16]. The work first studied the case of two multiplications z · x and z · y over
a finite field with a common operand z, and proved that the ISW multiplication gadget
can still be secure even if half of the shares of x and y are the same. This saved half field
multiplications. Then, the work generalized the case to multiple parallel multiplications
without a common operand and saved roughly 1/4 multiplications. Later in [CRZ18], this
technique was adopted for the countermeasure of look-up table proposed in [Cor14], and
brought a significant speed-up.

Compared with these prior works, our scheme is both more general and more practical.
Notably, in our scheme, d shares (out of d + 1 shares in a sharing) are common across
multiple sharings that do not need to be in parallel. That is, considering the case of two
multiplications z1 ← x1 · y1 and z2 ← x2 · y2, our scheme allows that

1. d shares of x1 and x2 (resp., y1 and y2) are the same, and,

2. most importantly, x2 = z1 or y2 = z1, i.e., the parallelism of the multiplications is
not necessary.

1.3 Organization
Below we first present notations and backgrounds in Section 2. We then introduce our
new security notion and related composability rules in Section 3. We describe the new
masking scheme and discuss the concrete security in Section 4. Finally, Section 5 presents
the application to AES.

2 Preliminaries
2.1 Notations
In this paper, we denote by Fq a finite field with q = pm for any prime p and positive
integer m, and denote field elements by lower-case letters. For any x ∈ Fq, let −x be the
additive inverse of x. We use ⊕ to denote plus over the finite field and 〈·, ·〉 to denote the
inner product. Let calligraphies (e.g., I) be sets, and |I| denote the length of the set I.
Let

⋃n
k=1 Ik (resp.,

⋂n
k=1 Ik) be the union (resp., intersection) of sets I1, . . . , In. For any

integers i ≤ j, we use [i :j] to denote the set of integers {i,. . . ,j}. Let bold lower cases (e.g.,
x) be the vectors over F|x|q , where |x| denotes the length of the vector, x[i] denotes the ith

element of vector x, and x[i :j] denotes the vector made up of ith to jth elements of vector
x. Unless otherwise noted, we assume the vectors are row vectors, and the column vectors
are denoted as xT. We use

∑
x to denote the summation of all the elements of vector x.4

Let x�y be the element-wise multiplication between two vectors x and y of the same size.
Let bold capital letters (e.g., A) be the matrices in Fr×cq (or r × c matrix), for row and

4As the symbol sums all the elements, we omit writing bounds for the sake of brevity.
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column counts being r and c respectively. Let [a; b] be the matrix that is the concatenation
of vectors a and b in column, and [a, b] be the vector that is the concatenation of vectors a
and b in row. We use

∑
A to denotes the summation of all the rows of matrix A, resulting

in a vector. Similarly,
∑
AT denotes the summation of all the rows of matrix AT that

is the transpose of A. A set of variables can be represented as {xk}nk=1
def= {x1, . . . , xn},

{xk}k∈K
def= {xk for k ∈ K} or xK

def= {xk for k ∈ K}, and these representations can be
abused for an arbitrary set of vectors or matrices. Let Õ(n) def= O(nlogcn) with c a constant.

2.2 Private Circuits
We view an arithmetic circuit (shorted as a circuit in the rest of this paper) C as a directed
acyclic graph with gates and wires being vertices and edges respectively. The wires carry
variables in Fq and the gates are elementary calculations over Fq. A randomized circuit is
a circuit augmented with random gates. Variables carried in the wires of a circuit C are
called intermediate variables of C. The size (aka, the complexity) of a circuit is the number
of gates. Particularly, a Boolean circuit is a circuit whose wires carry variables in F2 and
the gates are elementary calculations over F2. A probe to a circuit is an intermediate
variable whose value is assumed to be revealed to any adversary. For a circuit C with input
x ∈ Fnq , C(x) returns the output y ∈ Fn′

q , which we denote y = C(x). And for a set P of
probes, CP(x) returns the values of the probes by feeding x as the input of C. We call a
set (or vector) of variables (say, x) over Fq independently distributed of the other vector
of variables (say, y) if Pr(x = α,y = β) = Pr(x = α) Pr(y = β) for any value α of x and
any value β of y, where the probability is taken over the random coins used to generate
these vectors.

Definition 1 (Private circuit compiler [ISW03]). A private circuit compiler for a circuit
C with input in Fnq and output in Fn′

q is defined by a triple (I,T,O) where

• I : Fq → Fd+1
q , is an encoder that randomly maps each input x ∈ Fq to a sharing

x̂ ∈ Fd+1
q such that there exists a constant vector α ∈ Fd+1

q such that 〈x̂,α〉 = x. In
this paper, the indices of shares in a sharing start from 0. Particularly, a sharing x̂
of x is called an additive sharing, if

∑d
i=0 x̂[i] = x.

• T is a circuit transformation whose input is circuit C, and output is a randomized
circuit C′ with n sharings as the input, and n′ sharings as the output.

• O : Fd+1
q → Fq, is a decoder that maps each output sharing ẑ ∈ Fd+1

q to the
corresponding output z ∈ Fq, i.e., z ← 〈ẑ,α〉 for a constant vector α ∈ Fd+1

q .

We say that (I,T,O) is a private circuit compiler and C′ is a d-private circuit (or d-probing
secure) if the following requirements hold:

• Correctness: for any input x ∈ Fnq , O◦
(
C′(I◦(x))

)
= C

(
x
)
, where I◦ (resp., O◦) is

a canonical encoder (resp., decoder) that encodes (resp., decodes) each element of
input secrets x (resp., each sharing of output sharings) by repeatedly calling I (resp.,
O).

• Privacy: for any input x ∈ Fnq and any set of probes P such that |P| ≤ d, C′P
(
I(x)

)
are independent of the input x, where d is called the security order.

The index of an input or output share (say, x̂k[i]) of gadget is defined as the index of the
share in the sharing, i.e., the integer i. The position of an input or output share (say, x̂k[i])
of gadget is defined as the pair of indices (i, k). We consider the circuit transformation T
realized by the composition of gadgets. A gadget is a randomized circuit whose inputs and
outputs are sharings. We say that a gadget G implements a function f : Fnq → Fn′

q , if and



Weijia Wang, Chun Guo, Yu Yu, Fanjie Ji and Yang Su 297

only if O◦
(

G
(
I◦(x)

))
= f(x) for any x ∈ Fnq , where I◦ (resp., O◦) encodes (resp., decodes)

each input (resp., output). In the rest of the paper, we usually write a gadget in the form
of GRH, where G is the name, subscript H denotes the parameters related to the gadget’s
functionality, and superscript R denotes the randomness used in the gadget. We use the
plural form of the name to denote multiple gadgets, e.g., Gs.

Gadget composition builds bigger circuits from a number of gadgets, by connecting the
output wires of some gadgets to the input wires of the others. To cleanly pinpoint the
“pattern” of a composition, we appeal to an acyclic graph C. That is, the resulting bigger
circuit is obtained by replacing the vertices of C with the gadgets. In such a graph, the
involved gadgets are called sub-gadgets, and the edges carry sharings. We call sub-gadgets
containing input (resp., output) sharings of the composed gadget as input (resp., output)
gadgets. Note that the composed gadget C′ is a gadget, and thus a recursive composition
of gadgets is also a gadget.

2.3 Different Types of Gadgets
As gadgets can be used as building blocks of private circuits, it is necessary to specify the
types of gadgets that are required for protecting any cryptographic algorithms.

The first type is addition gadget that implements addition over finite fields. As
the encoder is usually a homomorphism over addition, such a gadget can be correctly
constructed by applying additions on the shares of the same index, which we will denote as
the trivial implementation of addition and give in Gadget 1, named TrivAdd. Besides, we are
also interested in a special type of function f : Fq → Fq such that f(x)⊕f(y) = f(x⊕y)⊕c,
where c is a constant in Fq. This type of operations can be

1. a linear function taking with one input/output sharing ⊕ a constant, or

2. ph power: f(x) = xp
h with h a positive integer. By Lucas’ Theorem (all binomial

coefficients
(
ph

i

)
for i ∈ [1 : ph−1] are multiplies of p): f(x ⊕ y) = (x ⊕ y)ph =

xp
h ⊕ yph = f(x)⊕ f(y).

We call this type of operation the affine operation, and present the trivial masked imple-
mentation in Gadget 2, named TrivAff.

Gadget 1 TrivAdd
Input: sharings x̂, ŷ ∈ Fd+1

q .
Output: sharing ẑ ∈ Fd+1

q .
The gadget ensures that:

∑
ẑ =

∑
x̂⊕

∑
ŷ.

1: for i := 0; i ≤ d; i++ do
2: ẑ[i] := x̂[i]⊕ ŷ[i]
3: end for

It becomes more difficult for (nonlinear) gadgets implementing nonlinear operations
such as multiplication, since the encoder is usually not a homomorphism over nonlinear
functions. To the best of our knowledge5, the complexity of most multiplication gadgets
in small fields is Õ(d2) and require Õ(d2) random bits. The last type is the refreshing
gadget (a.k.a, the refreshing) that re-randomizes a sharing, which is usually needed to be
placed between two gadgets to enable the composition. Additionally, in this paper, we

5It should be noted that the scheme proposed in [BBP+17] reduces either randomness usage or
complexity to O(d). But, despite the small instantiations for d ≤ 4 [KR18], it requires large enough finite
fields, e.g., the field size q > d(d + 1)(12d)d [BBP+17, Theorem 5.4].
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Gadget 2 TrivAffL,c

Input: sharings x̂ ∈ Fd+1
q .

Output: sharing ẑ ∈ Fd+1
q .

Parameters: function L : Fq → Fq and constant c ∈ Fq.
The gadget ensures that:

∑
ẑ = L

(∑
x̂
)
⊕ c.

1: for i := 0; i ≤ d; i++ do
2: ẑ[i] := L(x̂[i])
3: end for
4: ẑ[0] := ẑ[0]⊕ c

provide a particular refreshing to transform sharings to sharings with common shares. See
Section 4.1 for more details.

2.4 Maximum Distance Separable (MDS) Matrix
We recall the Maximum Distance Separable (MDS) Matrix below.

Definition 2. For an `× n matrix A over a finite field, let Ã def= (A; In) be the matrix
obtained by joining the n× n identity matrix In to A. Then, A is MDS, if and only if
every possible n× n submatrix of Ã is non-singular.

Then, we give a lemma showing a property related to an MDS matrix, which will be
helpful in the proof of security for our proposed gadget in Section 4.

Lemma 1. Let A be an ` × n MDS matrix over Fq, and let B be an n × n′ uniformly
distributed random matrix over Fq. Then, any n rows of [B;AB] are uniformly distributed.

Proof. Let Ã def= [I;A]. By Definition 2, every possible n × n submatrix of Ã is non-
singular. As B is uniformly distributed, any n rows of [B;AB] = [I;A]B are uniformly
distributed, completing the proof.

3 Composable Security Notions
Although the definition of private security nicely excludes side-channel attacks, it is not
trivial to directly prove large circuits (such as the AES block cipher) to be private secure.
The difficulty stems from enumerating the probes within the circuit, making the complexity
of which increases exponentially with the circuit size. The natural solution is to use the
composition method, so that one can focus on each individual gadget, and the global
d-private security is ensured by composition. In this section, we start with the concept of
‘classical’ composable security notions, and discuss their limitation in presence of common
shares. Then, we propose our new security notions and present how the composability
works (even in the case with common shares) using the new notations.

3.1 Concept and Limitations
We recall the definition of simulatability introduced in [BBP+16]:

Definition 3 (Simulatability [BBP+16]). Let P be a set of probes of a gadget G with
input shares X . Let S ⊆ X be a subset of input shares. A simulator is a randomized
function Sim: F|S|q → F|P|q . Probes P can be simulated with input shares S if and only if
there exists a simulator Sim such that for any input shares X , the distributions of GP(X )
and Sim(S) are identical.
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Figure 5: Examples of probe propagation.

Then, the probes of a gadget are partitioned as follows:

• Output probes: output variables.

• Internal probes: variables except for the output probes.

The concept of simulatability can significantly make security proof easier. Rather than
exhaustively examining the entire private circuit, one can concentrate on analyzing every
single gadget, and leave the rest to the probe propagation. For example, in Figure 5, G1
and G2 are two gadgets with one input/output sharing, and each gadget ensures that any
t probes can be simulated with t input shares. Figure 5-(a) shows the parallel composition
of the gadgets, where the input sharings are amalgamated. We can see that the t1 and t2
probes in G1 and G2 respectively can be simulated with t1 + t2 input shares.

Figure 5-(b) shows the serial composition, in which G1’s output links to G2’s input.
t2 (e.g., t2 = 1) probes in G2 can be simulated with t2 input shares S of G2, and S and
t1 (e.g., t1 = 2) probes in G1 can be simulated with t1 + t2 input shares of G1, ensuring
the security if t1 + t2 ≤ d (e.g., d = 3). In fact, it illustrates the first composable security
notion called non-inference (NI) proposed by Barthe et al. [BBD+16], which we recall as
follows together with a stronger variant.

Definition 4 ((Strong) Non-Inference: (S)NI [BBD+16]). A gadget is NI (resp., SNI), if
and only if any tint internal probes and tout outputs probes such that tint + tout ≤ d can
be simulated with at most tint + tout (resp., tint) shares of each input sharing.

Notably, it has been proven that the ISW multiplication gadget is SNI [BBD+16].
Then, we recall the composability of NI/SNI gadgets in Lemma 2. A straightforward
corollary is that any composition of SNI gadgets is SNI.

Lemma 2 ([BBD+16]). A composition of gadgets is NI, if every gadget is either NI or
SNI and the following composition rule is fulfilled: each sharing is used at most once as
input of a gadget that is not SNI. Moreover, a composition of gadgets is SNI, if it is NI
and the output sharings are from SNI gadgets.

Nevertheless, in presence of randomness and intermediate variables reuse across the
gadgets, the probe propagation and the definition of composable security notions need to
be paid more attention. For example, In Figure 5-(c), we consider the case that G1 and G2
are composed in parallel. The common randomness or intermediates across the gadgets
may cause more insecure input shares: the t1 and t2 shares of G1 and G2 can be simulated
with t1 + t2 shares of each of G1 and G2, and the amalgamation of 2 × (t1 + t2) shares
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(from input sharings of G1 and G2) covers all the shares of the amalgamated sharing, which
is insecure.

It is non-trivial to solve such an issue. First of all, we need to consider the (composed)
gadget with multiple input sharings (typically, the parallel composition of multiple gadgets),
and investigate more carefully on the subset of input shares (i.e., insecure shares) to simulate
the probes and subset of output shares to be simulated. Considering n sharings x̂[1:`], the
naive definitions of the subsets can be as follows:

(1) At most t shares of every input sharing, i.e., {x̂k[Ik]}`k=1 with t = max
k∈[1:`]

|Ik|. This

is the type located at the input shares required to simulate the probes in NI/SNI.

(2) t shares of all input sharings, i.e., t = {x̂k[Ik]}`k=1 with
∑`
k=1 |Ik|. This is the type

located at the output shares as the probes that can be simulated in NI/SNI.

We can see that the positions of shares in input/output sharings can be defined
differently. In this respect, to quantify a set of shares, we define the following shares-scale
function.

Definition 5 (Shares-scale function). A shares-scale function f takes a set of shares and
returns an integer from 0 to d+ 1, such that the following properties are fulfilled.

1. Any shares set S contains

• at most f(S) shares of each sharing, and
• at least f(S) shares.

2. For any two shares sets S1 and S2 from the same set of sharings, f(S1 ∪ S2) ≤
f(S1) + f(S2).

Based on Definition 5, we can rephrase NI/SNI from Definition 4 to Definition 6,
which can facilitate the understanding of our new security notion presented in the next
sub-section.

Definition 6 ((Strong) Non-Inference, rephrased). Let G be a gadget with input and
output sharings x̂[1:`in] and ŷ[1:`out] resp.. We define two shares-scale functions fin and
fout as follows:

(1) For any set S def=
⋃`in

k=1 x̂k[Ik] of input shares, fin(S) = max
k∈[1:`in]

|Ik|. That is, S

contains at most fin(S) shares of each input sharing.

(2) For any set O def=
⋃`out

k=1 ŷk[Jk] of output shares, fout(O) =
∑`out

k=1 |Jk|. That is, O
contains fout(O) output shares.

Then, G is NI (resp., SNI), if for any internal probes Pint and output probes O with
|Pint|+ fout(O) ≤ d, there exists a set S of input sharings with fin(S) = |Pint|+ fout(O)
(resp., fin(S) = |Pint|), such that Pint and O can be simulated with S.

3.2 New Security Notions
This sub-section presents our new composable security notion compatible with the reuse
of randomness and intermediates across gadgets. Compared with the NI/SNI defined in
Definition 6, the new notion has two additional properties to support randomness reuse:



Weijia Wang, Chun Guo, Yu Yu, Fanjie Ji and Yang Su 301

1. The shares-scale functions for input shares (to simulated probes) and output shares
(to be simulated) are the same. That is, fin = fout. This property makes the security
notion more compatible with the gadget with multiple input and output sharings
and thus enables the trivial composition. Note that, the composability of gadgets
in Multiple-Inputs / Multiple-Outputs Strong Non-Inference (MIMO) [CS20] also
benefits from this property.

2. The positions of internal probes Pint determines which input shares S to simulate
both Pint and some output probes O (On the contrary, for the case of NI/SNI,
positions of S are determined by both Pint and O). It means that the positions of S
can be determined by only the internal probes Pint but S can simulate both Pint
and some output probes O, which enables separating the simulation into two stages:

(a) Determine the positions of S by internal probes Pint.
(b) Simulate the internal probes Pint and some output probes O.

This property is the key concept allowing the deduction from parallel composition to
any composition.

Then, based on the above intuition, we can give our new composable security notion in
Definition 7.

Definition 7 (Randomness Reusable Non-Inference with a shares-scale function f : RNI-f).
Let G be a gadget with input and output sharings X and Y resp.. G is RNI-f , if and only
if f is a shares-scale function and for any internal probes Pint, there exists a shares set
S ⊂ X of input sharings with f(S) = |Pint|, such that Pint and any output probes O ⊂ Y
with f(O) + |Pint| ≤ d can be simulated with S.

Note that, the definition of RNI-f is explicitly associated with a shares-scale function
f . That is, for example, when we say two gadgets are both RNI-f , it means that they are
RNI-f with the same shares-scale function f . As the goal of composable security notion is
to prove the probing security, we give Lemma 3 to bridge RNI-f to the probing security.

Lemma 3 (RNI-f implies probing security). An RNI-f gadget is d-probing secure if any
d input shares are independently distributed of the secret input.

Proof. Let P = Pint∪O be a set of probes with Pint the internal probes and O the output
probes such that |Pint|+ |O| ≤ d. By the definition of the shares-scale function, we have
f(O) ≤ |O|, and thus |Pint|+ f(O) ≤ |Pint|+ |O| ≤ d.

By the definition of RNI-f , there exists a set of shares S with f(S) ≤ |Pint|, such that
Pint and O can be simulated with S. Also, by the definition of the shares-scale function,
S contains at most f(S) ≤ |Pint| ≤ d of each input sharings.

If any d input shares are independently distributed of the secret input, then any d
input shares of each input sharings should be also independently distributed of the secret
input, hence S is independently distributed of the secret input. Then, P is independently
distributed of the secret input, completing the proof.

3.3 Main Theorem on Composition: From Parallel to General
In this sub-section, we present our main theorem that bridges the parallel composition to
general compositions of gadgets.

We consider the composed gadget G a bipartite graph with gadgets as vertexes. That
is, the sub-gadgets in G can be divided into two disjoint sets such that every connection of
gadgets crosses the two sets. We show in Theorem 1 that if randomness/intermediate reuse
is limited within each set and the parallel composition of gadgets in each set is RNI-f ,
then the composed gadget G is RNI.
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Theorem 1. Let G0
def= {G0,1, . . . ,G0,`0} and G1

def= {G1,1, . . . ,G1,`1} be two sets of gadgets
reusing some randomness and intermediate variables. Any composition of the gadgets is
RNI-f if the following conditions are fulfilled.

1. Each input sharing of G0 (resp., G1) links to either an output sharing of G1 (resp.,
G0) or an input sharing of the composed gadget.

2. Randomness used in G0 is independent of that in G1.

3. The parallel composition of the gadgets in G0 (resp., G1) is RNI-f .

Proof sketch. Let G be a composed gadget with input and output shares X and Y resp..
Let internal probes be Pint, the proof is to build a simulator Sim and shares S ⊂ X , such
that Sim can simulate Pint and any set O ⊂ Y if f(O) + f(S) ≤ d.

For i ∈ {1, 2}, let Gi be the parallel composition of the gadgets in Gi, we have Gi is
RNI-f . Let Pi be internal probes in Gi, i.e., Pi

def= Pint ∩ Vi with Vi all internal probes of
Gi. There exists a set Si of input shares of Gi with f(Si) ≤ |Pi|, such that Pi and any
output shares Oi of Gi can be simulated with Si, if f(O) + |Pi| ≤ d.

We then construct the shares S = (S0 ∪ S1) ∩ X . And, the simulator Sim can be
constructed by mingling the simulators for G1 and G2. This can be done because each
input sharing of G0 (resp., G1) links to either an output sharing of G1 (resp., G0) or an input
sharing of the composed gadget. Then, intuitively and informally, we can set Oi = S1−i,
and thus, by the property of RNI-f , the positions of Si is only determined by the internal
probes Pi but Si can simulate both Pi and output shares Oi, hence Pi and S1−i can be
simulated with Si. For strict proof, the simulator Sim should be constructed by simulating
the small gadgets one by one from input to output. It requires the existence of a simulator
(i.e., ˆSimi) simulating gadgets one by one for the parallel composition, which we give in
Lemma 5.

We give the detailed proof in Section 3.3.1, and show an example in Section 3.3.2.

3.3.1 Proof of Theorem 1

Before running into the proof of Theorem 1, we first give Lemmas 4 and 5 to replenish the
definition of the simulatability, where GP(S) returns probes P by feeding S and leaving
S̄ def= X/S as any values.

Lemma 4. For a gadget G with input shares X , if probes P can be simulated by the input
shares S ⊂ X , then for any input shares X , the distributions of GP(X ) and GP(S) are
identical. That is, GP(X ) is independently distributed of S̄ def= X/S.

Proof. Assume that GP(X ) depends on S̄ def= X/S, then there does not exist any simulator
Sim that can simulate the probes P without knowing S̄, contradicting to the existence of
the simulator Sim that can simulate P with S.

Lemma 5. Let G be the parallel composition of gadgets G1, . . . ,G`, and let P def=
⋃`
k=1 Pk

be the probes in G with Pk the probes in Gk. If P can be simulated by the input shares
S def=

⋃`
k=1 Sk of G with Sk a set of Gk’s input shares, then there exists a simulator ˆSim to

simulate P by evaluating G1, . . . ,G` as follows:

• It first samples all randomness R used in G.

• Then, for each k ∈ [1 : `], it evaluates gadget Gk and returns its probes Pk with Sk
and R, leaving the other input shares to be any values.
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Proof. Let X be all the input shares of the composed gadget, and let S̄ def= X/S. By the
instruction of the simulator ˆSim, GP(S ∪ S̄) behaves identically to ˆSim(S), except for the
input shares S̄. By Lemma 4, GP(X ) = GP(S ∪S̄) is independently distributed of S̄. Thus,
the distributions of GP(X ) and ˆSimP(S) are identical, completing the proof.

Then, we give the proof of Theorem 1 as follows.

Proof. Let the composed gadget be G with input and output shares X and Y resp.. For
i ∈ {0, 1} and k ∈ [1 : `], let Xi,k and Yi,k be the input and output shares of Gi,k,
Xi

def=
⋃`i

k=1 Xi,k and Yi
def=
⋃`i

k=1 Yi,k. We aim at proving that for any internal probes Pint
with |Pint| ≤ d, there exists a simulator Sim and a set S ⊂ X , such that Sim can simulate
Pint and any set O ⊂ Y, if f(O) + |Pint| ≤ d. In other words, our goal is to build such a
simulator Sim and input shares S for internal probes Pint.

For i ∈ {0, 1}, let the parallel composition of the gadgets in Gi be Gi, let Pi = Pint ∩Vi
be the internal probes in gadgets of Gi, where Vi consists of all internal variables in Gi.
By Lemma 5 and the definition of RNI-f , there exist shares Si ⊂ Xi, such that Pi and
any set Oi ⊂ Yi with f(Oi) + |Pi| ≤ d can be simulated with a simulator ˆSimi that first
samples the randomness and then evaluates gadgets in {Gi,1, . . . , Gi,`i} one by one.

We construct the shares S = (S0 ∪ S1) ∩ X , and we have f(S) = f((S0 ∪ S1) ∩ X ) ≤
f(S0 ∪ S1)f(S0) ∪ f(S1) ≤ |Pint|. For any gadget Gi,k, let Si,k

def= S ∩ Xi,k, and let
Pi,k

def= Pint∩Vi,k be the internal probes in Gi,k, where Vi,k consists of all internal variables
in Gi,k. The simulator Sim can be constructed by mingling ˆSim0 and ˆSim1 as follows.

1. Mark all gadgets as un-simulated.

2. Sample all the randomness R.

3. Find an un-simulated gadget (say, Gi,k) such that at least one of the following
conditions is fulfilled:

(a) each share in Si,k is either an input share of G or has been simulated;
(b) Si,k = ∅.

Note that, a gadget Gi,k fulfilling at least one of the above conditions always exists,
since we can find such a gadget by the following steps:

(a) Randomly select a gadget (say, Gi,k).
(b) If Gi,k fulfills one of the above conditions, then the search terminates.
(c) If not, there exists one sharing (say, x̂i,k) in Si,k linked to an un-simulated

gadget (say, G1−i,k′). Replace (i, k) by (1− i, k′), and go to step (b).

As a circuit is a directed acyclic graph, a gadget fulfilling one of the above conditions
can be found in at most `0 + `1 steps.

4. Evaluate Gi,k and calculate Pi,k and Oi,k
def= (S1−i ∩Yi,k)∪ (O∩Yi,k) by R and Si,k,

which is a subroutine of ˆSimi. We can see that

|
`i⋃
k=1
Pi,k|+ f(

`i⋃
k=1

(Oi,k)) ≤ |
`i⋃
k=1
Pi,k|+ f(

`i⋃
k=1

(S1−i ∩ Yi,k)) + f(
`i⋃
k=1

(O ∩ Yi,k))

≤ |
`i⋃
k=1
Pi,k|+ f(S1−i) + f(O)

≤ |Pi|+ |P1−i|+ f(O) ≤ d ,



304 Side-Channel Masking with Common Shares

sharing

G0,1 G0,2S0,1

: gadgets

S1,1 S0,2

S1,2

O0,2O1,1O0,1
OS

G1,1
G1,2

Figure 6: An example illustrating the proof of Theorem 3.3.1

where the first “≤” is based on the definition of shares-scale function f . Therefore,
all the probes in

{
P0,k ∪ O0,k

}`0

k=1 and
{
P1,k ∪ O1,k

}`1

k=1 can be simulated from the
evaluation above. This means that the Pi,k and Oi,k can be simulated even if the
other gadgets are all simulated.

5. Mark Gi,k as simulated. Repeat steps 3-5 until all the gadgets are evaluated, which
means all probes are simulated.

3.3.2 An Example Illustrating the Proof of Theorem 1 in Section 3.3.1

We illustrate the proof of Theorem 1 by showing the RNI-f security of the composed
gadget depicted in Figure 6. We aim at proving that, the composed gadget is RNI-f , if
the parallel composition of G0,1 and G0,2 is RNI-f and the parallel composition of G1,1
and G1,2 is also RNI-f .

Let X be the input shares of composed gadget, and let P be a set of internal probes
of the composed gadget. For i ∈ {0, 1} and k ∈ {1, 2}, let Pi,k be the internal probes
of Gi,k. Note that, the probes to the output shares of G0,1,G0,2,G1,1 can be regarded as
the internal probes of G1,1,G0,2,G1,2 resp.. By the definition of RNI-f , we can construct
the positions of input shares Si,k of each gadget based on the internal probes Pi,k, such
that Pi,k and any output probes Oi,k can be simulated, if f(Oi,k) + |Pi,k| ≤ d. Then, we
construct S def= X ∩ (S0,1 ∪ S1,2). For any set of output shares O with f(O) + |P| ≤ d, the
simulation can be done gadget-by-gadget as follows.

G0,1: We have O0,1 = S1,1 and f(S1,1) ≤ |P1,1|, then |P0,1|+ f(O0,0) ≤ |P0,1|+ |P1,1| ≤ d.
Thus, P0,1 ∪ S1,1 = P0,1 ∪ O0,1 can be simulated with S0,1.

G1,1: We have O1,1 = S0,2 and f(S0,2) ≤ |P0,2|, then |P1,1|+ f(O1,1) ≤ |P1,1|+ |P0,2| ≤ d.
Thus, P1,1 ∪ S0,2 = P1,1 ∪ O0,2 can be simulated with S1,1.

G0,2: We have O0,2 = S1,2 ∩ Y0,2 and f(S1,2) ≤ |P1,2|. By the definition of shares-scale
function, we have f(O0,2) ≤ f(S1,2) since O0,2 ⊆ S1,2. Then, |P0,2| + f(O0,2) +
|P0,1|+ f(O0,1) ≤ d. Thus, P0,2 ∪ O0,2 = P0,2 ∪ (Y0,2 ∩ S1,2) can be simulated with
S0,2, even after the simulation of G0,1, where Y0,2 is the set of output shares of G0,2.
Now, S1,2 = (S1,2 ∩ Y0,2) ∪ (S1,2 ∩ S) has been simulated.

G1,2: We have |P1,2|+ f(O) + |P1,1|+ f(O1,1) ≤ d. Thus, P1,2 ∪O can be simulated with
S1,2, even after the simulation of G1,1.

At last, by definition of shares-scale function, f(S) ≤ f(S0,1)+f(S1,2) = |P0,1|+ |P1,2|. As
|P0,1 ∩ P1,2| = 0 and P0,1 ∩ P1,2 ⊆ P, we have f(S) ≤ |P|. Therefore, P and any output
shares O with f(O) + |P| ≤ d can be simulated with S, completing the proof.
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3.4 Other Composition Rules
In this sub-section, for the generality and practicality of the composition, we give two
more composition rules regarding the RNI-f gadgets.

Although Theorem 1 bridges the security of parallel composition to general compositions,
more composition rules are still required when the parallel composition of gadgets is not
RNI-f . For completeness, we provide in Lemma 6 that RNI-f implies SNI for any
shares-scale function f .

Lemma 6. If a gadget is RNI-f , it is SNI.

Proof. By definition, RNI-f implies that any internal probes Pint and output probes O
with f(O) + |Pint| ≤ d can be simulated with some input shares S, such that f(S) = |Pint|.
By the definition of shares-scale function, we have |O| ≥ d− |Pint| and S contains at most
|Pint| share of each input sharing, completing the proof.

Then, we provide in Lemma 7 for the composition of RNI-f gadgets with independent
randomness.

Lemma 7. Any composition of RNI-f gadgets with independent randomness is RNI-f .

Proof. By Definition 5, for any two shares’ sets S1 and S2 from the some sharings, we have
f(S1 ∪ S2) ≤ f(S1) + f(S2). This gives that the parallel composition of RNI-f gadgets
with independent randomness is RNI-f . Then, by Theorem 1, any composition of RNI-f
gadgets with independent randomness is RNI-f .

The above composition rules only consider RNI-f gadgets. But, obtaining RNI-f is
non-trivial. For instance, we can easily verify that neither trivial addition nor affine gadgets
(i.e., TrivAdd and TrivAff) presented in Section 2.3 are RNI-f . At the same time, as we will
show in Section 4, the randomness and computational complexities of the RNI-f addition
we can obtain is Õ(d2), which is generally more costly than trivial implementations.

Fortunately, we show in Lemma 8 that the direct composition of a trivial affine gadget
and an arbitrary RNI-f gadget is RNI-f . Also note that, this composition rule only works
for the trivial affine gadget (which has only one input/output sharing), and the direct
composition of an RNI-f gadget and a trivial addition gadget (with two input sharings)
may not be secure in RNI-f .

Lemma 8. Any composition of an arbitrary RNI-f gadget and an arbitrary TrivAff is
RNI-f .

Proof. By the instruction of TrivAff, linear operations are evaluated over each share
separately. It conveys that each intermediate variable of TrivAff is a function of the
input or output share with the same index. That is, for an intermediate variable v
corresponding to the input share with index i, we have v = g1(x̂[i]) = g2(ẑ[i]), where x̂
and ẑ are input and output sharings respectively, and g1, g2 : Fq → Fq. Thus, from the
probing security point of view, there is no difference between an intermediate variable
v and the corresponding input share x̂[i] or output share ẑ[i]. Finally, we can replace
each intermediate variable in TrivAff by the corresponding input or output share in the
simulation of probes, completing the proof.

3.5 Relations of RNI-f , SNI, NI, PINI and Probing Security
In Figure 7, we illustrate the relations of our new notion RNI-f to the well-known SNI,
NI, PINI and probing security. While the composable security notions SNI, NI, PINI
and RNI-f imply probing security if any d input shares are independent of the secret,
they support the composition of small gadgets. SNI is stronger than NI but requires
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Figure 7: Relations of different security notions
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Figure 8: An example to illustrate the blocks in 7 sharings with d = 8. Each row contains
shares of a distinct sharing.

more randomness for a gadget to achieve. SNI gadgets support trivial composition, which
conveys that any composition of SNI gadget is SNI. PINI is another security notion
proposed by Cassiers et al. [CS19] supporting trivial composition. Compared with SNI,
PINI requires less randomness for a gadget to achieve. SNI, NI and PINI suffice the use
of independent randomness. That is, the random bits for different gadgets should be
independently distributed, which prevents the reuse of randomness cross gadgets.

By Lemma 6, our proposed RNI-f is stronger than SNI, which conveys that it also
supports trivial composition. More importantly, we have provided in Theorem 1 a compo-
sition rule that allows the randomness/variables reuse across different RNI-f gadgets. It
should be noted that, the definitions of the security notions do not imply any randomness
requirements, but all known implementations do.

3.6 Block-scale Function
In this sub-section, we introduce a specific shares-scale function called block-scale function,
which lies in between the two shares-scale functions (i.e., fin and fout in Definition 6) of
NI/SNI, and most importantly, complies with our new scheme presented in Section 4. The
block-scale function is based on the definition of block that we give below.

Definition 8 (Block). A block of sharings x̂[1:`] is a shares set x̂K[I], where K ⊆ [1 : `]
and I ⊆ [0 :d]. Moreover, x̂K[I] is a t-block if and only if t = |K|+ |I| − 1.

A block can be regarded as a “rectangle” containing shares. We exemplify different
blocks in Figure 8. Obviously, by definition, a 1-block is equivalent to a share. For a block
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S and any integer n ≥ 1, a set of nonempty blocks {Sj}nj=1 is a block-covering of S if and
only if S =

⋃n
j=1 Sj . Then, Lemma 9 shows a property of block-covering.

Lemma 9 (Property of block-covering). Let S be a t-block, and let {Sj}nj=1 be a block-
covering of S, where Sj is a tj-block for j ∈ [1 : n]. Then, we have

∑n
j=1 tj ≥ t.

Proof. We only consider the case when
⋂n
j=1 Sj = ∅ and n ≥ 2. It is because that, if⋂n

j=1 Sj 6= ∅, there exists t′j-block S ′j ⊆ Sj for j ∈ [1 : n] such that
⋂n
j=1 S ′j = ∅, and thus∑n

j=1 t
′
j ≤

∑n
j=1 tj , which conveys that we can consider {S ′j}nj=1 instead of {Sj}nj=1. And,

if n = 1, then S = S1 and thus
∑n
j=1 tj = t.

Let S def= x̂K[I] with K ⊆ [1 : `] and I ⊆ [0 : d]. We define the neighbor shares NS of S
by

NS
def= x̂max(K)[I] ∪ x̂min(K)[I] ∪ x̂K[max(I)] ∪ x̂K[min(I)],

where max(·) and min(·) return the maximum and minimum index resp.. In other words,
if we regard S as a rectangle containing shares, the neighbor shares are positioned at the
sides of the rectangle. We then call x̂max(K)[I], x̂min(K)[I] x̂K[max(I)] and x̂K[min(I)]
sides of S, and call x̂max(K)[max(I)],x̂max(K)[min(I)],x̂min(K)[max(I)] and x̂min(K)[min(I)]
vertices of S. By the definition of the block, we have t = |I|+ |K| = |NS |

2 + 1. We also
define the internal shares of S by TS

def= S/NS .
For any j ∈ [1 : n], we define N ′Sj ,S

def= NSj
∩ TS , which is the intersection of Sj ’s

neighbor shares and S’s internal shares. That is, N ′Sj ,S contains Sj ’s sides but contains no
S’s sides. As Sj ⊂ S, by geometric shape of a rectangle, Sj has at least one side that is
not a side of S, and thus we have |N ′Sj ,S | > 0 for any j ∈ [1 : n]. As every share in N ′Sj ,S
is included in Sj and another block of S1, . . . ,Sn, and every share in NS is included in S
and one block of S1, . . . ,Sn, we have

n∑
j=1

(2tj − 2) =
n∑
j=1
|NSj

| = |NS |+ 2
n∑
j=1
|N ′Sj ,S | = 2t− 2 + 2

n∑
j=1
|N ′Sj ,S |.

Thus, we have
∑n
j=1 tj = t+ n− 1 +

∑n
j=1 |N ′Sj ,S |.

We then prove that there exist at most 2 blocks in S1, . . . ,Sn such that neighbor shares
of each one involves only one internal share of S, i.e., there exist at most two indices j in
[1 : n] satisfying |N ′Sj ,S | = 1. Let Sj

def= x̂Kj
[Ij ] for j ∈ [1 : n]. Without loss of generality,

suppose |N ′Sj ,S | = 1, then 3 sides of Sj constitute a subset of 3 different sides of S. It
conveys that 2 vertices of S are included in both Sj and S. Hence, if there exists another
block, say Sj′ , such that |NSj′ ∩ TS | = 1, then another 2 vertices of S are included in both
Sj′ and S. As S only has 4 vertices, there exist at most two indices j in [1 : n] such that
|N ′Sj ,S | = 1, which conveys that

∑n
j=1 |N ′Sj ,S | ≥ 2 + 2(n− 2).

Finally, we have
n∑
j=1

tj = t+ n− 1 +
n∑
j=1
|N ′Sj ,S | ≥ t+ n− 1 + 2 + 2(n− 2) = t+ 2n− 3.

As we consider n > 1,
∑n
j=1 tj ≥ t+ 1 > t.

Then, we give the definition of the block-scale function as follows.

Definition 9 (The block-scale function). The block-scale function fb is a function that
takes a shares set and returns a positive integer, such that one of the following conditions
is fulfilled:

• If S is a t-block, then t = fb(S).
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• If S is not a block, then fb(S) = min
{Sj}n

j=1∈S

( n∑
j=1

fb(Sj)
)
, where S is the set made up

of all block-coverings of S.

The definition defines a deterministic function fb by minimizing the possible outputs.
That is, when S is not a block, it returns the least value over all the block-coverings of S;
and when S is a t-block, then by Lemma 9, fb(S) = t = min

{Sj}n
j=1∈S

( n∑
j=1

fb(Sj)
)
, where S

is the set made up of all block-coverings of S and the latter “=” holds by assigning n = 1.
Moreover, the definition is a recursive one that naturally supports the union of multiple
sets of shares, which we give in Lemma 10. Note that, Lemma 10 considers the union of
multiple sets of shares, which is stronger than the union of a block-covering that are blocks.

Lemma 10 (The union of multiple sets of shares). Let fb be a block-scale function, and
let S1, . . . ,Sn be shares sets of the same sharings, we have fb(

⋃n
j=1 Sj) ≤

∑n
j=1 fb(Sj).

Proof. Let S def=
⋃n
j=1 Sj , If S is not a block, then by definition,

fb(S) = min
n′=1,2,...

(
min

S=
⋃n′

j=1
S′

j

( n′∑
j=1

fb(S ′j)
))
≤

n∑
j=1

fb(Sj).

We then consider the case when S is a t-block. Assume fb(S) >
∑n
j=1 fb(Sj), then there

exist blocks S ′1, . . . ,S ′n′ such that S =
⋃n
j=1 Sj =

⋃n′

j=1 S ′j and
∑n′

j=1 fb(S ′j) =
∑n
j=1 fb(Sj),

and thus we have fb(S) >
∑n′

j=1 fb(S ′j). Without loss of generality, suppose S ′j is a t′j-block
for j ∈ [1 : n′], we then have t >

∑n′

j=1 t
′
j , contradicting to Lemma 9.

Lemma 11 shows that the block-scale function is a specific shares-scale function.

Lemma 11. The block-scale function fb is a shares-scale function.

Proof. Let fb be the block-scale function. Let S1 and S2 be any two sets of shares from
the same set of sharings, by Lemma 10, we have fb(S1 ∪ S2) ≤ fb(S1) + fb(S2).

Then, let S be a set of shares, the following two properties are fulfilled.

• By Lemma 10, we have fb(S) ≤
∑|S|
j=1

(
fb(pj)

)
= |S| with pj the share of S for

j ∈ [1 : |S|].

• By definition of the block-scale function, there exist a block-covering {S1, . . . ,Sn} of
S such that fb(S) =

∑n
j=1 fb(Sj). Let Sj

def= x̂Kj [Ij ] for j ∈ [1 : n], by Lemma 10, we
have fb(S) =

∑n
j=1 fb(Sj) =

∑n
j=1(|Kj |+ |Ij | − 1) ≥

∑n
j=1 |Ij |. Thus, S contains

at most f(S) shares of each sharing.

Therefore, the block-scale function is a shares-scale function.

We give a lemma showing a property of block-scale function, which will be helpful in
the security proof of our proposed gadget in Section 4.

Lemma 12. Let fb be the block-scale function. For any shares S = x̂K[0] ∪ x̂[1:`][I] of
sharings x̂[1:`] with K ⊆ [1 : `] and I ⊆ [1 : d], we have fb(S) ≥ |K|+ |I|.

Proof. By the recursive definition of block-scale function, there exist blocks S1, . . . ,Sn of
sharings x̂[1:`] such that fb(S) =

∑n
j=1 fb(Sj). The sets K and I can be constructed from

S1, . . . ,Sn as follows.

• Initiate K and I to be empty.
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• For each block Sj = x̂Kj
[Ij ] in S1, . . . ,Sn, we put indices in Ij/{0} into I. Then, if

0 ∈ Ij , we put indices in Kj into K. Now, we have x̂Kj
[Ij ] ⊂ x̂Kj

[0] ∪ x̂[1:`][Ik] and
|Kj |+ |Ij/{0}| ≤ fb(Sj).

Finally, we have fb(S) =
∑n
j=1 fb(Sj) ≥

∑n
j=1(|Kj |+ |Ij/{0}|) ≥ |K|+ |I|.

At last, we give a lemma showing the equivalence between t shares and a shares set of
sharings with common shares. This lemma will also be helpful in the security proof of our
proposed gadget in Section 4.
Lemma 13. Let x̂[1:`] be a set of sharings with common shares, i.e., x̂k[1 : d] = x̂k′ [1 :
d] = x̂[1 :d] for any k, k′ ∈ [0 : `]. Then, for any shares S of x̂[1:`], we have fb(S) = |S|.

Proof. We first prove fb(S) ≤ |S| for any set S of shares. Let S def= {p1, . . . , pt}. As one
share is a 1-block, we have fb(S) = fb(

⋃t
k=1{pk}) ≤

∑t
k=1 fb({pk}) = |S|.

We then prove fb(S) ≥ |S| for any set S of shares. The shares can be represented as
S = x̂K[0] ∪ x̂[1:`][I] with K ⊆ [1 : `] and I ⊆ [1 : d]. Obviously, we have |K|+ |I| ≥ |S|.
By Lemma 12, we have fb(S) ≥ |K|+ |I| ≥ |S|.

4 New Masking Scheme
4.1 Constructions of New Gadgets
In this sub-section, we present our new refreshing, multiplication and addition gadgets as
the building blocks of the masking scheme with common shares.

Gadget 3 is a refreshing gadget (named as RNIRefresh). A part of the output shares
ẑ[1 :d] is determined only by the random matrix R, and thus the refreshing always returns
the same shares ẑ[1 :d] for any input shares and parameter α as long as random matrix
R is the same. Hence, RNIRefresh provides a transformation from a set of sharings to
sharings with common shares, by refreshing the sharings using the same randomness R
and different parameters.

Moreover, we highlight by underlining in red color the parts that are independent of
the input sharing x̂. Considering that, in some cases, a part of the input x̂[1 :d] can be
precomputed by the randomness of the former gadget (e.g., two RNIRefreshes are linked
serially), we also highlight by underwaving in blue color the part that is independent of
x̂[0]. Note that the highlighted part enables the precomputation-based design paradigm
that we will discuss in detail in Section 4.3. We give the correctness and security proof of
parallel composition in Lemma 14.

Gadget 3 RNIRefreshRα
Input: sharings x̂ ∈ Fd+1

q .
Output: sharing ẑ ∈ Fd+1

q .
Parameter: α ∈ Fdq .
Randomness: matrix R ∈ Fd×dq .
The gadget ensures that: 〈ẑ,a〉 =

∑
x̂ with a def= [1,α].

1: ẑ[1 :d] :=
∑
RT

2: r := −αR
3:

:::::::::::::::::
t :=

∑
(x̂[1 :d]⊕ r)

4: ẑ[0] := x̂[0]⊕ t

Lemma 14. Let fb be the block-scale function. Let G be a parallel composition of `
RNIRefreshes using parameters α1, . . . ,α` respectively with the same random matrix R.
Then, we have:
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• Correctness. For any k ∈ [1 : `],
〈
ẑk, [1,αk]

〉
=
∑
x̂k, and ẑk[1 :d] is determined

only by randomness.

• Security. G is RNI-fb if the matrix [α1; . . . ;α`] is MDS.

Proof of correctness property in Lemma 14. For any k ∈ [1 : `], we have:

ẑk[0]⊕ 〈ẑk[1 :d],αk〉 = ẑk[0]⊕
(∑

RT
)
αT
k

= ẑk[0]⊕
∑

(αkR)

= x̂k[0]⊕
∑(

x̂k[1 :d]⊕ (−αkR)
)
⊕
∑

(αkR)

= x̂k[0]⊕
∑

x̂k[1 :d]

= xk .

And, as ẑk[1 :d] =
∑
RT, ẑk[1 :d] is only determined by the randomness.

Proof of security property in Lemma 14. We use subscript to differentiate the parameters
and variables in different gadgets, e.g., let αk and x̂k be the parameter and input sharing
of the k-th gadget. Particularly, as ẑk[1 : d] is identical for any values k, the output shares
of the parallel composed gadget can be represented as ẑ[1:`][0]∪ ẑ[1 : d]. We define a matrix
A

def= [α1; . . . ;α`]. The probes are partitioned into different subsets based on the types of
variables:

• Internal probes Pint:

– The probes in the input shares: Pinput.
– The probes in the random variables: Prand, which can be regarded as the

variables in the calculation of rk = −αkR or
∑
RT. Thus, for each probe p in

Prand, there exists a function g : Fdq → Fq and an index i ∈ [1 :d] (or, j ∈ [1 :d]),
such that p = g(R[i, 1], . . . ,R[i, d]) (or, p = g(R[1, j], . . . ,R[d, j])).

– The probes in the computation of
∑
tk with tk

def= x̂k[1 :d]⊕ rk: Psum.

We have |Pinput|+ |Prand|+ |Psum| ≤ |Pint|.

• Output probes O (By Lemma 13, |O| = fb(O)):

– The probes in ẑ[1:`][0]: O1.
– The probes in ẑ[1 : d]: O2.

We have |O1|+ |O2|+ |Pinput|+ |Prand|+ |Psum| = fb(O) + |Pint| ≤ d.

We build a set S and temporary indices’ sets Irand and Jrand and run a simulator that
proceeds by the following steps.

1. Initiate sets Irand, Jrand and S to be empty.

2. Put the probes in Pinput into S, and they can be simulated with S. This step puts
at most |Pinput| shares into S. Now, fb(S) ≤ |Pinput|.

3. The probes in Prand or O2 can be simulated by sampling from uniform distribution.
And, for each probe in the calculation in Prand, say p = g(R[i, 1], . . . ,R[i, d]) (or,
p = g(R[1, j], . . . ,R[d, j])), we put the corresponding index i to the set Irand (or, j
to the set Jrand), which is useful in the latter process of simulation. In this step,
there are at most |Prand|+ |O2| indices put into Irand and at most |Prand| indices
put into Jrand. That is, now, |Irand| ≤ |Prand|+ |O2| and |Jrand| ≤ |Prand|.
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4. For each probe in Psum, there exists a set J ′ ⊆ [1 : d], such that the probe can be
represented as p =

∑
tk[J ′]. Then, J ′ can be divided into two parts J ′1 and J ′2

such that J ′1 ⊆ Jrand and J ′2 ⊆ [1 : d]/Jrand. Then, the probe can be represented
as p =

∑
tk[J ′1]⊕

∑
tk[J ′2], we have:

• As
∑
tk[J ′1] can be simulated with x̂k[Jrand], put x̂k[Jrand] into S. Addi-

tionally, put x̂k[0] into S, which is useful in the latter simulation. We have
fb(x̂k[Jrand] ∪ x̂k[0]) ≤ |Jrand|+ 1.

• We then consider
∑
tk[J ′2] =

∑(
x̂k[J ′2]⊕αkR[,J ′2]

)
. By Lemma 1, any |Īrand|

rows of (AR[Īrand,])[,J ′2] are uniformly distributed with Īrand
def= [1 : d]/Irand,

and thus any |Īrand| rows of (AR)[,J ′2] are uniformly distributed (corresponding
to (αkR)[,J ′2] of |Īrand| gadgets). Clearly, as |Psum| ≤ d − |Prand| − |O2| =
|Īrand|.

∑
tk[J ′2] can be simulated from uniform distribution without knowing

any input shares.

Then, all the probes in Psum can be simulated with S, and now:

fb(S) ≤ |Pinput|+ |Jrand|+ |Psum| ≤ |Pinput|+ |Prand|+ |Psum| ≤ |Pint|.

5. For each probe in O1, there exists a set J ′ ⊆ [1 : d], and the probe can be represented
as p = x̂k[0]⊕

∑
tk[J ′], then J ′ can be partitioned into two parts J ′1 and J ′2 such

that J ′1 ⊆ Jrand and J ′2 ⊆ [0 : d]/Jrand. Then, the probe can be represented as
p = x̂k[0] ⊕

∑
(x̂k[J ′1] ⊕ rk[J ′1]) ⊕

∑
(x̂k[J ′2] ⊕ rk[J ′2]). As |Jrand| = |Prand| ≤ d,

J ′2 6= ∅. We separate the analysis into following two cases.

• If there exists no probe in Psum ∩Vk with Vk the set of all the internal variables
in Gk, then rk[J ′2] should not appears in internal probes. Then, the probe can
be simulated by sampling from uniform distribution.

• If there exists at least one probe in Psum ∩ Vk, the simulator has already put
x̂k[J ′1∪{0}] into S, and thus x̂k[0]⊕

∑
(x̂k[J ′1]⊕rk[J ′1]) can be simulated with S.

For x̂k[J ′2], as
∑
tk[J ′2] =

∑(
x̂k[J ′2]⊕αkR[,J ′2]

)
, by Lemma 1, any |Īrand| rows

of (AR[Īrand,])[,J ′2] are uniformly distributed with Īrand
def= [1 : d]/Irand, and

thus any |Īrand| rows of (AR)[,J ′2] are uniformly distributed (corresponding to
(αkR)[,J ′2] of |Īrand| gadgets). Clearly, as |Psum| ≤ d−|Prand|−|O2| = |Īrand|.∑
tk[J ′2] can be simulated from uniform distribution without knowing any input

shares.

Now, all the probes are simulated with shares S such that fb(S) ≤ |Psum|+|Prand|+|Pinput|,
and positions of S are determined by internal probes. Hence, for any internal probes Pint,
there exists a simulator Sim shares S of input sharings with fb(S) = |Pint|, such that for
any shares O of output sharings with |Pint|+ fb(O) ≤ d, the distributions of GP({x̂i}`i=1)
and Sim (S) are identical, where P is the set of all probes.

We give multiplication gadget with common shares in Gadget 4, named SubMul. It
complies with the strategy of product-then-compress of the ISW multiplication. We also
highlight parts that are independent of the input sharings x̂ and ŷ (by underlining in red
color) and parts that are independent of x̂[0] and ŷ[0] (by underwaving in blue color).
We give the security of parallel composition and correctness in Lemma 15. Notably, the
security part of Lemma 15 says that, informally speaking, the parallel composition of
SubMuls reusing randomness is somewhat secure in the probing model, if inputs of different
gadgets have shares in common.
Lemma 15. Let G be a parallel composition of ` gadgets SubMul using the same random
matrix R with inputs sharings x̂[1:`] and ŷ[1:`] satisfying x̂k[1 :d] = x̂k′ [1 :d] and ŷk[1 :d] =
ŷk′ [1 :d] for any k, k′ ∈ [1 :`]. Then we have:
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Gadget 4 SubMulRα
Input: sharings x̂ ∈ Fd+1

q , ŷ ∈ Fd+1
q .

Output: sharing ẑ ∈ Fd+1
q .

Parameter: α ∈ Fdq .
Randomness: matrix R ∈ Fd×dq .
The gadget ensures that: 〈ẑ,a〉 = 〈x̂,a〉〈ŷ,a〉 with a def= [1,α].

1: ẑ[1 :d] := −αRT

2: e := x̂[0]ŷ[0], v := x̂[0]ŷ[1 :d], w := x̂[1 :d]ŷ[0]
:::::::::::::::::
T := x̂[1 :d]Tŷ[1 :d]

. Calculate the outer product:
[
e, v
wT, T

]
:= x̂Tŷ

3:
:::::::::::::
r := α(T ⊕R)

4: t :=
(
w ⊕ (v ⊕ r)

)
5: z[0] := e⊕ 〈t,α〉

• Correctness. For any k ∈ [1 : `],
〈
ẑk, [1,αk]

〉
=
〈
x̂k, [1,αk]

〉〈
ŷk, [1,αk]

〉
, and

ẑk[1 :d] is determined only by the randomness.

• Security. Any internal probes Pint and output probes O with |Pint|+ fb(O) ≤ d can
be simulated with some shares Sx of {x̂k}`k=1 and some shares Sy of {ŷk}`k=1 such
that fb(Sx) ≤ |Pint|+ fb(O) and fb(Sy) ≤ |Pint|+ fb(O) , if the matrix [α1; . . . ;α`]
is MDS.

Proof of the correctness property in Lemma 15. For any k ∈ [1 : `], we have

ẑk[0]⊕ . . .⊕ ẑk[d] = ẑk[0]⊕
∑(

(−αkRT)�αk
)

= e⊕ (vk ⊕wk ⊕ rk)αT ⊕ (−αkRTαT
k )

= e⊕ (vk ⊕wk ⊕α(x̂[1 :d]Tŷ[1 :d]⊕RT))αT ⊕ (−αkRTαT
k )

= e⊕ vαT
k ⊕wαT

k ⊕αkx̂[1 :d]Tŷ[1 :d]αT
k ⊕αkRTαT

k ⊕ (−αkRTαT
k )

= x̂[0]ŷ[0]⊕ x̂[0]ŷ[1 :d]αT
k ⊕ ŷ[0]x̂[1 :d]αT

k ⊕αkx̂[1 :d]Tŷ[1 :d]αT
k

= (x̂[0]⊕ x̂[1 :d]αT
k )(ŷ[0]⊕ ŷ[1 :d]αT

k )
= xy .

And, as ẑk[1 :d] = αkR
T, ẑk[1 :d] is only determined by the randomness.

Proof of the security property in Lemma 15. We use subscript to differentiate the param-
eter and variables of different gadgets, e.g., let αk and x̂k be the parameter and input
sharing of the k-th gadget. Particularly, as x̂k[1 : d] (resp., ŷk[1 : d]) is identical for
any values k, the output shares of the parallel composed gadget can be represented as
x̂[1:`][0] ∪ x̂[1 : d] (resp., ŷ[1:`][0] ∪ ŷ[1 : d]). We also define the matrix A def= [α1; . . . ;α`].
Let TR

def= T ⊕R. The probes are divided into different subsets based on the types of
variables:

• Internal probes Pint:

– The probes in the input shares and tensor product: Pinput.
– The probes in the random variables: Prand, which can be regarded as the

variables in the calculation rk = −αkRT. Thus, for each probe p in Prand,
there exists a function g : Fdq → Fq and an index i ∈ [1 : d], such that p =
g(R[i, 1], . . . ,R[i, d]).
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– The probes in the computation of rk = αk(T ⊕ R): P×. For each probe p
in P×, there exists a function g : Fdq → Fq and an index j ∈ [1 :d], such that
p = g(TR[1, j], . . . ,TR[d, j]).

– The probes in the computation of ek ⊕ 〈t̂k,αk〉 = ek ⊕
〈
(w ⊕ (v ⊕ r)),αk

〉
:

Psum.

We have |Pinput|+ |Prand|+ |P×|+ |Psum| = |Pint|.

• Output probes O:

– The probes in ẑ[1:`][0]: O1.
– The probes in ẑ[1:`][1 : d]: O2. Let IO be the set of shares’ indices (in a sharing)

of the probes in O2. That is, suppose O2 = {ẑk[Ik]}`k=1, then IO =
⋃`
k=1 Ik.

By Lemma 12, we have |O1|+ |IO| ≤ fb(O). Thus, |O1|+ |IO|+ |Pinput|+ |Prand|+
|P×|+ |Psum| = fb(O) + |Pint| ≤ d

We build sets Sx, Sy and temporary indices’s sets Irand and Jrand and run a simulator
as following steps.

1. Initiate sets Sx, Sy, Irand and Jrand to be empty.

2. For each probe in Pinput, say x̂k[i], ŷk[j] or x̂k[i]ŷk[j] for k ∈ [1 : `] and i, j ∈ [0 : d],
put x̂k[i] into Sy and ŷk[j] into Sx. Then, p is a function of {x̂k[Ix]}k∈Kx and
{ŷk[Iy]}k∈Ky

, and thus can be simulated. After all the probes in Pinput are simulated,
we have |Sx| ≤ |Pinput| and |Sy| ≤ |Pinput|.

3. The probes in Prand or O2 can be simulated by sampling uniform distribution.
Additionally, for each probe in calculation of −αkRT, say p = g(R[i, 1], . . . ,R[i, d]),
put the corresponding index i to the sets Irand, which is useful in the latter process
of simulation. In this step, there are at most |Prand|+ |IO| indices put into Irand.
That is, now |Irand| ≤ |Prand|+ |IO|.

4. For each probe in P×, say, p = g(TR[1, j], . . . ,TR[d, j]), there exists a set I ′ ⊆ [1 : d],
and the probe can be represented as p = g(TR[I ′, j]), then I ′ can be divided into
two parts: I ′1 ⊆ Irand and I ′2 ⊆ [1 : d]/Irand. Hence, the probe can be represented
as p = g1(TR[I ′1, j]) ⊕ g2(TR[I ′2, j]), and the simulator puts j into Jrand, put ŷ[j]
into Sy, and separate the rest of analysis into following two parts.

• For TR[I ′1, j], as it can be simulated with x̂[Irand] and ŷ[j], the simulator puts
x̂[Irand] into Sx and ŷ[j] has already in Sy, then TR[I ′1, j] can be simulated
with Sx and Sy.

• For TR[I ′2, j] = T [I ′2, j] ⊕ R[I ′2, j], as variables in R[I ′2, j] do not appear in
the previous probes, TR[I ′2, j] can be simulated by sampling from uniform
distribution without knowing any input shares.

Then, all the probes in P× can be simulated with Sx and Sy. Now, we have

|Sx| ≤ |Pinput|+ |Irand| ≤ |Pinput|+ |Prand|+ |IO|,
|Sy| ≤ |Pinput|+ |P×|, |Jrand| ≤ |P×|, and ŷ[Jrand] ⊆ Sy .

5. For each probe in Psum or O1, there exists a set J ′ ⊆ [1 : d], and the probe can be
represented as p = βek ⊕ 〈tk[J ′],αk[J ′]〉 = g(ek, tk[J ′]) with β ∈ {0, 1}. J ′ can be
divided into two parts: J ′1 ⊆ Jrand and J ′2 ⊆ [1 : d]/Jrand. Hence, the probe can
be represented as p = βek ⊕ g1(tk[J ′1])⊕ g2(tk[J ′2]). The simulator puts x̂k[0] into
Sx and ŷk[0] into Sy (which increases the sizes of both Sx and Sy by |Psum|+ |O1|),
and we separate the rest of analysis into following three parts.
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• For βek, as the simulator has already put x̂k[0] into Sx and ŷk[0] into Sy, ek
can be simulated with Sx and Sy.

• For tk[J ′1], as it can be simulated with x̂[Jrand], ŷ[J ′1], x̂k[0] and ŷk[0], the
simulator puts x̂[Jrand] into Sx (which increases the sizes of both Sx by |Jrand| ≤
|P×|). We also have ŷ[J ′1] ⊆ Sy from step 4, and the simulator has already put
x̂k[0] into Sx and ŷk[0] into Sy. Then, tk[J ′1] can be simulated with Sx and Sy.

• For tk[J ′2], as we can rewrite it as tk[J ′2] = s⊕αkR[,J ′2] with s a function of x̂[1 :
d], ŷ[1 : d], x̂k[0] and ŷk[0], by Lemma 1, any |Īrand| rows of (AR[Īrand,])[,J ′2]
are uniformly distributed with Īrand

def= [1 : d]/Irand, and thus any |Īrand| rows
of (AR)[,J ′2] are uniformly distributed (corresponding to (αkR)[,I ′2] of |Īrand|
gadgets). Clearly, as |Psum| ≤ d− |Prand| = |Īrand|, the simulator can sample
tk[J ′2] from uniform distribution, and tk[J ′2] can be simulated without knowing
any input shares.

Then, all the probes in Psum can be simulated with Sx and Sy. Now, we have

|Sx| ≤ |Pinput|+ |Prand|+ |IO|+ |Psum|+ |O1|+ |Jrand|
≤ |Pinput|+ |Prand|+ |IO|+ |Psum|+ |O1|+ |P×|
≤ |Pint|+ |IO|+ |O1| ≤ |Pint|+ f(O), and

|Sy| ≤ |Pinput|+ |P×|+ |Psum|+ |O1| ≤ |Pint|+ |IO|+ |O1|
≤ |Pint|+ f(O) .

Now, all the probes are simulated with Sx ∪ Sy. By Lemma 13, fb(Sx) = |Sx| and
fb(Sy) = |Sy|. Therefore, for any internal probes Pint and output probes O, there exists a
simulator Sim and input shares S with fb(Sx) ≤ |Pint|+fb(O) and fb(Sy) ≤ |Pint|+fb(O),
such that the distributions of GP

(
{x̂i}`i=1 ∪ {ŷi}

`
i=1
)
and Sim (Sx ∪ Sy) are identical,

where P is the set of all probes.

We can build our RNI-fb multiplication with common shares by linking an RNIRefresh to
each input sharing of SubMul, and give the construction in Gadget 5, named Mul. Similarly,
we can build an RNI-fb addition gadget by linking an RNIRefresh to each input/output
sharing of TrivAdd, and give the construction in Gadget 6, named Add. The correctness of
Mul and Add can be guaranteed by the constructions of SubMul, TrivLin and RNIRefresh.
In Lemma 16, we show that the parallel composition of multiple Muls and Adds is RNI-fb,
if the concatenation of their parameters (i.e., vectors α) is an MDS matrix.

Gadget 5 MulRx,Ry,R
α

Input: sharings x̂ ∈ Fd+1
q .

Output: sharing ẑ ∈ Fd+1
q .

Parameter: α ∈ Fdq .
Randomness: matrices Rx,Ry,R ∈ Fd×dq .
The gadget ensures that:

∑
ẑ = (

∑
x̂)(
∑
ŷ).

1: x̂′ := RNIRefreshRx
α (x̂)

2: ŷ′ := RNIRefreshRy
α (ŷ)

3: ẑ := SubMulRα (x̂′, ŷ′)� [1,α]
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Gadget 6 AddRx,Ry
α

Input: sharings x̂, ŷ ∈ Fd+1
q .

Output: sharing ẑ ∈ Fd+1
q .

Parameter: α ∈ Fdq .
Randomness: matrices Rx,Ry ∈ Fd×dq .
The gadget ensures that:

∑
ẑ =

∑
x̂⊕

∑
ŷ.

1: x̂′ := RNIRefreshRx
α (x̂)� [1,α]

2: ŷ′ := RNIRefreshRy
α (ŷ)� [1,α]

3: ẑ := TrivAdd(x̂′, ŷ′)

Lemma 16. Let fb be the block-scale function, and let `1, `2 be positive integers. Let G
be a set consisting of `1 Muls and `2 Adds using the same randomness, i.e.,

G = {MulRx,Ry,Rz
α1

, . . . ,MulRx,Ry,Rz
α`1

,AddRx,Ry

β1
, . . . ,AddRx,Ry

β`2
}.

The parallel composition of gadgets in G is RNI-fb, if the matrix [α1; . . . ;α`1 ;β1; . . . ;β`2 ]
is MDS.

Proof. The composed gadget can be partitioned into two sub-gadgets:

• The parallel composition of RNIRefreshes at the beginning of Muls and Lins, denoted
as G1.

• The parallel composition of SubMuls and TrivAdds, denoted as G2.

Let ` def= `1 + `2, and the sharings between G1 and G2 be x̂[1:`] and ŷ[1:`] respectively.
According to the separation, we have the following two conclusions:

• For G1, by Lemma 14, the parallel compositions of {RNIRefreshRx
α1
, . . . ,RNIRefreshRx

α`
}

and {RNIRefreshRy
α1
, . . . ,RNIRefreshRy

α`
} are both RNI-fb.

• For G2, by Lemma 15 and the instruction of TrivAdd, any output shares O and tint
internal probes can be simulated with shares Sy of x̂[1:`] and shares Sy of ŷ[1:`] that
have been refreshed by G1, such that fb(Sx) ≤ tint+fb(O) and fb(Sy) ≤ tint+fb(O).

At last, Lemma 16 can be directly achieved by combining the above two conclusions.

Finally, to adopt Theorem 2 enabling any compositions of our new gadgets, we link the
output of each Mul and Add with an RNIRefresh, resulting in RMul and RAdd respectively.
We show the constructions in Gadgets 7 and 8, and give in Theorem 2 the security of any
composition of them, which can be directly deduced by Lemmas 14 and 16, and Theorem 1.

Gadget 7 RMulRx,Ry,Rz,R
α

Input: sharings x̂ ∈ Fd+1
q .

Output: sharing ẑ ∈ Fd+1
q .

Parameter: α ∈ Fdq .
Randomness: matrices Rx,Ry,Rz,R ∈ Fd×dq .
The gadget ensures that:

∑
ẑ = (

∑
x̂)(
∑
ŷ).

1: ẑ′ := MulRx,Ry,R
α (x̂, ŷ)

2: ẑ := RNIRefreshRz
α (ẑ′)� [1,α]
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Gadget 8 RAddRx,Ry,Rz
α

Input: sharings x̂, ŷ ∈ Fd+1
q .

Output: sharing ẑ ∈ Fd+1
q .

Parameter: α ∈ Fdq .
Randomness: matrices Rx,Ry,Rz ∈ Fd×dq .
The gadget ensures that:

∑
ẑ =

∑
x̂⊕

∑
ŷ.

1: ẑ′ := AddRx,Ry
α (x̂, ŷ)

2: ẑ := RNIRefreshRz
α (ẑ′)� [1,α]

Theorem 2. Let fb be the block-scale function. Let `1, `2 be positive integers. Let G be a
set consisting of `1 RMuls and `2 RAdds using the same randomness, i.e.,

G = {RMulR1
α1
, . . . ,RMulR1

α`1
,RAddR2

β1
, . . . ,RAddR2

β`2
},

where R1 = {Rx,Ry,Rz,R} and R2 = {Rx,Ry,Rz}. Any composition of gadgets in G
is RNI-fb, if the matrix [α1; . . . ;α`1 ;β1; . . . ;β`2 ] is MDS.

Note that the addition gadget RAdd additionally requires 3 calls of RNIRefresh, which
is not as efficient as expected by many previous schemes that only use the trivial implemen-
tation. But we emphasize that, in presence of the resue of randomness and intermediate
variables, the calls of RNIRefresh might be unavoidable. Similar results can be found
in [CGZ20] as well. Fortunately, by Lemma 8, the composition of TrivAff and any RNI-fb
gadget is a new RNI-fb gadget. Therefore, in Corollary 1, we show the security of the
composition of RMuls, RAdds and TrivAdds.

Corollary 1. Let `1, `2 and `3 be positive integers. Let G be a set consisting of `1 RMuls,
`2 RAdds and `3 TrivAffs using the same randomness, i.e.,

G =
{

RMulR1
α1
, . . . ,RMulR1

α`1
,RAddR2

β1
, . . . ,RAddR2

β`2
,TrivAff1, . . . ,TrivAff`3

}
,

where R1 = {Rx,Ry,Rz,R} and R2 = {Rx,Ry,Rz}. Any composition of the gadgets in
G is RNI-fb, if the matrix [α1; . . . ;α`1 ;β1; . . . ;β`2 ] is MDS.

4.2 How to Protect Any Circuit Using New Gadgets?
By the construction of Reed-Solomon code [RS60], an `× d MDS matrix over Fq always
exists as long as `+ d ≤ q. Thus, for any circuit over Fq consisting of `1 multiplications, `2
additions and an arbitrary number of affine operations such that `1 + `2 ≤ q − d, we can
adopt Corollary 1 and transform the operations to RMuls, RAdds and TrivAffs respectively.
That is, we can build a masked implementation for any function with intermediate variables
in Fq containing `1 multiplications (over Fq), `2 additions (over Fq) and an arbitrary number
of affine operations (defined in Section 2.3) such that `1 + `2 + d ≤ q. Meanwhile, it
becomes a bit complicated when the total number of additions and multiplications is
greater than q − d, where Corollary 1 cannot be adopted directly. To cope with such an
issue, we present two strategies as follows.

Strategy 1. We can partition a circuit over Fq into several sub-circuits such that the
total number of additions and multiplications of each sub-circuit is smaller than q − d.
Then, we can protect each sub-circuit by transforming the operations to RAdds, RMuls
and TrivAffs, in which the randomness is reused across the gadgets in the same sub-circuit.
By Corollary 1, any composition of gadgets in the same sub-circuits is RNI-f . Then, we
use independent randomness for the gadgets of different sub-circuits, and thus Lemma 7
can be adopted. That is, for any function with intermediate variables in Fq containing



Weijia Wang, Chun Guo, Yu Yu, Fanjie Ji and Yang Su 317

`1 multiplications, `2 additions and an arbitrary number of affine operations (given in
Section 2.3) such that `1 + `2 + d > q, one can partition the circuit into dd+`1+`2

q e sub-
circuits and adopt Corollary 1 and Lemma 7. The complexity of multiplication or addition
operation over Fq are O(log2 q) and O(log q) resp.. This gives Corollary 2, where the
gadgets corresponding to the same sub-circuit use the same randomness.

Corollary 2. Any function with intermediate variables in Fq containing `1 multiplications,
`2 additions and an arbitrary number of affine operations can be transformed to a d-private
circuit with computational complexity O

(
dd+`
q e`d

2 log2 q
)
and using O

(
dd+`
q ed

2) random
bits, where ` def= `1 + `2.

Strategy 2. We consider the more generalized case of any Boolean circuit of size `
(containing ` AND and XOR gates)6. We can map each variable in F2 to a field element in
F2m with m = dlog(`+ d)e, such that 0 ∈ F2 is mapped to 0 ∈ F2m and 1 ∈ F2 is mapped
to an arbitrary nonzero element in F2m . We also have 2m ≥ `+ d. Then, we can replace
the AND and XOR gates with RMuls and RAdds with the same randomness, requiring
4d2 log(` + d) random bits and ` gadgets, where each gadget contains O(d2 log2(` + d))
operations over F2m , and the complexity of multiplication and addition operation over
F2m are O(m2) and O(m) resp.. This gives Theorem 3.

Theorem 3. Any Boolean circuit of size ` can be transformed to a d-private circuit with
computational complexity O

(
`d2 log4(`+ d)

)
= Õ(`d2) and using O

(
d2 log(`+ d)

)
= Õ(d2)

random bits.

4.3 Towards Precomputation-based Design Paradigm
In this sub-section, for the sake of brevity, we consider the composition of a set G of gadgets
consisting of TrivAffs, RMuls and RAdds over Fq using the same randomness, i.e.,

G =
{

RMulR1
α1
, . . . ,RMulR1

α`1
,RAddR2

2,β1
, . . . ,RAddR2

2,β`2
,TrivAff1, . . . ,TrivAff`3

}
,

whereR1 = {Rx,Ry,Rz,R},R2 = {Rx,Ry,Rz}. By Corollary 1, any composition of gad-
gets in G is RNI-fb with fb the block-scale function if the matrix [α1; . . . ;α`1 ;β1; . . . ;β`2 ]
is MDS. In the following, we first discuss the precomputation-based design paradigm when
`1 + `2 + d ≤ q and [α1; . . . ;α`1 ;β1; . . . ;β`2 ] being MDS. The masked computation of the
cryptographic algorithm can be divided into the following two phases.

Precomputation phase. It precomputes the intermediate variables that are only
determined by the randomness, such as those highlighted in the instructions of RNIRefresh
and SubMul (described in Gadgets 3 and 4). This phase can be performed before input
(e.g., the plaintext or ciphertext for encryption or decryption resp.) reaches the crypto-
graphic device. Obviously, the computational complexity of the precomputation phase is
O(`d2 log2 q) with ` def= `1 + `2. Meanwhile, for practicality, we have to reduce the RAM
space required to store the precomputed intermediates as much as possible.

Online phase. It computes the output from input sharings. Thanks to the in-
termediates precomputed in the precomputation phase, the online phase can be quite
efficient.

The composition is made up of RMuls, RAdds and TrivAffs, and each input sharing of
these gadgets is either the input sharing of the composed gadget or linked to those gadgets
in G. By Lemmas 14 and 15, the last d shares of output sharings of RNIRefreshes and
SubMuls are determined only by the randomness and can be precomputed. To simplify the
discussion, we assume that the shares with indices [1 : d] of input sharings of the composed

6It should be noted that, any circuit over Fq of size ` can be represented as a Boolean circuit of size
O(dlog2 qe2`).
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gadget can be precomputed. For each TrivAdd or TrivAff, the output ẑ[1 :d] is determined
by shares with indices in [1 : d] of input sharing. Therefore, shares with indices in [1 : d]
of input sharings of RMuls, RAdds or TrivAffs can be precomputed. In the following, we
discuss the ingredients of RNIRefresh, SubMul and TrivAff separately.

• RNIRefresh: By the construction of RNIRefresh, we can precompute and store in-
termediate t and outputs ẑ[1 : d] (and we don’t need to store the intermediate r).
Then, the online phase of RNIRefresh is only at line 4, which is extremely efficient
and runs in O(log q).
We calculate the RAM space for storing the precomputed variables for all RNIRefreshes
in G as follows. First, there are three random matrices (i.e., Rx, Ry and Rz) used in
RNIRefreshes. As the values of ẑ[1 :d] are determined by only the random matrices,
we need to store outputs ẑ[1 :d], requiring 3d variables in Fq. Second, there are three
RNIRefreshes in each RMul or RAdd, and thus we need to store 3` variables in Fq for
intermediate t. In total, the RAM space required to store precomputed variables is
(3d+ 3`) log q bits.

• TrivAff: A TrivAff can be either an output sub-gadget (in the composed gadget) or
only linked to inputs of RNIRefreshes, and we discuss the two cases separately as
follows.

– If it is an output sub-gadget, we can precompute and store the output shares
ẑ[1 :d] in RAM. Then, the online phase of this gadget runs in O(log2 q).

– If it is only linked to inputs of RNIRefresh, we can precompute the output shares
ẑ[1 :d] but do not need to store it. It is because that ẑ[1 :d] only affects the
intermediates t in RNIRefreshes that links to the output of this gadget, which
can be precomputed as well. Then, the online phase of this gadget runs in
O(log2 q) as well.

Therefore, the RAM space for precomputed variables is d`′ log q bits with `′ the
number of TrivAffs that are the output sub-gadget (in the composed gadget).

• SubMul: By the instruction of SubMul, we can precompute and store the vector r
in RAM. Then, the online phase of SubMul is quite efficient and runs in O(log2 q).
The space for storing the precomputed variables in Fq for all SubMuls in G is d`1.

To summarize, the composed gadget runs in complexity O(`d2 log2 q) in the precom-
putation phase and stores 3d + 3` + d`1 + d`′ = O(`d log q) bits in RAM. And, it runs
with complexity O(d`1 + `′) = O(`d log2 q) in the online phase, where `′ is the number of
output TrivAffs.

For the more generalized case of Boolean circuits of size `, we can adopt strategy 2
in Section 4.2 and replace the AND and XOR gates by RMuls and RAdds respectively,
using the same randomness. It provides d order probing security. The transformed circuit
contains ` gadgets in {RMuls,RAdds} over F2m and requires ≤ 4d2 log(`+ d) random bits,
where m = dlog(`+ d)e. Therefore, in the precomputation phase, the transformed circuit
runs in time Õ(`d2) and stores Õ(`d) random bits in RAM. In the online phase, it runs
with complexity Õ(d`).

4.4 A Discussion on the Concrete Security
While our scheme is provable secure in the probing model (which can be regarded as the
first necessary step to rule out a number of security issues such as the composability), we
discuss the concrete security of our scheme against practical side-channel attacks in this
sub-section.
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The concrete security can be achieved by adopting the general reduction from probing
model to noisy model. The reduction suffices that the noise of the leakage linearly
increases with the circuit size. Intuitively, an adversary can collect the (noisy) leakage
of all intermediates, and the larger the circuit is, the more leakage will be. For the
case of randomness/variables reuse, accessing the same value in the offline phase may
cause multiple leaks, increasing the possibility of horizontal attacks & decreasing practical
security with the low noise level. For the protection of cipher such as the AES, masking
schemes secure in the probing model theoretically suffice a sufficient large level of noise.
However, we emphasize that such an issue stems from the nature of probing security.

If we only consider the case without randomness reuse, the random probing model
(requiring more shares and randomness) [AIS18, BCP+20] might be a good alternative
security notion to theoretically overcome the multiple leakages issue. It was stated
in [BCP+20]: “this notion advantageously captures the horizontal attacks which exploit
the repeated manipulations of variables throughout the implementation.” On the contrary,
the security of the probing model requires sufficient noise that should grow linearly with
the order of probing security [BCPZ16]. However, for the case with randomness reuse, our
intuition is that the multiple leakages always exists, making masking with common shares
secure in the random probing model almost impossible. In this respect, our scheme can be
regarded as the investigation on how efficient the masking in the probing model can be
when the noise is sufficient.

5 Application to AES-128
5.1 Implementation Approach
We show an application of our masking to the AES-128 block cipher that is performed
on 16 variables in F28 . In every round of AES-128, four types of transformations are
performed: AddRoundKey, SubBytes, ShiftRows and MixColumns (see [DR02] for more
details). ShiftRows and MixColumns are linear transformations over F16

28 that can be
represented by a number of XOR operations, and a round key is XORed to the state in
AddRoundKey. In the SubBytes transformation, a nonlinear function F28 → F28 called
S-box is computed over each of the 16 variables of the state. The S-box is a composition of
an inverse in F28 and an affine operation over F8

2. Note that, each RMul is a composition
of Mul and RNIRefresh, which are both RNI-fb and use different random matrices (i.e.,
{Rx,Ry,R} and Rz for Mul and RNIRefresh resp.). This satisfies that every connection
of gadgets (Muls and RNIRefreshes) crosses the two sets of gadgets using different random
bits, and thus we can use Theorem 1 to prove that the masked S-box is RNI-fb. Yet, a
simpler proof is to use Theorem 2 (that directly considers RMul and RAdd).

We firstly focus on the field inverse. In [RP10], Rivain et al. proposed to represent
the inverse by a power function x → x254, which can be further decomposed into a
quite efficient chain of several multiplications and squaring functions, and then can be
performed by applying our multiplication and trivial affine gadgets. We present our masked
implementation in Figure 9, which is a composition of TrivAffs and RMuls. Moreover, to
apply Theorem 2, the concatenation of α vectors of all gadgets should be an MDS matrix.

Similarly, the masked Mixcolumns is a linear transformation and can be implemented
using RAdds and TrivAffs. The Mixcolumns of one round includes 3 × 16 = 48 RAdds.
The ShiftRows transformation simply interchanges the sharings, and we do not need any
gadgets to implement it. The AddRoundKey can be implemented directly by RAdds.
Therefore the composition merely contains RMul and RAdd, and thus we can also use
Theorem 2 to achieve to prove the RNI-fb of the composed gadget.

In the following, we build an MDS matrix A ∈ F`×d28 , each row of which is used as the
parameter vector in a distinct RMul or RAdd. We construct a matrix A′ ∈ F(`+d)×d

28 that
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RMulα1 RMulα2

TrivAff
for ()16 RMulα3 RMulα4

TrivAff
for Aff.

TrivAff
for ()2
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Input Output
of S-box

Mul RNIRefresh
RNI-fbRNI-fb

Mul RNIRefresh
RNI-fbRNI-fb

Mul RNIRefresh
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Mul RNIRefresh
RNI-fbRNI-fb

Figure 9: Masked implementation of AES S-box.

Table 1: The randomness requirement of AES implementation

AddRoundKey for 11 rounds a fresh set of {Rx,Ry,Rz,R}
SubBytes and MixColumns for 2 rounds a fresh set of {Rx,Ry,Rz,R}

Total randomness for full round (5 + 1) fresh sets of {Rx,Ry,Rz,R}

is the transpose of Vandermonde matrix over F28 :

A′ =


1 1 . . . 1
a1 a2 . . . a`+d
a2

1 a2
2 . . . a2

`+d
...

... . . . ...
ad−1

1 ad−1
2 . . . ad−1

`+d

 ,

where a1 . . . a`+d are distinct values in F28 (therefore, the construction is limited to
`+ d ≤ 28). Since A′ is the generating matrix of a Reed-Solomon code of length `+ d and
dimension d, and by the property of Reed-Solomon code [RS60], a code with A′ as the
generating matrix is an MDS code, and thus its minimal distance is d. Then, an MDS
matrix A ∈ F`×d28 can be built by:

A = A′
[(

(d+1):(`+d)
)
, :
]
×A′−1[(1 :d), :

]
.

We hereafter discuss the randomness usage in the implementation. By our construction
of the MDS matrix, there always exists an `× d MDS matrix over Fq as long as `+ d ≤ q.
The AES cipher is performed over the field F28 , making q = 28. For practicality, we
consider the security order d ≤ 32, making a set of random matrices {Rx,Ry,Rz,R} ∈
{Fd×dq ,Fd×dq ,Fd×dq ,Fd×dq } to be used for at most 256− 32 = 224 gadgets in {RMul,RAdd}.
One round of AES involves 16× 4 + 48 = 112 gadgets in {RMul,RAdd} for SubBytes and
MixColumns and 16 RAdds for AddRoundKey.

Obviously, a full round masked AES requires multiple sets of random matrices
{Rx,Ry,Rz,R} ∈ {Fd×dq ,Fd×dq ,Fd×dq ,Fd×dq }, and we adopt strategy 1 in Section 4.2.
As show in Table 1 Our implementation generates one set of random matrices for RAdds
of AddRoundKey in 11 rounds (since 16× 11 + d ≤ 240), and generates one set of random
matrices for the 112×2 gadgets in {RMul,RAdd} SubBytes and MixColumns in two rounds
(since 112× 2 = 224). We can easily prove the RNI-fb of the implementation by Lemma 7
and Corollary 1. In total, it requires (5 + 1)× 4× d2 = 24d2 bytes of randomness.

It should be noted that, the choice of the MDS matrix may impact the performance
of the implementation, depending on the cost of the multiplication between the MDS
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matrix and any vectors. This opens the possibility of the performance optimization of our
masking by finding an MDS matrix with more efficient multiplication. But, we do not
investigate it in this paper, and leave this topic as an interesting future work.

5.2 Implementation Results
In the rest of this section, we showcase the advantage of our scheme in the precomputation-
based design paradigm, where the performance of the online phase plays an important role
and should be taken into more consideration. We consider the security orders d ∈ [4 : 16]
and the ARM Cortex M architecture. For the consistency with the state-of-the-art results,
the randomness in our implementations can be obtained from a True Random Number
Generators (TRNGs) outputing 32 bits of random in 6000 cycles, which is recommended
in [CGZ20]. For the comparison with the state-of-the-art implementations, we consider
the results reported in [GR17, BGR18, CRZ18] as the benchmarks for Rivain and Prouff’s
S-box decomposition (shorted as R.-P.) method, Bitsliced (shorted as BS) method and
look-up table (shorted as LUT) method of masking implementations.

Our implementation follows the strategy described in Section 4.3, and requires 3840 +
655d bytes of RAM to store the precomputed intermediates. Besides, the parameters
(i.e., α vectors) used in {RAdd,RMul} should be stored in RAM as well, requiring 240d
bytes. In total, our implementation requires 3840 + 895d bytes of RAM space for the
precomputation.

As reported in [BGR18], the AES S-boxes for one round with the tight private circuits
run in 290.5(d+ 1)2 + 910.5(d+ 1) + 872 cycles and requires 256d(d+ 1) random bits7.
However, the authors of [BGR18] only reported the running cycles for S-boxes, we give a
quite conservative estimation by only considering the running time of S-boxes. According
to the timing divergence between S-boxes and the full AES reported in [GR17], the running
time of the full AES should increase approximately by 30%, 20%, and 5% for security
orders 4, 8 and 16 respectively.

To achieve SNI security, the scheme in [CRZ18] suffices to refresh the shares 2kd2/2
bits for a single S-box with k = 8. In total, it requires 80× 2kd2 bits for all the S-boxes of
the full AES-128.

To comply with the precomputation design paradigm and accelerate the online phase,
the masking approaches in [GR17, BGR18, CRZ18] can at best generate all the random
bits and store in RAM, resulting in a large RAM requirement (that exhibits a quadratic
growth in the security order). And, the online phase runs the masked operations with the
pre-generated random bits. Indeed, one can also generate the randomness one-the-fly, but
the cycles of online computation will largely grow by those of randomness generating.

The performance results are summarized in Table 28. First and foremost, our imple-
mentation gains a significant speed-up in the online phase, and the RAM requirement
(that exhibits a linear growth to the security order) is much smaller, making the scheme
more practical in many embedded platforms. Our implementation also saves significantly
for the generation of random bits. For instance, it saves clock cycles by a factor of 9.6
when d = 4. Indeed, our implementation includes a relatively heavy precomputation phase.
It mainly stems from the multiplication over GF(28), which is not directly supported in
microprocessors and can only rely on precomputed tables. This issue has been pointed
out in [WGS+20] as well (and can be significantly mitigated in hardware implementation,
where the field multiplication can be optimized on bit-level). Thus, the performance of the
offline phase can be much more efficient for an instruction set extension supporting the
multiplication over finite field with characteristic two.

7The result reported in [BGR18] was a function of the number of share t (since the number of reported
bytes of s-boxes is 16t(t− 1), indicating that t ≥ 2), and we have d + 1 = t in our case.

8The unprotected implementation is taken from https://github.com/kokke/tiny-AES-c.
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It should be noted that the implementation is only provided for illustrative purposes
(showing the practical relevance of the new masking). The implementation was done
carefully as far as possible to avoid known implementation (but it is laborious to found
out all possibilities of the transitional leakage9 and thus we only check some obvious
ones) issues caused by hardware architectural features and make the independent leakage
assumption to be fulfilled [BDF+17, DFS15, CPR07]. For instance, to mitigate the
issue caused by the nonlinear leakage of bits in a register (with Barrel shifter) reported
recently in [GMPO20], our implementation always loads at most one share into a register.
That is, we never pack multiple shares into one register. It indeed slows down the
timings of our implementation, but we chose to be rigorous as far as possible for a fair
comparison. Nevertheless, the number of cycles provided in this paper is still not quite
“accurate” (as well as the state-of-the-art results we compared) for a particular platform or
micro-architecture. Obtaining a secure implementation would require (at least) carefully
examining the assembly code (mainly to find out the transitional leakage caused by
the memory buffers), and perform a comprehensive security evaluation (following the
suggestions in e.g., [WO19a, WO19b, BS20, MPW21]). In next sub-section, rather than
a comprehensive security evaluation, we only perform a T-test evaluation to show the
practical security order of masking, and report that the properties of our masking may
benefit the security of implementation in practice.

5.3 Practical Evaluation of the Masked AES
To validate the security order of the masked AES in practice, we ran our implementation
on a ChipWhisperer STM32F303 UFO target board, and acquired the power traces of the
AES round function using Picoscope 5244D at 125 MS/s. Before performing a fixed vs.
random Welch’s T-test, we re-sample the trace by conducting a simple moving average
pre-processing to decrease the noise. As the variables in the pre-computation phase are all
independent of the secure input, we only consider the power consumption of the online
phase. For each case we show in the rest of this section, the number of traces for fixed
(resp., random) input is 5 0000.

Figures 10(a) and 11(a) depicts the T-test results for security orders d = 1 and d = 2,
where parameters α are distinct nonzero values in F28 . For comparison, we also provide in
Figures 10(b) and 11(b) the results for the implementation when the randomness source is
turned off. We can see that our implementation does not have first-order leakage. This
(good) result for the case of d = 1 is a bit surprising, since, as stated in the previous
sub-section, we do not attempt to eliminate all the transitional leakage that may damage
the independent leakage assumption. We contribute this advantage to the relatively more
complex algebraic structure (thanks to the values that are not ones of parameters for
different gadgets) than the Boolean masking.

To confirm the intuition that using different parameters for different gadgets can
overcome some lapses (such as transitional leakage) in implementation, we perform a fixed
vs. random Welch’s T-test with all parameters [α1;α2; . . .] are ones. Note that, when
security order is d = 1, the parameter α of each gadget is in Fq, and thus [α1;α2; . . .] is
MDS if and only if the elements are nonzero values. Hence, the theoretical security order
(d = 1) holds for both [α1;α2; . . .] being ones (shown in Figure 12) and [α1;α2; . . .] being
distinct nonzero values (shown in Figure 10(a)). However, when [α1;α2; . . .] are ones, the
masking becomes Boolean masking, and the algebraic structure is less complex than the
case using distinct nonzero values of [α1;α2; . . .]. The T-test result in Figure 12 shows the
existence of multiple points where the security order does not hold, due to the transitional
leakage. It confirms that our masking scheme using parameters that are not ones is more

9The Hamming distance between the values before and after a change of a register is a typical transitional
leakage the depends on two values.
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Table 2: Summary of masked AES implementations in the precomputation-based design
paradigm (in kilos of clock cycles for timings).

KCycles for precomp. RAM for
precomp.

KCycles/penalty
factor for online

KCycles
for totalRand. gen. Cal.

Unprotected - - - 9.33 / 1 9.33
[BGR18]

BS method
d = 2

2 880 - 1.92 KB for
all rand. 62 / 6.65 2 942

[CRZ18]
LUT method

d = 2
15 360 - 10.24 KB for

all rand. 435 / 46.62 15 795

Our work
d = 2 144 705 5.63 KB 60 / 6.43 909

[BGR18]
BS method
d = 4

9 600 - 6.4 KB for
all rand. 128 / 13.72 9 728

[CRZ18]
LUT method

d = 4
61 440 - 40.9 KB for

all rand. 1 345 / 144.16 62 785

Our work
d = 4 576 1 362 7.42 KB 85 / 9.11 2 023

[BGR18]
BS method
d = 8

34 560 - 23.04 KB for
all rand. 330 / 35.36 34 890

[CRZ18]
LUT method

d = 8
245 760 - 164 KB for

all rand. unreported unreported

Our work
d = 8 2 304 3 662 11 KB 137 / 14.68 6 103

[BGR18]
BS method
d = 16

130 560 - 87.04 KB for
all rand. 1 017 / 109 131 577

[CRZ18]
LUT method

d = 16
983 040 - 655 KB for

all rand. unreported unreported

Our work
d = 16 9 216 12 230 18.2 KB 239 / 25.62 21 685
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(a) Random number generator is on (b) Random number generator is off

Figure 10: Security order d = 1, parameters are distinct nonzero values.

(a) Random number generator is on (b) Random number generator is off

Figure 11: Security order d = 2.

robust to some lapses in implementation. As the matrix consisting of parameters requires
to be MDS, there are many choices for parameters for an arbitrary security order. It will
be interesting to investigate which parameters provide the best robustness, which we leave
as promising future work.

Last but not least, we make the source codes of our AES round function available on
https://github.com/wjwangcrypto/MaskingWithCommomShares.

6 Conclusion
In this paper, we continue the long line of works seeking to reduce the overhead of masking.
In summary, the main contribution of this paper is two folds. First, we propose a new
scheme with common shares and a new composable notion for the probing security proof.
They contribute to pushing the limit of the complexity of masking schemes in the probing
model reusing randomness / variables. Second, we present a new and practical design
paradigm for masking where most of the intermediate variables can be precomputed only

Figure 12: Security order d = 1, parameters are all 1s, random number generator is on.
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by randomness, and the online computation (that takes inputs) can be quite efficient.
The separation of precomputation and online computation can significantly lift masking
schemes in many scenarios such as the challenge-response authentication protocols. Our
scheme perfectly fits the new paradigm. For the AES on ARM Cortex M architecture, the
results show the practical relevance of the new masking. A promising future work is to
adapt the formal automated tools such as maskVerif [BBC+19] and SILVER [KSM20] to
verify and optimize (by considering physical defaults such as the transitional leakage and
Glitch) the implementation of our proposed gadget. Another promising future work should
be applications to post-quantum cryptography. As our scheme is generic to any circuit
over a finite field, we believe it is potentially interesting to provide a efficient masking
scheme for post-quantum cryptographic algorithms.

Acknowledgments
The authors would like to thank the reviewers for their helpful comments and suggestions.
This work was supported by the National Key Research and Development Program of China
(Nos. 2021YFA1000600, 2020YFA0309705 and 2018YFA0704701), the Program of Qilu
Young Scholars (Grant Nos. 61580089963177 and 61580082063088) of Shandong University,
the Program of Taishan Young Scholars of the Shandong Province, the National Natural
Science Foundation of China (Grant Nos. 62002202, 62002204, 62125204 and 61872236),
the Shandong Nature Science Foundation of China (Grant No. ZR2020MF053), and the
Major Program of Guangdong Basic and Applied Research (Grant No. 2019B030302008).
Yu Yu also acknowledges the support from the XPLORER PRIZE.

References
[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private circuits: A modular

approach. In Hovav Shacham and Alexandra Boldyreva, editors, Advances in
Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part III, volume
10993 of Lecture Notes in Computer Science, pages 427–455. Springer, 2018.

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque, Benjamin
Grégoire, and François-Xavier Standaert. maskverif: Automated verification of
higher-order masking in presence of physical defaults. In Kazue Sako, Steve A.
Schneider, and Peter Y. A. Ryan, editors, Computer Security - ESORICS 2019
- 24th European Symposium on Research in Computer Security, Luxembourg,
September 23-27, 2019, Proceedings, Part I, volume 11735 of Lecture Notes in
Computer Science, pages 300–318. Springer, 2019.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong non-
interference and type-directed higher-order masking. In ACM CCS ’16, pages
116–129, 2016.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In Advances in Cryptology - EUROCRYPT 2016
- 35th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part
II, pages 616–648, 2016.



326 Side-Channel Masking with Common Shares

[BBP+17] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Private multiplication over finite
fields. In CRYPTO 2017 (3), pages 397–426, 2017.

[BCP+20] Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and
Abdul Rahman Taleb. Random probing security: Verification, composition, ex-
pansion and new constructions. In Daniele Micciancio and Thomas Ristenpart,
editors, Advances in Cryptology - CRYPTO 2020 - 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17-21, 2020, Proceedings, Part I, volume 12170 of Lecture Notes in Computer
Science, pages 339–368. Springer, 2020.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal side-channel attacks and countermeasures on the ISW masking
scheme. In CHES 2016, pages 23–39, 2016.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of
masking schemes and the bounded moment leakage model. In EUROCRYPT
2017 (1), pages 535–566, 2017.

[BFG15] Josep Balasch, Sebastian Faust, and Benedikt Gierlichs. Inner product masking
revisited. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages
486–510, 2015.

[BGR18] Sonia Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Tight private circuits:
Achieving probing security with the least refreshing. In ASIACRYPT 2018(2),
pages 343–372, 2018.

[BS20] Olivier Bronchain and François-Xavier Standaert. Side-channel countermea-
sures’ dissection and the limits of closed source security evaluations. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):1–25, 2020.

[CGPZ16] Jean-Sébastien Coron, Aurélien Greuet, Emmanuel Prouff, and Rina Zeitoun.
Faster evaluation of sboxes via common shares. In Benedikt Gierlichs and
Axel Y. Poschmann, editors, Cryptographic Hardware and Embedded Systems -
CHES 2016 - 18th International Conference, Santa Barbara, CA, USA, August
17-19, 2016, Proceedings, volume 9813 of Lecture Notes in Computer Science,
pages 498–514. Springer, 2016.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel mask-
ing with pseudo-random generator. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture
Notes in Computer Science, pages 342–375. Springer, 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In crypto99ed, editor,
crypto99name, volume crypto99vol of mylncs, pages 398–412, cryptoaddr,
crypto99month 1999. cryptopub.

[Cor14] Jean-Sébastien Coron. Higher order masking of look-up tables. In Phong Q.
Nguyen and Elisabeth Oswald, editors, Advances in Cryptology - EURO-
CRYPT 2014 - 33rd Annual International Conference on the Theory and



Weijia Wang, Chun Guo, Yu Yu, Fanjie Ji and Yang Su 327

Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15,
2014. Proceedings, volume 8441 of Lecture Notes in Computer Science, pages
441–458. Springer, 2014.

[CPR07] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side channel
cryptanalysis of a higher order masking scheme. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 28–44.
Springer, 2007.

[CRZ18] Jean-Sébastien Coron, Franck Rondepierre, and Rina Zeitoun. High order
masking of look-up tables with common shares. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(1):40–72, 2018.

[CS19] Gaetan Cassiers and François-Xavier Standaert. Towards globally optimized
masking: From low randomness to low noise rate or probe isolating multiplica-
tions with reduced randomness and security against horizontal attacks. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):162–198, 2019.

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and efficiently
composing masked gadgets with probe isolating non-interference. IEEE Trans.
Inf. Forensics Secur., 15:2542–2555, 2020.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In EUROCRYPT 2014, pages
423–440, 2014.

[DFS15] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making
masking security proofs concrete - or how to evaluate the security of any
leaking device. In Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pages
401–429, 2015.

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[FPS17] Sebastian Faust, Clara Paglialonga, and Tobias Schneider. Amortizing random-
ness complexity in private circuits. In ASIACRYPT 2017 (1), pages 781–810,
2017.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
In ACM TIS@CCS 2016, page 3, 2016.

[GMPO20] Si Gao, Ben Marshall, Dan Page, and Elisabeth Oswald. Share-slicing: Friend
or foe? IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):152–174, 2020.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking
be in software? In EUROCRYPT 2017(1), pages 567–597, 2017.



328 Side-Channel Masking with Common Shares

[GS18] Vincent Grosso and François-Xavier Standaert. Masking proofs are tight and
how to exploit it in security evaluations. In EUROCRYPT 2018(2), pages
385–412, 2018.

[IKL+13] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran,
Amit Sahai, and David Zuckerman. Robust pseudorandom generators. In
ICALP 2013(1), pages 576–588, 2013.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO 2003, pages 463–481, 2003.

[KR18] Pierre Karpman and Daniel S. Roche. New instantiations of the CRYPTO
2017 masking schemes. In ASIACRYPT 2018(2), pages 285–314, 2018.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. In Shiho Moriai and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information
Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part I,
volume 12491 of Lecture Notes in Computer Science, pages 787–816. Springer,
2020.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the limits: A very compact and a threshold implementation of AES.
In EUROCRYPT 2011, pages 69–88, 2011.

[MPW21] Ben Marshall, Dan Page, and James Webb. MIRACLE: micro-architectural
leakage evaluation. IACR Cryptol. ePrint Arch., page 261, 2021.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In EUROCRYPT 2013, pages 142–159, 2013.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part I, pages 764–783, 2015.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In CHES 2010, pages 413–427, 2010.

[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.
Journal of the society for industrial and applied mathematics, 8(2):300–304,
1960.

[WGS+20] Weijia Wang, Chun Guo, François-Xavier Standaert, Yu Yu, and Gaëtan
Cassiers. Packed multiplication: How to amortize the cost of side-channel
masking? In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology
- ASIACRYPT 2020 - 26th International Conference on the Theory and
Application of Cryptology and Information Security, Daejeon, South Korea,
December 7-11, 2020, Proceedings, Part I, volume 12491 of Lecture Notes in
Computer Science, pages 851–880. Springer, 2020.

[WMCS20] Weijia Wang, Pierrick Méaux, Gaëtan Cassiers, and François-Xavier Standaert.
Efficient and private computations with code-based masking. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2020(2):128–171, 2020.



Weijia Wang, Chun Guo, Yu Yu, Fanjie Ji and Yang Su 329

[WO19a] Carolyn Whitnall and Elisabeth Oswald. A cautionary note regarding the
usage of leakage detection tests in security evaluation. IACR Cryptol. ePrint
Arch., 2019:703, 2019.

[WO19b] Carolyn Whitnall and Elisabeth Oswald. A critical analysis of ISO 17825
(’testing methods for the mitigation of non-invasive attack classes against
cryptographic modules’). In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology - ASIACRYPT 2019 - 25th International Conference
on the Theory and Application of Cryptology and Information Security, Kobe,
Japan, December 8-12, 2019, Proceedings, Part III, volume 11923 of Lecture
Notes in Computer Science, pages 256–284. Springer, 2019.

Appendix

A ISW Multiplication Gadget
The ISW multiplication gadget, introduced in [ISW03], takes two sharings (x̂, ŷ) ∈
(Fd+1
q ,Fd+1

q ) as inputs and computes the sharing ẑ ∈ Fd+1
q as follows, such that

∑
ẑ =∑

x̂
∑
ŷ:

1. for every 0 ≤ i < j ≤ d, pick uniformly at random a value ri,j over F2;

2. for every 0 ≤ i < j ≤ d, compute rj,i ← (ri,j + x̂[i]ŷ[j])⊕ x̂[j]ŷ[i];

3. for every 0 ≤ i ≤ d, compute ẑ[i]← x̂[i]ŷ[i]⊕
∑
j 6=i ri,j .
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