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Abstract. Code-based masking is a highly generalized type of masking schemes, which
can be instantiated into specific cases by assigning different encoders. It captivates by
its side-channel resistance against higher-order attacks and the potential to withstand
fault injection attacks. However, similar to other algebraically-involved masking
schemes, code-based masking is also burdened with expensive computational overhead.
To mitigate such cost and make it efficient, we contribute to several improvements to
the original scheme proposed by Wang et al. in TCHES 2020. Specifically, we devise
a computationally friendly encoder and accordingly accelerate masked gadgets to
leverage efficient implementations. In addition, we highlight that the amortization
technique introduced by Wang et al. does not always lead to efficient implementations
as expected, but actually decreases the efficiency in some cases.
From the perspective of practical security, we carry out an extensive evaluation of the
concrete security of code-based masking in the real world. On one hand, we select
three representative variations of code-based masking as targets for an extensive
evaluation. On the other hand, we aim at security assessment of both encoding and
computations to investigate whether the state-of-the-art computational framework for
code-based masking reaches the security of the corresponding encoding. By leveraging
both leakage assessment tool and side-channel attacks, we verify the existence of
“security order amplification” in practice and validate the reliability of the leakage
quantification method proposed by Cheng et al. in TCHES 2021. In addition, we
also study the security decrease caused by the “cost amortization” technique and
redundancy of code-based masking. We identify a security bottleneck in the gadgets
computations which limits the whole masked implementation. To the best of our
knowledge, this is the first time that allows us to narrow down the gap between
the theoretical security order under the probing model (sometimes with simulation
experiments) and the concrete side-channel security level of protected implementations
by code-based masking in practice.
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1 Introduction
Side-channel attacks are nowadays commonly considered a significant threat to the cryp-
tographic devices since various unintentional side-channel leakage can be captured and
exploited by a motivated adversary. To thwart such threat, numerous protection mecha-
nisms have been proposed, among which masking scheme prevails due to a formal and sound
theoretical foundation [CJRR99, ISW03, PR13]. Masking splits the sensitive variable into
n shares, enabling any d of them to be independent of the protected sensitive variable, for
any d < n. The mapping method from sensitive variable(s) to shares is called encoding
function. Furthermore, masking schemes also address the masked computations on those
split shares to guarantee an ultimate correct calculation result. These masked computations
are called private computations. Thus a complete masking scheme encompasses a secure
encoding function and a strategy to perform private computations.

Boolean masking (BM) is one of the simplest masking schemes, whose encoding func-
tion utilizes the simple XOR operation. One line of research devotes to replacing the
simple XOR operation with higher algebraic ones, since the latter is regarded to be ca-
pable of reducing information leakage and thus enhancing the side-channel resistance.
In this direction, a variety of masking schemes emerge such as multiplicative mask-
ing [GT02], affine masking [FMPR10], polynomial masking [PR11, GM11], inner product
masking (IPM) [BFG15, BFG+17] and direct sum masking (DSM) [BCC+14, PGS+17].
Interestingly, coding theory has also been introduced in this field and radiates new vital-
ity [BCC+14, PGS+17, WMCS20, CGC+21]. More recently, a more general case called
code-based masking appears, which covers BM, IPM, DSM, polynomial masking and so
on. It utilizes a unified coding form Z = XG + Y H for encoding, where Z ∈ Fn

q , X ∈ Fk
q

and Y ∈ Fm
q denote masked variables, sensitive variables and random masks, respectively;

G (resp., H) is a generator matrix of the code C (resp., D). Code-based masking is
deemed to decrease the information leakage by increasing the “statistical security order”
(or bit-probing security order) of masked implementations [WSY+16, PGS+17, CGC+20].
Moreover, the underlying error-correction capability enables code-based masking to have
potential against fault injection analysis for the encoded variables.

Code-based masking can be more secure but suffers from higher computational over-
head, actually originating from the positive and negative aspects of the high-algebraic
structure. In case of IPM, prior works [BFG15] and [BFG+17] make great efforts at cost
reduction for IPM. The results are considerable but still not as efficient as BM. Recent
research [WMCS20] has proposed a generic computational solution for code-based masking
and devised the “cost amortization” technique to speed up the masked computations.
Equipped with the cost amortization technique, the overhead of code-based masking
considering both bilinear multiplications (multiplication of two non-constant values) and
randomness can be reduced considerably given large enough number of amortized sensitive
variables (say k) and security order (say d). However, the performance of code-based
masking is still much lower than that of Boolean masking for commonly used choices
of k and d [WMCS20, WGS+20]. Therefore, the secure and efficient implementation of
code-based masking schemes is still an open challenge.

Plenty of researches concentrate on evaluating the side-channel resistance of code-
based masking schemes under theoretical models or by simulated experiments [BFG15,
BCC+14, WMCS20, CGC+21, CS21]. To the best of our knowledge, there have been few
investigations regarding the practical security of high-algebraic masked implementations
when confronting the actual side-channel attacks, leaving a huge gap in this field. One
reason might be that security level in practice is a complicated outcome interacted by
various factors involving the theoretical scheme, implementation strategy, the specific
platform, the execution environment and so on. Moreover, the associated security evaluation
is also a tough task since it significantly relies on the expertise of attackers or saying
evaluators. At the very least, capturing the observations of protected implementations and
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the related data processing themselves are already time-consuming and labor-intensive
works. Regarding practical side-channel evaluation, Balasch et al. [BFG+17] have collected
the actual acquisitions and utilized Test Vector Leakage Assessment (TVLA) [GGJR+11]
to analyze the leakage behavior of BM and IPM implementations. Besides, a sound and
extensive evaluation of high-algebraic masking schemes (including code-based masking)
still lacks with respect to practical security assessed by side-channel attacks.

Our Contributions. In this work, we aim at a pragmatic evaluation of code-based
masking in real-world implementations. Our contributions are summarized as follows:

• We devise the first complete and generic implementation (in the form of improved
mathematical equations and algorithms, and also of assembly code) of code-based
masking in protecting AES-128.

• We provide a practical validation of “security order amplification” in code-based masking,
which fills the gap between theory and practice.

• We confirm the reliability of a coding-theoretic framework which allows us to enhance
the concrete side-channel resistance level of generic encoders in practice.

• Although the “cost amortization” technique seems promising, we illustrate a security
loss because of amortization from a security perspective.

• We demonstrate that the redundancy in sharing usually leads to a security decrease in
the sense of practical side-channel attacks.

• We identify a structural security bottleneck that ruins the security order amplification
in code-based masking.

In particular, we highlight that the last three points give rise to challenges in the
practical use of the probing model: the same security orders in theory may result in
distinct concrete security levels in practice. That is, new practice-relevant models should
be developed for more accurate side-channel evaluations. Moreover, in accordance with
TCHES submission policy, our implementations will be available afterward on Github and
for further evaluation as TCHES Artifacts.

2 Preliminaries
We denote the finite field of order q as Fq and the field addition operation as ⊕. And we
denote with [n] the set of integers from 1 to n (both included). Let calligraphies (e.g.,
C) denote the linear code. We utilize bold lower cases (e.g., x) to represent the vectors
over F|x|q , where |x| defines the length of vector. The notation � denotes the element-wise
multiplication between two vectors x and y over Fn

q , that is x � y = (x1y1, · · · , xnyn).
We use ei to denote a canonical vector: its ith element is 1 and all of its other elements
are 0. Let bold capital letters (e.g., A) represent matrices over Fr×c

q , constructed with
r rows and c columns. A[i, ∗] (resp., A[∗, i]) denotes the ith row (resp., column) of A,
and A[i : j, ∗] (resp., A[∗, i : j]) denotes the matrix made up of the ith to jth rows (resp.,
columns) of A. The symbols A−1 and AT denote the (generalized) inverse and transpose
of A, respectively. For two matrices A and B, we denote their product as A×B (or in
short AB), and [A, B] (resp., [A; B]) is the concatenation of columns (resp., rows) of A
and B. The notation ⊗ represents tensor product between two matrices.

In the remainder of this paper, we use A to represent the practical encoder (introduced
in Section 3.1). Let Ox×y and Ix be a zero matrix and an identity matrix over Fx×y

q and
Fx×x

q , respectively. We denote the x̂ as the codeword of x (namely x̂ = xA). Note that
all indices in this paper start from 1 instead of 0.
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In this paper, two kinds of security orders are involved, namely security orders at
word-level and bit-level under the probing model [ISW03, PGS+17], that are defined in
F28 and F2, respectively. Note that the latter is also the security order in the bounded
moment model [BDF+17]. In addition, we use the following coding-theoretic properties.

Definition 1 (Dual Distance [MS77] and Kissing Number 1 [SLC+21]). Considering a
linear code C, its dual distance d⊥C is the minimum Hamming weight wH(u) of nonzero
u ∈ Fn, such that

∑
c∈C(−1)c·u 6= 0. The dual distance d⊥C of a linear code C coincides

with the minimum distance dC⊥ of the dual code C⊥. Accordingly, the kissing number
Bd is the number of codewords in C at minimum distance d to the all-0 codeword:
Bd = |{x ∈ C |wH(x) = d}|.

Definition 2 (Adjusted Kissing Number [CGC+21]). Let C, D denote two linear codes;
their adjusted kissing number B′d is:

B′d = |{(x, y) ∈ (D\C)2 |x + y ∈ C, wH(x) = wH(y) = d}|. (1)

We use the above coding-theoretic properties mainly over F2 unless otherwise stated,
and a linear code can be easily expanded from F28 into F2 by using the sub-field repre-
sentation [MS77, CGC+21]. It is worth mentioning that the kissing number Bd⊥

D
plays

an important role in indicating side-channel resistance of code-based masking, which is
defined on the dual code D⊥. Similarly, the adjusted kissing number B′

d⊥
D
is defined on

C⊥ and D⊥ in code-based masking [CGC+21]. The latter is degraded to the former in
non-redundant cases where we shall have C⊥ ∩ D⊥ = {0}, e.g., in IPM and DSM.

3 Efficient Construction of Code-based Masking
In this part, we first give a brief introduction of the generic encoder and private com-
putations for code-based masking devised in [WMCS20]. Then a detailed illustration of
our improved construction will be exhibited and it is followed by comparisons regarding
computational complexity and discussions about the “cost amortization” method. Finally,
we have investigated efficient implementations tailored to a specific platform.

So far, there is only one valid construction of computational framework proposed by
Wang et al. [WMCS20] for code-based masking in a general sense. In particular, Wang et
al. [WMCS20] propose a generic encoder for code-based masking and three masked gadgets
for its private computations. The generic encoder is actually a generator matrix Agene

over F(k+m)×n
q which consists of two parts: the upper part G over Fk×n

q relating to the
sensitive variables and the lower part H over Fm×n

q corresponding to the random masks.
It requires that G and H are both full-rank with CG ∩ CH = {0} [WMCS20]. The masked
gadgets address the element-wise multiplication operations and linear transformations
in the masked domain. The three gadgets are different but basically follow a similar
procedure. Such procedure should be fed with codeword(s) over Fn

q and transforms the
input vectors into a matrix over Fn×n

q by an outer product at the very beginning. Hence
we can regard the masked computations throughout the gadgets as matrix operations.
Eventually, an output vector over Fn can be obtained, which is actually the codeword
of the unmasked output. A special step during such procedure lies in a back-and-forth
switch between the code-based masking and the additive sharing 2, which is the core for
both multiplication and linear functions in the current computational framework, though
usually at cost of practical security losses (which will be assessed in Section 4).

1The kissing number is a geometric notion originally defined for lattices and sphere packings. Recently,
it is adapted for the linear codes over finite fields [SLC+21].

2In this paper, we use equivalently “Boolean masking” and “additive sharing”, e.g., to keep consistency
with descriptions in [WMCS20].
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3.1 Practical Construction of Generic Encoder
In order to improve the performance of code-based masking [WMCS20], we devise a
relatively fixed construction for the generic encoder. The basic idea is to set as many
entries as possible to 0, rendering the generator matrix to be more sparse. Sparsity
implies the corresponding 0-involved multiplications can be omitted, so as to mitigate
computational overhead. Our construction remains the concatenation of two matrices
G ∈ Fk×n

q and H ∈ Fm×n
q , that is A = [G; H]. It is illustrated in Equation 2 below.

A =



1 0 0 · · · 0 0 · · · 0
. . . ... . . . ...

... . . . ...
0 1 0 · · · 0 0 · · · 0

a11 · · · a1k a1(k+1) · · · a1(n−m) 1 0
... . . . ...

... . . . ... . . .
am1 · · · amk am(k+1) · · · am(n−m) 0 1


. (2)

We consider the matrices G = [Ik, Ok×(n−k)] (also suggested in [WMCS20]), and
H = [R, Im], where R is an m × (n − m) matrix whose entries aij ∈ Fq (for 1 ≤ i ≤
m,1 ≤ j ≤ (n − m)) remain free for practical designers, and that we explore in this
article. The two identity matrices Ik and Im ensure that G and H are both full-rank,
satisfying CG ∩ CH = {0} as well. Therefore, A = [G; H] corresponds to a valid generic
encoder, called the practical encoder A in this paper. We highlight that the generic encoder
(proposed in [WMCS20]) could be set in the form of A for better performance. Since on
the one hand, any generator matrices of the linear code can be transformed into systematic
forms, therefore any variations of the generic encoder shall be equivalent to the instances
of A. On the other hand, as many as possible entries of A are set to 0 or 1, hence in
contrast with the generic encoder, it is more computationally friendly as massive related
(both 0-involved and 1-involved) multiplications can be omitted. Moreover, the practical
encoder retains the ability to apply the “cost amortization” technique [WMCS20].

3.2 Improving Masked Gadgets
Our main strategy to accelerate the masked gadgets is to eliminate as many as possible
field multiplications during gadget computations via the sparsity of the practical encoder 3.
In addition, we also tune up and reduce the redundant parts in the masked gadgets. We
should claim that our improvement will not cause a loss of security in theory, but only
mitigate the computational overhead. As is introduced above, the three masked gadgets
(multiplication Gadget, L Gadget and Ls Gadget) proposed in [WMCS20] actually share a
similar framework (straightforwardly applied in multiplication Gadget, while L Gadget
and Ls Gadget have slight variations). Therefore, here we only consider the common
framework in multiplication Gadget. Our improvement encompasses three parts as follows.

Part 1: Simplifying Refresh Variables R̂1 and R̂2. In the original framework, there
are two refreshing operations by two well-constructed matrices R̂1 and R̂2. Let R1
and R2 be two matrices uniformly distributed over Fn×m

q , R̂1 can be computed as
R̂1 = ([On×k, R1]A)T and R̂2 = [On×k, R2]A. Explicitly, the existence of matrix On×k

prevents the upper k × n part G of matrix A from participating in the computations.
Hence the construction of R̂1 and R̂2 can be simplified by removing the needless product
of On×k and Gk×n. Therefore, R̂1 and R̂2 can be improved as follows in Equation 3.

R̂1 = (R1 ×H)T , R̂2 = R2 ×H. (3)
3It has been noted in related works that genetic algorithms can help achieve sparsity beyond plain

systematic forms [CDD+15]. Such technique is hard to formalize and hence is left open as future work.
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Part 2: Reducing Internal Computation. As mentioned above, there exists a special
transformation from code-based masking to additive sharing in the original framework. Here
we focus on this transformation. The input is a matrix S ∈ Fn×n

q and the transformation
is conducted by multiplying each row S[i, ∗] of S with a corresponding pre-computed
matrix Mi over Fn×(k+m)

q , resulting in an n× (k + m) matrix T, for i ∈ [n]. To enable
matrix T to be the additive sharings, Mi is defined as Mi

def= (Ã[i, ∗] ⊗ Ã)E, where
Ã def= [A−1[∗, 1 : k], On×m] and E over F(k+m)2×(k+m) is the concatenation of the (k+m)2-
length eT

i for i ∈ {j(k + m) + j + 1|0 ≤ j < k + m} [WMCS20]. However, we find that
the last n×m sub-matrix of Mi is always a zero matrix so that can be eliminated, and
thus we set Mi = M∗

i [∗, 1 : k] and M∗
i

def= (Ã[i, ∗]⊗ Ã)E. As a consequence, the resulting
matrix T turns into an n × k matrix. The improved process for this transformation is
illustrated in Equation 4 below.S[1, 1] · · · S[1, n]

... . . . ...
S[n, 1] · · · S[n, n]

 →
×M1

...
×Mn

→

T[1, 1] · · · T[1, k]
... . . . ...

T[n, 1] · · · T[n, k]

 . (4)

Regarding the correctness of the reduced computation, we have the following lemma.

Lemma 1. The reduced computation of T in Equation 4 is functionally equivalent to the
original one in [WMCS20], hence the correctness is kept unchanged.

Proof. Following the above computational procedure, we have Ã def= [A−1[∗, 1 : k], On×m]
and E ∈ F(k+m)2×(k+m) as the concatenation of the (k + m)2-length eT

i for i ∈ {j(k + m) +
j +1|0 ≤ j < k +m}. Therefore, multiplying with On×m gives the right part sub-matrix of
Mi being all zeros. Similarly, after multiplying with Mi returns the right part sub-matrix
of T being On×m. Removing above all-zero sub-matrices yields Equation 4.

Part 3: Removing Re-encoding. After the transformation from code-based masking to
additive sharing, the matrix T (the original n× (k + m) one in [WMCS20]) is multiplied
by generator matrix Agene for re-encoding (the conversion back from additive sharing to
code-based masking). However, after being improved by the second part, the matrix T has
only k columns so that only the upper part G (over Fk×n

q ) of A involves in the product.
Recall that G = [Ik, Ok×(n−k)], hence the re-encoding process is equivalent to Tn×k

concatenated with an n× (n− k) zero matrix (namely Tn×kGk×n = [Tn×k, On×(n−k)]).
As a result, a product originally between two matrices Fn×(k+m)

q × F(k+m)×n
q is simplified

to be an easy and efficient concatenation operation.

Lemma 2. Given that Agene in code-based masking takes the form of Equation 2, then
removing re-encoding by A is functionally equivalent to the original algorithm in [WMCS20].

Proof. Since the upper sub-matrix of A is G = [Ik, Ok×(n−k)] and the output of previous
step is T′ = [T, On×m], then T′A = TG = [T, On×m] = T′. This concludes the proof.

Here we present the detailed construction in Algorithm 1 for the improved framework
(or saying multiplication Gadget). From a security perspective, our improved algorithm
has the same security order as in [WMCS20] under the word-level probing model. That is,
if A is a dth-order secure encoder, then the improved multiplication Gadget is dth-order
secure as well. The proof of [WMCS20] still applies. By applying the above improvements,
L Gadget and Ls Gadget (detailed in Appendix A) which follow the similar procedure
have also been sped up with no loss of security.

Since the field multiplication is usually the most costly part (with no native instruction)
in the masked implementations, the above improvements shall boost the performance of
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code-based masking from the algorithmic level, especially when an appropriate encoder A
is chosen.

Algorithm 1: Improved Multiplication Gadget
Input: Codewords x̂ = xA and ŷ = yA of x̂, ŷ ∈ Fn

q and x, y ∈ Fk
q

Output: ẑ ∈ Fn
q such that z = x� y

1 Initialize R1 and R2 uniformly over Fn×m
q

2 R̂1 = (R1H)T , R̂2 = R2H
3 for i = 1 to n do
4 for j = 1 to n do
5 S[i, j] = x̂[i]ŷ[j]⊕ R̂1[i, j]
6 end
7 end
8 Mi = M∗

i [∗, 1 : k], where M∗
i = (Ã[i, ∗]⊗ Ã)E and Ã def= [A−1[∗, 1 : k], On×m]

9 for i = 1 to n do
10 T[i, ∗] = S[i, ∗]×Mi

11 end
12 K = [T, On×(n−k)]⊕ R̂2
13 for j = 1 to n do
14 ẑ[j] =

∑n
i=1 K[i, j]

15 end
16 return ẑ

3.3 Computational Complexity and Comparisons

In this section, we quantify the computational complexity of our improved framework
and present comparisons with other masking schemes. Here we concentrate on the field
multiplications as it is usually the most costly part. Firstly, to exhibit the improvement
explicitly, we conduct a comparison with the original construction in [WMCS20]. The
amount of multiplications for each gadget is reported in Table 1 (the detailed encoding
and decoding are attached in Appendix B). Note that Ls Gadget is a multiple of L Gadget
and thus the computational cost is also a constant multiple, so it is omitted in the table.
Additionally, we also illustrate the trend of the multiplications quantity with increasing
m and k in Figure 1. For the sake of brevity, we set n = k + m and only showcase two
representative cases for k, that is k = 1 and k = 4. In Figure 1, “A” (resp., “B”) indicates
the multiplication Gadget (resp., L Gadget), marked by the symbol ∗ (resp., small circles).

Table 1: Comparison of the number of field multiplications in different components.
Component Scheme in [WMCS20] Our Improved Scheme
Encoding n(k + m) m(n−m)

Multiplication Gadget n2(4k + 4m + 1) n2(k + 1) + 2nm(n−m)
L Gadget n2(3k + 3m + 1) n2k + nm(n−m)
Decoding nk k(n− k)

Notably, it can be explicitly demonstrated from Table 1 and Figure 1 that our improve-
ment is significant, as the computational complexity of our scheme is much lower than
that of Wang et al. in any case and the disparity becomes larger with increasing k and
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Figure 1: Comparison of the number of multiplications with increasing m for the original
masked gadgets and our improved ones.

m. Furthermore, we also supplement the performance comparison regarding clock cycle
counts of complete cryptographic implementation in Appendix C for practical verification.

In addition to the longitudinal comparison, we also supplement an extra comparison
with an efficient BM scheme, say packed BM, which utilizes the “cost amortization”
technique. In fact, the same idea of amortization for mitigating overhead is presented
in [WMCS20] and can be applied in our scheme as well. For a fair comparison, we set
n = k + m and focus on multiplication gadget in Table 2. As shown in Table 2, the packed
BM consumes less computational resources for all components compared. The reasons
are, on the one hand, the packed BM scheme aims at Boolean masking only for efficiency
while our improved construction is generic for various code-based masking schemes. On
the other hand, the idea of “cost amortization” (processing multiple sensitive variables in
parallel in the masked domain) for efficiency may be adaptable for that well-designed BM
scheme, but fails to reduce overhead (recall that our strategy to mitigate cost is eliminating
as many field multiplications as possible) in our scheme, which will be elaborated in
Section 3.4. Moreover, we highlight that packed BM is a special case of our improved
scheme by instantiating the practical encoder A as devised in [WGS+20] from an encoding
perspective.

Table 2: Computational complexity of field multiplications for components.

Component Packed BM in [WGS+20] Our Improved Scheme
Encoding 0 mk

Multiplication Gadget (5m2 + 4m + 2)k + m2 (3k2 + 3mk + m + k)(m + k)
Decoding 0 mk

3.4 Discussion about “Cost Amortization”
The concept of “cost amortization” is first proposed by [WMCS20] to improve the per-
formance of code-based masking. That is, k (for k > 1) sensitive variables are encoded
into one codeword, then all computations performed on the codeword are equivalent to
parallel operations on those k initial variables, resulting in packed operations and possible
cost amortization. It is shown in [WMCS20] to require less bilinear multiplications and
randomness given sufficiently large k and m compared to [ISW03]. However, there is
merely no improvement in performance for small k and m, since the “cost amortization”
technique involves more internal computations. Indeed, the codeword integrating the k
sensitive variables should enter into masked gadgets and the beginning operation is an outer
product, which converts the input vector(s) over Fn

q into an n× n matrix. Unfortunately,
the matrix state and related computations will continue through the whole procedure until
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the end. It implies that if the length of the input vector (actually n) becomes longer, the
dimension of the internal matrices will increase accordingly, resulting in a nearly quadratic
increase at cost. However, if we set k = 1 and perform the gadget computations in a
sequential fashion, it only leads to a linear growth at cost. To demonstrate, we provide
a straightforward comparison of the multiplication Gadget (fixing that n = k + m for
brevity) between the packed operation and the sequential calculation in Figure 2.
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Figure 2: Comparison of the number of multiplications with increasing k for the packed
operation and serial computation.

Note that in Wang et al.’s case, we utilize the recommended instance of the generic
encoder provided in [WMCS20], such that G = [Ik, Ok×m] and H is the transpose of
a Vandermonde matrix. In Figure 2, “A” marked by symbol ∗ represents the scheme
exploiting packed operation, and “B” marked by small circles denotes k = 1 so as to perform
the multiplication Gadget sequentially. We can discover that when m is small, the packed
operation actually shows a negative effect on mitigating the amount of multiplications.
However, if m increases, the cost amortization technique could be more efficient. Here in
our case, the potential advantage of the packed operation vanishes. The reason is that, in
Wang et al.’s case, the internal matrix keeps the same dimension n (recall that n = k + m)
throughout the overall computation of multiplication Gadget. That is, k and m jointly
dominate the dimension length of the internal matrix. Moreover, m is more involved in
the multiplications (the corresponding amount is n2(k + 4m + 1)). Hence if m is large
enough, the cost introduced by k will be less significant. On the contrary, in our scheme,
k plays a more important role in the dimension of the internal matrix (recall that T is
an n× k matrix) and k is more involved in the multiplication (recall the computational
complexity in Table 1). Hence, however large m is, the quadratic overhead introduced by
k will always be higher than the linear case. To further illustrate it, we supplement the
comparisons regarding actual clock cycles counts in Appendix D.

In summary, the computation involvement of k and m actually affect the feasibility and
effectiveness of the “cost amortization” method. Therefore, not all instances of code-based
masking are appropriate to utilize this technique from a computational point of view.
Finally, it is also indicated in Figure 2 that whether compared with the serial computation
or the packed operation of Wang et al.’s scheme (already accelerated by choice of G), our
improved scheme provides better performance from a computational perspective, which
again validates our improvement.

3.5 Efficient Implementations
In addition to improve the theoretical computational framework, we have developed efficient
implementations as well. To the best of our knowledge, this is the first attempt at practical
implementation of code-based masking. Hence in order for a direct comparison with other
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higher-order masking schemes, we set k = 1 employing m = 1 (with n = 2 shares) and
m = 2 (with n = 3 shares), and apply our improved masking approach in the AES-128
implementations. Our target platform is LEGACY STM32F407 whose micro-controller
is ARM Cortex-M4 running at 168 MHz. STM32F407 offers a 32-bit architecture and
is equipped with 16 general-purpose registers, 512 KBytes of internal SRAM and 1024
MBytes of Flash memory. We select this device due to two reasons. Firstly it integrates
the True Random Number Generator (TRNG) and hence it is capable of producing real
random numbers. Secondly, its micro-controller ARM Cortex-M4 possesses an efficient
and powerful instruction set. Particularly, it features inner barrel shifts, which implies a
free cost of shift operations in some cases. For an aim of speed, our implementations are
written in assembly code and some specific strategies are leveraged.

Field Multiplication. The implementation relates to the field addition and field mul-
tiplication in F28 (as our implementation is for AES-128, here we suppose q to be 28).
Basically, the field addition can be easily addressed with a native XOR instruction, whereas
the field multiplication is more challenging as there is no corresponding native instruction.
We opt to utilize the Half-Table Multiplication [GR17], instead of the commonly used log
and alog tables [DWBV+96]. The Half-Table method involves 2 look-ups in two 212-sized
tables. Although the memory size for tables storing increases compared to the log and
alog table (involving two 28-sized tables), it eliminates the conditional statement (check if
any of the operands equals zero). Thanks to the elimination, the clock cycles required for
one constant field multiplication can be reduced from 22 [BFG15] to 13 only.

The Half-Table method is based on the following equation [GR17]:

a · b = bhx4(ahx4 + al) + bl(ahx4 + al) mod p(x). (5)

where ah, al, bh, bl are the 4-degree polynomials so that a(x) = ahx4 + al and b(x) =
bhx4 + bl. Therefore, the above equation can be efficiently computed by tabulating the
following functions [GR17]:

(ah, al, bh) 7→ bhx4(ahx4 + al) mod p(x),
(ah, al, bl) 7→ bl(ahx4 + al) mod p(x).

(6)

As illustrated in [GR17], the advantage of inner barrel shifts in ARM instructions
can be taken to gain the triplets efficiently. Precisely, for each table access, only two
instructions are required at a minimum (more details referred to [GR17]). However, on
our target platform (ARM Cortex-M4), the “LDR” instruction is unable to conduct all
the types of inner barrel shifts and thus more instructions are required for one look-up.
The concrete instructions to obtain the two triples are listed as follows:

LSL $tmp1 , $opA , #4
EOR $tmp2 , $tmp1 , $opB , LSR #4
LDRB $res1 , [ $tab1 , $tmp2 ]
AND $tmp2 , $opB , #0xF
EOR $tmp2 , $tmp1
LDRB $res2 , [ $tab2 , $tmp2 ]

Power Function and Affine Transformation. For speed, we accelerate the power func-
tions and affine transformation by look-up tables. Both power functions and affine
transformation can be considered as the linear function (also the L function defined
in [WMCS20]), and hence can be evaluated by L Gadget. As mentioned above, L Gad-
get almost follows the primary computational framework which has been improved in
Section 3.2, thus it also contains a transformation from code-based masking to additive
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sharings. This transformation is actually beneficial to L Gadget. Thanks to the property
of linear functions, a linear transformation on the sensitive variable is consistent with the
same linear transformation on its corresponding additive shares. When the conversion to
additive sharings is carried out in L Gadget, the entries in the k columns of matrix T (an
n× k matrix) are actually the additive shares of the corresponding k unmasked sensitive
variables (that is xj =

∑n
i=1 T[i, j] for 1 ≤ j ≤ k). We should underline that the input of

L Gadget is actually the codeword x̂ (over Fn
28) of x (over Fk

28). As a consequence, the
linear function f of xj can be computed as performing f on the additive shares in T[∗, j]
independently. Since the power functions and affine transformation are both instances of
linear transformations, and their application in our protected implementations relates to a
bijective mapping from F28 to F28 , the process of f function performing on the additive
shares independently can be accelerated by look-up tables. In fact, only four 28-sized
tables are required (.2, .4, .16 and an affine function) for this part.

AES Components. AES is composed of four components: AddRoundKey, SubBytes,
ShiftRows and MixColumns (refer to [DR02] for more details). Among them, AddRound-
Key, ShiftRows and MixColumns are essentially linear transformations and thus can be
directly evaluated by Ls Gadget (constructed in Algorithm 3). It becomes more complex for
SubBytes transformation (also denoted as S-box), where a non-linear function is performed
on each of the 16 internal states independently. The common method to compute S-box is
using a combination of an inverse and an affine transformation both over F8

2. Rivain et
al. [RP10] further propose to compute the inverse by a power function x 7→ x254, which can
be decomposed into a quite efficient addition chain of several multiplications and power
functions (.2, .4 and .16). Therefore, with multiplication Gadget to compute multiplications
and L Gadget for performing linear functions (containing both power functions and an
affine transformation), SubBytes transformation can be computed in an efficient fashion.

By instantiating the practical encoder A, code-based masking can be instantiated
into specific masking schemes. Here we opt to implement BM and IPM by applying our
improved scheme (constructed in Section 3). BM is acknowledged as an effective masking
scheme with relatively low overhead, while IPM is a typical representation of high-algebraic
masking schemes. Principally, both of them possess corresponding precedent efficient
implementations. For BM and IPM with n = 2 shares and n = 3 shares, the corresponding
generator matrices A are depicted in Table 3. Note that L2 and L3 represent the values
of the public vector L (of IPM) in the corresponding indices. In addition, the values of
A[2, 1] and A[3, 1] in BM (corresponding to L2 and L3 respectively in IPM) are 1 and
hence the involved multiplications can be removed. This is why the clock cycle counts
(summarized in Table 4) are distinct for BM and IPM although with the same k, m and
n, which essentially affect the overhead. We should claim that our implementations all
follow the same flow with constant time, thus the speed (evaluated by clock cycles counts)
is independent of the input plaintexts and key. The measurement of clock cycles on the
implementations for whole AES-128 encryption is summarized in Table 4.

Table 3: Various choices of generator matrix A over Fn×n
28 for BM and IPM, respectively.

BM, n = 2 IPM, n = 2 BM, n = 3 IPM, n = 3

A

1 0
1 1

  1 0
L2 1




1 0 0
1 1 0
1 0 1




1 0 0
L2 1 0
L3 0 1


The clock cycle results in the second and third columns are taken directly from [BFG+17],
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Table 4: Performance comparison by clock cycles for implementations.

BM in [BFG+17] IPM in [BFG+17] IPM(C) Our BM Our IPM
2-share 110569 157196 812314 155062 193765
3-share 230221 372225 1730163 285025 334983

which are evaluated on an AVR ATMega163 4 platform with 32 general-purpose registers.
It should be pointed out that more registers for general-purpose implies less load and store
instructions (memory access instructions usually require more clock cycles compared to
general data processing instructions). To show the difference between the two platforms,
we conduct a timing measurement on the implementation of [BFG+17] on our platform
and the results are shown in the fourth column (indicated by “IPM(C)”). However this
implementation is written in C code (not fully optimized). In the last two columns, we
depict the clock cycles of our specific implementations. It is indicated from Table 4 that
our implementations are generally less than 1.5 times as slow as the ones in [BFG+17].
Particularly, our implementation even presents a better performance in the case of IPM
with 3 shares. Since those two different platforms both have advantages in reducing costs
(e.g., AVR ATMega163 has more general-purpose registers, while STM32F407 features
inner barrel shifts) and they are running at different operating frequencies, it is actually
hard to draw a valid conclusion regarding the comparison. However, our intention is to
provide clock cycle counts for code-based masking, which could promisingly be baselines for
future research towards efficient implementations. We highlight that our implementations
tailored to n = 2 shares and n = 3 shares in this section are aimed for speed only, and
their side-channel resistance needs further in-depth inspections.

4 Practical Evaluations

The state-of-the-art investigations on code-based masking (excluding BM) can be clarified
into three classes ranging from more theoretical to more practical analyses. First of all,
most prior works [BFG15, WSY+16, PGS+17, BFG+17, WMCS20] have been devoted
to designing theoretically secure masking gadgets against the formal adversarial model
(e.g.the d-probing model [ISW03]). Second, several works [PGS+17, CG18, CGC+20,
CGC+21, CS21] consider a coding-theoretic approach which connects the concrete se-
curity level of code-based masking (or some special instances) to coding properties. In
particular, [CGC+21] quantifies the side-channel leakage from an information-theoretic
perspective and shows that the dual distance and the (adjusted) kissing number are good
indicators of side-channel resistance for code-based encoders. At last and in practice, to
the best of our knowledge, only [BFG+17] considers leakage assessment by using t-test to
check whether their IPM and BM implementations are leaking.

However, none of the above works consider the side-channel attacks against real-
world implementations. In particular, some theoretical advantages like security order
amplification essentially derived from encoding [WSY+16, PGS+17, CGC+21] have not
been verified in practice, which leaves a huge gap between theory and practice and hinders
the practical application of code-based masking. In this section, we intend to take a
step forward to establish the relevance between theory and practice by evaluating three
representative types of code-based masking schemes:

• Non-redundant type in Section 4.2: taking n = k + m and k = 1, we focus on
BM and IPM as special examples.

4AVR ATMega163 micro-controller has no TRNG, hence the random numbers for all types of imple-
mentations are provided externally and stored in memory for a fair comparison.



204 On Efficient and Secure Code-based Masking

• Packed type in Section 4.3: taking n = k + m, m = 1 and k ∈ {1, 2, 4}, which
utilizes cost amortization technique.

• Redundant type in Section 4.4: taking n ≥ k + m, k = m = 1 and n ∈ {2, 3, 4},
where we show the impact of redundancy on side-channel security.

It is worth mentioning that implementations of BM and IPM evaluated in this section
are instantiated from the general code-based masking [WMCS20] (e.g., taking the corre-
sponding basic gadgets) and implemented in this work as the above, which differ from the
IPM implementation proposed in [BFG+17].

4.1 Evaluation Strategy and Experimental Setup
First of all, we will give a brief summary of our evaluation objects and strategy. Then we
detail the acquisition settings in our evaluation experiments.

Evaluation Objects. The core ingredients for a complete masking scheme are the encod-
ing for randomizing the secrets and the masked computations manipulating the random
shares. Since the latter involves more complicated factors, it is common that private
computations sometimes fail to reach the security of the encoding function. Hence in order
for an extensive evaluation on the practical security of code-based masking, we evaluate
both encoding and gadgets computations, which though have been proved equally secure
in word-level probing model [WMCS20]. On the one hand, to assess the side-channel
resistance of encoding, we target the output of the first SubBytes transformation (or saying
the output of L Gadget) in the first AES round. On the other hand, to evaluate the
masked computations against side-channel attacks, we consider the seemingly worst-case
scenarios by targeting the theoretical weakest part during gadgets computations, that is
the matrix T of L Gadget (also during the first SubBytes in the first AES round).

As discussed above, a back-and-forth switch between code-based masking and BM
exists during gadgets computations, possibly inclining to a security loss. And each column
(for k in total) of matrix T in L Gadget is exactly the additive sharing of the corresponding
k unmasked input sensitive variables. Even worse, no extra refreshing operation (e.g., XOR
with R̂1 in multiplication Gadget) is executed before such a switch in L Gadget, which is
more likely to expose sensitive information. It is worth mentioning that: 1) the claim for
the matrix T as the “weakest part” derives from the theoretical structural analysis since it
degrades code-based masking to additive sharing, however it might not be the weakest
part from an adversary’s perspective, and 2) the matrix T is not the only “weakest” part
in theory, instead the matrix V (constructed in Algorithm 2) possesses the same security
level with T.

Evaluation Strategy. The side-channel security of a cryptographic implementation can
be assessed in two aspects: 1) How much sensitive information it leaks, and 2) How
difficult for an adversary to extract the secret from those leaking information. To detect
leakage, we leverage the most widely used leakage assessment tool in the literature,
which is Test Vector Leakage Assessment (TVLA) [GGJR+11]. Concerning side-channel
attacks, we utilize typical Correlation Power Analysis (CPA) [BCO04] and Template Attack
(TA) [CRR02, RO04]. CPA is an effective non-profiled attack that is proven to be optimal
if the side-channel measurements linearly depend on the hypothetical leakages [HRG14].
Whilst TA is profiled and regarded as the worst-case attack scenario. Regarding practical
attacks, we consider two typical metrics, namely the Success Rate (SR) and Guessing
Entropy (GE) [SMY09].

With respect to CPA, we leverage 2nd-order CPA in our evaluation since we mainly
target first-order secure masking schemes. Specifically, we first select two sets of samples
for each share, respectively, and combine them with a squared difference. Although the
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centered product combination is demonstrated to be optimal in [PRB09], the squared
difference combination performs better in our experimental scenarios. The combined
samples are then correlated with hypothesis leakage under the Hamming weight leakage
model for each subkey guess to obtain the attack results.

Regarding TA, in the profiling phase, firstly the collected measurements (totally 90, 000)
are aligned by the static alignment method [MOP07]. Then 60, 000 measurements are used
to build the templates, while other 30, 000 measurements are utilized to mount attacks.
We build 256 Gaussian templates for each share in total, which include all the candidate
values of one byte. As a result, we actually take the Hamming distance leakage out of
account in our TA evaluations. As a result, we actually do not take transitions into account
in our TA evaluations. Byte transitions can be taken into consideration if, for instance,
2562 = 65536 templates are profiled on the pair of (initial, final) values. During the
attack phase, we leverage an adaption of the Gaussian mixture model as in [CMP18, CS21]
by using real measurements. We choose one Point of Interest (POI) for each share and
the selection strategy is to designate the one which has the largest and most consistent
Signal-to-Noise Ratio (SNR), which is defined for each share as in [DFS15]. Since the
masked implementations are running on the same device, and the acquisition environment
and settings are the same (in each group of experiments), we assume the environment noise
is constant. We therefore try to ensure that the SNR of all shares for different masked
implementations in an evaluation are consistent with each other. As a consequence, it may
not be the optimal attack for a single masked implementation since there may exist more
informative sample points which are not exploited. But we nevertheless proceed this way
for a fair comparison among all the protected implementations, since SNR has a significant
impact on the attack results. As knowledgeable evaluators, we choose POIs directly by
SNR for impartial evaluations, instead of selecting the most informative ones.

Acquisition. Our target platform is legacy STM32F407 which has been introduced
in Section 3.5. We exploit the arm-none-eabi-gcc tool-chain to port our protected
implementations (coded in assembly for speed-ups) of AES-128 to this platform. We
should underline that our implementation for security evaluation is generic, which can
be fed with any legal instance of the practical encoder A (it can be further optimized
as in Section 3.5 for specific encoders). They are constant-time and thus independent of
the inputs (plaintexts or key) as well. In the acquisition phase, Electromagnetic (EM)
measurements are collected in a contactless fashion by placing a Riscure HP (High Precision)
EM probe (SN152, with tip diameter 0.2mm) over the chip package. The probe can pick
up EM fields with frequencies up to 4.5 GHz and has adjustable gain. Then the signals
are sampled by a Keysight InfiniiVision DSOX3034T oscilloscope.

The acquisition stage for TVLA follows the approach of the non-specific fixed versus
random test [GGJR+11, SM15]. Hence, we collect two sets of measurements: one is with
fixed plaintexts, and the other is fed with random plaintexts drawn uniformly from F16

28 .
The two sets of measurements are obtained randomly interleaved. In total, we collect
100, 000 EM measurements (containing both fixed and random sets) for each TVLA test.
Notably, each EM measurement covers the first 2.5 rounds of AES, which is actually a
trade-off between the amount of data processing (shorter measurement implies less data)
and the computational complexity of the executed encryption since two rounds of AES
give full diffusion [BFG+17]. While for side-channel attacks, acquired EM measurements
cover the first two SubBytes transformations in the first AES round.

4.2 Security Evaluation on Non-Redundant Type

In this section, we concentrate on the non-redundant case when n = k + m and k = 1.
This case corresponds to a masking scheme that protects one sensitive variable with
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m masks. Here we focus on IPM 5, which captivates by its commonly known “security
order amplification” [WSY+16, PGS+17]. More precisely, the security order under the
bit-probing model [PGS+17] of IPM can be much higher than its word-level security
order under the probing model. In particular, Cheng et al. [CGC+20] further provide
a sound theoretical explanation for this feature and show how the public vector L of
IPM significantly affects its concrete security level. They exploit two coding-theoretic
parameters, the dual distance d⊥D and the kissing number Bd⊥

D
(see definitions in Section 2)

of the code D to quantify the leakage of IPM, which is validated by simulation experiments.
Guided by the theoretical derivations, we complement the last step to verify such a coding-
theoretical leakage model by means of physical side-channel analysis, meanwhile gaining
an insight into the practical security of code-based masking when k = n + m and k = 1.

We consider four instances of IPM with L2 ∈ {2, 3, 14, 23} (recall Table 3), and they
therefore possess the same 1st-order security in word-level probing model. Following
the coding-theoretic approach proposed in [CGC+20], we obtain d⊥D ∈ {2, 3, 3, 4} and
Bd⊥

D
∈ {5, 6, 1, 4}, respectively. The rationale is that the dual distance d⊥D indicates the

concrete bit-probing security order and further smaller Bd⊥
D

implies a higher security level
when the dual distances d⊥D are the same. To clarify the security level, we also add 1st-order
and 2nd-order Boolean masking under the word-level probing model as baselines. Similarly,
we have d⊥D = 2, Bd⊥

D
= 8 for 1st-order Boolean masking, and d⊥D = 3, Bd⊥

D
= 8 for

2nd-order Boolean masking. For the sake of brevity, we denote the IPM2, IPM3, IPM14,
IPM23 as the IPM with L2 = 2, 3, 14, 23 respectively, and BM1 (resp., BM2) represents
1st-order (resp., 2nd-order) Boolean masking.

Essentially, security proofs [BFG15, BFG+17, WMCS20] and information-theoretic
analysis in [WSY+16, CGC+20] are valid only for the assumed leakage model (usually
idealized), but might not be true for the leakage behavior of real devices. In addition, they
mostly focus on encoding functions, neglecting the whole encryption process. Therefore,
we begin the evaluations with leakage assessment on IPM instances (including BM1).

4.2.1 Leakage Assessment

Since the EM measurements cover the first 2.5 AES rounds (elaborated in Section 4.1)
in total, this assessment analyzes the leakage behavior of encoding function as well as
private computations in the masked domain. Figure 3 depicts the Welch’s (two-tailed)
t-test results for BM1 and IPM23 (other instances are in Appendix E for brevity). Note
that the sampling rate for all instances is set as 156MHz to ensure that the first 2.5 AES
rounds are covered. Actually, this follows the similar acquisition setting for TVLA as
in [BFG+17], e.g., 125MHz in the latter (500, 000 samples within 4 ms).

From Figure 3 and Figure 11 in Appendix E, we can observe a great difference between
BM and other IPM instances at the same 1st-order word-level security. The implementation
protected by BM leaks significantly (many t-test scores exceed the threshold ±4.5) on
quite a lot of time samples. On the contrary, the implementations protected by IPM show
much less evidence of leakage than BM, and can be deemed not to leak for this number of
measurements. Such difference is consistent with the t-test results (with activated TRNG)
in [BFG+17]. Although such t-test in this experiment is too coarse that cannot distinguish
the actual security level among those masked implementations, the assessment results
demonstrate that the more complex algebraic structure of the encoding function brings
a promising alternative to BM since IPM allows reducing both the number of leaking
samples and the informativeness of the masked implementations.

5In fact, code-based masking for this type when n = k + m and k = 1 is equivalent to DSM [PGS+17,
CG18]via the equivalence of linear codes, which is more general than IPM.
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(a) 1st-order Boolean masking
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(b) IPM with L2 = 23

Figure 3: TVLA (t-test) results for BM1 (left) and IPM23 (right) with TRNG activated
and sampling rate at 156 MHz. The red lines mark the ±4.5 threshold.

4.2.2 Attack-based Evaluations

The basic Welch’s t-test 6 is able to detect the presence of leakage qualitatively, but it
cannot provide more quantitative evaluations. As clarified in Section 4.2.1, the leakage
assessment here is unable to prove the “security order amplification” of IPM, let alone
indicate the concrete security level of IPM instances. Facing this situation, we utilize two
kinds of side-channel attacks 7, namely CPA and TA, representing both non-profiled and
profiled types to evaluate the concrete resilience of IPM instances against side-channel
attacks in the real world. Firstly, we target the output of L Gadget which possesses the
same security property of encoding function. The acquisition settings are clarified in
Section 4.1, and specifically in this evaluation, the collected EM measurements encompass
637, 500 samples with a sampling rate of 1.25GHz. The SR and GE results for 2nd-order
CPA and TA are illustrated in Figure 4 below. Note that for 2nd-order CPA, we exclude
BM2 instance (since it cannot succeed in theory).

From Figure 4(a) and 4(b), we can see that 2nd-order CPA can attack BM1 successfully
with less than 10, 000 traces and IPM2 requires more to compromise. However, 2nd-order
CPA fails to break up other IPM instances, which are perfectly compatible with theoretical
predictions by [CGC+20]. In other words, since the dual distance d⊥D of BM1 and IPM2 is
equal to 2, BM1 and IPM2 can only resist 1st-order CPA but cannot resist 2nd-order CPA
(with a squared difference combination). At the opposition, other IPM instances whose
d⊥D ≥ 3 are able to resist 2nd-order CPA as indicated by [CGC+20] and verified in practice
in this work.

Moreover, we shall claim that according to the above-mentioned coding-theoretic
parameters (the dual distance d⊥D and the kissing number Bd⊥

D
), the side-channel resistance

of the above IPM (and BM) instances increases in the order of L2 = 1, 2, 3, 14, 23 and
BM2 is between IPM2 and IPM3. From Figure 4(c) and Figure 4(d), it is demonstrated
that the security levels of selected instances are also consistent with the predictions, which
verifies the coding-theoretic leakage quantification for IPM proposed in [CGC+20]. Note
that IPM with L2 = 23 is one of the optimal encoders (amongst the best in terms of
maximum dual distance and the smallest kissing number) for 2-share IPM [CGC+20] under
linear leakage models, and it indeed turns out to provide the best side-channel resistance
among the investigated experimental groups. More importantly, it is indicated that even
a 2-share IPM (IPM3, IPM14 and IPM23) can better withstand template attacks than

6It can be extended to check for univariate higher-order leakage and multivariate analysis if with
sufficient computational power.

7This is also a supplement and the actual difference between the work of [BFG+17] and ours’ regarding
the practical evaluation of IPM.
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Figure 4: SR and GE results for both 2nd-order CPA and TA on non-redundant instances.

the 3-share BM, which is strong support for the “security order amplification” of IPM
(also code-based masking of the non-redundant type). Combined with the theoretical
predictions, our experimental results complement the practical side-channel analysis in
order for a sound evaluation of concrete security for IPM. This should be of special interest
for cryptographic designers since they can tackle the specific security level of IPM by two
coding-theoretic parameters as in [CGC+20].

As discussed above, there exists a possible security bottleneck in the current computa-
tional framework, which locates at the matrix T of L Gadget. When it comes to n = k + m
and k = 1 for code-based masking, the matrix T is virtually the additive sharing of the
input sensitive variable, degrading high-algebraic masking schemes to Boolean masking,
and resulting in practical security loss. The reason is that BM is practically more prone to
attacks than other IPM instances as demonstrated in Figure 4. Hence we launch 2nd-order
CPA on IPM instances (including BM1) again, targeting the theoretical weakest part (the
matrix T of L Gadget) during gadgets computations. The results are illustrated in Figure 5.
It is clear that all IPM instances can be easily attacked by 2nd-order CPA, substantially
different from Figure 4. In addition, all IPM instances have a similar security level to
BM1, losing the feature of “security order amplification”. This is not surprising since the
gadgets are devised originally to keep the consistent word-level security order (instead
of bit-level security order). Concerning the distinct security levels between encoding and
computations (Figure 4 and 5, resp.) under the same word-level security order, one may
query the practical relevance of the theoretical (word-level) probing model. However, the
experimental results demonstrate that the switch between code-based masking and additive
sharing in the gadgets computations indeed limits the security level of whole protected
implementations for the non-redundant type.
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Figure 5: SR and GE results for IPM instances.

In summary, we leverage both leakage detection and side-channel attacks to evaluate the
practical security of code-based masking for the non-redundant type (when n = k + m and
k = 1). Concerning encoding functions, we demonstrate that distinct linear codes (with
various coding-theoretic properties) for the code-based encoders actually play a dominant
role in the concrete security level of the masked implementations (if implemented ideally).
We also confirm the “security order amplification” of IPM in practice and verify the
applicability of the theoretical approach proposed in [CGC+20]. With respect to private
computations, we find and verify the security bottleneck of gadgets computation, which
assists in pushing forward the design and improvement of the computational framework
for code-based masking (which we leave as our future work).

4.3 Security Evaluation for Packed Type
Now we consider the case when n = k + m and k > 1 which involves the application of
the “cost amortization” technique for code-based masking. As discussed in Section 3.4,
the packed type encodes multiple (for k > 1) sensitive variables into one codeword and
thus the gadgets computations on this codeword allow for manipulating those k sensitive
variables in parallel. This type of code-based masking (containing both encoding and
gadgets computations) is proved to be mth-order secure in the word-level probing model
whatever how large k is [WMCS20]. However, intuitively such packed operations inclined
to leak more sensitive information. For example, considering BM with k = 2, m = 1, n = 3
(the corresponding encoder is depicted in Table 5), the two (for k = 2) sensitive variables
have to use one common mask, then such mask potentially involves more operations
during computations, increasing the opportunity of exposure. Inspired by such an idea, we
investigate the practical security of code-based masking of this type.

We target BM instances since our intention is to study the practical security level of
packed implementations with increasing k. We consider three 1st-order word-level secure
BM instances: BMk=1, BMk=2 and BMk=4 correspond to k ∈ {1, 2, 4} 8, respectively. The
corresponding encoders A over F(k+m)×n

28 are shown in Table 5, where all k sensitive
variables reuse one common mask.

4.3.1 Leakage Assessment

As discussed above, exploiting the shared mask stands a great chance to produce more
information leakage during computations. For this reason, we firstly conduct leakage
detection using TVLA, with the acquisition settings clarified in Section 4.1. The sampling

8To take full advantage of implementation platform (actually by the width of 32-bit registers in ARM
Cortex-M4), the value of k should be a multiple of 2.
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Table 5: Various choices of generator matrices A over F(k+m)×n
28 for BM instances in

packed code-based masking with n = k + m and m = 1.

BMk=1: k = 1, m = 1 BMk=2: k = 2, m = 1 BMk=4: k = 4, m = 1

A

1 0

1 1




1 0 0

0 1 0

1 1 1




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 1 1 1 1


rate is set to 100MHz to cover the first 2.5 AES rounds of BM instances particularly for
BMk=4 and it largely follows the acquisition setting of [BFG+17]. Figure 6 illustrates the
Welch’s t-test results for the packed BM implementations. By comparing the t-scores, all
three BM instances leak significantly. More interestingly, with increasing k, more time
samples are inclined to leak. Roughly, the amount of leaking samples of BMk=2 is as twice
that of BMk=1, while the number of leaking samples BMk=4 exceeding the thresholds is far
more than the former two 9. Summing up, the shared mask shall as expected participate
in more computations, resulting in more information leakage.
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Figure 6: TVLA (t-test) results for BMk=1 (top), BMk=2 (middle) and BMk=4 (bottom)
with a sampling rate of 100 MHz. The red lines mark the ±4.5 threshold.

4.3.2 Attack-based Evaluation

The above leakage assessment demonstrates that packed masking schemes shall produce
more information leakage, and we further conduct 2nd-order CPA to investigate the
concrete security level of the packed BM instances. To begin with, we highlight that
the side-channel security orders (both in word- and bit-probing models) of encoding and
the gadgets computations for the selected BM instances are actually consistent 10. The
matrix T (over Fn×k

28 ) of L Gadget (the security bottleneck shown in Section 4.2.2) for
9Notably, the associated executing operations of samples are not exactly the same among the three

instances due to their different time cost.
10If the packed type is instantiated into IPM instance, gadgets computations shall possibly cause

bit-probing security degradation due to the security bottleneck.



Q. Wu, W., Cheng, S. Guilley, F., Zhang and W., Fu 211

the three BM instances are shown in Table 6, where mi for 1 ≤ i ≤ 4 and r are random
variables over F28 . Recall that each column of the matrix T is an additive sharing for the
corresponding unmasked sensitive variable. Hence for each sensitive variable, only m + 1
shares are effective in the corresponding additive sharing, although there are n shares
in total. Furthermore, similar to the encoding, one mask is shared for protecting all k
sensitive variables. Therefore, we only target the encoding in this type.

Table 6: Illustration of matrix T over Fn×k
28 for the packed BM instances.

BMk=1: k = 1, n = 2 BMk=2: k = 2, n = 3 BMk=4: k = 4, n = 5

T

m1

r




m1 0

0 m2

r r




m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4

r r r r


Next, we conduct 2nd-order CPA on the output of L Gadget (specifically we target

the output of the first S-box in the first AES round), concentrating on how the practical
side-channel resistance varies with k. The output of the S-box is actually a vector over
Fn

28 (containing k variables and m = 1 mask), then k (out of 16) bytes of the keys can be
rebuilt from the same random mask and the other corresponding shares. Therefore, for
BMk=2 and BMk=4 we have the ability to recover 2 and 4 subkey bytes, respectively. The
target EM measurement sets for each instance have a size of 10, 000 and each measurement
contains 781, 250 samples with a sampling rate at 313 MHz 11. The SR and GE results of
2nd-order CPA on the three instances are illustrated in Figure 7. Notably, since k subkey
bytes can be restored for packed instances, the SR and GE are obtained by averaging.
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Figure 7: SR and GE results of 2nd-order CPA for BM instances on packed type.

From Figure 7, we can observe that the side-channel resistance of packed instances
decreases with increasing k, which accords with the leakage behavior as shown in Sec-
tion 4.3.1. Essentially, the value of k also implies the number of subkeys adversaries can
rebuild by knowing only one mask, which could lead to more efficient attacks. However,
the attack results deviate from the theoretical analysis in [WMCS20], which shows those
three packed instances have the same security orders under the word-level probing model.
Hence it again poses a challenge to the practical relevance of the word-level probing
model. Interestingly, one possible explanation for this concrete security decrease is from a
coding-theoretic perspective [CGC+20] that, although the dual distances (over both F2

11Hence the result for BMk=1 is distinct from the one with the same setting in Section 4.2.2 which
samples at 1.25GHz.
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and F28) of the three packed BM instances are the same: d⊥D = 2; the kissing numbers are
largely different: Bd⊥

D
∈ {8, 24, 80} for k ∈ {1, 2, 4}, respectively. Note that a larger kissing

number indicates more possibilities to reconstruct the sensitive variable by utilizing the
encodings.

Summing up, by means of both leakage detection and practical attacks, we show that the
packed operation leads to more information leakage in practice and accordingly more prone
to side-channel attacks. In addition, the theoretical weakest part of gadgets computations
shall neither decrease the security level of encoding from a packed view, nor be capable of
lifting the resistance by increasing shares. Therefore, with the discussion in Section 3.4
regarding the efficiency of packed operation, the advantage of the cost amortization
technique applied in code-based masking 12 promisingly lies in reducing the randomness
cost. It utilizes less randomness given sufficient large k and m, so that it can be exploited
as an alternative when applying to some platforms with constrained randomness resources.
However, more attention must be paid when applying the amortization technique because
of the concrete security loss in practice originated from the reuse of random numbers.

4.4 Security Evaluation for Redundant Type

One compelling merit of code-based masking is its potential against fault injection analysis
when equipped with redundancy in encoding, which corresponds to the case when n > k+m.
Similarly, such redundant type (including both encoding and masked gadgets) is proved to
be mth-order secure in the word-level probing model [WMCS20] as well. However, recent
research shows that more redundancy in code-based masking leads to more leakage in
both encoding and operations. In particular, given a fixed m, increasing n can only incur
more leakage from an information-theoretic perspective [CGC+21], which is also validated
by (simulated) attack-based evaluation [CS21]. In this section, we concentrate on the
evaluation of the practical security for redundant cases, paving the way for future research
with regard to fault injection analysis of code-based masking.

For this purpose, we set three experimental groups with the same k = 1 and m = 1 but
increasing n: RE1 with n = 2 (without redundancy as the baseline), RE2 with n = 3 and
RE3 with n = 4. Note that they all have 1st-order security under the word-level probing
model. Their corresponding encoders A over F(k+m)×n

28 are depicted in Table 7. In fact,
we initialize RE1 by IPM23 as already studied in Section 4.2. It is worth mentioning that,
firstly, taking L2 ∈ {23, 29, 51} leads to 2-share IPM instances with the maximized dual
distance d⊥D = 4. Secondly, however, the dual distances of the corresponding codes in RE1,
RE2 and RE3 are decreasing that d⊥D ∈ {4, 3, 2}. Therefore, we shall verify the impact of
more shares on side-channel resistance. Note that the adjusted kissing numbers for three
instances are B′

d⊥
D
∈ {4, 10, 1}, respectively.

Table 7: Various choices of A over F(k+m)×n
28 in redundant cases with k = 1 and m = 1.

RE1: n = 2
Non-redundant

RE2: n = 3
Redundant

RE3: n = 4
Redundant

A
(

1 0
23 1

) (
1 0 0
23 29 1

) (
1 0 0 0
23 29 51 1

)

We utilize template attacks on both encoding and the theoretical weakest part in the
gadgets computations. Considering matrix T (over Fn×k

28 ) in L Gadget, although it turns
into additive sharing with n shares, the n− 1 shares are all related to only one random

12If m is sufficiently large, the cost amortization technique may mitigate the cost by taking the scheme
proposed in [WMCS20].
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mask. Hence only m + 1 shares are sufficient to recover the subkey, which implies that
the redundant cases degrade from mth-order word-level secure code-based masking to
mth-order word-level secure BM as well in matrix T of L Gadget, resulting in loss of
practical security. We collect three EM measurements sets for those three instances by
setting sampling rates to 625 MHz. By targeting the output of L Gadget, the results
on all the selected instances are shown in Figure 8 to illustrate how redundancy affects
the practical security of code-based masking. It is indicated from Figure 8 that the
redundancy indeed leads to a practical security decrease. In particular, the security level
of RE2 is significantly lower than RE1, which is compatible with the coding-theoretic
properties [CGC+21]: d⊥D = 3, B′

d⊥
D

= 10 for the former and d⊥D = 4, B′
d⊥

D
= 4 for the

latter, respectively. Moreover, adding one more share of redundancy further reduces the
dual distance to d⊥D = 2, and again leads to a security decrease in the sense of attacks.
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Figure 8: SR and GE results targeting the output of L Gadget for redundant type.

Regarding the bottleneck part in switching from code-based masking to additive sharing,
namely the matrix T of L Gadget, here we focus on RE3 for the sake of brevity, since
our intention is to present the practical security loss for each instance (see Section 4.2
for security loss of RE1 and Appendix F for RE2). The comparison results between
the encoding function and the bottleneck part are depicted in Figure 9, where “CBM”
(resp., “ SWI”) indicates the target is the output (resp., the matrix T) of L Gadget. From
Figure 9 and recall that it is d⊥D = 2, Bd⊥

D
= 8 for 1st-order BM, we can observe that

the switching part again reduces the practical security level of encoding similar to the
results in Section 4.2. In particular, the minimum number of measurements achieving
SR≥ 95% is reduced from about 8, 000 for CBM case to 820 for SWI case (about ten times
of reduction). Therefore, the security order amplification brought by the high-algebraic
structure of encoding vanishes, because of the additive sharing in matrix T. Recall that
the encodings and computations possess the same probing security order, the attack results
from Figure 8 and 9 again indicate that the word-level probing model is not sufficient to
depict the practical side-channel resistance of masked implementations.

To conclude, we target the redundant type of code-based masking and show that
redundancy usually brings in a decline in the practical security level. Our empirical
results are consistent with both simulated evaluation in [CS21] and information-theoretic
evaluation carried out in [CGC+21] for redundant code-based masking. In addition, we
again confirm that the internal switch to additive sharing during gadgets computations
reduces the concrete security of code-based encoders with a higher-algebraic structure for
this redundant type.
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Figure 9: SR and GE results targeting L Gadget for redundant type.

4.5 Further Discussions

In the following, we further discuss the security order amplification in code-based masking
and the practical relevance of the probing model.

Security Order Amplification. Security order amplification [WSY+16, PGS+17] is com-
monly known as a positive feature of IPM, and it is demonstrated to be an intrinsic feature
for the encoding [BFG+17] but not for the masked operations (e.g., secure multiplications).
However, the evaluation results in Sections 4.2 and 4.4 demonstrate that security order
amplification emerges in code-based masking as well and can further enhance masked
computations (recall that our attack target is the output of L gadget). In fact, security
order amplification happens if the numerical degree [CGC+21] of the leakage function is
smaller than the bit-probing security order. It is not only a special feature of encoding,
but also exists in computations: linear operations are trivial by using encoding; nonlinear
functions like S-box are usually done by fully masked additions and multiplications with
proper refreshments. Therefore, if the basic gadgets are well-encoded (e.g., under strong
non-interference construction), then nonlinear functions should also keep security order
amplification. This can also help reason about the practical security loss introduced by the
“weakest part” of gadgets computations. Due to the internal switch to additive sharing, the
original code-based encoding degrades to Boolean encoding (thus not fully well-encoded),
therefore losing the feature of security order amplification and causing the security decrease
in practice.

As already pointed out in [BFG+17], security order amplification is not unconditional.
That is, security order amplification will vanish if the leakage function is non-linear
(precisely, if the numerical degree of the leakage function exceeds the bit-probing security
order). Indeed, the leakage function of real devices will not be exactly linear in most
practical scenarios. However, the linear parts are usually more dominant than the non-
linear parts in the observable leakage [PGS+17]. Therefore if the adversary can only
capture and exploit the linear leakage part, security order amplification still plays its
advantage. For example, in the evaluations for the non-redundant type of code-based
masking (see Figure 4), security order amplification emerges against 2nd-order CPA, which
mostly leverages the linear leakage for attack. Therefore, it is still promising to devise
fully well-encoded gadgets for masking schemes, preventing the masked implementations
from side-channel threats to some extent. At last, our findings and verifications on the
security bottleneck part of current gadgets computations could assist in developing fully
encoded secure computations for code-based masking, which is still an open problem and
we leave it as our future research.
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Two Probing Models. The three masked gadgets proposed in [WMCS20] and improved
in Section 3 all keep the consistent word-level probing security orders with the corresponding
code-based encoders. However, it is indicated in our evaluations that the internal switch
to additive sharing during gadgets computations causes a security loss (even degradation)
in practice. In other words, keeping the same word-level probing security order is unable
to guarantee that the masked gadgets are equally secure as the corresponding encoders.
Hence a more practice-relevant model is required for gadgets design. From our evaluation
results, the security level characterized by the coding-theoretic properties, namely dual
distance and (adjust) kissing number defined in the bit-probing model, is more in line
with the concrete side-channel resistance in practice. Hence it is recommended to look for
masked gadgets which maintain the consistent bit-probing security order with encoding.

5 Conclusions and Future Work
In this paper, we target code-based masking and investigate its efficient implementations
as well as the practical security against real-world attacks. On the one hand, We propose
an improved scheme based on the computational framework of [WMCS20], enabling a
far more efficient scheme compared to the original one from a computational complexity
perspective. We further apply our improved scheme to several efficient implementations
of AES-128. Both theoretical analyses and performance evaluations (by clock cycles)
on the practical implementations show that our improvements are significant. On the
other hand, we provide an extensive evaluation of the practical security of code-based
masking by taking three representative types. For each type, we target both encoding
function and private computations. In the sense of encoding, we provide strong evidence
for “security order amplification” of code-based masking. In addition, we discover that
the “cost amortization” technique shall incur a decline in concrete security level, which
deviates from the conclusion drawn in [WMCS20]. We further verify that the redundant
code-based encoders indeed bring in security loss against side-channel attacks. Regarding
the gadgets computations, we identify a security bottleneck existing in the internal additive
sharing during gadgets computations, which usually reduces the practical security level of
code-based masking.

Because of the security bottleneck we have identified, the current computational
framework for code-based masking usually fails to give full play of the merits featured by
code-based encoders. Still, this framework is the only solution for code-based masking with
generic encoders. We highlight that our improvements are mainly focused on practical
encoder A which is irrelevant to computations that shall be applicable for strengthened
schemes in the future. As such, our future research will concentrate on the construction
and verification of a fully encoded computational framework for code-based masking by
addressing the back-and-forth switch inside masked gadgets.
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A Detailed Algorithms for Improved Gadgets
Here we shall present the detailed algorithms of our improved L Gadget and Ls Gadget
which basically follow the adjusted procedure (or saying multiplication Gadget) elaborated
in Section 3.2. The algorithms are illustrated in Algorithm 2 and Algorithm 3.

Algorithm 2: Improved L Gadget
Input: Codewords x̂ = xA of x̂ ∈ Fn

q and x ∈ Fk
q

Output: ẑ ∈ Fn
q such that z = f(x) and f is a linear function for Fk

q 7→ Fk
q

1 Initialize R2 uniformly over Fn×m
q

2 R̂2 = R2H
3 for i = 1 to n do
4 for j = 1 to k do
5 S[i, j] = x̂[i]
6 end
7 for j = k + 1 to n do
8 S[i, j] = 0
9 end

10 end
11 Mi = M∗

i [∗, 1 : k], where M∗
i = (Ã[i, ∗]⊗ Ã)E and Ã def= [A−1[∗, 1 : k], On×m]

12 for i = 1 to n do
13 T[i, ∗] = S[i, ∗]×Mi

14 end
15 for i = 2 to n do
16 V[i, ∗] = f(T[i, ∗])
17 end
18 V[1, ∗] = f(T[1, ∗])⊕ (n− 1)c, while c is a constant in Fk

q associated to f , and
(n− 1)c =

∑n−1
i=1 c

19 K = [V, On×(n−k)]⊕ R̂2
20 for j = 1 to n do
21 ẑ[j] =

∑n
i=1 K[i, j]

22 end
23 return ẑ

We should claim that the improved gadgets possess the same security property as
the original ones proposed in [WMCS20], since the corresponding improvements (detailed
in Section 3.2) shall not introduce security loss. That is, if the practical encoder A is
d-privacy secure over the word-level probing model, the improved L Gadget (constructed in
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Algorithm 3: Improved Ls Gadget
Input: Codewords x̂1 = x1A, · · · , x̂l =xlA for x̂1, · · · , x̂l ∈ Fn

q and
x1, · · · , xl ∈ Fk

q

Output: ẑ1, · · · , ẑl′ ∈ Fn
q such that z1, · · · , zl′ = f(x1, · · · , xl) and f is a linear

function for Fkl
q 7→ Fkl′

q

1 Call Algorithm 2 part from line 3 to line 14 l times for each inputs x1, · · · , xl ∈ Fk,
resulting T1, · · · , Tl

2 T = [T1, · · · , Tl]
3 Call Algorithm 2 part from line 15 to line 18 with input T, resulting in V

(V = [V1, · · · , Vl′ ])
4 V1, · · · , Vl′ ← V
5 Call Algorithm 2 part from line 19 to line 22 l′ times for each inputs V1, · · · , Vl′

with newly constructed R̂2 by Algorithm 2 from line 1 to line 2 for each time,
resulting in ẑ1, · · · , ẑl′

6 return ẑ1, · · · , ẑl′

Algorithm 2) and improved Ls Gadget (constructed in Algorithm 3) also feature d-privacy
security in the word-level probing model. The proof for these two gadgets in [WMCS20]
still applies.

B Encoding and Decoding
Now we will present the related encoding and decoding functions by utilizing the practical
encoder A constructed in Section 3.1. Let x and r be vectors over Fk

q and Fm
q , respectively,

where x represents the sensitive variables that should be protected and r consists of random
masks uniformly distributed in Fq. Encoding equals the product [x, r]A, which can be
computed by Equation 7. As we can see, the sparsity of A enables only aij to participate
in the multiplication and hence the computational complexity of multiplication operations
for encoding can be reduced from (k + m)× n (for generic encoder) to m× (n−m).

[x, r]A =[x[1] +
m∑

j=1
r[j]× aj1, · · · , x[k] +

m∑
j=1

r[j]× ajk,

m∑
j=1

r[j]× aj(k+1), · · · ,

m∑
j=1

r[j]× aj(n−m), r[1], · · · , r[m]].
(7)

We suppose that x̂ is the codeword of x (namely x̂ = [x, r]A). Thus decoding can be
evaluated by a product of x̂ and A−1[∗, 1 : k], so that we get:

x̂A−1[∗, 1 : k] = [x̂[1] +
n∑

j=k+1
x̂[j]× a′j1, · · · , x̂[k] +

n∑
j=k+1

x̂[j]× a′jk]]. (8)

where a′ij denotes the entry in the lower (n− k)× k sub-matrix of A−1[∗, 1 : k]. Similarly,
the number of multiplication operations for decoding decreases from n × k (for generic
encoder) to (n− k)× k as the top k × k sub-matrix of A−1[∗, 1 : k] is an identity matrix.

C Clock Cycles Comparison for Whole implementation
Here we shall provide the performance comparison regarding clock cycle counts between
the original scheme [WMCS20] and our improved scheme. Firstly, we apply those two
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schemes to the AES-128 implementations. In order to enable a fair comparison, both
schemes are implemented on the same platform (introduced in Section 3.5) and follow
the same optimization strategy (excluding the essential difference between their masking
schemes). The trend of clock cycle counts with increasing m (fixing k = 1) for the masking
schemes is depicted in Figure 10. It is indicated from Figure 10 that the clock cycle counts
of our scheme are much lower than those of [WMCS20] for all the cases and the gap
becomes larger with increasing m. Actually, the performance trend is resembling that of
Figure 1(a), which further provides strong validation that our improvement is significant
from a computational perspective.
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Figure 10: Comparison of the number of clock cycles with increasing m and fixed k = 1
for the original masked implementation and our improved ones.

D Clock Cycles for Cost Amortization

Here we present the physical clock cycles counts of both well-constructed instances (intro-
duced in 3.4) in [WMCS20] and our improved scheme to illustrate the practical performance
of the “cost amortization” technique. Both schemes are applied to AES-128 implementa-
tions and the associated platform is introduced in Section 3.5. To exhibit the efficiency of
cost amortization, we choose to fix m = 1 and develop different k, and the related clock
cycle counts are recorded in Table 8 below.

Table 8: Performance comparison indicated by clock cycles for AES-128 implementations.

k = 1, m = 1 k = 2, m = 1 k = 4, m = 1
Scheme in [WMCS20] 2576186 2867778 4596884

Our scheme 1212684 1402647 2310900

It can be explicitly indicated from Table 8 that the “cost amortization” technique
actually increases the overhead since the number of clock cycles becomes larger with
increasing k when m is small, which validates our analysis in Section 3.4. We should claim
that the implementations for both schemes are the general type that can be fed with any
legal tuples of k, m and n, and they are not fully accelerated as in Table 4. Therefore, the
clock cycle results in the second column differ from the ones in Table 4 of Section 3.5.

E Leakage Assessment results

Here the TVLA results for IPM2, IPM3 and IPM14 are provided below in Figure 11.
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Figure 11: TVLA (t-test) results for IPM2 (top), IPM3 (middle) and IPM14 (bottom)
with TRNG activated and sampling rate at 156 MHz. The red lines mark the ±4.5
threshold.

F Security Loss of RE2
In this part, we provide the attack results of RE2 (introduced in Section 4.4) to depict
the security loss introduced by the security bottleneck (the back-and-forth switch between
code-based masking and additive sharing). Figure 12 depicts the SR and GE results of
template attacks (see details in Section 4.4). Similarly, “CBM” (resp., “ SWI”) indicates
that the target is the output (resp., the matrix T) of L Gadget. It can be indicated from
Figure 12 that the CBM case is more difficult to compromise than SWI case. This therefore
implies that the matrix T of L Gadget again reduces the security level of encoding, which
is consistent with the observations in Figure 9 for RE3. Note that SNR in this evaluation
differs from that of TA in Figure 8. Hence although both targets are the encoding RE2
(orange line in Figure 8 and blue line in Figure 12), the results present different attack
efficiency. Precisely, the one with higher SNR in Figure 8 (plotted in orange) is easier to
compromise, e.g., 20, 000 traces are enough to succeed, whilst exploiting POI with lower
SNR in Figure 12 (plotted in blue) results in a much lower success rate in recovering
subkey by utilizing up to 20, 000 traces. This also provides strong proof that SNR indeed
significantly affects the attack’s difficulty in practice.
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Figure 12: SR and GE results targeting L Gadget for RE2.
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