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Abstract. We present new side-channel attacks on SIKE, the isogeny-based candidate
in the NIST PQC competition. Previous works had shown that SIKE is vulnerable to
differential power analysis, and pointed to coordinate randomization as an effective
countermeasure. We show that coordinate randomization alone is not sufficient,
because SIKE is vulnerable to a class of attacks similar to refined power analysis in
elliptic curve cryptography, named zero-value attacks. We describe and confirm in the
lab two such attacks leading to full key recovery, and analyze their countermeasures.
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1 Introduction
With the Post-Quantum Cryptography Standardization process nearing the end of its third
round, NIST has repeatedly called for side-channel and fault-injection analyses of candi-
dates [Moo18, Apo20]. The great diversity of algorithms opens the way to a variety of attack
techniques, which the community is only starting to explore [EFGT17, RHHM17, CMP18,
BP18, PSKH18, BDE+18, MGTF19, KL19, SBWE20, GJN20, LNPS20, CCD+21, PP21,
SRSWZ21, BDK+21, XPSR+21, UXT+22, XIU+21].

This work is concerned with the side-channel security of SIKE [JAC+20], the lone
isogeny-based candidate in the standardization process. SIKE is an IND-CCA2 Key
Encapsulation Mechanism (KEM), derived from the key exchange scheme SIDH [JD11] by
applying a variant of the Fujisaki–Okamoto (FO) transform [FO99, FO13, HHK17]. In
SIDH, each party performs a public key generation step followed by a session key derivation
step. These steps are all very similar to each other, and are mainly composed of elliptic
curve point operations and isogeny evaluations. The same steps are rearranged in SIKE to
form the key generation, encapsulation, and decapsulation algorithms.

Due to its similarity to pre-quantum Elliptic Curve Cryptography (ECC), it is often
argued that the same physical attacks and countermeasures that apply to ECC also apply
to SIKE. Indeed, timing and simple power analyses are countered with constant-time code,
which SIKE’s reference implementations already provide (setting bugs aside [GJN20]).
Accordingly, full key recovery through Differential (DPA) and Correlation Power Analysis
(CPA) on the elliptic point scalar multiplication part have been demonstrated by several
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authors [ZYD+20, GLK21]. These attacks rely on the fact that the scalar multiplication
in SIKE is a deterministic routine whose inputs, with the only exception of the private
key, are publicly known. Thus, by making guesses on independent bits of the private key,
it is possible to predict the Hamming weight of the values stored in CPU registers or
transferred between memory and registers. This leakage prediction can then be correlated
to the power consumption or electromagnetic (EM) emissions to validate bit values.

A cheap and effective countermeasure against DPA and CPA, already commonplace in
ECC, is coordinate randomization [Cor99]. Elliptic curve points in SIKE are represented
non-uniquely by ratios of finite field elements, i.e., the pairs [X : Z] and [λX : λZ]
represent the same point for nonzero λ. By randomizing the projective representation of
the input points with a random nonzero λ at the beginning of the scalar multiplication,
Hamming weights and other observables of computed values are no longer predictable, and
thus the correlation with power consumption is lost. Coordinate randomization in SIKE
was recommended as a countermeasure in [KPHS18, ZYD+20, GLK21]. Costello [Cos21,
§5] even argues that coordinate randomization is likely to protect SIKE against most
side-channel attacks.

We show that coordinate randomization is not sufficient to protect SIKE against
side-channel attacks if additional countermeasures are not implemented. Indeed, attacks
bypassing coordinate randomization were already introduced in ECC by Goubin [Gou03],
Akishita and Takagi [AT03], and Izu and Takagi [IT03]. As highlighted in [SCDJB21], all
these attacks target the emergence of zeros as intermediate values in elliptic curve point
computations: because coordinate randomization only randomizes nonzero coordinates,
bits of the private key can again be recovered by identifying the moments during which
the computation of a zero value occurs. Such a computation is usually recognized in power
consumption or EM activity. We shall collectively refer to these as zero-value attacks.

Attack scenario. We target a static key version of SIKE where a single secret key is used to
decrypt several ciphertexts. We assume an implementation that matches SIKE’s reference
one, and additionally performs coordinate randomization. By appropriately crafting
ciphertexts and measuring the power consumption or EM emissions of the decapsulation
routine, we are able to recover the majority of the secret key bits, leaving only a few bits of
known positions to brute-force. Thus, our attack may be described as a chosen-ciphertext
attack with side-channel information.

SIDH and the basic IND-CPA encryption derived from it are well known to be mathe-
matically broken in a chosen ciphertext scenario [GPST16], which is the reason why SIKE
relies on the Fujisaki–Okamoto transform to achieve IND-CCA2 security. The purpose of
the transform is precisely to validate that the ciphertext was generated honestly and abort
if not. However, the side-channel leakage that we exploit happens before FO can prevent
the attack. In other words, the cavalry arrives late.

Full validation of SIDH ciphertexts (and public keys) is a problem believed to be as
hard as breaking SIDH/SIKE itself [Tho17, GV18, UJ20]. Luckily, our attack can be
blocked by a partial form of ciphertext validation, although this countermeasure is not
exactly cheap.

Related work. The possibility of applying zero-value attacks to SIKE was already postu-
lated by Koziel, Azarderakhsh, and Jao [KAJ17]. Their work targets a static key version of
SIDH with FO transform, however it predates the release of the official SIKE specification
and assumes that a form of partial ciphertext validation, such as the one that manages
to block our attack, is also performed. They thus concentrate their efforts on devising
zero-value attacks that work despite partial ciphertext validation, and suggest four such
attacks. We shall argue, however, that none of them applies to the current SIKE standard.

The zero-value threat was also hinted at in [GLK21], however the authors similarly
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conclude that such attacks would be blocked by partial ciphertext validation and do
not explore the matter further. Thus, despite a general awareness of the possibility of
zero-value attacks prior to this work, no one had ever demonstrated such an attack on
SIDH or SIKE.

After posting this work online we were informed that concurrent work of Wang et
al. [WPH+22] discovered techniques very close to ours to force zero values in SIKE, and
applied them in the context of timing side-channel attacks.

For completeness, we must also mention fault-injection attacks. Gélin and Wesolowski
proposed a loop-abort attack targeting the isogeny evaluation in SIKE [GW17]. By
injecting a random value in a loop counter, they make the computation break out of the
loop earlier than expected, leading to a bit-by-bit key recovery. The attack was never
confirmed in practice but is countered by adding checks to ensure that loops are fully
executed until the end [PHBC17].

Ti proposed a key recovery attack based on injecting a random value in a point
coordinate [Ti17]. Ti’s attack model is peculiar in that it assumes that a static private key
is used at least twice to generate the associated public key. It was confirmed experimentally
in [TDFEMP21], where a cheap countermeasure is also given.

Finally, Campos et al. proposed and confirmed experimentally a safe-error attack [CKM21].
Observing the effect of a fault injection can confirm a guess for one bit of the key. They
propose countermeasures based on redundant computations or sensors to detect the fault.

Our contribution. We introduce and confirm in the lab two zero-value attacks against
the official (uncompressed) SIKE implementation hardened with coordinate randomization.
Both attacks consist of recovering the private key in an extend-and-prune fashion with
special inputs that force intermediate values to be zero depending on a single secret bit.
Although the possibility of this threat had been postulated previously, to the best of our
knowledge, this is the first complete description of such attacks.

The first attack targets zero values in the elliptic point scalar multiplication part of
SIKE, and is thus very close to previously known zero-value attacks on ECC [Gou03,
Sma03, AT03, CK12, SCDJB21]. An important difference is that the elliptic curve in
ECC is fixed, whereas in SIKE the attacker can force a different curve at each query
and for any given target bit. We fully exploit this fact to distinguish zeros from random
values, by using statistical tests that could not be performed with a fixed curve. Other
technical differences are: (1) SIKE uses supersingular curves of smooth order, where
ECC uses ordinary curves of prime or nearly prime order; (2) SIKE uses a three-point
ladder algorithm to compute P + [sk]Q, where P and Q are fixed points and sk the secret
key; ECC uses double-and-add or a simple Montgomery ladder to compute [sk]Q. These
differences call for slightly different algorithms in the context of SIKE.

The second attack targets the isogeny evaluation part of SIKE, which appears to have
much greater side-channel leakage, permitting key recovery with as few as one trace per
bit. For the second attack, we analyze the behavior of 3- and 4-isogeny evaluation formulas
on invalid points, which appears to be novel in itself.

Our attacks are easily, though not so cheaply, countered by partially validating ci-
phertexts. Koziel, Azarderakhsh, and Jao [KAJ17] proposed zero-value attacks that pass
partial validations, however we show these attacks do not apply to standard SIKE. In
fact, in the extended version of this paper, we show that adding partial validation and
coordinate randomization to SIKE provably blocks all zero-value attacks [DFEMG+22].

We made our code and data available on the following online repository: https:
//github.com/nKolja/SIKE-zero-value-attacks.

Plan. We cover the background on Montgomery curves, isogenies, and SIKE in Section 2.
Then, Section 3 introduces our attacks in an abstract way, while Section 4 reports on their

https://github.com/nKolja/SIKE-zero-value-attacks
https://github.com/nKolja/SIKE-zero-value-attacks
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experimental realizations. Finally, Section 5 discusses the countermeasures, so the paper
can close with Section 6.

2 Background on SIKE
SIKE, the Supersingular Isogeny Key Encapsulation, is a post-quantum KEM built on
the theory of isogeny graphs of supersingular elliptic curves. We only review here the
necessary background to understand zero-value attacks. For a complete tutorial on SIKE,
see [Cos19]; for a general overview of isogeny-based cryptography, see [DF17].

2.1 Supersingular curves
All algebraic computations in SIKE take place in a finite field Fp2 ..= Fp[X]/(X2 + 1),
where p is a prime of the form p = 2e2 · 3e3 − 1, with 2e2 ≈ 3e3 ≈ √p. All elliptic curves
used in SIKE can be put in Montgomery form

EA : y2 = x3 +Ax2 + x A ∈ Fp2 \ {±2}. (1)

Such curves are supersingular if and only if their group of points has order (p + 1)2 =
22e2 · 32e3 , in which case the group structure is

EA(Fp2) ' (Z/2e2Z)2 × (Z/3e3Z)2.

Following [CLN16], the curve EA is represented projectively in one of two possible ways,
depending on the subroutine:

• As a pair [A+
24 : C24] such that C24 6= 0 and A = (4A+

24 − 2C24)/C24; or

• As a pair [A+
24 : A−24] such that A+

24 6= A−24 and A = 2(A+
24 +A−24)/(A+

24 −A
−
24).

Considering invalid internal states caused by malicious ciphertexts, an elliptic curve
represented in SIKE may thus fall into one of the following categories:

The undefined curve, represented by [A+
24 : C24] = [A+

24 : A−24] = [0 : 0]. This does not
represent any algebraic object.

The degenerate curve, represented by C24 = 0 and A+
24 = A−24 6= 0. This is not, properly

speaking, a curve.

The singular curves with A = ±2, corresponding to A+
24 = C24 6= 0 and A−24 = 0, or to

A−24 = C24 6= 0 and A+
24 = 0. These are not elliptic curves, because they exhibit a

singularity in (∓1, 0) and behave often as exceptional points in formulas.

Elliptic curves, for any value A 6= ±2. These further subdivide into ordinary and super-
singular curves. Of the p2 − 2 possible values for A, only ≈ p/2 yield a supersingular
curve.

The points of the curve EA are the projective solutions of Eq. (1). SIKE drops the
information on the y-coordinate, and represents them as pairs [X : Z], with X and Z not
both zero. We shall make a slight abuse of language by calling [X : Z] a point, given that
it may correspond to up to two solution of Eq. (1). Considering invalid internal states, an
elliptic point in SIKE may be one of

The undefined point [0 : 0]. This does not correspond to any algebraic point.

The point at infinity O = [X : 0] with X 6= 0, the identity of the elliptic group law.
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The distinguished point T = [0 : Z], with Z 6= 0, of order 2. Assuming the curve is well
defined, [2]T = O.

The special 4-torsion points [X : ±X], with X 6= 0. Assuming the curve is well defined
[2]P = T for any such point.

An ordinary point [X : Z] not belonging to any of the above. Assuming the curve is
well defined, such a point is on the curve if X/Z +A+ Z/X is a square in Fp2 . Its
algebraic properties, such as its group order, depend on all of X, Z and A.

Whenever P denotes a point, we let XP and ZP denote its coordinates, and if ZP 6= 0 we
write xP

..= XP /ZP .
It is easy to see that any solution (x, y) 6= (0, 0) to Eq. (1) uniquely determines A. More

subtly, given three coordinates xP , xQ and xR, none being zero, there is a unique curve
EA such that EA contains the points [xP : 1], [xQ : 1], [xR : 1] and the points are co-linear,
which implies that R = Q− P . This fact is used in SIKE to encode a Montgomery curve
EA as a triple (P,Q,Q− P ), with P,Q,Q− P /∈ {O, T}.

2.2 Scalar multiplication
A large part of SIKE consists in evaluating the group law of some Montgomery curves.
Doubling and tripling of a point [X : Z] are given by the formulas

[2][X : Z] =
[
(X2 − Z2)2 : 4XZ(X2 +AXZ + Z2)

]
, (2)

[3][X : Z] =
[
(X4 − 6X2Z2 − 4AXZ3 − 3Z4)2X : (3X4 + 4AX3Z + 6X2Z2 − Z4)2Z

]
. (3)

A key step in SIKE is, given two points P , Q and an integer m, to compute P + [m]Q.
In practice, because SIKE uses Montgomery [X : Z]-coordinates, it encodes the points as
the triplet (P,Q,Q− P ), and computes the result using a constant-time three-point ladder
introduced in [FHLOJRH18], described in Algorithm 1.

Algorithm 1: Three-point ladder
Input: A Montgomery curve EA, points P,Q,Q− P , an integer m =

∑`−1
i=0 mi2i.

Assumes: P,Q− P /∈ {O, T}.
Output: P + [m]Q.

1 A+
24 ← (A+ 2)/4

2 [X0 : Z0], [X1 : Z1], [X2 : Z2]← Q, Q− P, P
3 for i = 0 to `− 1 do
4 cswap([X1 : Z1], [X2 : Z2], mi)
5 [X0 : Z0], [X1 : Z1], [X2 : Z2]← xDBLADD

(
[X0 : Z0], [X1 : Z1], [X2 : Z2], A+

24
)

6 cswap([X1 : Z1], [X2 : Z2], mi)
7 return [X2 : Z2]

The three-point ladder uses a cswap routine that performs in constant time a swap of
[X1 : Z1] with [X2 : Z2] if the bit mi = 1. In between swaps, the three-point ladder calls
the xDBLADD routine, which combines a doubling with a differential addition, the latter
being given by the formula

[XP +Q : ZP +Q] =
[
4ZQ−P (XPXQ − ZPZQ)2 : 4XQ−P (XPZQ −XQZP )2]. (4)

The xDBLADD sends (R0, R1, R2) to ([2]R0, R0 +R1, R2) under the assumption that R2 =
R0 −R1, which is preserved throughout the algorithm. Because each iteration of the loop
depends on a secret bit, this is one of the most delicate parts of SIKE, and the target of
our first zero-value attack.



De Feo, El Mrabet, Genêt, Kaluđerović, Linard de Guertechin, Pontié, Tasso 269

2.3 Isogeny evaluation
What time SIKE does not spend performing scalar multiplications, it spends computing
and evaluating isogenies. An isogeny is a nonzero group morphism between two elliptic
curves. The degree of a separable1 isogeny is the size of its kernel. The task of “computing”
an isogeny is customarily decomposed in two steps. During isogeny computation, we are
given a generator K of a subgroup 〈K〉 ⊂ EA(Fp2), and we want to compute the image
curve EA/〈K〉 of the isogeny φK : EA → EA/〈K〉 with kernel 〈K〉, plus possibly some
associated data to φK . Then, during isogeny evaluation, we are given EA, EA/〈K〉, the
data associated to φK , and a point Q ∈ EA, and we want to compute φK(Q) ∈ EA/〈K〉.
SIKE performs isogeny computations and evaluations for isogenies of degree 2, 3 and 4.
Taking degree 3 as example, if we let K = [X3 : Z3], SIKE computes the image curve
EA/〈K〉 as

[A+
24 : A−24] ..=

[
(3X3 − Z3)3(X3 + Z3) : (3X3 + Z3)3(X3 − Z3)

]
, (5)

while the map φK itself is defined as

φK([X : Z]) =
[
X(XX3 − ZZ3)2 : Z(XZ3 − ZX3)2]. (6)

Similar formulas hold for degree 2 and 4 isogenies, see [JAC+20].
After the three-point ladder, the other key step in SIKE is the computation and

evaluation of an isogeny of degree 3e3 (or 2e2). Given a kernel generator K of degree,
say, 3e3 , SIKE computes the associated isogeny φK and, depending on the subroutine,
may perform zero or three evaluations of φK . This is achieved through a combination
of 3-isogenies and triplings using a tree traversal algorithm guided by what SIKE calls a
strategy.

A strategy can be modeled as a game which is played on an n× n rectangular grid, in
the area between the axes and above the line y = x− n. The goal of the game is to reach
the point (0, n) starting from the point (0, 0). To this end, the player can perform two
kinds of move: a vertical move downwards (a tripling), or a horizontal move rightwards (a
3-isogeny computation). Moreover, the player can move to any point that was previously
visited (every computed point is saved). Downwards moves are unrestricted, but horizontal
moves to the right, i.e., from the vertical line x = i to x = i+ 1, are allowed only after
the point (i,−(n− i)) was reached (the next curve is computed only after computing the
kernel point of the corresponding 3-isogeny). A successfully played game can therefore
be represented by a graph of all the visited points, such as Figure 1 on page 275 (at this
point the reader can ignore the colors in the figure). Such a graph represents a 3e3 -isogeny
computation; the point at (0, 0) represents R. A more formal definition of an isogeny
computing strategy can be found in [DFJP14].

2.4 SIKE
SIKE is derived from SIDH, a key exchange scheme, by applying the Hofheinz–Hövelmanns–
Kiltz variant of the FO transform [HHK17]. SIDH has for public parameters a starting
curve EA=6, a pair of generators P2, Q2 of the 2e2-torsion subgroup of EA=6, a pair of
generators P3, Q3 of the 3e3-torsion subgroup, and consists of four algorithms: KeyGen2,
KeyGen3, ShrKey2 and ShrKey3. KeyGen2 generates a key pair (sk(2), pk(2)) by:

1. Picking a random integer sk(2) ∈ [0, 2e2 − 1].
2. Computing a private kernel generator R2 = P2 + [sk(2)]Q2 using the three-point

ladder; the way P2 and Q2 are set up guarantees that [2e2−1]R2 6= T .
3. Computing the private 2e2-isogeny φR2 : EA=6 → EA=6/〈R2〉 and returning the

public key pk(2) =
(
φR2(P3), φR2(Q3), φR2(Q3 − P3)

)
.

1The only kind of isogeny relevant in SIKE.
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KeyGen3 is identical, except for the facts that the roles of 2 and 3 are swapped, and sk(3)

is taken from [0, 2blog2(2e3 )c − 1].
ShrKey2 takes as input the public key pk(3), the private key sk(2), and computes a

shared key by:
1. Recovering EA from pk(3) = (P,Q,Q− P ).
2. Computing a private kernel generator S2 = P + [sk(2)]Q.
3. Computing the private isogeny φS2 : EA → EA/〈S2〉.
4. Computing the j-invariant of EA/〈S2〉 and returning a hash of it.

ShrKey3 does the same, again swapping the roles of 2 and 3. The properties of isogeny
graphs ensure that

ShrKey2(sk(2), pk(3)) = ShrKey3(sk(3), pk(2)).
SIKE consists of three algorithms: KeyGen, Encaps and Decaps. In uncompressed

SIKE:
• KeyGen generates a key pair (sk, pk)← KeyGen3.
• Encaps generates an ephemeral key pair (e, c0) ← KeyGen2, derives a shared key
k ← ShrKey2(e, pk), and uses it to transport a random message m by sending the
ciphertext ct = (c0, k ⊕m).

• Decaps takes a ciphertext ct = (c0, c1), recovers the shared key as k ← ShrKey3(sk, c0),
recovers the message m as c1 ⊕ k. The message m is then used both to verify that ct
was generated honestly, and to derive a session key.

For efficiency reasons, the roles of 2 and 3 are swapped in compressed SIKE.

3 Theoretical analyses
We provide two attacks based on forcing the computing party to evaluate some rational
function on an elliptic curve point which has 0 as one of the coordinates, also called
“zero-value point”. These points are O = [1 : 0], T = [0 : 1] and the undefined point [0 : 0].
The attacking party creates a malicious public key in the sense of KeyGen2, made of three
points (P,Q,Q−P ) which are used by the target during Decaps. The first attack is based
on forcing the computation of zero-value points during the three-point ladder, and the
second attack forces the computation of such points during the isogeny computation. Our
final goal is to see where and how such points can occur, and to force a computing party
to compute such points based on a secret bit of their private key. The attack is done
adaptively in an extend-and-prune manner, that is, we perform the attack in multiple
steps; at each step we recover one bit of the private key by assuming that we know the
previous parts. We write the secret key as sk = sk020 + sk121 + . . . and we denote
sk<k = sk020 + sk121 + · · ·+ skk−12k−1.

3.1 Three-point ladder attack
In this section, we aim to force the apparition of zero-value points O or T during the
computation of the three-point ladder.

A careful analysis of the three-point ladder (as described in Section 2.2) will show that for
a triple (P,Q,Q−P ) as input, the value of the updated triple [X0 : Z0], [X1 : Z1], [X2 : Z2]
after the execution of the xDBLADD (line 5 of Algorithm 1) in the kth step of the loop is

([2k+1]Q, −P + [2k+1 − sk<k]Q, P + [sk<k]Q) if skk = 0, (7)
([2k+1]Q, P + [2k + sk<k]Q, −P + [2k − sk<k]Q) if skk = 1. (8)

We show how to create a public key (P,Q,Q− P ) such that the second output point (in
bold in Equations (7),(8)) is a zero-value point if and only if skk = 0 (or skk = 1).
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3.1.1 Forcing O

The second output point in Equation (7) is equal to O if P = [2k+1 − sk<k]Q. For
Equation (8) we must have P = −[2k + sk<k]Q. This simple equation allows us to define
the following pair of malicious public key points:

Table 1: Malicious public key points which forces the computation of O
Public key Q P Q− P

pkOk,0 Point of order 3e3 [2k+1 − sk<k]Q −[2k+1 − sk<k − 1]Q
pkOk,1 Point of order 3e3 −[2k + sk<k]Q [2k + sk<k + 1]Q

Note that P,Q,Q − P 6∈ {O, T}, so the public key is well formed. Plugging in pkOk,0
(resp. pkOk,1) in Equation (7) (resp. Equation (8)) shows that on correct guess, the target
point becomes O. Furthermore, if the guess is incorrect, then the point is [2k+1 + 2k]Q
which has both coordinates nonzero.

3.1.2 Forcing T

The second output point in Equation (7) is equal to T if P = [2k+1 − sk<k]Q+ T . For
Equation (8) we must have P = −[2k + sk<k]Q− T . This simple equation allows us to
define the following pair of malicious public key points:

Table 2: Malicious public key points which forces the computation of T
Public key Q P Q− P

pkT
k,0 Point of order 3e3 [2k+1 − sk<k]Q+ T −[2k+1 − sk<k − 1]Q− T

pkT
k,1 Point of order 3e3 −[2k + sk<k]Q− T [2k + sk<k + 1]Q+ T

Note that P,Q,Q − P 6∈ {O, T}, so the public key is well formed. Plugging in pkT
k,0

(resp. pkT
k,1) in Equation (7) (resp. Equation (8)) shows that on correct guess, the target

point becomes T . Furthermore, if the guess is incorrect, then the point is [2k+1 + 2k]Q
which has both coordinates nonzero.

3.2 Isogeny attack
Our goal is to manipulate the isogeny kernel generating point R of the target party so
that it becomes incompatible with isogeny formulas. This leads either to computation
of undefined points [0 : 0] (which propagate indefinitely) or to (heuristically) random
computations. The two cases can be easily distinguished by use of side-channels.

We assume that the computing party computes an isogeny of degree 3e3 . The argumen-
tation can be adapted to 2e2-isogenies, or more generally to any set of SIKE parameters,
as is shown in full generality in [DFEMG+22].

The isogeny algorithm uses a hard-coded strategy, and attempts to compute a 3e3-
isogeny independently of the actual order of the kernel point R. The malicious public
key points (P,Q,Q− P ), as well as the kernel point R, will be elements of the 2e2 -torsion
subgroup E[2e2 ] (as opposed to E[3e3 ] which is expected by the algorithm). Actually, we
will show that there is an exponent o > 0 which satisfies so-called leakage properties:
L1 If ord(R)

∣∣2o−1 then the isogeny eventually computes undefined points [0 : 0].
L2 If 2o

∣∣ ord(R) then the isogeny computes random values.
The exponent o depends on the isogeny degree, the tree-traversal strategy, and the order of
the target party’s point (all being public parameters), and can therefore be precomputed
for any set of SIKE parameters.
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In this section, we first show how an adversary can control the order of a point in such
a way that it depends on the value of a private key bit. Then we show that there exists an
exponent o which satisfies the leakage properties (L1, L2).

3.2.1 Computing the kernel point

The goal of the attack is to force the target party to compute a point of order 2o−1+skk ,
skk being the value of the private key bit that we are trying to guess, and o the exponent
satisfying leakage properties (L1, L2). We show in Algorithm 2 how to create a public key
pkj

k such that the targets’ party kernel point is of order 2e′−1+skk for any e′ > 0.

Algorithm 2: Malicious public key generation
Input: Index of bit being guessed k, known part of secret key sk<k, an exponent e′
Assumes: 0 < e′ ≤ e2, 0 ≤ k ≤ e2 − e′
Output: Public key pkj

k = (P,Q,Q− P ).
1 E ← any supersingular elliptic curve
2 P2, Q2 ← generators of E[2e2 ]
3 Assume [2e2−1]Q2 6= T

4 S = [2e2−(e′−1)]P2

5 Q = [2e2−(k+e′)]Q2
6 P = S − [sk<k]Q
7 return pkj

k = (P,Q,Q− P )

The kernel generating point R obtained from the public key shown in Algorithm 2
satisfies the order constraint as is proved in the following lemma.

Lemma 1. The kernel generator point R = P + [sk]Q generated from the public key pkj
k

of Algorithm 2 satisfies

ord(R) =
{

2e′−1 if skk = 0,
2e′ if skk 6= 0.

Proof. Following from Algorithm 2, we have ord(S) = 2e′−1 and ord(Q) = 2k+e′ . Denote
with Q′ = [2k]Q, a point of order 2e′ . It follows that

P + [sk]Q = S + [sk − sk<k]Q = S + [skk]Q′ + [skk+12]Q′ + . . . = S + [skk]Q′ +Q′′

where Q′′ is a point of order dividing 2e′−1 and independent from S, by construction.
Therefore, if skk = 0 then R = S +Q′′ is of order 2e′−1 because S is of said order, and S
and Q′′ are independent. On the other side, if skk 6= 0 then R is of order 2e′ because it is
the sum of [skk]Q′ of order 2e′ , with S +Q′′ of order 2e′−1.

3.2.2 Computing the isogeny

In this subsection we will prove the existence of the exponent o which satisfies the leakage
properties (L1, L2).

The 3e3-isogeny is computed by means of a hard-coded sequence of sub-algorithms
which include point tripling, 3-isogeny computation, 3-isogeny evaluation, and saving and
loading a point. The order in which these steps are executed are encoded in a strategy as
explained in Section 2.3.

The kernel point provided to the isogeny is of incompatible order, which leads to
irregular behaviors. During the execution of the 3e3-isogeny, geometric structure will be
lost, and we will essentially work with random points on random elliptic curves. We show
when irregular behavior starts, and what types of unexpected behavior can happen.

The 3-isogeny in SIKE satisfies the following properties:
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P0 If the kernel point is of incorrect order, then the image point (resp. curve) is arbitrary
and does not share any known geometric relation with the preimage point (resp.
curve).

P1 For any point R = [X : Z] we have R+ T = [Z : X].
P2 If the image of [X : Z] is [U : V ], then the image of [Z : X] is [V : U ].
P3 If the input point is equal to the kernel point, then the output is O.
P4 If the kernel point is [X : Z] and the input is [Z : X], then the output point is T .
P5 The image of O is O.
P6 The image of T is T .

The property P0 is not proven and is based on heuristics. Given our experiments and
the current understanding of elliptic curve isogenies, there is no evidence to the contrary.
The other statements follow from the way the isogenies were constructed, see [Ren18].
Additional “degenerate” properties are given in the following list:

P7 If the kernel point of the 3-isogeny is O or T , the image curve is degenerate.
P8 On the degenerate curve, the tripling of O and T is [0 : 0].
P9 If the kernel point of the 3-isogeny is T , the image of O and T is [0 : 0].

At this point the analysis of the isogeny computation boils down to analyzing the
computations done on the public curve EA recovered from pkj

k (i.e., the first curve in
the tree traversal). On this curve, the kernel point R is repeatedly tripled, and some
intermediate results are saved as Ri = [3i]R for i ∈ I where I is a set of indices determined
by the strategy. These points are then evaluated with the isogeny of kernel 〈[3e3−1]R〉.
The process is shown in Algorithm 3.

Algorithm 3: First vertical branch of the tree-traversal
Input: Kernel point R, starting curve EA, set of indices I
Output: Image curve computed by the first 3-isogeny E′,

Images of points evaluated by the first 3-isogeny {φ[3e3−1]R([3i]R)}i∈I

1 for i = 0 to e3 − 2 do
2 if i ∈ I then
3 Ri = R

4 R = [3]R
5 E′ = curve EA/〈R〉
6 for i ∈ I do
7 Ri = φR(Ri)
8 return (E′, {Ri}i∈I)

Due to the fact that point R is of incompatible order, the image curve E′ is an arbitrary,
generally non-supersingular curve. From this point onward, the points and the curves are
arbitrary. The only deterministic “structure” that the points can carry is that some of
them may have projectively equivalent coordinates. There are three cases to consider.

(i) There is a pair of saved points with equivalent coordinates. Assume that
Ra and Rb have projectively equivalent coordinates and a < b ∈ I. As the points are
equivalent, their images through consecutive 3-isogenies will stay equivalent until
we compute the isogeny generated by some image of Rb. This isogeny will send Ra

to O (prop. P3). The point O is fixed by point tripling and isogenies (prop. P5).
At a certain point an isogeny of kernel 〈O〉 is computed, whose image curve is the
degenerate curve (prop. P7). The images of O are O (prop. P5). The first next
tripling will be a tripling of O on the degenerate curve whose output is the undefined
point [0 : 0] (prop. P8). From this point onward all values will be 0, and the final
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j-invariant will be computed as 0/0. An example of such computation is given in
Figure 1.

(ii) There is a pair of saved points with flipped coordinates. Assume Ra = [x : z]
and Rb = [z : x] and a < b ∈ I. The property of Ra, Rb having flipped coordinates
is preserved (prop. P2) until the image of Rb is used to compute an isogeny. This
isogeny will send the image of Ra to T (prop. P4). The point T is fixed by point
tripling and isogenies (prop. P6). Eventually an isogeny of kernel 〈T 〉 is computed,
whose image curve is the degenerate curve (prop. P7). The first next image of T or
O under the isogeny of kernel 〈T 〉 is the undefined point [0 : 0] (prop. P9). From
that point onward all values will be 0, and the final j-invariant will be computed as
0/0.

(iii) There are no points with equivalent nor flipped coordinates. The points
and curves became arbitrary after computing the first 3-isogeny (prop. P0). From
this point onward we have different arbitrary values which propagate. The final
curve and its j-invariant are random.

Note that (i) is equivalent to the existence of a < b ∈ I such that [3a]R = ±[3b]R, while
(ii) is equivalent to [3a]R = ±[3b]R+ T . In (iii), such a < b ∈ I simply do not exist. These
properties are characterized by the order of point R as shown in the following lemma.

Lemma 2. For each set of SIKE parameters, let R be a point in the 2e2-torsion. Further-
more assume that T 6∈ 〈R〉. Then there is an integer o > 0 such that:

1. ord(R)
∣∣2o−1 if and only if (i) applies,

2. 2o
∣∣ ord(R) if and only if (iii) applies.

If T ∈ 〈R〉, then the following is true for the same exponent o:
1. ord(R)

∣∣2o if and only if (i) or (ii) apply,
2. 2o+1

∣∣ ord(R) if and only if (iii) applies.

Proof. The statement (i) can alternatively be expressed as: “there are a < b ∈ I such
that Ra = ±Rb, that is, [3a]R = ±[3b]R”. The previous statement reduces to a modular
equivalence, more precisely 3a ∓ 3b ≡ 0 (mod 2r), where we define r to be such that
ord(R) = 2r.

This equation is certainly satisfied for r = 0, for all a, b ∈ I. Furthermore, an equality
modulo 2r for some a, b reduces to an equality modulo 2r′ for all r′ ≤ r. Therefore it is
only left to prove that the equation is not satisfied for some r ≤ e, for all a, b ∈ I. This is
proven by observing SIKE parameters, in particular by observing the strategies. We call
the smallest such exponent o the break-point exponent (see Table 3).

The statement (ii) can alternatively be expressed as: “there exist values a < b ∈ I such
that Ra = ±Rb + T”. If R and T are independent, this cannot happen. Therefore, the
first part of the lemma is proven.

If R and T are dependent, we must have [2r−1]R = T . Thus (ii) reduces to 3a ∓ 3b −
2r−1 ≡ 0 (mod 2r). This equation is equivalent to the following two equations: 3a∓3b ≡ 0
(mod 2r−1) and 3a ∓ 3b 6≡ 0 (mod 2r). By the definition of the break-point exponent,
3a ∓ 3b ≡ 0 (mod 2o−1) and 3a ∓ 3b 6≡ 0 (mod 2o), therefore 3a ∓ 3b − 2o ≡ 0 (mod 2o+1)
for some a, b. On the other hand, 3a∓ 3b 6≡ 0 (mod 2o) for all a, b, implies 3a∓ 3b− 2o 6≡ 0
(mod 2o+1) for all a, b. This finishes the proof.

A visual explanation of the isogeny attack In Figure 1, we can see a 37-isogeny compu-
tation with a kernel of incompatible order.

• With black we denote regular points and supersingular elliptic curves.
• With blue we denote arbitrary points, isogenies whose image is random, and arbitrary

(non-supersingular) elliptic curves.
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• With cyan we denote the point O, isogenies whose image is O, triplings of O and
degenerate elliptic curves.

• With red we denote the isogeny (tripling) which first creates the undefined point
[0 : 0], and undefined elliptic curves.

• With circles we denote undefined points [0 : 0].
• With dashed lines we denote isogenies which send points to the undefined point.

[30]R

[31]R

[33]R

[34]R

[36]R

[32]R

[35]R

EA0 EA1 EA2 EA3 EA4 EA5 EA6 EA7

Assume that [32]R and [35]R are equiva-
lent. On the first curve EA0 the point R is
tripled 6 times, and [30]R, [32]R and [35]R
are saved. A 3-isogeny is computed from
[36]R, and the saved points are evaluated.
The images of [32]R and [35]R are still equiv-
alent. Another 3-isogeny is computed from
the image of [35] which sends the image of
[32]R to O, which is then tripled on the next
curve. The next isogeny (of kernel 〈O〉) has
for codomain the degenerate curve. The
first tripling of O on the degenerate curve
outputs the undefined point [0 : 0]. From
this point onward all the outputs are [0 : 0].

Figure 1: An example of a 37-isogeny computation with a kernel of wrong order

Side-channel attack. Using Lemma 2, two different outcomes of the isogeny computation
can be forced depending on the value of a secret bit: the party either computes only zero
values from a certain point in the tree traversal and onward, or completely random values.
When zero values can be distinguished from random ones with a side-channel, such a
behavior enables an adaptive bit-by-bit key recovery.

We propose to perform the zero-value distinction on the subroutine responsible of the
subfield inversion within the j-invariant computation. This is because the j-invariant
computation occurs at one of the last steps of the key exchange, making it a conveniently
identifiable target, and because the subfield inversion is usually computed as a−1 = ap−2;
a noticeable sequence of ≥ 200 similar field operations. This scenario is illustrated in
Algorithm 4.

Algorithm 4: Attack scenario relating to the isogeny computation
Input: Breaking point o.
Output: The secret key sk.

1 for k = 0 to e2 − o do
2 Assume we know sk<k =

∑k−1
i=0 ski2i.

3 Generate pkj
k with (k, sk<k, o) as in Algorithm 2.

4 Send pkj
k to the target.

5 Detect exponentiation with side-channel analysis:
6 if computation of 0p−2 is detected then skk = 1
7 else skk = 0

8 Brute-force the remaining bits of the secret key.
9 return sk
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Other parameters. The attack was analyzed in the case of the target computing an
isogeny of degree 3e3 . In the general case, the isogeny is of degree `eI

I and the cardinality
of the curve is of `2eI

I `2eJ

J . The secret key is extracted in base-`J digits per turn, sk =
sk0`

0
J + sk1`

1
J + · · · and the point R has an order of a power of `J . The exponent o

can be found with the same procedure as in Lemma 2, where (3, e3, 2, e2) is swapped
with (`I , eI , `J , eJ). In particular, the case with T can never happen unless `J = 2. We
report the values for o for both parties and all parameter sets in Table 3. Attacks on all
SIKE parameter sets are provided in [DFEMG+22] and also included on our GitHub page:
https://github.com/nKolja/SIKE-zero-value-attacks.

Table 3: Break-point exponents o for all parameter sizes.
SIKE instances p434 p503 p610 p751
2e2 -isogeny 3 4 2 5
3e3 -isogeny 9 7 7 8

3.3 Distinguishing zero values
There exist many ways to distinguish zero values in a power or EM trace. For instance,
[Gou01, AT03] argue that a zero value can be observed in a single measurement by noticing
a significant drop of power consumption or EM radiations. In practice, however, this
method requires setting a manual threshold based on observing the measured samples. As
a result, to remove the hassle of detecting zero values manually, we propose to make the
distinction by comparing a trace (or a collection of traces) to another. Note that such a
methodology is aligned with our threat model, as the adversary can query the executions
of the targeted cryptographic procedure with inputs that force any kind of computations
as many times as required.

t-test. Welch’s t-test [SM15] is a statistical hypothesis testing method that examines
whether two classes of traces were sampled from indistinguishable populations. While
Welch’s t-test is usually employed for leakage assessment [SM15], in our case, such a test is
used to compare a collection of multiple traces of (known to be) nonzero value executions
against a collection of multiple traces that may or may not exhibit zero values depending
on a secret bit. This is especially useful when the exact instants in time at which the
expected zero values occur are unknown; as it is the case with the three-point ladder.

The test proceeds by computing t statistics based on the observed means and variances
of two power or EM sample populations. Significant t values imply that the two collections
are not indistinguishable. When attacking the three-point ladder, some t values are thus
expected to be large when a zero is processed in the target trace collection, since zero
values are not affected by coordinate randomization. When nonzero values are processed
in both classes, all the t values are expected to be small, even when identical inputs were
provided to the three-point ladder due to the randomization of coordinates [KAJ17].

Collision power analysis. When the target operation has a known timing and can be
forced to process zero and random (i.e., nonzero) values regardless of the value for
the private key, a more efficient approach can be employed based on collision power
analysis [SWP03, MME10]. In this case, the values processed in a trace are detected by
comparing the trace against two baselines (i.e., templates). The two baselines correspond
to power traces relating the same execution as the target trace but in which processed
values are known to be zero and random. Such a scenario is applicable to the j-invariant
computation, as the entire procedure processes zero values when a special input is provided.

https://github.com/nKolja/SIKE-zero-value-attacks


De Feo, El Mrabet, Genêt, Kaluđerović, Linard de Guertechin, Pontié, Tasso 277

Since the baselines are captured from the target device, the overall attack process
resembles an online template attack [BCP+14]. The main difference is that an online
template attack creates templates as bits are recovered which are then matched against
segmented portions of a single target trace, while our attack creates target traces as bits are
recovered which are then matched against only two templates (the baselines). As opposed
to a regular template attack though, no learning phase (nor programmable device) is ever
required, as the template matching is performed by collision power analysis. Also, online
template attacks are prevented by coordinate randomization while our attack prevails
against this countermeasure.

In practice, a collision power analysis is typically mounted using Pearson’s Correlation
Coefficient (PCC). This technique correlates a target power trace Tr ∈ Rm with a baseline
B ∈ Rm by computing ρ(Tr,B) = Cov(Tr,B)/(σTrσB). The greater the value of the
coefficient, the more correlated the trace is to the baseline. As a result, a zero value
is detected when the corresponding trace has a greater correlation coefficient with the
zero-valued baseline than with the random-valued one.

4 Experimental evaluations
In this section, we verify the correctness of the attacks in practice.

4.1 Setup
4.1.1 Hardware

The experimental evaluations of the attack were performed using two different setups:
one for electromagnetic analysis, and the other for power consumption analysis. The
equipment, which differs according to the platform, is respectively listed in Table 4.

EM acquisition. The victim board for the electromagnetic side-channel attack is an
STMicroelectronics STM32F4DISCOVERY kit with a STM32F407VGT6 microcontroller
featuring an ARM Cortex-M4. The low-level hardware library LibOpenCM32 was used
as in the PQM4: the post-quantum crypto library for the ARM Cortex-M4 [KRSS]. A
168 MHz CPU clock is generated from an 8 MHz quartz oscillator. The host computer
communicates with the target via an UART bus. The microcontroller is not decapsulated
and the board was not modified. A Langer LF-U 5 passive near-field probe captures the
electromagnetic activity of the target during computations. This signal is amplified by a
Langer PA303 amplifier and sampled by a Lecroy WaveRunner 640zi oscilloscope. The
host computer is able to recover an image of EM emanations from the target by requesting
such data to the oscilloscope. The amplifier bandwidth is of 3 GHz but an analog filter at
1 GHz is applied by the oscilloscope before sampling at 2.5 samples per ns.

Power acquisition. The experimental evaluation of the power analysis attack was per-
formed using the ChipWhisperer framework [OC14]. The equipment is set up as follows.
The CW308T-STM32F3 is plugged onto the CW308 UFO which is itself linked to the
CW1173 via a cable of 20 pins. The CW1173 is controlled by the computer which sends
commands with arbitrary payloads through a micro-USB cable. The power consumption
of the CW308T-STM32F3 is exposed through a shunt resistor on the CW308 UFO board.
The voltage drop of the shunt resistor is measured by the WaveRunner 640zi through the
CW502 LNA. In this setup, the WaveRunner 640zi is configured with an analog bandwidth
of 200 MHz and a sampling rate of 250 samples per µs. The clock speed of the STM32 is
set to 44 MHz.

2http://libopencm3.org/
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Table 4: Specific equipment used to measure experimental side-channel leakages.
Description of the electromagnetic platform

STM32F4DISCOVERY Victim board, featuring a Cortex-M4 microprocessor.
LF-U 5 Langer near-field probe.
PA303 Langer amplifier of 30 dB gain (up to 3 GHz).

Description of the power consumption platform
CW308T-STM32F3 Victim board, featuring a Cortex-M4 microprocessor.
CW1173 ChipWhisperer-Lite board, used to exchange with the victim.
CW308 UFO ChipWhisperer interface board which features a convenient

access to the power consumption of the victim.
CW502 LNA Low-noise amplifier of 20 dB gain (up to 2GHz).

4.1.2 Software

The attacked software calls the functions of the recommended implementation of SIKEp434
for 32-bit Cortex-M4 microcontrollers with input ciphertexts received from the com-
puter. Such a software enables the acquisition of electromagnetic emanations and power
consumption of specific operations during the execution of the SIKE key decapsulation.

The target software codes for electromagnetic and power consumption setups slightly
differ. In both codes, the host computer sends a ciphertext to the target, and the target
computes the shared secret with the decapsulation procedure using a static private key.
For electromagnetic analysis, the implementation is designed from an USART example
for STM32F4-DISCOVERY in LibOpenCM3 while, for power analysis, the target runs a
custom version of ChipWhisperer’s simpleserial library.

Moreover, the scalar multiplication of the library is protected with coordinate ran-
domization. As the original library does not offer such a countermeasure, coordinates
are randomized after computing the coefficient of the received curve, and before the
Montgomery three-point ladder. A random representation of the points (P,Q,Q − P )
is generated from the received affine coordinates (xP , xQ, xQ−P ). This countermeasure
consumes 6× log2(p) random bits to generate three random Z coordinates and requires
three Fp2 multiplications.

Finally, the code is further modified to allow a GPIO to trigger the side-channel trace
collection of the oscilloscope. When toggled, the GPIO notifies the oscilloscope to start
the capture of the electromagnetic activity or power consumption of the STM32. The
purpose of such a modification is to make the collection of traces more convenient. Note,
however, that the attack is still applicable without a trigger and that the synchronization
of traces can be performed using, e.g., cross-correlation techniques [DPN+16].

4.2 Three-point ladder
The following sections describe a proof of concept for the attack on the three-point ladder
(as described in Section 3.1).

4.2.1 Target operation

The three-point ladder we plan to attack is located in the decapsulation step, Decaps (see
Section 2.4). At the beginning of the decryption, a session key is computed using a static
secret key sk and a malicious ciphertext cti. More precisely, P + [sk]Q is computed using
P , Q and Q− P , a malicious triplet pkT

k,0 forged as in Section 3.1 such that the zero-value
point T appears during the computation when the bit of the secret key we are trying to
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determine is processed. We want to detect these zero values using the EM emissions of the
victim board described in Section 4.1.1.

4.2.2 Experimental procedure

The victim board runs the decapsulation routine, and will thus compute the three-point
ladder to get P + [sk]Q. The computer sends the triplets with randomized coordinates
(see Section 4.1.2) to the board. For the sake of generality, we will present the reasoning
for a general bit skk (k ≥ 0). To find skk, we will compare the electromagnetic emissions
of the board performing the ladder computations with three types of input:

• A random, correct triplet of points,
• A malicious triplet pkT

k,0 and
• A malicious triplet pkT

k,1.

Thus, the attacker launches campaigns in each of these cases by recording multiple
traces of the execution of the three-point ladder on the board. For the sake of diversity,
pkT

k,0 (respectively pkT
k,1) inputs are generated multiple times by choosing different curves

and points Q. Then, two t-tests (see Section 3.3) are computed:

T0 between the traces obtained with a random triplet and the ones obtained with pkT
k,0,

T1 between the traces obtained with a random triplet and the ones obtained with pkT
k,1.

The t-test graph exhibiting peaks corresponds to the correct hypothesis. Comparing
t-tests T0 and T1 eliminates the need for a threshold indicating that the values are
significant. Note, again, that we do not use Welch’s t-test as a leakage assessment tool,
but as a secret-bit distinguisher.

Once a bit has been found, the process to get the following bits is similar. Each time,
we assume that the previous bits at indices 0, 1, . . . , k−1 are known, in order to determine
bit skk as seen in Section 3.1.

4.2.3 Results

For the experiments, we use the secret (...1000101111000101101110101001110)2 (in base 2
with the least significant bit on the right). We want to find a general bit, for instance bit
12, knowing the previous bits, (110101001110)2. We will thus record three trace collections
in each case as described above. Note that the collection obtained with random inputs can
be reused for both T0 and T1, and for all bits.

Figures 2a and 2b show each a trace taken from these collections. The time window is
limited to the first twenty loop steps of the three-point ladder. To prevent aliasing issues
on these figures, the envelope of the traces is represented instead of the raw trace. The
envelope is computed by applying a low-pass filter with a cutoff frequency of 750 kHz
on the rectified trace. The trace corresponding to correct random inputs (not shown) is
similar to the one obtained for the wrong hypothesis (Figure 2a). The difference between
the trace corresponding to the correct bit hypothesis and the wrong one is visible to the
naked eye. However, if one wants to automate the attack in the future, it is better to
compute a statistical test, as explained in Section 4.2.2. We use 10 raw traces from each
collection (so 30 traces per secret bit) to compute T0 and T1 as it is enough. The t values
are shown on Figures 2c and 2d. The difference between both t-tests is obvious: we find
that 1 is the correct bit hypothesis. The first peak appearing on Figure 2d looks a bit
different from the following ones: at the loop step where the bit skk is processed and zero
coordinates start appearing, they are not necessarily represented by 0, but by p+

√
−1 · p,

p or
√
−1 · p since Fp2 elements are represented in [0, 2p− 1]2 (in the Montgomery domain,

see [Gue02]). During the following steps, more and more zeros represented by 0 appear,
hence the change in peak appearance.
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(a) Trace for the wrong hypothesis. (b) Trace for the correct hypothesis.

(c) t-test for the wrong hypothesis. (d) t-test for the correct hypothesis.

Figure 2: Experimental results for an attack on one bit.

We thus managed to show that it is possible to recover any bit of the secret key during
the three-point ladder computation using appropriate malicious triplets even if projective
coordinates are randomized.

4.3 Isogeny computation
The following experiment describes a proof of concept for the attack on the j-invariant
computation as described in Section 3.2 using power analysis.

4.3.1 Target operation

In the experiment, only the power consumption of the first field multiplication (i.e.,
fpmul_mont in the source code) from the modular inversion involved in the computation
of the j-invariant is measured. As a myriad of zero-valued operations are executed when
the j-invariant is undefined (i.e., [0 : 0]), it would be superfluous to capture the entire
computation of j and compare every operation involved. Still, this specific multiplication
was selected because the same function is called a total of 93 times during the modular
inversion (with all zeros when the j-invariant is undefined). Accordingly, in case the leakage
of one field multiplication alone is not enough to correctly detect the presence of zero
values, a single trace including all the calls to the field multiplication can be segmented
into multiple sub-power traces to boost the accuracy of the comparison (even though this
practice turned out to be unnecessary in our experiment).

4.3.2 Experiment procedure

The experiment followed the approach with the two baselines as described in Section 3.3.
The steps taken by each single experiment in Algorithm 5. Let E be a random curve,
P2, Q2 generators of E[2e2 ] with [2e2−1]Q 6= T , and let n correspond to the number of bits
in a private key (i.e., n = 218 for SIKEp434) and o to the order corresponding to the
breaking point between zero or nonzero j-invariants (i.e., o = 9 for SIKEp434).

The setup for power consumption acquisition (see Table 4) is used to capture all power
traces. An example for the two baselines which both consist of m = 4, 960 samples is
shown in Figure 3.
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Algorithm 5: Experimental attack on isogeny computation (cf. Algorithms 2,4).
1 Set up a fixed random private key sk on the STM32.
2 do capture the baselines B(0), B(∗) for the two categories—zero and random:
3 Send Q(0) = [2e2−(o−1)]Q2, P (0) = [2e2−(o−1)]P2, P (0) −Q(0) to capture B(0) ∈ Rm.
4 Send Q(∗) = [2e2−(o+1)]Q2, P (∗) = [2e2−(o+1)]P2, P (∗) −Q(∗) to capture B(∗) ∈ Rm.
5 for all recoverable bits 0 ≤ i < n− o (starting with sk′ = 0) do
6 Send Qi = [2e2−(i+o)]Q2, Pi = [2e2−(o−1)]P2 − [sk′]Qi, Pi −Qi, capture Tri ∈ Rm.
7 if ρ(Tri,B(∗)) > ρ(Tri,B(0)) then sk′ = sk′ + 2i.
8 return sk′

(a) Zero-valued baseline B(0). (b) Random-valued baseline B(∗).

Figure 3: Examples of baseline traces corresponding to a single Fp2 multiplication pro-
cessing zero values in one case, and random (nonzero) values in the other.

4.3.3 Results

Across N = 1, 000 experiments, the first n − o = 208 private-key bits were always
successfully extracted through collision power analysis with baselines. Table 5 shows
the average correlation coefficients when a target trace is compared against the two
baselines. This outcome shows that the recommended implementation of SIKE for Cortex-
M4 is vulnerable to the zero-value attack on the j-invariant computation as described in
Section 3.2.

Table 5: Average PCCs between baselines and target traces (N = 1, 000).
Target

Baseline j = [0 : 0] j 6= [0 : 0]

j = [0 : 0] 0.9975 0.3915
j 6= [0 : 0] 0.3916 0.9909

Given the significant correlations for a single field multiplication, the results give strong
evidence that zero values can be easily detected by comparing the power consumption of
an operation with a baseline.

5 Countermeasures
Scalar randomization is a classic countermeasure against zero-value attacks in ECC [Cor99].
It could be adapted to protect the three-point ladder in SIKE, but would be useless against
the isogeny computation attack. We propose instead a countermeasure that protects SIKE
against both attacks.

Our attacks rely on ciphertexts containing maliciously generated point triplets (P,Q,R)
which are not the legitimate images (φ(P3), φ(Q3), φ(Q3−P3)) of the public 3e3 -torsion basis
under an isogeny of degree 2e2 . As we already mentioned, validating SIKE ciphertexts
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is a problem believed to be as hard as breaking SIKE itself, thus we cannot hope to
completely rule out side-channel attacks using malicious ciphertexts. Nevertheless our
malicious ciphertexts deviate from the legitimate format in a detectable way, letting us
design an effective countermeasure.

Indeed, the attack on the isogeny computation uses points of order 2n instead of 3e3 ,
while the attack on the three-point ladder uses some points of order 2 · 3n. To counter
them it is enough to check that EA is a supersingular curve, that P and Q are both of
order 3e3 , and that they generate EA[3e3 ], i.e. that3 [3e3−1]P 6= [±3e3−1]Q. Note that by
construction we automatically have that R = Q− P . We shall name this the CLN test,
after the names of its first proponents [CLN16].

The original test in [CLN16] did not verify that EA is supersingular, however this can
be done at little extra cost. First, we check that A defines an elliptic curve by excluding
the undefined, the degenerate and the singular cases of Section 2.1. Then, we check that P
and Q generate EA[3e3 ], which proves that #EA(Fp2) = 32e3D for some integer D. This
nearly implies EA is supersingular. Indeed, by Hasse’s bound (p− 1)2 ≤ 32e3D ≤ (p+ 1)2,
hence 22e2 − 4p/32e3 ≤ D ≤ 22e2 . Because 32e3 ≈ p, only a few choices are possible for D,
the largest one corresponding to a supersingular curve. It is then enough to find some
power 2d|D such that 2d > 4p/32e3 , then, dividing all sides by 2d, we conclude that the
curve is supersingular.

For all SIKE proposed parameters, except the NIST IV parameter SIKEp610, it turns
out that 4p/32e3 < 2. But any Montgomery curve has order divisible by 4 (see [CS18]),
thus we are done. For SIKEp610, 2(p−2)/32e3 < 8; checking that A+2 and A−2 are both
squares in Fp2 ensures that 8|D (see [CS18, Table 1]), proving that EA is supersingular.

Remark 1. Swapping the roles of 2 and 3, analogous checks would also work for verifying
public keys. However, 4p/22e2 tends to be quite large for SIKE instances: as much as
≈ 447.6 for SIKEp751. It is thus not realistic to look for simple algebraic conditions that
would guarantee the existence of points of small order 3n. Instead, one may take random
points on EA, and multiply them by a cofactor until a point of sufficiently large order 3n is
found. Alternatively, one may be just content with testing that 22e2 |#EA(Fp2): although
this does not guarantee that the curve is supersingular, it is believed to be computationally
hard to find ordinary curves with such a large fixed factor in their order.

This also applies to compressed SIKE, where the roles of the 2e2- and 3e3-torsion
are swapped. The entangled basis generation procedure of [ZSP+18] guarantees that
22e2 |#EA(Fp2),4 and ciphertext decompression ensures that (P,Q) generates EA[2e2 ].
Implementations may then choose between relying on a computational assumption ensuring
that EA is supersingular, or doing a little extra work to find a point of appropriate order
3n on EA. At any rate, our attacks do not apply to compressed SIKE because of this.

Remark 2. Following [GPST16], one could check the condition e3e3 (P,Q) = e3e3 (P3, Q3)2e2 ,
which is more stringent than the one enforced by the CLN test. However, this check is still
not enough to verify SIDH keys (precisely the point made in [GPST16]), it is expensive,
and its effectiveness against side-channel attacks is dubious. We thus advise against it.

We added the countermeasure to the SIKEp434 implementation described in Sec-
tion 4.1.2 and tested it on the STM32F4-DISCOVERY presented in Section 4.1.1 clocked
at 168 MHz. Without the CLN countermeasure, 95,899 k-cycles are needed for the de-
capsulation, and with it, 108,273 k-cycles are needed. There is thus a performance hit of
around 12.9%.

3Equivalent conditions are that R is also of order 3e3 , or that the Weil pairing e3e3 (P, Q) has
multiplicative order 3e3 .

4The proof therein requires that A2 − 4 is a square in Fp2 , thus an implementation of compressed SIKE
expecting malicious ciphertexts should check this condition before generating the basis.
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5.1 Bypassing the countermeasure

In a work predating the first round of NIST’s competition, Koziel, Azarderaksh, and Jao
explored zero-value attacks on SIDH/SIKE protected with coordinate randomization and
the CLN test [KAJ17]. They presented four attacks and claimed that these manage to
bypass the countermeasure. We shall now explain why none of them applies to SIKE.

The first attack ([KAJ17, §5]) targets the three-point ladder. It is based on the fact
that, in the main loop of the ladder, one of the inputs to the differential addition is
either P or Q− P , according to a secret bit. First, we note that the attack assumes the
coordinates of P and Q− P are not randomized before entering the ladder, but in this
case a simpler DPA would work as well. Second, since the introduction of a more efficient
ladder in [FHLOJRH18], all implementations of SIDH, including SIKE, have moved away
from using a fixed pair of points in the loop, as can be seen in Algorithm 1.

The second attack ([KAJ17, §6]) also targets the three-point ladder, and asks to find
“[Montgomery] curves with points P0 = (±1, y) with a large order”. However, as explained
in Section 2, such points always have order 4, the attack can thus not be mounted against
any version of SIDH implemented using Montgomery curves, such as SIKE.

The third attack ([KAJ17, §7.2]) is the most enticing. The idea is to make a guess on
the secret, and then generate a ciphertext such that, if the guess is correct, the private
isogeny computed during decapsulation will pass through the (supersingular) curve with
A = 0. This is clearly feasible, and although the ciphertext generated would not pass the
FO test, such an attack is hard to detect at an early phase. The only obstacle, already
realized by [KAJ17], is that in all efficient implementations of SIDH/SIKE the curve EA

is internally represented as [A+
24 : C24] or as [A+

24 : A−24]. Neither of these encodings can
produce a zero if it represents an elliptic curve, thus it seems that this idea cannot be used
in a realistic scenario.

The last attack ([KAJ17, §7.3]) tries to force zeros in points pushed through the isogeny
computation and, in a sense, foreshadowed our attack presented in Section 3.2. The
description in [KAJ17] is however incomplete and, by the authors’ own admission, does
not apply to Montgomery curves.

It appears thus that, to the present date, there is no known zero-value attack that
would bypass the CLN countermeasure, although the third attack in [KAJ17] is a close
call. In fact, using the techniques of [SCDJB21] we show in the extended version of this
work [DFEMG+22] that adding the CLN test to the official version of SIKE blocks all
types of zero-value attacks.

6 Conclusion

We described two zero-value attacks against SIKE: one on the three-point ladder, the
other on the isogeny computation. Both attacks are based on special-point inputs that
enable an adaptive bit-by-bit key recovery. We analyzed them in theory, but also verified
them experimentally on the recommended SIKE implementation for Cortex-M4 with
both EM and power analysis using different techniques. At last, we argued that the
Costello–Longa–Naehrig test which verifies the order of the points is sufficient to stop the
attacks.

Countless similar attacks are likely to exist, however we show in the extended version
of this work [DFEMG+22] that the CLN test is sufficient to block all kinds of zero-value
attacks on standard SIKE. Finding other side-channel attacks capable of bypassing both
coordinate randomization and the CLN countermeasure remains an open question.
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