
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 3, pp. 141–164. DOI:10.46586/tches.v2022.i3.141-164

The Hidden Parallelepiped Is Back Again:
Power Analysis Attacks on Falcon

Morgane Guerreau1†, Ange Martinelli1, Thomas Ricosset2 and Mélissa Rossi1

1 ANSSI, Paris, France
{morgane.guerreau,ange.martinelli,melissa.rossi}@ssi.gouv.fr

2 Thales, Gennevilliers, France
thomas.ricosset@thalesgroup.com

Abstract. Falcon is a very efficient and compact lattice-based signature finalist of the
NIST’s Post-Quantum standardization campaign. This work assesses Falcon’s side-
channel resistance by analyzing two vulnerabilities, namely the pre-image computation
and the trapdoor sampling. The first attack is an improvement of Karabulut and
Aysu (DAC 2021). It overcomes several difficulties inherent to the structure of the
stored key like the Fourier representation and directly recovers the key with a limited
number of traces and a reduced complexity. The main part of this paper is dedicated
to our second attack: we show that a simple power analysis during the signature
execution could provide the exact value of the output of a subroutine called the base
sampler. This intermediate value does not directly lead to the secret and we had to
adapt the so-called hidden parallelepiped attack initially introduced by Nguyen and
Regev in Eurocrypt 2006 and reused by Ducas and Nguyen in Asiacrypt 2012. We
extensively quantify the resources for our attacks and experimentally demonstrate
them with Falcon’s reference implementation on the ELMO simulator (McCann,
Oswald and Whitnall USENIX 2017) and on a ChipWhisperer Lite with STM32F3
target (ARM Cortex M4).
These new attacks highlight the need for side-channel protection for one of the three
finalists of NIST’s standardization campaign by pointing out the vulnerable parts
and quantifying the resources of the attacks.
Keywords: Power Analysis · Lattices · Falcon Signature Scheme · Hidden Paral-
lelepiped Attack

1 Introduction
With the upcoming menace of quantum computers, post-quantum algorithms are subject
to extensive analysis in order to gain assurance in their security. Falcon [PFH+20] is one
of the three signature finalists of NIST call for standardization. It is a very competitive
scheme with high efficiency both in terms of speed and signature size. This feature makes
it the natural option for quantum-safe embedded systems. Such systems are the target of
so-called physical attacks, that make use of additional information given through a side-
channel. Those can be the time of execution, the power consumption or the electromagnetic
emanations of the chip during the execution of the algorithm, or even the behavior of
the algorithm in the presence of perturbations and errors injections. These attacks are
nowadays the major threat to any cryptographic embedded device.

An exploitation of physical data can be of two types: either it makes use of statistical
tools to correlate key guesses to information extracted from several leakage traces (unified

†Work done while the author was at Thales Laboratoire CHiffre (LCH) – Gennevilliers, France.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-01-15 Accepted: 2022-03-15 Published: 2022-06-08

https://doi.org/10.46586/tches.v2022.i3.141-164
mailto:morgane.guerreau@ssi.gouv.fr, ange.martinelli@ssi.gouv.fr, melissa.rossi@ssi.gouv.fr
mailto:thomas.ricosset@thalesgroup.com
http://creativecommons.org/licenses/by/4.0/


142 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

under the name Correlation Power Analysis or CPA) or it merely determines the execution
flow of an algorithm based on recognizable patterns in a single power trace (historically
called Simple Power Analysis or SPA). The strength of the latter is the possibility to recover
information from a single trace, but it is easily thwarted by careful implementation, while
the former needs many more traces but requires more complex and costly countermeasures.

While the cryptanalytic security of Falcon and its underlying mathematical problem
is well studied through best known attacks [PFH+20, (Section 2.5.1)] and security proofs
of the underlying GPV framework in both the random oracle model (ROM) [GPV08]
and the quantum random oracle model (QROM) [CD20], its physical security can still be
considered as unknown territory.

Falcon is a hash-and-sign signature scheme based on the GPV framework [GPV08]
and NTRU lattices [HHP+03]. These aspects make it both a very efficient signature scheme
and a complex one to implement. This complexity comes through two necessary features:
the use of floating point arithmetics and the need for Gaussian sampling. Protecting its
implementation while preserving its efficiency is even more of a challenge. The NIST
emphasized the need for side-channel analysis on the finalists and the evaluation of their
protection both in terms of security and efficiency. This work aims at doing this analysis
in the case of Falcon.

While the Gaussian sampling algorithms used in Falcon were subject to timing at-
tacks [BHLY16, EFGT17, PBY17, FKT+20] and countermeasures were designed [HPRR20]
accordingly, concrete power attacks threatening Falcon implementations have only been
performed in [KA21]. Moreover, this attack targets a subroutine of the algorithm and
focuses on the recovery of values encoded in floating points. In particular, no attack of our
knowledge targets the Gaussian sampling and the criticality of side-channel protections on
this block is, up to now, an open question. More precisely, while a side-channel leakage
would obviously occur during an unprotected Gaussian sampling, exploiting it to mount an
effective key recovery is not straightforward. Moreover, the potential cost of such attack
remains unknown.

Contributions In this paper, we give an extensive analysis of side-channel vulnerabilities
of Falcon. This analysis goes through two contributions:

• In Section 3, we substantially improve the attack of [KA21] by diving deeper into
the specifications of Falcon. In particular, we exploit the fact that the polynomial
coefficients are integers to lower the complexity of the attack. The two correlation
analysis targetting 26 and 27 bits of the mantissa in [KA21] can be replaced by a
single one targeting only 8 bits. Moreover, we use the redundancy of the computation
in complex numbers products to divide the needed number of traces by two, leading
to a full key recovery on ChipWhisperer with as few as 5 000 traces.

• Our main contribution is presented in Section 4. We propose the first practical power
analysis of the Gaussian sampling algorithm in the context of Falcon. We show
that one can recover partial information on the samples via simple power analysis
and perform a variant of the deformed parallelepiped attack introduced in [DN12]
leading to a complete recovery of the secret basis. The attack is quite demanding
in terms of computation resources and measurements but it leads to a key recovery
in ≈ 106 traces or less if the attacker is willing to perform a lattice reduction step.
We back our analysis up with practical codes running both on material devices and
simulated traces for easier reproducibility. Comparatively, the first attack leads to a
much more efficient key recovery. Nevertheless, this second attack allows to assess
a new vulnerability that could not be traditionally protected with masking as it
leverages a Gaussian sampling step. Lastly, we outline the different possibilities in



Morgane Guerreau, Ange Martinelli, Thomas Ricosset and Mélissa Rossi 143

terms of countermeasures and provide a modification of the code that significantly
lowers the leakage at no additional cost.
This second attack was experimented on Falcon-512 reference implementation
using traces generated with the ELMO simulator for Arm Cortex-M0 processor and
ChipWhisperer-Lite for Arm Cortex-M4 processor. Since all publicly available Fal-
con implementations, except the AVX2-optimized, are using the same BaseSampler
as targeted in this paper, our attack applies to all these implementations in a similar
way, including clean PQClean1 and pqm42 implementations.

As a side contribution, we show in Appendix B that previous conjectured attack
from [FKT+20] cannot be achieved with the actual precision provided by 64-bits computers.

Related work Side-channel attacks on lattice-based signature schemes start to have a rela-
tively long history initiated with a series of attacks [BHLY16, PBY17, EFGT17, BDE+18]
on BLISS signature scheme [DDLL13]. Later, NIST’s signature finalists were successfully
analyzed through various types of side-channel attacks (timing attacks, fault attack or
electromagnetic analysis (EMA)), see [FKT+20, RJH+19, BP18, RJH+18, MHS+19] as
examples. Falcon is definitely the least studied lattice-based signature scheme in terms of
side-channel attacks. Indeed, besides a fault attack [MHS+19], only one timing attack on
the Gaussian sampling [FKT+20] and one EMA of the floating point product [KA21] have
been attempted. While the former was efficiently thwarted by asynchronous implementa-
tion [HPRR20], no efficient countermeasure have been proposed against EMA or power
analysis for Falcon. As a comparison, the family of Fiat-Shamir with aborts lattice-based
signatures, where the signature finalist Crystals-Dilithium belongs, has been protected
against side-channels with masking techniques [BBE+18, GR19, MGTF19] that cannot be
easily applied to Falcon implementations.

Code The source code of our attacks and experiments on Falcon’s reference im-
plementation can be found on this git repository: https://github.com/mguerrea/
FalconPowerAnalysis. It has been made openly accessible online for easy reproducibility.

Acknowledgements We thank Hugues Randriam and Jérôme Plût for the useful dis-
cussions throughout this project and the anonymous reviewers for their suggestions and
corrections that helped improving the presentation of this paper. This work was supported
in part by the European Union Horizon 2020 Research and Innovation Program Grant
780701 (Project PROMETHEUS).

Paper organization In the next section, we will recall the necessary context and explicit
the notations used in the sequel. Section 3 will focus on the floating point arithmetic and
the improvements of [KA21]. In Section 4, we exhibit a practical attack on the Gaussian
sampler and show how to exploit this leakage in a full key recovery.

2 Preliminaries
2.1 GPV
Notations We use bold lowercase letters for vectors and bold uppercase letters for
matrices. For a matrix B, we note bi the i-th row of B. We denote by ‖v‖ the Euclidean
norm L2 of v and by 〈u,v〉 its associated inner product for two vectors u and v. Two

1https://github.com/PQClean/PQClean
2https://github.com/mupq/pqm4

https://github.com/mguerrea/FalconPowerAnalysis
https://github.com/mguerrea/FalconPowerAnalysis
https://github.com/PQClean/PQClean
https://github.com/mupq/pqm4


144 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

vectors u and v are orthogonal if their inner product is 0, and similarly we say that two
matrices A and B are orthogonal if their product is the zero matrix (or equivalently if
their rows are pairwise orthogonal).

Gram-Schmidt Orthogonalization Let n,m be integer parameters. Let B ∈ Rn×m be
a full-rank matrix. We call Gram-Schmidt Orthogonalization (GSO) of B the unique
matrix B̃ = (b̃0, . . . , b̃n−1) ∈ Rn×m such that B = LB̃ ∈ Rn×m, where L is lower
triangular and the b̃i are pairwise orthogonal. For any positive definite matrix, its LDL∗
decomposition is the product L ·D · L∗ where L is lower triangular and D is diagonal.
The notation L∗ denotes the transpose conjugate of L. Note the following equivalence, for
any B,L, B̃ ∈ Rn×m:
L·B̃ is the GSO decomposition of B ⇐⇒ L·(B̃B̃∗)·L∗ is the LDL∗ decomposition of B̃B̃∗.

Lattices A lattice is a discrete subgroup of Rm. For a basis B = (b0, ...,bn−1) ∈ Rn×m,
we note Λ(B) and call lattice generated by B the set of vectors:{

n∑
i=1

xibi | xi ∈ Z

}
A lattice will be noted Λ or Λ(B) when a basis B will be explicitly provided. Given a
lattice Λ generated by A ∈ Zn×mq , we define the lattice orthogonal to Λ modulo q as:

Λ⊥q :=
{

v ∈ Zm | Avt = 0 mod q
}
.

Gaussian Distributions For σ ∈ R with σ > 0 and any c ∈ Rn, we call the Gaussian
function centered at c of standard deviation σ the function defined over Rn as ρσ,c(x) :=
exp

(
−‖x−c‖2

2σ2

)
. We call discrete Gaussian distribution over Λ of standard deviation σ and

center c, the distribution defined for all z ∈ Λ by DΛ,σ,c(z) = ρσ,c(z)/
(∑

x∈Λ ρσ,c(x)
)
.

Fourier Transform For n a power of two, let ω be the n-th complex square root of unity,
we recall the Fourier transform:

FFT : Z[x] → C[x]

f = (f0, ..., fn−1) 7→ f̂ = (f̂0, ..., f̂n−1)
where f̂j :=

∑n
k=0 fk · ωjk,

and its inverse:

FFT−1 : C[x] → Z[x]

f̂ = (f̂0, ..., f̂n−1) 7→ f = (f0, ..., fn−1)

where fj := 1
n

∑n
k=0 f̂k · ω−jk.

For a polynomial f , we denote by f̂ its Fourier representation. We extend the FFT
and its inverse to matrices and vectors by component-wise application, and for a matrix B
we note B̃ its Fourier representation.

GPV framework The GPV framework [GPV08] is a hash-and-sign protocol. The key pair
consists in two lattice basis A ∈ Zn×mq and B ∈ Zm×mq , where A is a public basis generating
a lattice Λ and B is a private basis generating the corresponding lattice Λ⊥q . The matrix
B should contain small, almost orthogonal vectors, while A should be indistinguishable
from a uniformly generated matrix such as A ·Bt = 0 mod q. The signature generation
for a message m ∈ {0, 1}∗ proceeds as follows:



Morgane Guerreau, Ange Martinelli, Thomas Ricosset and Mélissa Rossi 145

• First, the signer computes H(m) a hash of its message, with H : {0, 1}∗ → Znq
modeled as a random oracle.

• Next, they find a pre-image c ∈ Zmq such that Act = H(m). Because there is no
requirement on the size of the coefficients of c, this step can be achieved with linear
algebra and the sole knowledge of the public key A.

• Finally, the signer uses a trapdoor sampler to find a vector v ∈ Λ close in L2 norm
to c. The secret basis B is the necessary trapdoor. The signature s is the difference
between v and the pre-image c, s := v− c.

To verify that s is a valid signature, one has to check that Ast = H(m) mod q and that
‖s‖ is small. This is indeed the case: we have Ast = A(v−c)t = Avt−Act = H(m) mod q
because Avt = 0 mod q since the lattices defined by A and B are orthogonal modulo q.
Furthermore, since v is close to c, their difference is small and so is ‖s‖.

2.2 Hidden Parallelepiped Problem
Hidden Parallelepiped Problem. In [NR06], Nguyen and Regev present an attack
against the signature schemes NTRUSign [HHP+03] and GGH [GGH97], introducing the
so-called Hidden Parallelepiped Problem (HPP). The vulnerability of these two schemes
comes from a correlation between the distribution of the signatures and the secret key.
With a few thousand signatures, the authors could recover the underlying private key. As
this attack will be revisited in our paper, we outline its principle.

Assume that in the GPV framework, the last step proceeds as follows. To find a
vector v ∈ Λ close to c, the signer uses the private matrix B to perform the round-off
algorithm [Bab85, Bab86]. In other words, v is defined as bcB−1eB. This procedure
ensures that v is deterministically defined as a closest vector of c in Λ. Thus, v−c belongs
in the fundamental parallelepiped P(B) := {xB,x ∈ [−1/2, 1/2]n} where n is the number
of rows of B.

Problem 1 (The Hidden Parallelepiped Problem). Let b0, . . . ,bn−1 ∈ Rn be n linearly
independent vectors and let P(B) = {

∑n−1
i=0 xibi, xi ∈ [−1, 1]} be the parallelepiped spanned

by B := (b0, . . . ,bn−1). Given a sequence of poly(n) independent samples drawn uniformly
at random in P(B), find a good approximation of the ±bi’s.

Let U be the set of samples drawn uniformly at random in P(B), Nguyen and Regev
show in [NR06] that the ±bi’s are local minimums of the experimental fourth moment
function defined as:

momV,4 : w 7→ Expu∈U [〈u,w〉4],

where Expu∈U [·] denotes the experimental expectation over the set of samples. The authors
then propose an algorithm solving the HPP by gradient descent. Since NTRUSign and
GGH signatures are in the parallelepiped spanned by their private bases, solving HPP
results in breaking NTRUSign and GGH.

Deformed Parallelepiped Problem. In [DN12], Ducas and Nguyen extend the
attack of [NR06] on protected instances. In particular, they attack several NTRUSign
instances applying the “IEEET-IT perturbation”. This perturbation consists in adding a
small perturbation δ ∈ [−1, 1]n during the round-off algorithm before the multiplication
by the secret basis. The vector v becomes (bcB−1e+ δ)B.

Such perturbation is said to be partial in the sense that a set of fixed coordinate
indexes are ignored by the perturbation in all samples. Ducas and Nguyen show that, if
the perturbation is partial, then the attack of [NR06] can be applied to recover some ±bi’s.



146 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

In particular, if the i-th coordinate is ignored by the perturbation δ, then the [NR06]
attack can successfully retrieve ±bi.

2.3 Falcon signature scheme
We describe here the high level idea behind Falcon. Several parts of the specification are
omitted as they are not necessary for understanding our work, we refer to the NIST submis-
sion of Falcon [PFH+20] for a complete description. Let us first fix the necessary notations
and parameters. Let q ∈ N∗ and n a power of two be two public parameters of the scheme.
In practice, q is set to 12289, and n is either 512 (Falcon-512) or 1024 (Falcon-1024).
We define R := Zq[x]/(xn + 1). The elements F ∈ R will be equivalently represented as
polynomials e.g.

∑n−1
i=0 Fi ·xi or vectors of coefficients e.g. (F0, F1, ..., Fn−1). We denote by

F ∗ the adjoint of F , defined by F ∗ := F (x−1) = F0 +
∑n−1
i=1 −Fn−ixi. We extend the defi-

nition to matrices: for a matrix A, A∗ denotes the entry-wise adjoint of the transpose of A.

Falcon is an instantiation of the GPV framework with NTRU lattices. More precisely,
the public and private keys are defined as follows. We first draw two private polynomials
f and g in R with small coefficients. In practice, the coefficients of the polynomials f
and g are generated following a discrete Gaussian distribution with center 0 and standard
deviation σ = 1.17

√
q/2n. Then, we compute two (uniquely defined) additional private

polynomials F,G ∈ R such that
fG− gF = q mod (xn + 1).

We refer to [PP19] for more detailed information about this computation. Finally, a
public polynomial h ∈ R is derived such that h = g · f−1 mod q. Recovering the secret
polynomials from the knowledge of h corresponds to breaking the so-called NTRU problem.

From these polynomials, the public basis A ∈ R2 and the private basis B ∈ R2×2 as
defined above in the GPV framework are defined as follows.

A :=
(
1 h∗

)
, B :=

(
g −f
G −F

)
.

Note that these bases – and thus their associated lattices – are orthogonal modulo q, i.
e. B ·A∗ = 0 mod q.

The public key of Falcon’s signature scheme is defined as pk := h. For efficiency
reasons, the secret key is not directly defined as B but as sk := (B̂, T ) where B̂ is the
entry-wise Fourier representation of the private basis B, and T is a binary tree representing
the Gram-Schmidt Orthogonalization of B.

The signature algorithm follows GPV framework and is presented in Algorithm 1.
Compared to the initial GPV framework, this procedure has been refined in several ways.
First, a salt r has been added in the hashing. Secondly, the target is computed with
the private key instead of the public matrix, this modification is needed to make the
GPV framework compatible with the trapdoor sampler used in Falcon. Thirdly, many
intermediate values are represented in the Fourier domain to comply with the trapdoor
requirements (see later in Section 2.3.1). We refer to the specifications for the verification
algorithm and the correctness of this signature scheme.

In this paper, the term “pre-image computation” refers to the step 3 of algorithm 1
and the term “trapdoor sampler” corresponds to the step 5 of algorithm 1.

2.3.1 Trapdoor sampler

In reaction to the hidden parallelepiped attack outlined in Section 2.2, the design of
Falcon ensures that the distribution of the signatures is independent of the secret basis.



Morgane Guerreau, Ange Martinelli, Thomas Ricosset and Mélissa Rossi 147

Algorithm 1: Falcon.Sign(m, sk)
Input :A message m, a secret key sk = (B̂, T )
Output :A signature sig

1 r
$←− {0, 1}320 uniformly

2 c← HashToPoint(r||m, q, n) c ∈ R
3 t̂← (ĉ, 0) · B̂−1 • pre-image computation
4 do
5 v̂← ffSampling(̂t, T ) • trapdoor sampler
6 ŝ← (̂t− v̂) · B̂

7 while ‖s‖2 > b2.42 · n · σ2c σ := 1.17
π
√

2 ·
√
q · log

(
4n(1 + 232 ·

√
n/4)

)
;

8 return sig := (r, s)

The solution lies in the introduction of a non-deterministic sampler called ffSampling,
based on the Fast Fourier Nearest Plane algorithm [DP16].

Falcon.Sign ffSampling SamplerZ BaseSampler

z+ ∼ DZ+,σmax,0
z ∼ DZ,σ′,µs ∼ D(c,0)+Λ(B),σ,0

Figure 1: Falcon’s signature flowchart.

The inputs of ffSampling are a binary tree T representing the GSO of the private
basis and a pre-image t. It outputs a vector v ∈ Λ such that (t− v) ·B ∼ D(c,0)+Λ(B),σ,0.
Note that the coordinates of v are not sampled linearly as ffSampling is a recursive
algorithm with a tree traversal.

As a subroutine, it uses a discrete Gaussian sampler SamplerZ with varying mean µ
and standard deviation σ′. The standard deviations σ′ are derived from the Gram-Schmidt
orthogonalization B̂ of the private basis B.

This SamplerZ calls another sampler called BaseSampler, whose distribution is statis-
tically close to a half Gaussian distribution centered on 0 with a fixed standard deviation.
This standard deviation is a parameter of the scheme and is denoted σmax. In prac-
tice, for Falcon-512 and Falcon-1024, σmax = 1.8205. The closeness of the output of
BaseSampler to the ideal half-Gaussian is ensured with Rényi divergence arguments (see
[HPRR20] for more details).

The BaseSampler is presented in algorithm 2 where we denote by JP K the function
that, for any logical proposition P , returns 1 if P is true, and 0 if P is false. We also call
RCDT a reverse cumulative distribution table generated as a parameter of Falcon.

Algorithm 2: BaseSampler ()
Output :An integer z+ ∼ DZ+,σmax,0

1 u← UniformBits(72)
2 z+ ← 0
3 for i← 0 to 17 do
4 z+ ← z+ + Ju < RCDT[i]K
5 end
6 return z+



148 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

Floating Point Arithmetic Since the polynomials considered are in Fourier representation,
their coefficients are complex numbers. Their real and imaginary part are stored as float
numbers in the “double precision” encoding. In double representation, each number is
encoded over 64 bits split into three elements: the first bit, denoted s, represents the sign,
the 11 following bits represent the exponent denoted e, and the remaining 52 bits represent
the mantissa denoted m. These elements are such that the intermediate value is defined
as (−1)s · 2e−1023 ·m.

In Falcon, multiplication between two numbers in double precision is done in three
steps: the mantissas of the operands are multiplied, then the exponents of the operands
are added, and finally the signs of the operands are xored together.

3 Improvement of the pre-image attack
The first leak in Falcon’s signature scheme (algorithm 1) concerns the pre-image computa-
tion in step 3. Indeed, this step consists in a multiplication of a known value, namely (ĉ, 0),
and the secret key B̂−1. Note that the known value cannot be chosen by the entry-wise as
it is salted with a random salt r generated at step 1. The computation (ĉ, 0) · B̂−1, implies
the computation of ĉ · f̂ where f is defined as part of the secret key in Section 2.3. We
focus on this particular multiplication to recover f . Indeed, the whole private key can be
recomputed from the public key and f .

On a high level, the success of this first attack comes with no surprise as it targets a
simple product between key material and known values on an unprotected device. However,
the specificity of this attacks comes from the type of the intermediate variables targeted.
In fact, performing a side-channel on complex numbers that correspond to the Fourier
representation of the variables encoded in double precision was not straightforward and
required some precision analysis. Our attack can be seen as an improvement of [KA21] in
terms of methodology. We emphasize on the methodology as it is not relevant to compare
our works in terms of absolute number of traces, as our experimental set-ups were different.

Even though this section is not our main contribution, we believe that this attack can be
of interest for anyone looking to perform side-channel attacks on polynomial multiplication
with Fast Fourier transformation, or more generally on floating points.

3.1 The general idea of [KA21]
The authors of [KA21] propose a general attack targeting a multiplication between two
numbers in double representation, which recovers one of the operand with complete
precision (i.e. 53 bits) if the other one is known and give application to attack Falcon.
As [KA21] outlined, the sign, exponent and mantissa can be retrieved separately as they
are computed separately in the global multiplication. In [KA21] the recovery of the sole
mantissa requires six correlation analyses: three on each half of the mantissa, targeting
two multiplications and one addition.

Our improvements are threefold:
• We show that only the 6 MSB of the mantissa are required to derive the key, which

can be recovered with a single CPA on the higher half of the mantissa.
• We use the redundancy in complex product to halve the number of required traces.
• We present a simple way to reduce noise by exploiting similar inputs.

3.2 Lowering the complexity of exhaustive search
In the specific case of Falcon’s signature generation, and in the more general case of
a multiplication between two integral polynomials in FFT representation, one does not
need perfect precision. In a nutshell, it is not necessary to recover the entire mantissa



Morgane Guerreau, Ange Martinelli, Thomas Ricosset and Mélissa Rossi 149

coefficients in order to derive exactly the polynomial after applying the inverse Fourier
transformation.

Thanks to the R-linearity of FFT−1, the relative error is conserved through FFT−1.
Indeed, let (f̂ ′j) ∈ Cn and (f̂j) ∈ Cn be the Fourier representation of two polynomials
f ∈ Z[x] and f ′ ∈ Z[x]. Assume that f̂ ′j = f̂j + εf̂j with ε ≥ 0; then after applying FFT−1

we obtain f ′j = fj + εfj .

Lemma 1 (Partial knowledge of the coefficients). Let f̂ be the Fourier representation of
an unknown polynomial f =

∑n−1
j=0 fj · xj ∈ Z[x] and let p ∈ N. Assume that f is defined

such that |fj | < 2p for all 0 ≤ j ≤ n− 1. Then the knowledge for all the f̂j of (1) their
sign, (2) their exponent and (3) the p+ 1 most significant bits of their mantissa, is enough
to derive f exactly.

Proof. We fix 0 ≤ j ≤ n− 1. Assume that the sign, denoted sj , the exponent, denoted ej ,
and the p+ 1 most significant bits of the mantissa of f̂j are known. Let mj be the exact
mantissa of f̂j and let m′j be the approximation of mj where the bits outside the p + 1
most significant bits are set to 0. Let f̂ ′j := (−1)sj · 2ej−1023 ·m′j . Then, the relative error
between f̂j and f̂j

′
is defined as ε := |(f̂j − f̂ ′j)/f̂j | = |m′j −mj |/|mj | ≤ 2−p−1. Then, by

R-linearity of FFT−1,
|fj − f ′j | = ε · |fj | < 2−p−1 · 2p = 0.5.

As the coefficients fj lie in Z, one can recover the correct coefficients by rounding.

In Falcon-512 and Falcon-1024, the coefficients of f lie in [−25, 25]. By Lemma 1,
besides the sign and the exponent, only the 6 most significant bits of the mantissa are
necessary to recover each coefficient of f . Thus, our attack recovers the mantissa by a
single 8-bits CPA taking some margin. The computational complexity of our attack is
thus bounded by the recovery of the exponent, that is an 11-bit CPA.

3.3 Halving the number of required traces
The multiplication between ĉ, and the secret key f is a succession of multiplications
between complex numbers. A multiplication between two coefficients will thus involve two
elements, one element being the real part and the other being the imaginary part. More
precisely, the complete pattern will be formed of two multiplications, one subtraction, then
again two multiplications, and finally one addition: MulMulSubMulMulAdd. The first and
second multiplications of the pattern are enough to recover a coefficient fi, as they involve
the imaginary part and the real part of the operands to compute the real part of the result.
However, we can also exploit the third and fourth multiplications, as they too involve
the real part and the imaginary part of the secret coefficient fi, this time to compute the
imaginary part of the result. We can group together the sub-traces of the Mul patterns
that involve the same element of fi as shown in Table 1. This allows us to divide the re-
quired number of acquisitions by two while having the same number of actual leaking traces.

Table 1: Utilization of the real and imaginary parts of the operands

Re(f̂i) Im(f̂i)
Re(ĉi) 1st Mul 3rd Mul
Im(ĉi) 4th Mul 2nd Mul



150 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

3.4 Mitigating the noise
A classical way to deal with the noise in power analysis is to produce several traces for the
same values and to average them. This is not possible in our model because the message
is salted with a random r salt generated at step 1 of algorithm 1. Interestingly, we can
nevertheless reuse the results of Section 3.2 to create groups of traces for similar values
of ĉ and average them to mitigate noise. More precisely, ci and a c′i are said k-similar
if they share the same sign, exponent, and the k most significant bits of their mantissas.
This number k is a trade-off between the need for precision and the objective of combining
several traces for similar value. Experimentally, we observed good results by setting3

possible values for the exponent, as c lies in Zq[x] with q = 12289. k to 10.

3.5 Experimental results
In this paper, we experimented our attacks on both simulated traces and real acquisitions.
Our simulated traces were generated using the ELMO simulator [MOW17], which emulates
consumption power of an ARM Cortex M0 processor and produces noise-free traces. The
tool reproduces the three stages pipeline of a M0 processor though, which means that the
algorithmic noise is taken into account. The actual power traces were generated from a
ChipWhisperer Lite with STM32F3 target (ARM Cortex M4) [OC14]. Table 2 gives the
number of traces needed to recover the full key in these different setups.

Table 2: Number of traces needed to perform a key recovery with power analysis
Number of Traces

ELMO 2 000
ChipWhisperer 5 000

We recall that comparing the number of traces with [KA21] is not relevant, as the mea-
surement setups are quite different. However, for a fair comparison, we have implemented
the state of the art and we show in Figure 2 that the exploitation of all Mul patterns
allows to halve the number of traces. Furthermore, while we have no theoretical claim
supporting the specific benefits of Section 3.4’s improvement4, as experimentally shown on
Figure 2, it greatly diminishes the number of traces for a given probability of success. As
a side benefit, this trick also reduces the computation time of the CPA, as the averaging
of the traces results in less data to analyze. Finally, we recall that our attack has a better
computational complexity than [KA21].

4 Unravelling the Hidden Parallelepiped with side-channel
information

Falcon’s Gaussian sampling is a complex part of the signature algorithm. Contrary to the
recent signature scheme based on the Fiat–Shamir with aborts paradigm, this Gaussian
sampling cannot easily be removed from the design. It is a very sensitive operation as each
sample depends on the secret key. However it is also a complex target and only one timing
attack was attempted on it [FKT+20], without successfully recovering the key. We provide
further information about the possibility of this attack in Appendix B. In this section, we
propose the very first side-channel key recovery of Falcon’s Gaussian sampling. We can
summarize our attack steps as follows.

3One could be surprised by such a high value because in that case two 10-similar values share
1 + 11 + 10 = 22 bits. But actually, there are less than 14

4Note that Section 3.2’s improvements are still backed-up by some theoretical claims on the computa-
tional complexity.



Morgane Guerreau, Ange Martinelli, Thomas Ricosset and Mélissa Rossi 151

1,000 2,000 3,000 4,000 5,000 6,0000.4

0.5

0.6

0.7

0.8

0.9

1

Number of traces

Pr
ob

ab
ili
ty

of
su
cc
es
s

all Mul
noise

reduction
SotA

Figure 2: Probability of recovering one coefficient as a function of the number of traces measured
with a ChipWhisperer (data for 10 × 16 coefficients). We plot the attack with no improvement in
green (State of the Art [KA21]). The attack with noise reduction (sec. 3.4) is plotted in red. The
blue plot corresponds to the attack with noise reduction and exploitation of all Mul (sec. 3.3).

• Step 1: In Section 4.1, we apply a single-trace attack on the BaseSampler to recover
some knowledge on the zi. The information consists in knowing if zi ∈ {0, 1} or not5.

• Step 2: In Section 4.2, we apply a variant of the HPP solver on several sets of filtered
signatures according to the knowledge gained in Step 1.

• Step 3: In Section 4.3, we finalize the key recovery with lattice reduction.

Finally, we analyze the attack and its performance in Section 4.4.

4.1 Step 1: Side-channel analysis on the BaseSampler

As outlined in Section 2.3.1, Falcon’s trapdoor sampler relies on a BaseSampler to sample
integers. This sampler, presented in algorithm 2, is constant-time, but previous work by
[KH18] have shown that table-based samplers are vulnerable to Simple Power Analysis
(SPA). This is also the case for the BaseSampler. Moreover, we show in the sequel that
we only need to classify whether the samples z+ are equal to 0 or not, which removes the
constraint to retrieve the exact value of z+. The goal of this section is to explicit how to
make this classification.

The comparison Ju < RCDT[i]K at line 4 of BaseSampler is implemented as a sub-
traction of the 72-bit variables u and RCDT[i]. More precisely, in Falcon’s official
implementation, this subtraction is split in three successive subtractions between two
24-bit unsigned integer stored in 32-bit registers – the 8 most significant bits thus set
as 0. When the result of this subtraction is negative, the register underflows, setting its
8 most significant bits to 1. If the result is positive, the 8 most significant bits remain
unchanged. Thus, the Hamming weight of the two possible results differs by 8. This causes
a significant difference in the power consumption, allowing the distinction of the result
of the comparison and the increment of z+ (or the absence thereof). This theoretically
allows the side-channel attacker to determine how many times the comparison results in
an increment by computing the number of high (respectively low) consumptions, and thus
the actual value of the sample. Figure 3 illustrates the variations in power consumption
during the execution of the comparisons.

5zi ∈ {0, 1} if and only if the corresponding call to BaseSampler returns z+ = 0.



152 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

Figure 3: Power variation during the execution of the substraction. Each line is a different
execution. Blue ticks stand for incrementation of z+, red ones for absence of it.

Similarly to [KH18], we apply a low-pass filter to reduce the noise, and determine an
experimental threshold to distinguish between the iterations containing incrementations of
z+. As the case where z+ = 0 is the only one relevant for our attack, it is possible to adapt
the threshold to identify only the executions of BaseSampler with no incrementation at all.
For the next steps, we assume that all the z+ = 0 are clearly identified. Note that after the
execution of BaseSampler, a random sign bit is generated. Thus, z+ = 0 becomes zi = 0
or zi = 1, and since the sign bit is not relevant in our attack we will consider both cases.

4.2 Step 2: application of the HPP
4.2.1 Filtering the signatures though side-channel analysis

Now that we have exposed physical leakage within the BaseSampler, we propose an attack
exploiting the leaked samples to recover the Falcon’s secret key.
The ffSampling algorithm works in an equivalent way than the Klein-GPV algorithm [Kle00,
GPV08]. Given a target vector tn := t, the Klein-GPV algorithm proceeds as follows on
vn ← 0 for i = n− 1, . . . , 0:

1. Let xi ← 〈ti, b̃i〉/
∥∥b̃i
∥∥2, implying that xib̃i + span(b0, . . . ,bi−1) is close to t.

2. Draw zi ∼ DZ,σ′,xi−bxic with σ′ := σ/
∥∥b̃i
∥∥, and let ki ← bxic+ zi. As illustrated in

Figure 4, this is the only step that differs from the nearest plane algorithm for which
ki ← bxie.

3. Let ti ← ti+1 − kibi and let vi ← vi+1 + kibi.

Then v := v0 ∼ D(c,0)+Λ(B),σ,0 is returned.

c0

v0

Figure 4: c0 = v1 + x0b0 is shifted to v0 = v1 + k0b0 rather than to the closest point.

Although the vector z = (z0, . . . , zn−1) is correlated to the secret, its knowledge though
side-channel analysis (as presented in Section 4.1) does not directly lead to B, f, g F,G



Morgane Guerreau, Ange Martinelli, Thomas Ricosset and Mélissa Rossi 153

(a) Signatures where z ∈ {0, 1}2 are in red (b) Signatures where z0 ∈ {0, 1} are in red

Figure 5: Simplified 2D representation of the distributions of Falcon’s signatures with two
different filterings.

or even T . Note that one cannot revert the translation as the ti’s are unknown from the
attacker.

However, the knowledge of z removes in some sense the probabilistic part of the
sampling and thus an adaptation of the hidden parallelepiped attack as presented in
Section 2.2 seems natural. To illustrate this, in Figure 5, we print some selected generated
signatures, according to the value of z.

On the left, we represent in green a representation in 2 dimensions of the distribution
of 100, 000 Falcon signatures. We also represent in red the signatures where z ∈ {0, 1}2.
One can see that the parallelepiped is fully disclosed. However, since n ∈ {512, 1024}, it is
not possible to filter the signature to force z ∈ {0, 1}n in these dimensions.

Nevertheless, when only one zi is forced to 0 or 1 for all signatures, i.e., when signatures
are filtered such as the corresponding output of algorithm 2 is 0 as presented on the right
in Figure 5, the parallelepiped is not fully disclosed, it is more a deformed parallelepiped.
But, one direction is preserved, we will see in Section 4.2.2 that it is enough to trigger an
attack.

Number of filtered signatures For each index i ∈ [0, n − 1], we will apply a different
filter keeping the traces such that zi ∈ [0, 1] and discarding the other signature traces. Note
that, even if one trace is discarded for an index, it can be kept for another index. Thus, all
the traces are eventually used multiple times. We can compute the number of discarded
signatures for one index as follows. Coefficients of f and g follow a centered discrete
Gaussian whose standard deviation depends only on n and q, therefore the probability of
z having one coordinate in {0, 1} is almost fixed by the parameters of the scheme. Indeed,
Falcon parameters imply that 1.2915 < σ′ < 1.8502, thus P[zi ∈ {0, 1}] ≈ erf(

√
2

2σ′ ) ∈
[0.4111, 0.5613] for all i ∈ [0, n− 1]. Thus, for each index, we keep between 41% and 56%
of the signatures.

4.2.2 Applying the HPP

We aim at applying the HPP solver from [NR06, DN12] to the signatures fulfilling the con-
dition z0 ∈ {0, 1}. Informally, the HPP solver searches for a point w on the n-dimensional
unit sphere which minimizes the collinearity between w and all vectors in the sample
pool. In our case, coordinates associated to the private basis are Gaussian in a quite large
interval, except for coordinates where zi is forced to 0 or 1 which are in a smaller interval.



154 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

Taking advantage of this truncated Gaussian, the HPP solver returns an approximation
of the corresponding vector in the private basis. This situation is close but not directly
equivalent to the deformed parallelepiped case as presented in Section 2.2. There are
several differences between our signatures and the signatures used in [NR06, DN12] to run
their attack.

1. First, the signature schemes attacked in [NR06, DN12] are using the round-off
algorithm [Bab85, Bab86], while Falcon’s trapdoor sampler is based on the fast
Fourier nearest plane algorithm [DP16]. The first consequence is that the hidden
parallelepiped that we can disclosed is not the private basis B, but its GSO B̃. Thus,
the HPP solver cannot recover rows of B but rather rows of B̃.

2. A second consequence of the use of a randomized variant of the nearest plane
algorithm is the distribution of the signatures s := (t−v)·B. Let xi := 〈ti, b̃i〉/

∥∥b̃i
∥∥2,

from [GPV08, (Lemma 4.4)] and [DP16, (Lemma 3)]:

s =
∑
i∈[n]

yi · b̃i where yi = zi − xi + bxic.

Given that zi ∈ {0, 1}, we have yi ∈ (−1, 1], but unlike in randomized round-off
algorithms, in our case the distribution of yi is not uniform over (−1, 1]. There is no
trivial way to describe the probability distribution of the yi’s given that zi ∈ {0, 1},
but it can be seen as the sum of two distributions, one being a uniform distribution
over (−1, 1], and the other being a sum of small uniform distributions centered at 0
which seems “Gaussian”. Since directions of Gaussian vectors are uniform at random
from the unit sphere, these vectors have no impact on the minimums of the fourth
moments considered in the gradient descent, but they add “useless” samples to take
into account in the moment and gradient computation and thus increase the number
of required signatures.

z1z0z3z2z5z4z7z6

Figure 6: Sampling order of the zi in dimension 8.

3. Another consequence of the ffSampling algorithm is that the order in which coordi-
nates are sampled is not the same order as the rows of B̃, i.e. filtering the signatures
with the condition z0 ∈ {0, 1} will not provide information on b̃0. The sampling
order, called "bit reversal order" is illustrated on Figure 6. For dimension 8, the zi
are then reordered as follows:

z6z4z7z5 z2z0z3z1

Here, if one wants to recover b̃0, a filter according to z6 ∈ {0, 1} is necessary.
More generally, to recover the first row of B̃ in dimension n we have to apply
the filtering zn−2 ∈ {0, 1}. If the zi were sampled with a classical binary tree
traversal order from left to right, the final order of the signature’s coordinates would
be merely the bit reversal order of i on n/2 bits. Let (b0, b1, . . . , b`−1)2 be the
binary representation of an integer k =

∑`−1
i=0 bi · 2i the bit reversal of k on ` bits is

br`((b0, b1, . . . , b`−1)2) = (b`−1, . . . , b1, b0)2.



Morgane Guerreau, Ange Martinelli, Thomas Ricosset and Mélissa Rossi 155

4.2.3 Correcting the noisy vectors

Since b̃0 = b0 = (g0, . . . , gn−1,−f0, . . . ,−fn−1), this row is the most interesting to recover,
as it allows to directly recover the private key. However, our attack only recovers approxi-
mations for b0, even if the approximation gets better with the number of signatures. If we
consider only b0, we are able to obtain a good approximation of (f, g), but we can achieve
better results by taking into account other rows.

The GSO of B is computed in a recursive way by a LDL∗ decomposition. The L
matrix is stored in a binary tree as it is computed. The leaves of this tree corresponds
to the

∥∥b̃i
∥∥, with i following a bit reversal order on 2n bits. We have b̃0 = b0, and the

closer we get to the center of the tree the more different the b̃i are from the bi. However,
we observed that the b̃i corresponding to the four left-most leaves of the tree are still
very close to the bi, that is very close to (g,−f) up to a multiplication by a power of x
(rotation of the row).

We know that b̃n = ( qf∗

ff∗+gg∗ ,
qg∗

ff∗+gg∗ ). Experimentally, we see that b̃n is in fact very
close to (f∗, g∗). This row corresponds to the right-most leave of the LDL∗ tree. Similarly
to the previous observation, the four right-most leaves of the tree are also very close to
(f∗, g∗), up to a multiplication by a power of x. Thus, by computing an average vector
from the 8 vectors previously described, we can improve our approximation of f, g, and
experimentally we were able to divide by two the standard deviation of the error.

4.3 Step 3: Recovering the secret key from approximate (f, g)
The recovered vector from the HPP solver, denoted (f ′, g′), is an approximation of (f, g).
From obtaining the correct key from (f ′, g′), a lattice reduction phase may be necessary.
To estimate the remaining work for the full key recovery, we use the Leaky LWE/NTRU
estimator tool introduced in [DDGR20] (see [DSDGR21] for the implementation). This
tool is a variant of a tool introduced by Albrecht et al. [ACD+18]. The Leaky-LWE/NTRU
framework uses the a posteriori distribution of (f, g) and the parameters n and q to embed
the NTRU instance into a Distorted Bounded Distance Decoding instance. The a posteriori
distribution of (f, g) is modeled as a multivariate Gaussian centered in (f ′, g′) with a
standard deviation provided experimentally.

We wrote a simple SageMath script to call the Leaky LWE / NTRU tool. For our very
low values of the experimental standard deviation, we had to increase the precision of the
intermediate computations inside the tool. The tool returns the estimated BKZ block-size
β. This value gives an idea of the remaining work though the so-called cost models (See
[ACD+18] for more details). In a nutshell, most models suggest a security increase of one
bit every 2 to 4 increase of β. Note that the block size for a key recovery on Falcon-512
is estimated around β = 480.

4.4 Results
Experimental results for Step 1 Concerning the determination of the value of z+, we
achieved perfect results (100% accurate classification) using traces generated with ELMO
without any extra noise. On the ChipWhisperer, achieving perfect accuracy was challenging.
Fortunately, we only need perfect accuracy when determining z+ = 0, the other values of
z+ are of no interest for our attack. Thus, we can strengthen the classification parameters
such that no trace is wrongly classified as z+ = 0 if it corresponds to z+ 6= 0 (called "false
positive"). This will induce some loss: some ambiguous traces corresponding to z+ = 0 may
not be classified as z+ = 0 and they are not used for the attack. On the ChipWhisperer,
the percentage of traces that are correctly classified is around 94%. This little loss should



156 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

slightly decrease the number of filtered signatures computed in Section 4.2.1. To avoid
this loss, it is possible to simply generate more traces to compensate for the ambiguous
discarded ones. Note that better experimental results (100% accuracy) were achieved
by [KH18] using more precise material (LeCroy HDO6104A oscilloscope at a sampling rate
of 250 M/s), adding to the belief that the attack is actually practical.

Table 3: Percentage of traces that are correctly classified. We adapted the classification parameters
such that there are no "false positives", i.e. no traces wrongly classified as z+ = 0.

Percentage of traces accurately classified

ELMO 100%
ChipWhisperer 94.2%
More efficient setup [KH18] 100%

Note that an ambiguous trace is always discarded for a specific index only, and can be
used for another if the classification algorithm is successful (e.g. z+ may be ambiguous
for z0 but not for z1), which means that since we are targetting 8 different indexes all
generated traces are likely to be used at least once.
Remark 1. For the rest of the experimental results, we assume a 100% accurate classification
as obtained with ELMO or with [KH18]. The slight classification loss of the ChipWhisperer
measurement would imply a small increase of the number of traces (+6%) but given the
orders of magnitude for the number of traces, this increase does not change the final
estimations.

Implementation of the Step 2 First of all, we remark that the algorithm proposed
by [NR06, DN12] to solve HPP is highly parallelizable. Thus, we implemented a fully
parallelized version, which mainly consists in launching a gradient descent on every CPU
and waiting for the first one to succeed. We abort the descents if they take too long,
ensuring that they do not fall into false positives, i.e. local minimums different from the
rows of B̃. Aborted gradient descents are launched again with a new random starting
point on the unit sphere.

The signatures are generated with Falcon’s official implementation assuming that
the intermediate value z+ is recovered though side-channels (see Section 4.1). Next, the
parallelized HPP solver is run eight times on the signatures, each time with a different
filtering to recover a different row of B̃ as described in Section 4.2.3.

We improved the search in the following way. When we get a first approximation of
a bi, the seven remaining ones are almost free: we can use the first found vector as a
starting point for the gradient descent, resulting in very fast convergence (few dozens of
iterations). The only costly step that remains is the computation of the Gram matrix.

We focus our experimental measurements on Falcon-512 parameters. We generated
a database of 10 millions of signatures and the associated values of the zi’s. This pre-
computation took one week of computations on a standard computer. The obtained
database is around 40 Gigabytes. This database allowed us to extensively analyze the
resources of the attack. We performed our parallel HPP attack on a server with 80 cores
and were able to finish the gradient descent of the HPP within a few days or weeks
depending on the number of traces. As detailed in [NR06, DN12], the convergence rate of
the gradient descent is not precisely known and we cannot give accurate time estimation
for a complete run.

Direct key recovery When the number of traces is high enough, there is no need for
lattice reduction. For instance, we were able to correct our noisy vector and fully recover



Morgane Guerreau, Ange Martinelli, Thomas Ricosset and Mélissa Rossi 157

106 107
0

50

100

150

200

250

more than 2500h CPU time

less than 10h CPU time

Number of measured signatures

Es
tim

at
ed

B
K
Z
bl
oc
k
siz

e
β

Figure 7: Work/Measurement trade-off for Falcon-512. We show the estimated block size β as a
function of the generated signatures. By convention, β = 0 corresponds to the case where the
secret key is exactly recovered with a simple rounding without need of lattice reduction. Recall
that without attack, the necessary block size for Falcon-512 is estimated around β = 480. CPU
time is taken from [ADH+19].

the key by mere rounding with 10 millions of signature measurements. Indeed, we obtain
a standard deviation of the error σ(f ′,g′)−(f,g) = 0.08. The probability to get, for each of
the 1024 coefficients of (f, g), an absolute error less than 0.5 is greater than 0.9999. This
probability is lesser with only 5 millions traces but still overwhelming (greater than 0.99).

Step 3: Work/Measurement trade-off Instead of a direct recovery, an attacker may
want to trade measurement for computation time and use Section 4.3 for finalizing the
attack. In Figure 7, we provide the estimated BKZ block size as a function of the number
of signature measurements. The graph is obtained from 16 attack measurements with a
number of signatures belonging in [300000, 10000000]. From Figure 7, one can notice that
1.5 million traces would leave a realistic remaining computation for a standard computer.
Thus, a trade-off for a powerful attacker would currently be at 1 million traces (based on
[ADH+19]). More precisely, CPU time would be around 1000 hours with 1 million traces,
and on [ADH+19] set-up this would result in less than 24 hours of wall-clock time. Attacks
with less than 1 million traces are currently very costly and would probably require weeks
of computation on powerful machines, but the induced theoretical loss of security can still
raise concerns.

For generating the data in a minimal time, we used the following tweak: once a successful
attack is obtained with a certain number of signatures e.g. 10000000, it is possible to
speed-up the next experiments with different number of traces using the previously found
vectors as a starting point for the gradient descent. The recovered value is still the correct
one as it corresponds to a local minimum for the new number of traces.

Experiments on other n We also performed our attack on modified instances of Falcon
with smaller n (32, 64, 128 and 256), several experiments are provided in appendix in Table 4.
One interesting fact is that the attack behaves better when the n increases. Indeed, the
standard deviation of the error between (f ′, g′) and (f, g) decreases with the dimension.
This may be explained by the fact that the norm ‖(f, g)‖ is bounded by 1.17√q and is
very close to this value for every n. The direct consequence is that, when n increases, the
values of the coefficients of f, g decrease, easing the recovery. This behavior is favorable for



158 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

the attacker, since the complexity of correcting noisy vectors increases with the dimension.
For Falcon-1024, we did not generate a database of signature measurements and

thus we cannot provide experimental data, though [DN12] claimed the number of required
signatures to be polynomial in the dimension. We believe with confidence that, the behavior
of the attack will be similar to a shift to the right of the data for Falcon-512 on Figure 7.

4.5 Countermeasure
In a nutshell, the demonstrated attack leverages a particular information on z+ obtained
by side-channel analysis on the BaseSampler. The information is binary: either the 8
most significant bits of the register are set to 0 or they are all set to 1. In the first case,
z+ is incremented and in the second case it is not, leading to the knowledge of z+ = 0 or
z+ 6= 0. This binary information is crucial to transform a practically impossible attack
into a (quite costly but) practical attack using filtered HPP resolution (see Section 4.2.1).

In this section, we provide a simple trick to practically lower the Hamming weight
gap and thus mitigate the attack. Let us focus on the point of entry of the side-channel
attack: the comparison Ju < RCDT[i]K at line 4 of BaseSampler. As previously stated in
Subsection 4.1, this comparison is implemented in Falcon’s official implementation as
three successive subtractions between two 24-bit unsigned integer stored in 32-bit registers.
Of these three successive subtractions, the precise point of entry of the attack is the last
one: the subtraction of the 24 MSB of u, denoted u, and the 24 MSB of RCDT[i], denoted
RCDT[i]. We now propose to modify this last comparison as presented in algorithm 3.

Algorithm 3: Proposed countermeasure to mitigate our attack. This pseudocode
corresponds to the last comparison during the computation of Ju < RCDT[i]K at
line 4 of BaseSampler

Input :Two 24-bit variables u and RCDT[i] stored in 32 bit registers.
a bit c carrying the result of the comparison of both least significant

registers (corresponding to the 48 least significant bits of u− RCDT[i]).
Output : 1 if RCDT[i] + c > u and 0 is u ≤ RCDT[i] + c

1 b← 0xffffff
2 b := b− u+ RCDT[i] + c
3 return b� 24

Proposition 1. In the proposed modification, the Hamming weight difference of the
internal register between output 1 and output 0 is at most 1, contrary to 8 in the original
solution. Thus, assuming that the leakage is correlated to Hamming weight gap, the recovery
of information becomes significantly more difficult.

Indeed, in algorithm 3, the underflow is replaced by an “overflow”. This overflow is
not a physical one, as the 24-bits values will overflow on 25 bits in 32 bits register. The
consequence is that, in case of “overflow”, of the 8 MSB, only one will be set to 1, the
25-th bit. Thus, the two different outputs of the subtraction will only have an average
difference of Hamming weight of 1. This is to put in perspective with the difference of
8 in the actual algorithm. Theoretically, the leakage is thus divided by at least 8, and
experimentally we observed that it is no longer possible to classify the traces.

The presented trick consists in a small modification of the C code and does not have
any noticeable impact on the performance, while provable masking (e.g. [EFG+21]) would
have a cost of O(Td3/2) with d the masking order and T the size of the RCDT. However, it
is important to note that our proposition obviously provides a weaker assurance compared
to a provable masking in the ISW model [ISW03]. For a theoretical security assurance, we



Morgane Guerreau, Ange Martinelli, Thomas Ricosset and Mélissa Rossi 159

would recommend to apply a provable masked implementations of RCDT-based Gaussian
samplers as introduced in [GR19, BBE+19], or more recently in [EFG+21]. Applying one
of these countermeasures would prevent our single trace analysis but the cost could be
prohibitive in certain applications. In some cases, our trick could possibly be considered
as a sufficient mitigation accounting the cost of our attack in terms or resources and
measurements.

5 Conclusion
In this article we have exhibited two leaking operations of Falcon and performed practical
side-channel attacks on both leakages. While the former leakage was already known and
our attacks is no more than an improvement of the existing one, the latter leakage was
unexploited until now. We have shown that an attack using the hidden parallelepiped
from [NR06, DN12] can be achieved using side-channel information to select good execu-
tions, that is execution for which one dimension of the parallelepided is unchanged.

The resulting attack is quite practical and was performed on Falcon-512 reference
implementation. As outlined before, all publicly available Falcon implementations, except
the AVX2-optimized, are using the same BaseSampler as targeted in this paper and in
[KH18]. Thus, our attack applies to many implementations in a similar way, including
clean PQClean6 and pqm47 implementations.

These new attacks highlight the need for side-channel protection by pointing out the
vulnerable parts and quantifying the resources of the attacks.

Future works Several other side-channel attacks could be performed on Falcon with a
more powerful threat model. Concerning the trapdoor sampler, we only performed SPA
on the BaseSampler. A template attack could be performed on the SamplerZ, targeting
an operation involving the returned value of BaseSampler, as there are only 18 possible
values. If the attack of [FKT+20] went to be adapted in a way that accepts approximate
outputs, one could use the values sampled by the BaseSampler to compute the standard
deviations and recover the key.

References
[ACD+18] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson, Rachel

Player, Eamonn W. Postlethwaite, Fernando Virdia, and Thomas Wunderer.
Estimate all the LWE, NTRU schemes! In Dario Catalano and Roberto De
Prisco, editors, SCN 18, volume 11035 of LNCS, pages 351–367. Springer,
Heidelberg, September 2018.

[ADH+19] Martin R. Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova, Ea-
monn W. Postlethwaite, and Marc Stevens. The general sieve kernel and
new records in lattice reduction. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part II, volume 11477 of LNCS, pages 717–746. Springer,
Heidelberg, May 2019.

[Bab85] László Babai. On lovász’ lattice reduction and the nearest lattice point problem
(shortened version). In Kurt Mehlhorn, editor, STACS 85, 2nd Symposium
of Theoretical Aspects of Computer Science, Saarbrücken, Germany, January
3-5, 1985, Proceedings, volume 182 of Lecture Notes in Computer Science,
pages 13–20. Springer, 1985.

6https://github.com/PQClean/PQClean
7https://github.com/mupq/pqm4

https://github.com/PQClean/PQClean
https://github.com/mupq/pqm4


160 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

[Bab86] László Babai. On lovász’ lattice reduction and the nearest lattice point
problem. Comb., 6(1):1–13, 1986.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-based
signature scheme at any order. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages 354–384.
Springer, Heidelberg, April / May 2018.

[BBE+19] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Mélissa
Rossi, and Mehdi Tibouchi. GALACTICS: Gaussian sampling for lattice-
based constant- time implementation of cryptographic signatures, revisited.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 2147–2164. ACM Press, November 2019.

[BDE+18] Jonathan Bootle, Claire Delaplace, Thomas Espitau, Pierre-Alain Fouque,
and Mehdi Tibouchi. LWE without modular reduction and improved side-
channel attacks against BLISS. In Thomas Peyrin and Steven Galbraith,
editors, ASIACRYPT 2018, Part I, volume 11272 of LNCS, pages 494–524.
Springer, Heidelberg, December 2018.

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, gauss, and reload - A cache attack on the BLISS lattice-based signature
scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, CHES 2016,
volume 9813 of LNCS, pages 323–345. Springer, Heidelberg, August 2016.

[BP18] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on de-
terministic lattice signatures. IACR TCHES, 2018(3):21–43, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/7267.

[CD20] André Chailloux and Thomas Debris-Alazard. Tight and optimal reductions
for signatures based on average trapdoor preimage sampleable functions and
applications to code-based signatures. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111
of LNCS, pages 453–479. Springer, Heidelberg, May 2020.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume
12171 of LNCS, pages 329–358. Springer, Heidelberg, August 2020.

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky.
Lattice signatures and bimodal Gaussians. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 40–56.
Springer, Heidelberg, August 2013.

[DN12] Léo Ducas and Phong Q. Nguyen. Learning a zonotope and more: Crypt-
analysis of NTRUSign countermeasures. In Xiaoyun Wang and Kazue Sako,
editors, ASIACRYPT 2012, volume 7658 of LNCS, pages 433–450. Springer,
Heidelberg, December 2012.

[DP16] Léo Ducas and Thomas Prest. Fast fourier orthogonalization. In Proceedings
of the ACM on International Symposium on Symbolic and Algebraic Compu-
tation, ISSAC ’16, page 191–198, New York, NY, USA, 2016. Association for
Computing Machinery.

https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/7267


Morgane Guerreau, Ange Martinelli, Thomas Ricosset and Mélissa Rossi 161

[DSDGR21] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. Lwe
with side information: Attacks and concrete security estimation. Im-
plementation, accessed in August 2021. https://github.com/lducas/
leaky-LWE-Estimator.

[EFG+21] Thomas Espitau, Pierre-Alain Fouque, François Gérard, Mélissa Rossi, Akira
Takahashi, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu. Mitaka: a
simpler, parallelizable, maskable variant of falcon. Cryptology ePrint Archive,
Report 2021/1486, 2021. https://ia.cr/2021/1486.

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi.
Side-channel attacks on BLISS lattice-based signatures: Exploiting branch
tracing against strongSwan and electromagnetic emanations in microcon-
trollers. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1857–1874. ACM Press, Octo-
ber / November 2017.

[FKT+20] Pierre-Alain Fouque, Paul Kirchner, Mehdi Tibouchi, Alexandre Wallet, and
Yang Yu. Key recovery from Gram-Schmidt norm leakage in hash-and-sign
signatures over NTRU lattices. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 34–63. Springer,
Heidelberg, May 2020.

[GGH97] Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems
from lattice reduction problems. In Burton S. Kaliski Jr., editor, CRYPTO’97,
volume 1294 of LNCS, pages 112–131. Springer, Heidelberg, August 1997.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May
2008.

[GR19] François Gérard and Mélissa Rossi. An efficient and provable masked im-
plementation of qtesla. In Sonia Belaïd and Tim Güneysu, editors, Smart
Card Research and Advanced Applications - 18th International Conference,
CARDIS 2019, Prague, Czech Republic, November 11-13, 2019, Revised Se-
lected Papers, volume 11833 of Lecture Notes in Computer Science, pages
74–91. Springer, 2019.

[HHP+03] Jeffrey Hoffstein, Nick Howgrave-Graham, Jill Pipher, Joseph H. Silverman,
and William Whyte. NTRUSIGN: Digital signatures using the NTRU lattice.
In Marc Joye, editor, CT-RSA 2003, volume 2612 of LNCS, pages 122–140.
Springer, Heidelberg, April 2003.

[HPRR20] James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. Isochronous
gaussian sampling: From inception to implementation. In Jintai Ding and
Jean-Pierre Tillich, editors, Post-Quantum Cryptography - 11th International
Conference, PQCrypto 2020, pages 53–71. Springer, Heidelberg, 2020.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, Heidelberg, August 2003.

[KA21] Emre Karabulut and Aydin Aysu. Falcon down: Breaking falcon post-quantum
signature scheme through side-channel attacks. Cryptology ePrint Archive,
Report 2021/772, 2021. https://ia.cr/2021/772.

https://github.com/lducas/leaky-LWE-Estimator
https://github.com/lducas/leaky-LWE-Estimator
https://ia.cr/2021/1486
https://ia.cr/2021/772


162 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

[KH18] Suhri Kim and Seokhie Hong. Single trace analysis on constant time cdt
sampler and its countermeasure. Applied Sciences, 8(10), 2018.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In
David B. Shmoys, editor, 11th SODA, pages 937–941. ACM-SIAM, January
2000.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking Dilithium - efficient implementation and side-channel evaluation. In
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung, ed-
itors, ACNS 19, volume 11464 of LNCS, pages 344–362. Springer, Heidelberg,
June 2019.

[MHS+19] Sarah McCarthy, James Howe, Neil Smyth, Seamus Brannigan, and Máire
O’Neill. BEARZ attack FALCON: Implementation attacks with countermea-
sures on the FALCON signature scheme. Cryptology ePrint Archive, Report
2019/478, 2019. https://eprint.iacr.org/2019/478.

[MOW17] David McCann, Elisabeth Oswald, and Carolyn Whitnall. Towards practical
tools for side channel aware software engineering: ’grey box’ modelling for
instruction leakages. In Engin Kirda and Thomas Ristenpart, editors, USENIX
Security 2017, pages 199–216. USENIX Association, August 2017.

[NR06] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanal-
ysis of GGH and NTRU signatures. In Serge Vaudenay, editor, EURO-
CRYPT 2006, volume 4004 of LNCS, pages 271–288. Springer, Heidelberg,
May / June 2006.

[OC14] Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An open-source
platform for hardware embedded security research. In Emmanuel Prouff,
editor, Constructive Side-Channel Analysis and Secure Design - 5th Interna-
tional Workshop, COSADE 2014, Paris, France, April 13-15, 2014. Revised
Selected Papers, volume 8622 of Lecture Notes in Computer Science, pages
243–260. Springer, 2014.

[PBY17] Peter Pessl, Leon Groot Bruinderink, and Yuval Yarom. To BLISS-B or not
to be: Attacking strongSwan’s implementation of post-quantum signatures.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,
editors, ACM CCS 2017, pages 1843–1855. ACM Press, October / November
2017.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute
of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[PP19] Thomas Pornin and Thomas Prest. More efficient algorithms for the NTRU
key generation using the field norm. In Dongdai Lin and Kazue Sako, edi-
tors, PKC 2019, Part II, volume 11443 of LNCS, pages 504–533. Springer,
Heidelberg, April 2019.

[RJH+18] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Side-channel assisted existential forgery attack
on Dilithium - A NIST PQC candidate. Cryptology ePrint Archive, Report
2018/821, 2018. https://eprint.iacr.org/2018/821.

https://eprint.iacr.org/2019/478
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2018/821


Morgane Guerreau, Ange Martinelli, Thomas Ricosset and Mélissa Rossi 163

[RJH+19] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Exploiting determinism in lattice-based signatures:
Practical fault attacks on pqm4 implementations of NIST candidates. In
Steven D. Galbraith, Giovanni Russello, Willy Susilo, Dieter Gollmann, Engin
Kirda, and Zhenkai Liang, editors, ASIACCS 19, pages 427–440. ACM Press,
July 2019.

A Application of Section 4’s attack on smaller n

Table 4: We represent the standard deviation of the error vector (f ′−f, g′−g) for various number
of signatures and parameter n. In addition, we show the necessary block size β of BKZ in the
form σ(f ′−f,g′−g) : β.

number
of signatures

n
32 64 128 256

50 000 0.98 : 2 0.84 : 2
100 000 0.66 : 2
150 000 0.62 : 2
200 000 0.75 : 9
250 000 0.73 : 9
300 000 0.71 : 8
500 000 0.63 : 7 0.32 : 50
1 000 000 0.22 : 4

B SCA on the SamplerZ: about the applicability of [FKT+20]
In [FKT+20], Fouque et al. proposed a theoretical attack against Falcon, exploiting the
SamplerZ which was then vulnerable to timing attacks. The algorithm performs rejection
sampling, and the standard deviations used could be leaked through time measurements.
The standard deviations are sensitive data, because they are the Gram-Schmidt norms of
the private basis B. The authors of [FKT+20] propose an algorithm TowerRecovery to
recover the private key from these Gram-Schmidt norms.

Thanks to the work of [HPRR20], SamplerZ is now isochronous and no longer vulnera-
ble to timing attacks. However, we have seen previously in Section 4.1 that its subroutine
BaseSampler is vulnerable to power analysis, so that an attacker can retrieve all the values
returned by this algorithm. With enough samples from BaseSampler, we can compute
the standard deviations with arbitrary precision and the attack from [FKT+20] could be
considered again.

The authors of [FKT+20] claimed that they had no practical results in the case of
Falcon because their algorithm requires exact inputs while side-channel attacks only
provide approximate values. However, we show in Section B that the needed precision on
the standard deviations makes the attack unfeasible even with a powerful side-channel
attacker.
Lemma 2. Successfully running TowerRecovery on Falcon-512 requires more than 6
000 bits of precision for the values of the λi.

Let λ′i the approximate value of the standard deviation λi such that λi = λi + εiλi.
The expected input of the TowerRecovery algorithm are the mi such that mi =

∏i
j=0 λj .

We have



164 The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon

m′1 = λ′0 · λ′1
= (λ0 + ε0λ0)(λ1 + ε1λ1)

= λ0λ1 + ε0λ0λ1 + ε1λ0λ1 + ε0ε1λ0λ1

= m1 + (ε0 + ε1 + ε0ε1)m1

m′n = mn + (
n∑
i=0

εi)mn +O(ε2)mn.

Themi are supposed to be integers while the λi are reals. Thus if we only have approximate
values of λi, we can recover the correct mi by rounding only if |m′i −mi| < 0.5 = 2−1,
which requires

mn

n∑
i=0

εi < 0.5. (1)

However,the λi are of the same magnitude of q = 12289 ≈ 213.5, and thus the mi are of
order 213.5n. From 1 we can deduce that

∑n
i=0 εi < 2−1−13.5n.

If we consider that all the errors ei are approximately equal to an error ε which is
the error ε = 2−p due to the precision p of the λi, we have ε < 2−1−13.5n

n . In the case
n = 512, we finally have ε < 2−1−13.5·512−9 which implies p > 6000. Since the standard
deviations are only stored in double precision (i.e. with 53 bits of precision) in Falcon’s
implementation, this attack cannot succeed no matter how these values are retrieved.


	Introduction
	Preliminaries
	GPV
	Hidden Parallelepiped Problem
	Falcon signature scheme

	Improvement of the pre-image attack
	The general idea of cryptoeprint:2021:772
	Lowering the complexity of exhaustive search
	Halving the number of required traces
	Mitigating the noise
	Experimental results

	Unravelling the Hidden Parallelepiped with side-channel information
	Step 1: Side-channel analysis on the BaseSampler
	Step 2: application of the HPP
	Step 3: Recovering the secret key from approximate (f,g)
	Results
	Countermeasure

	Conclusion
	Application of Section 4's attack on smaller n
	SCA on the SamplerZ: about the applicability of EC:FKTWY20

