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Abstract. Persistent Fault Analysis (PFA) is a new fault analysis method for block
ciphers proposed in CHES 2018, which utilizes those faults that persist in encryptions.
However, one fact that has not been raised enough attention is that: while the fault
itself does persist in the entire encryption, the corresponding statistical analysis merely
leverages fault leakages in the last one or two rounds, which ignores the valuable
leakages in deeper rounds. In this paper, we propose Algebraic Persistent Fault
Analysis (APFA), which introduces algebraic analysis to facilitate PFA. APFA tries
to make full usage of the free fault leakages in the deeper rounds without incurring
additional fault injections. The core idea of APFA is to build similar algebraic
constraints for the output of substitution layers and apply the constraints to as many
rounds as possible. APFA has many advantages compared to PFA. First, APFA can
bypass the manual deductions of round key dependencies along the fault propagation
path and transfer the burdens to the computing power of machine solvers such as
Crypto-MiniSAT. Second, thanks to the free leakages in the deeper round, APFA
requires a much less number of ciphertexts than previous PFA methods, especially
for those lightweight block ciphers such as PRESENT, LED, SKINNY, etc. Only 10
faulty ciphertexts are required to recover the master key of SKINNY-64-64, which
is about 155 times of reduction as compared to the state-of-the-art result. Third,
APFA can be applied to the block ciphers that cannot be analyzed by PFA due to
the key size, such as PRESENT-128. Most importantly, APFA replaces statistical
analysis with algebraic analysis, which opens a new direction for persistent-fault
related researches.
Keywords: Algebraic · PFA · Fault Analysis · Fault Attack · PRESENT · LED
· SKINNY · LBlock · AES

1 Introduction
Different from Side Channel Attack (SCA), Fault Attack can be considered as an active
attack method that targets physical cryptographic equipment [JT12]. It performs the fault
injection (FI) on the device, and conducts the fault analysis (FA) to recover the key by
analyzing those collected faulty ciphertexts [DLV03]. It was first proposed by Boneh et al.
in 1997 [BDL97]. And then, Biham and Shamir proposed the well-known Differential Fault
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Analysis (DFA) and applied it to the block cipher DES [BS97]. DFA uses the differential
information between the correct and the faulty ciphertext under the same plaintext to
recover the key. Actually, it can be applied to most of the mainstream cryptographic
algorithms [PQ03].

A typical fault injection can be achieved by changing the power supply voltage [BBBP13],
the frequency of the external clock [ABF+02], the temperature [HS13], or exposing the
circuit to a laser [SA02]. Such injection is induced within a very short period of time
during the encryption process, and it will only affect the result of single encryption.
The corresponding fault model is typically named the transient fault model. There are
also other models that assume permanent faults. For example, attackers may use more
aggressive methods to permanently break the device [Sko10]. In CHES 2018, Zhang et al.
proposed a new fault analysis method called Persistent Fault Analysis (PFA) [ZLZ+18].
Their fault model is sitting between transient and permanent ones, where the fault persists
in multiple encryptions and disappears after the device is reset. As for a single encryption,
the persistent fault will last for multiple rounds.

Traditional DFA can use a single-byte fault and several pairs of ciphertexts to recover
the key. Mukhopadhyay induced a single-byte fault into the input of the 8-th round of
AES, and utilized two pairs of faulty ciphertexts to recover the full key [Muk09]. Tunstall
et al. extended the work in [Muk09] to exploit the relationship of round keys between the
9-th and 10-th round, and used only one pair of faulty ciphertexts to reduce the key space
to 28 [TMA11]. However, when the fault is injected into the deeper round (e.g., beyond
the 7-th round in AES), the fault difference along the propagation path becomes more
and more complex, which makes it difficult to analyze.

To improve the efficiency of fault analysis, different automation techniques are taken
into consideration. There are two main categories. One is to conduct the DFA with
automated analysis. Saha et al. proposed an automated analysis framework for DFA to
determine whether the injected fault can be utilized [SKMD17]. Khairallah et al. proposed
a general DFA analysis method for SPN block ciphers, and automated the analysis on
various block ciphers [KHN+19]. Another direction is to introduce algebraic techniques
for analysis. Courtois et al. proposed the algebraic fault analysis (AFA) in 2010 [CJW10],
which can be used to analyze those faults injected in deeper rounds. AFA combines
algebraic analysis and fault analysis. It transforms the differential fault information into
the corresponding algebraic equations, and combines them with the encryption algorithm.
AFA can reduce both the search space of the secret key and the number of the faulty
ciphertexts that is required.

The recently proposed Persistent Fault Analysis (PFA) provides a new direction for
fault attacks. In [ZLZ+18], Zhang et al. used the RowHammer technology [KDK+14] to
conduct the injection, so that a bit in the S-box was persistently flipped. They used this
method to recover the AES secret key with less than 2500 faulty ciphertexts. After the
debut of PFA in CHES 2018, many cryptanalysts are following this direction. In 2019,
Caforio et al. extended PFA to those ciphers with Feistel networks [CB19], while the
original PFA can only be applied to SPN block ciphers. In 2020, Enhanced Persistent
Fault Analysis (EPFA) was proposed to take a further step to exploit the fault leakage in
the penultimate round of AES [XZY+20]. However, it is very complicated for EPFA or
PFA to analyze the fault leakage in the penultimate round, and nearly impossible to go
deeper in the inner rounds. Meanwhile, both PFA and EPFA may face another challenge,
that is, how to exploit multiple fault leakages in much deeper rounds simultaneously. In
addition, the automation of PFA has not been carefully studied.

In this paper, we propose Algebraic Persistent Fault Analysis (APFA), which introduces
algebraic techniques into the analysis of PFA. APFA inherits the advantages of both PFA
and AFA, and makes better use of multiple rounds of fault leakages than PFA. To the best
of our knowledge, this is the first time to combine algebraic analysis with persistent analysis.
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In fact, the original PFA merely uses statistical methods to analyze faulty ciphertexts, so
do other similar analysis methods such as the Statistical Ineffective Fault Analysis (SIFA)
[DEK+18]. How to express persistent fault information at the algebraic level has not been
investigated yet.

This paper provides a new direction for the subsequent analysis of PFA. The main
contributions of this work can be summarized as follows:

• We propose Algebraic Persistent Fault Analysis (APFA) as a new analysis method
combining PFA and AFA, which can be applied to most lightweight SPN block
ciphers and can exploit multi-round fault leakage as much as possible.

• We apply APFA to a variety of lightweight block ciphers, such as PRESENT
[BKL+07], LED [GPPR11] and SKINNY [BJK+16]. Among them, the challenge
that PFA is difficult to cope with PRESENT-128 is conquered, and the number of
ciphertexts required for SKINNY-64-64 is reduced from 1550 to 10.

• We extend APFA method to the Feistel-based block cipher LBlock [WZ11] and the
classic block cipher AES [DR99] in order to verify the generality of APFA.

• We investigate APFA under more practical fault scenarios, where the fault value or
the fault location might be unknown.

One of the most important contributions of APFA is that it can significantly reduce
the number of faulty ciphertexts that are required. Three counterparts are selected for
comparison: the original PFA [ZLZ+18], the improved PFA with Maximum Likelihood
Estimation [ZZJ+20], and the extended PFA with GPU acceleration [XZY+20]. The results
are shown in Table 1, where the listed numbers are the average number of ciphertexts
that are required for fully recovering the master key. Compared with previous work,
three major conclusions can be summarized. (1) The number of ciphertexts required for
successful attack is dramatically reduced, where the most exciting result can be found at
SKINNY-64-64: the required number of ciphertexts is reduced by 155 times (i.e., 1550/10,
See Row 4 in Table 1) as compared with EPFA. (2) Meanwhile, APFA can manage to
work well on PRESENT-128 (Row 2) and SKINNY-64-128 (Row 6), which are assumed as
very difficult to break by PFA or EPFA. (3) APFA can also deal with Feistel-based block
cipher, e.g., LBlock-80 (Row 6).

Table 1: Comparison of different PFA methods on different ciphers.
Analysis Method

Type RowID Design Cipher PFA-18
[ZZJ+20]

PFA-20
[ZZJ+20]

EPFA
[XZY+20] This paper Section

Reduced number of
ciphertexts in times

1

SPN

PRESENT-80 - 101 - 18 Sec. 7.3 5.61×
2 PRESENT-128 - - - 28 -
3 LED-64 - - 75 23 Sec. 7.4 3.26×
4 SKINNY-64-64 - - 1550 10 Sec. 7.5 155.00×
5 SKINNY-64-128 - - - 33 -

Lightweight
Block
Ciphers

6 Feistel LBlock-80 - - - 112 Sec. 8.1 -
Classic
Block
Ciphers

7 SPN AES-128 2281 1641 1000 1300 Sec. 8.2 -1.30×

2 Background
In this section, we will introduce the related background, SPN block cipher, Persistent
Fault Analysis (PFA) and algebraic cryptanalysis.

2.1 SPN Block Cipher
In block cipher design, Substitution–Permutation Network (SPN) is an important structure.
Suppose the block cipher is denoted as B. A plaintext P is passed to an SPN to produce
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a ciphertext C. The block size of B is n bits, and each element in the block is of w bits.
For PRESENT, w = 4 (i.e., a nibble) and for AES, w = 8 (i.e., a byte).

A round function F is typically used in SPN-based block ciphers. The r-th round of
B, which contains three operations. (1) Substitution layer (SB). This operation takes the
data block X as input, substitutes the value according to the S-box S, and outputs the
data block Y . That is, Y = SB(X). This substitution should be invertible, i.e., S is a
bijection; (2) Permutation layer (PL). This operation takes the data block as input and
permutes the bits according to specific rules. In terms of the whole block, there is an
index mapping in PL. e.g., the j-th bit yj of the output Y is equal to the i-th bit xi of
the input X. The inverse operation of PL can be denoted as PL−1; (3) Addition. This
operation is generally the only function directly related to the key. It can be represented
as Y = AK(X,K). In addition, K can be replaced by a constant, which is denoted as AC.

Besides the encryption with the round function F, the SPN block cipher B also uses
the key schedule to expand the master key into several round keys.

2.2 Persistent Fault Analysis
Persistent Fault Analysis (PFA) mainly performs a statistical analysis on the value distri-
bution of each byte in ciphertexts, thus it can be used as a ciphertext-only cryptanalysis
method. The target is aimed at the substitution table, and the attack can be described as
follows: (1) The adversary injects a persistent fault into the substitution table S, which
persists in the multiple rounds or encryptions. (2) The victim uses a fixed key to encrypt
multiple plaintexts via the faulty device. (3) The adversary collects the faulty ciphertext
and recovers the key through statistical analysis.

The original PFA focused on the last round of encryption. Since the S-box is injected
with a persistent fault, one element value in S will be changed. As a result, the original
value of that element will not appear in the output of SubBytes. In other words, the XOR
result of the original value and the key byte might not appear in the final ciphertext.

Taking AES-128 as an example, in order to simplify the analysis, the permutation layer
of AES after SubBytes is ignored. In the last round, Xi is one byte in the input of S-box,
Ci is one byte in the ciphertext C. KR is the last round key (where R = 10 rounds) and
Ki is one key byte of KR. S[Xi] and Ki are XORed to get Ci, i.e., Ci = S[Xi]⊕Ki. The
goal of PFA is to use the collected C to recover KR.

Suppose the fault is injected to S[l] (i.e., the l-th byte of S) whose original value is V .
l is also called the fault location. S′ denotes the faulty S-box. The fault causes S[l] = V to
be changed to a new value U by a fault value f , i.e., S′ [l] = V ⊕ f = U . For the unaffected
S-box, since S is bijective, its input and output hold a one-to-one mapping. Therefore, the
probability of each output value is 1/256, assuming a uniform distribution for the input.
However, for the affected S-box, due to the induced fault, V will never be observed as
the output, while the appearance of U will hold a larger probability (appears twice in S′).
Therefore, the probability distribution of S′ [Xi] can be represented as shown in Eq.(1):

Prob(S
′
[Xi]) =

 0, if S′ [Xi] = V,
2

256 , if S′ [Xi] = U,
1

256 , otherwise.
(1)

Since Ci = S′ [Xi]⊕Ki, and S′ [Xi] 6= V , we have:

S′ [Xi] 6= V

Ci = S′ [Xi]⊕Ki

}
=⇒ Ki 6= Ci ⊕ V (2)

Taking specific numbers as an illustration, if V = 0x63, U = 0x62 in Eq.(2) and we get
a ciphertext byte of Ci = 0x01, it can be deduced that Ki 6= Ci ⊕ V , i.e., Ki 6= 0x62. In
this case, the search space of Ki is reduced to the set of {0x00, · · · , 0x61, 0x63, · · · 0xff}.
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Note that the value of 0x62 is excluded from the key search space. Then, the total number
of key candidate values is reduced from 256 to 255. Therefore, by repeating this analysis
process, the size of the key search space can be reduced to one and eventually the actual
key byte can be deduced.

2.3 Algebraic Cryptanalysis
In algebraic cryptanalysis [CMR06], plaintexts and ciphertexts are related through a system
of polynomial equations. A system of equations on GF(2) can be constructed with binary
variables. The values (0 or 1) from plaintexts and ciphertexts that are known can be
assigned to those variables. The system is then attempted to be solved. If a solution is
found, the secret key can be deduced from the solution. However, finding a solution of
the system is not easy for those mainstream ciphers. This is because they are designed to
break the correlation between plaintexts and ciphertexts, making it difficult to solve the
system within an affordable time duration.

There are several techniques that can be used to solve an equation system, which are
based on different mathematical problems. One is to solve the problem based on Grobner
basis [BFS04]. Another one is based on the linearization principle (XL) [Cou04]. In this
paper, we mainly focus on the satisfiability problem (SAT). Solving the SAT problem can
be considered as one of the most efficient techniques for algebraic cryptanalysis [SNC09].

Using those SAT machine solvers such as CryptoMiniSAT, the system of equations is
converted into a set of clauses that constitute equivalent SAT instances. Without loss of
generality, the equations in SAT can be assumed with a format of Conjunctive Normal
Form (CNF). This means that the formula includes a set of clauses, all of which are
concatenated by conjunctions ∧. Each clause consists of a set of literal, and each literal is
either a positive or a negative variable. The literals are concatenated by disjunctions ∨.

2.4 Notations
Table 2 defines the notations used in this paper.

Table 2: Notations used in this paper.
Notations Definitions Notations Definitions Notations Definitions

n The block size AK Key addition Nc The number of ciphertexts
w The element size AC Constant addition Nr The depth of fault leakages
r The r-th round SB Substitution layer Ne The total number of equations
R The total number of rounds PL Permutation layer φ The total number of fault leakages

Xr,Y r The r-th round data block PL−1 Inverse permutation layer ψ The fault leakage exploitation rate
Xr

i ,Y r
i The i-th element of Xr,Y r S The S-box NAK The number of equations for AK

xr
i ,xr

i The i-th bit of Xr,Y r S′ The faulty S-box NAC The number of equations for AC
Kr The r-th round key Ỹi,K̃i The i-th element of PL−1(Y r), PL−1(Kr) NSB The number of equations for SB
C The ciphertext f The fault value NPL The number of equations for PL
F The round function l The fault location NCA The number of equations for the constraint

3 Overview
In this section, we will introduce the fault model, motivation and our core idea for the
proposed Algebraic Persistent Fault Analysis (APFA).

3.1 Fault Model
The fault model of APFA is exactly the same as that of the original PFA, as mentioned in
Section 2. In this paper, we focus our discussion on the scenario of single-fault injection.
Although the injection is performed only once, the fault persists for multiple rounds.
Accordingly, many outputs of the substitution layer, i.e., S-box in different rounds, might
be erroneous. The value distribution of the S-box output in the last round has been
analyzed extensively in classical PFA [ZLZ+18, ZZJ+20] and SIFA [DEK+18], and that
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in the penultimate round is analyzed in EPFA [XZY+20]. However, there are still many
erroneous distributions of S-box output beyond the penultimate round, which do lay there
and wait for further exploitation. If these fault leakages can be fully utilized, there is
no need for additional injections, making it possible to break the cipher with only one
injection. These leakages in the inner rounds are what we call “free fault leakages”. Such
utilization is termed as “deep exploitation” as it penetrates into those deep rounds.

3.2 Motivation and Challenges
When the fault analysis such as DFA meets the deep rounds, the fault difference becomes
increasingly complex along the propagation path, requiring a very complicated analysis.
Instead, AFA introduces the algebraic technique and relies on machine solvers to cope with
the complex fault difference. Due to the automation brought from those machine solvers,
AFA can handle the fault injection at deeper rounds and require fewer faulty ciphertexts
(i.e., require a less number of injections under transient fault scenario) in comparison
with DFA. Many existing works are pursuing the desired case where only one injection is
required. In [CJW10], the DES key can be recovered with only one fault injection in 0.01
hour. Zhao et al. in [ZGZ+12] used only one fault injection to recover the master key of
LED in less than one minute. However, when the round is to be injected with fault goes
too deep, the corresponding complexity of fault analysis becomes too high to afford even
for an algebraic machine solver. One reluctant solution for the compensation is to increase
the required number of ciphertext, which is equivalent to increasing the number of fault
injections in AFA under the transient fault scenario.

Therefore, there is one dilemma that we are facing with. On one side, under the transient
fault scenario, AFA itself (not to mention DFA) has certain limitations. Sometimes it is
difficult to cope with the injection in deep rounds, so we have to increase the number of
injections to balance such trade-off. On the other side, under the persistent fault scenario,
the single fault injection that persists multiple rounds (actually full rounds) is desired.
However, there is no satisfactory solution on how to utilize those “free fault leakages” in
deep rounds. When taking algebraic techniques into consideration, how to interpret those
persistent fault leakages with algebraic equations is also never explored. Such dilemma
motivates us to take a further stride towards the automation of PFA using machine solver.
Most importantly, the new analysis method (termed as APFA in this paper) should step
beyond the penultimate round and reach those “free fault leakages” in further deeper
rounds, such as the antepenultimate round.

3.3 Core Idea
When facing multiple rounds, we propose the so-called Algebraic Persistent Fault Analysis
(APFA in short) to combine the persistent analysis with the algebraic analysis.

The core idea is to find a general algebraic representation for the persistent fault that is
already injected. Such algebraic representation should hold two properties. First, it should
be able to connect the faulty output of each substitution layer, therefore taking the usage
of free fault leakage. Second, it should be general enough for the simplified representation.
The specific expression should not depend on those algebraic representations of next rounds.
It should be able to be applied as the constraint only to the current round keys, leaving
the machine solver to cope with the interconnection between round keys (by building
equations for the key schedule).

Suppose the block cipher B has R rounds. Figure 1 shows an example of analyzing
the r-th intermediate round (1 ≤ r ≤ R). A smaller value of r indicates that the
corresponding analysis goes deeper. Suppose the original value of the fault S-box S′ is
known to be V . In the r-th round function, Xr is XORed with Kr after SB

′
and PL, i.e.,
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SB′ PL ⊕ Xr

SB′ PL ⊕ Y r · · · SB′ PL ⊕ C

Kr−1 Kr KR

Key Constraint
Eq.(4)PL−1(Kr−1)

Key Constraint
Eq.(4)PL−1(Kr)

Key Constraint
Eq.(4)PL−1(KR)

(r − 1)-th round r-th round Last round

Figure 1: An illustrative SPN block cipher with multiple rounds.

Y r = PL(SB
′
(Xr))⊕Kr. Y r contains the information of both SB

′
(Xr) and Kr, which

means that we can use Y r to add new constraints to Kr, as shown in Eq.(3).

S′ [Xr
i ] 6= V

Y r = PL(SB
′
(Xr))⊕Kr

PL−1(Y r) = SB
′
(Xr)⊕ PL−1(Kr)

 =⇒ K̃r
i 6= Ỹ r

i ⊕ V, 0 ≤ i < n

w
(3)

In Eq.(3), Xr
i and Ỹ r

i are the w bits of Xr and PL−1(Y r), respectively. K̃r
i is the w

bits of PL−1(Kr) and V is a constant. Eq.(3) is independent to the specific value of round
r, thus it can be generally represented by the variable r, which is the essence of our APFA.
K̃r

i is the only key variable of Kr involved in Eq.(3) for the round key Kr, and there is
no key variable for any other round keys. Y r is a newly introduced intermediate variable.
Eq.(3) is a general formula that can be applied to multiple rounds. The original PFA only
applies this formula to the last round (i.e., r = R), and assigns the specific value C from
ciphertext to Y R. In fact, Eq.(2) can be considered as a special case for Eq.(3) where
V = 0x63 and r = R.

The beauty of Eq.(3) lies in its simplicity. When applied to different rounds, the only
difference is the round index r. This allows us to easily construct new constraints with
a generic representation. Recall that in traditional DFA, those constraints to be added
normally involve the keys in the next round(s), which become exponentially complicated
when the analysis round is getting deeper.

The magic of Eq.(3) that could work well lies in the art of algebraic techniques. On
one side, literally, there are no round keys other than Kr in Eq.(3), which is easy for the
extension to deep rounds. On the other side, the relationship between Kr and Kr+1 has
been already constructed when we build up the equation system for both the encryption
and the key schedule, especially the latter. Such constraints are naturally added without
extra manual work.

In practice, the adversary A can obtain multiple faulty ciphertexts C, and introduce
both the intermediate variable Y r and the round key Kr which are unknown. Then, A
establishes algebraic equations for both the encryption and the key schedule. The general
constraint Eq.(3) can also be transformed into an algebraic equation, which can be added
to the equation set for the encryption and the key schedule. Finally, A attempts to solve a
new system with more algebraic equations, and the key is determined by the final solution.
We will discuss the implementation details of APFA in the next section.

4 Algebraic Persistent Fault Analysis

In this section, we will introduce the algebraic design of general SPN-based block cipher,
as well as detail how APFA can cope with fault leakages in multiple rounds.
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4.1 Algebraic Design of General SPN Block Ciphers
We elaborate the algebraic representation of three major operations, which are the normal
components used in SPN block ciphers.

Suppose X represents a data block. xi and Xi are the single bit and the element (w
bits) of X, respectively, whose relationship can be described as follows.

X = {X0, X1, · · · , X n
w −1} = {x0‖x1‖ · · · ‖xw−1, · · · , xn−w−1‖xn−w‖ · · · ‖xn−1} (4)

“·” means the bitwise AND. For the sake of simplicity, “·” can be omitted sometimes.
For example, xi · xj can be simplified as xixj .

4.1.1 Representation of Addition

The general addition component is the combination of the input data block X and the key
K to get the output data block Y . The representation of them is shown in Eq.(5), where
xi and yi are one bit of X and Y , respectively. ki is used as the one key bit in Eq.(5).
“+” denotes the bitwise exclusive or (XOR).

xi + ki + yi = 0 , 0 ≤ i < n (5)

As for the addition operation, ki may be a constant in the encryption or the key
schedule. This case can be denoted as AC, which is slightly different from AK. It can be
represented as shown in Eq(6), where ci is one bit of the constant that is publicly known.

xi + ci + yi = 0 , 0 ≤ i < n (6)

For either AK or AC, the number of equations (denoted as NAC and NAK) that are
generated is equal to the block size n, i.e., NAK = NAC = n.

4.1.2 Representation of Substitution Layer

The substitution layer SB is the only non-linear structure in SPN structure. It maps the
input X to the output Y using S-box S. An S-box can be organized as a truth table
for input and output, each of which has 2w variables. Truth table is a representation of
Boolean function, and it cannot be directly utilized by algebraic solver. However, according
to [KM10], the truth table can be transformed into an Algebraic Normal Form (ANF) first,
which can be later re-transformed to CNF and fed into the general SAT solvers such as
CryptoMiniSAT. Suppose Xi = {x0‖x1‖ · · · ‖xw−1} and Yi = {y0‖y1‖ · · · ‖yw−1} are the
input and output of S, respectively. The relationship between Xi and Yi can be expressed
by ANF as shown in Eq.(7),

yi =
2w−1∑
t=0

atx
t0
0 x

t1
1 · · ·x

tw−1
w−1 (7)

where t = {t0‖t1‖ · · · ‖ti‖ · · · ‖tw−1} and ti is one bit of t. at is an ANF coefficient where
at ∈ {0, 1}. More specifically, xti

i (ti = 1) means the bit xi does appear in atx
t0
0 x

t1
1 · · ·x

tw−1
w−1 ,

and xti
i (ti = 0) means xi does not appear.

Taking the lightweight block cipher PRESENT as an example, its S-box (w = 4) can
be denoted by ANF as shown in Eq.(8) where the AND operations “·” in xi · xj is omitted.

y0 = x0 + x2 + x3 + x1x2
y1 = x1 + x3 + x1x3 + x2x3 + x0x1x2 + x0x1x3 + x0x2x3
y2 = 1 + x2 + x3 + x0x1 + x0x3 + x1x3 + x0x1x3 + x0x2x3
y3 = 1 + x0 + x1 + x3 + x1x2 + x0x1x2 + x0x1x3 + x0x2x3

(8)
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The above ANF contains bitwise AND operations, whereas general SAT solvers (such
as CryptoMiniSAT) only support CNF and bitwise XOR operations. As a result, an
intermediate variable [SNC09] can be employed to represent those items (like x0x1x2
in y1) that have AND operations. Suppose there is the intermediate variable It where
It = x0x1 · · ·xw−1. It can be expressed in the form of CNF representation as shown in
Eq.(9), where Īt and x̄i are complements of It and xi, respectively.

(x0 ∨ Īt) ∧ (x1 ∨ Īt) ∧ · · · ∧ (xw−1 ∨ Īt) ∧ (x̄0 ∨ x̄1 ∨ · · · ∨ x̄w−1 ∨ It) = 1 (9)

Constrained by Eq.(9), for different values of xi, the result of It will be the same as
that of x0x1 · · ·xw−1. Therefore Eq.(9) can be added to the equation system to be sent to
the solver, where It can be used to represent the item x0x1 · · ·xw−1. Moreover, a specific
It can correspond to the t-th item in Eq.(7). For example, y1 in Eq.(8) can be represented
using Eq.(11) where the t in It ranges over {2, 4, 9, 10, 11, 12, 13}.

y1 = I2 + I4 + I9 + I10 + I11 + I12 + I13 (10)

We can further simplify Eq.(10) by replacing it with the index t in the intermediate
variable It as shown in Eq.(11). Since the fault in the S-box may be different, the indexes
in Eq.(11) will also be different. For the sake of generality, each item (1 ≤ t < 2w) in
Eq.(7) needs to create intermediate variables to cope with varied indexes.

y0 : {1, 3, 4, 8}
y1 : {2, 4, 9, 10, 11, 12, 13}
y2 : {0, 3, 4, 5, 7, 9, 12, 13}
y3 : {0, 1, 2, 4, 8, 11, 12, 13}

(11)

For different faulty S-boxes, they have to be preprocessed as in Eq.(11). Then, the
equations can be constructed for the input Xi and output Yi of the S-box based on the
indexes in Eq.(11) as described previously. This part will produce 2w − 1 intermediate
variables for each Xi. The power of It means the number of xi. When the power of It is
j, it needs j + 1 CNF equations. There are

(
w
j

)
intermediate variables with the power of

j. Therefore, for an SB operation, the number of equations (NSB) that generated can be
calculated as shown in Eq.(12), where the first item (i.e., n) is the number of equations that
are required for the newly added variable yi and the second item is number of equations
required for the intermediate variables It.

NSB = n+ n

w
×

w∑
j=1

(j + 1)×
(
w

j

)
= n(w + 2)

w
× 2w−1 + n(w − 1)

w
(12)

4.1.3 Representation of Permutation Layer

The permutation layer PL plays a role of diffusion in SPN block ciphers. According to
the number of input bits to one output bit, PL can be divided into two types: bit-based
permutation (one bit to one bit) and MDS matrix multiplication (multiple bits to one
bit) where MDS stands for Maximum Distance Separable. Typical example of the former
can be ShiftRows in AES and BitPermutation in PRESENT. That of the latter can be
MixColumns in AES and MixColumnsSerial in LED.

For the bit-based permutation, the relationship between the input bit xi and the output
bit yi can be represented by a permutation table TP . For example, the 64-bit TP for
PRESENT (i.e., 16 nibbles) is [0, 16, 32, 48, 1, 17, · · · , 15, 31, 47, 63]. Then the bit-based
permutation in PL can be expressed as two variants as shown in Eq.(13) and Eq.(14),
which are mutually inverse operations. Different ciphers may choose one of Eq.(13) and
Eq.(14) as the equation for the permutation layer and use the other as that for the inversive
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permutation. Since the bit-based permutation does not involve any intermediate variables,
both the number of new variables representing yi and the number of equations (NPL)
connecting xi and yi are equal to the block size n, i.e., NPL = n.

xi + yTP [i] = 0 , 0 ≤ i < n (13)
xTP [i] + yi = 0 , 0 ≤ i < n (14)

For the MDS matrix multiplications, most of them are related to multiplication
operations on finite fields. For example, MixColumnsSerial in the LED uses multiplication
operations based on an irreducible polynomial x4 + x+ 1 as shown in Eq.(15).

Y0 Y1 Y2 Y3
Y4 Y5 Y6 Y7
Y8 Y9 Y10 Y11
Y12 Y13 Y14 Y15

 =


0x4 0x1 0x2 0x2
0x8 0x6 0x5 0x6
0xb 0xe 0xa 0x9
0x2 0x2 0xf 0xb



X0 X1 X2 X3
X4 X5 X6 X7
X8 X9 X10 X11
X12 X13 X14 X15

 (15)

As shown in Eq.(15), the first element Y0 can be represented as:

Y0 = 0x4×X0 + 0x1×X4 + 0x2×X8 + 0x2×X12 (16)

where “×” means the multiplication in GF(24).
The key point when using MDS matrix multiplication is to represent the multiplication

of an element in GF(24) with a constant. Taking 0x4 × Xi as an example, where the
value of Xi ranges from 0x0 to 0xf. First, the values of Xi can be enumerated, and the
corresponding result of 0x4×Xi can also be calculated. Similarly, the relationship between
Xi and 0x4×Xi can be represented by a truth table. This truth table can be processed by
the method in Section 4.1.2. For all the constants involved in matrix, this process can be
repeated for several times. Finally, the relationship between the multiplication in Eq.(15)
and the input Xi is shown in the Table 3.

Table 3: LED’s Multiplication over GF(24).
y0 y1 y2 y3 y0 y1 y2 y3

0x2 x3 x0 + x3 x1 x2 0x9 x0 + x1 x2 x3 x0
0x3 x0 + x3 x0 + x1 + x3 x1 + x2 x2 + x3 0xa x1 + x3 x0 + x1 + x2 + x3 x1 + x2 + x3 x0 + x2 + x3
0x4 x2 x2 + x3 x0 + x3 x1 0xb x0 + x1 + x3 x0 + x2 + x3 x1 + x3 x0 + x2
0x5 x0 + x2 x1 + x2 + x3 x0 + x2 + x3 x1 + x3 0xc x1 + x2 x1 + x3 x0 + x2 x0 + x1 + x3
0x6 x2 + x3 x0 + x2 x0 + x1 + x3 x1 + x2 0xd x0 + x1 + x2 x3 x0 x0 + x1
0x7 x0 + x2 + x3 x0 + x1 + x2 x0 + x1 + x2 + x3 x1 + x2 + x3 0xe x1 + x2 + x3 x0 + x1 x0 + x1 + x2 x0 + x1 + x2 + x3
0x8 x1 x1 + x2 x2 + x3 x0 + x3 0xf x0 + x1 + x2 + x3 x0 x0 + x1 x0 + x1 + x2

Each output Yi is associated with four intermediate variables to represent the mul-
tiplication of the input and the constant. This will generate 4w equations for each Yi.
Therefore, for the MDS matrix multiplication, the total number of equations (NPL) can be
calculated as shown in Eq.(17), where n is the block size. The first item (i.e., n/w × 4w)
in Eq.(17) is the number of equations required for intermediate variables in each Yi, and
the second item is that are required for the newly added variable Yi.

NPL = n

w
× 4w + n = 5n (17)

4.2 Fault Leakage Exploitation for Multiple Rounds
The adversaryA will build the algebraic equations of the encryption for the faulty ciphertext
and analyze its fault leakage of multiple rounds. For each round, A can build a group of
algebraic constraint equations based on the constant V = {v0‖v1‖ · · · ‖vw−1}. Let us take
the output Y r of the r-th round AK and the round key Kr as an example to build the
constraint equations. According to Section 3.3, Ỹ r

i and K̃r
i are the element of PL−1(Y r)

and PL−1(Kr), respectively, which can be represented as Ỹ r
i = {ỹ0‖ỹ1‖ · · · ‖ỹw−1} and
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K̃r
i = {k̃0‖k̃1‖ · · · ‖k̃w−1}. According to Eq.(3), a set of new constraint equations can be

constructed as shown in Eq.(18) and Eq.(19), where di is an intermediate variable.

di + ỹi + k̃i + vi = 0 , 0 ≤ i < w (18)
d0 ∨ d1 ∨ · · · ∨ dw−1 = 1 (19)

di in Eq.(18) can be regarded as one bit of K̃r
i ⊕ Ỹ r

i ⊕ V . Since K̃r
i 6= Ỹ r

i ⊕ V , the
result of K̃r

i ⊕ Ỹ r
i ⊕ V is not equal to 0. Therefore, there should be at least one bit-1

among d0, d1, · · · , dw−1, which is represented in Eq.(19). Ỹ r
i ⊕ V can be removed from the

key search space by using these two constraints.
In short summary, for the collected Nc faulty ciphertexts, each ciphertext utilizes the

last Nr rounds of fault leakages. Then, using the values of collected faulty ciphertexts,
we can build Nc sets of equations (one set of equations for one ciphertext), and assign
values to the variables (retrieved from ciphertexts) in the representation equations. When
building equations for each ciphertext, the corresponding constraint equations are added
in each round at the same time. Note that those constraint equations are with the same
expression, therefore such a technique can avoid the manual analysis for each round and
possibly utilize the fault leakages in deep rounds. The limit of such technique is then left
to the computation power of the solver itself.

4.3 APFA in a Nutshell
The application of APFA on multiple rounds can be described by Algorithm 1. C denotes
the sets for faulty ciphertexts. Nr denotes the depth of fault leakage exploitation. GenKSR
generates the equations for the round key. GenAK, GenSB, GenPL and GenInvPL generate the
equations for the addition, the substitution, the permutation and the inverse permutation,
respectively. GenConst adds constraints to the round key. The output variables in the last
round are assigned with real values in faulty ciphertexts (in Line 17). RunAPFA will take all
the algebraic equations as inputs and send them to the SAT solver. Overall, the solving
could finish in a reasonable time and return the secret key. Otherwise, it means that the
current constraints are insufficient to recover the key. The specific implementation of the
sub-functions in Algorithm 1 has been clarified in the previous sections.

Algorithm 1: APFA on block ciphers using multiple rounds of fault leakages.
input :C, l, f, Nr

output :K

1 V = S[l] ; // Get the original value of the S.
2 S′ [l] = S[l]⊕ f ;
3 for r = 1; r ≤ R; r++ do
4 GenKSR(r, Kr) ; // Generate the equations for the round key.
5 end
6 for r = 1; r ≤ R; r++ do
7 K̃r=GenInvPL(Kr) ; // Generate the equations for PL−1(Kr).
8 end
9 for C ∈ C do

10 for r = R−Nr;r ≤ R;r++ do
11 GenSB(Xr);
12 GenPL(Xr);
13 GenAK(Xr, Kr);
14 X̃r=GenInvPL(Xr);
15 GenConst(X̃r, K̃r,V ) ; // Add constraints to the round key.
16 end
17 XR = C ; // XR is assigned with C.
18 end
19 K=RunAPFA()
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4.4 Evaluation Metrics
This section will introduce several metrics to evaluate APFA.

(1) Nc, which refers to the number of faulty ciphertexts used by the adversary. (2) Nr,
which refers to the depth of fault leakage exploitation (the number of last rounds with
added constraints). Nc and Nr have a negative correlation, that is, Nc will decrease when
Nr increases. (3) Ne, which refers to the total number of equations when one round of
fault leakage is used. (4) φ, which refers to the total number of utilized fault leakages for
the block cipher. Its value is the product of Nc and Nr, i.e., Nc ×Nr. φ can be regarded
as Nc required by the original PFA, due to PFA only uses the last round fault leakages
(ciphertexts). (5) ψ, the fault leakage exploitation rate, which can be calculated as the
number of the equations that can be managed to reduce the key search space (Eq.(18) and
Eq.(19)) over the total number of equations in one round. ψ can be used to describe the
analysis difficulty of the target cipher. Then we mainly introduce Ne and ψ.

For Ne, without loss of generality, the block ciphers B contains AK, SB, and PL in one
round. Therefore, the composition of Ne includes the number of equations generated by
these three operations, which can be referred to Section 4.1. In addition, adding constraints
also requires to generate a certain amount of equations, which is denoted as NCA. Then,
Ne can be calculated as shown in Eq.(20).

Ne = NAK +NSB +NPL +NCA (20)

According to Section 4.2, NCA is composed of the equations produced by PL−1(Y r),
i.e., Eq.(18) and Eq.(19). The number of equations of PL−1(Y r) is equal to NPL. Eq.(18)
is an XOR operation, which generates w equations for each element. Since there are n/w
elements, the total number of equations can be calculated as w × n/w, which is equal to
the block size n. Eq.(19) is a clause composed of disjunctions. For each element, only one
equation is needed, and there are n/w elements. Therefore, NCA = NPL + n+ n/w.

The constraints of Eq.(18) and Eq.(19) can be used to reduce one candidate from the
key search space. Therefore, the total number of their equations in one round can depict
the difficulty of the analysis, which is denoted as ψ, as shown in Eq.(21). The larger ψ is,
the easier one impossible value of the element can be reduced from the key search spaces.

ψ =
n+ n

w

Ne
× 100% = n(w + 1)

wNe
× 100% (21)

5 APFA with Unknown Fault Scenarios
In Section 3 and 4, we introduce APFA based on the assumption that both the fault value
f and fault location l are known, which may not hold in practice. In this section, we will
introduce the unknown fault scenarios.

5.1 APFA with Unknown Fault Value f

First, let us recall the fault model. The adversary A will inject a persistent fault into S (it
will persist for multiple rounds and encryptions). Suppose that the fault value f changes
S to S′ at the location l (l-th element of S-box), whose corresponding value changes from
V to U . Then, A will collect multiple faulty ciphertexts for analysis.

In practice, f is possibly unknown to A. In Eq.(1), it was known that the distribution
of S′ is unbalanced. This will lead to an unbalanced distribution of Ci as well. When
analyzing the distribution of Ci, we will get the value that should never appear in Ci,
which is denoted as Cmin

i and Cmin
i = V ⊕ Ki. Moreover, there is another value that

appears with doubled frequency, which is denoted as Cmax
i and Cmax

i = U ⊕Ki.
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Since U = V ⊕ f , Cmin
i and Cmax

i can be simply XORed to obtain f , which does not
require the fault value f to be known. However, there is a prerequisite that the number of
ciphertexts to be analyzed needs to be enough. Typically thousands of ciphertexts are
desired. When pursuing the least number of ciphertexts that are required, the technique
of Maximum Likelihood Estimation (MLE) in [ZZJ+20] can be adopted.

MLE is a method of maximizing a likelihood function to estimate the parameters of a
probability distribution. MLE can be used to estimate the value of f from all n/w elements
of each collected ciphertext, which greatly reduces the number of required ciphertexts.
And more details can be found in [ZZJ+20]. Experimental results regarding the fault value
f will be analyzed in Section 7.

5.2 APFA with Unknown Fault Location l

When the fault location is unknown, it is still possible to solve the problem using the
exhaustive searching for l. For a block cipher, there are 2w positions for one specific
element in S′ . A very straightforward method is to enumerate l from 0 to 2w − 1, which
can be directly supported by the SAT solver. Note that, before the guess on l, the fault
value f needs to be determined first. As mentioned in Section 4.1.2, given a specific value
f and l (f is already determined and l is assumed as a guess), an equation for S′ can
be constructed as shown in Eq.(11). For each enumerated guess on l, we can build the
equations according to the steps in Algorithm 1 and let the solver cope with it. When the
guess l is wrong, the clause corresponding to Eq.(19) of different ciphertexts will conflict,
causing the solver to return an unsolvable report within a few minutes. When the guess l
is correct, the solver will return a set of variable values that satisfy the equations, and the
value of the key is also in it.

Based on this approach, the number of ciphertexts Nc will affect the enumeration of
l. The premise for the solver to return an unsolvable report is that there is a conflict in
the equations. When Nc is fewer, the constraint may be insufficient to induce a conflict,
and the solver will possibly return a set of variables even with different l (Theoretically
only one l is solvable). To avoid this problem, we can add more constraint equations by
increasing the depth of the analysis round.

6 APFA on Lightweight Block Ciphers
In this section, we apply APFA to lightweight block ciphers, which include PRESENT,
LED and SKINNY. Typically, lightweight block ciphers are constructed with a relatively
simple round function, however, a relatively large number of rounds are required to increase
their security against different cryptanalyses such as differential and linear cryptanalysis.
Since the smallest element of most lightweight block ciphers is nibble (w = 4), the number
of faulty ciphertexts that are required and the equations that are generated could be less
compared with classical ciphers, and the equations generated are smaller in scale. Since
there are more rounds of encryption, more free fault leakages could be available for deep
analysis. Therefore, the proposed APFA is very suitable for lightweight block ciphers.

6.1 PRESENT Block Cipher
PRESENT is an SPN-based lightweight block cipher proposed by Bogdanov et al. in 2007
[BKL+07]. The block size of PRESENT is 64 bits and each element is stored in nibble.
PRESENT has two versions: PRESENT-80 and PRESENT-128. PRESENT-128 cannot
be attacked by the original PFA due to the cipher complexity. Therefore, in this subsection
we focus on the APFA on PRESENT-128 to show the efficiency.
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The round function of PRESENT is composed with addRoundKey (AK), sBoxLayer
(SB) and pLayer (PL). There are 31 rounds in total. The key schedule used in PRESENT-
128 will generate a 64-bit round key from the 128-bit master key. The round function F
can be represented as shown in Eq.(22), where R = 31.

F =
{

PL(SB(AK(Xr,Kr))), 1 ≤ r < R
AK(PL(SB(AK(Xr,Kr))),Kr+1), r = R

(22)

6.1.1 Representation of the Round Function

Representing AK: A 64-bit input X is XORed with the 64-bit round key K, which
can be represented as Eq.(5). n = 64.

Representing PL: The 64-bit input X is permuted through a permutation table TP .
The i-th bit of X is moved to bit position TP [i]. The permutation for PL in PRESENT is
bit-based, therefore Eq.(13) can be used to represent PL. The specific mapping rule TP is
shown in Eq.(23). Similarly, PL−1 moves the bit of TP [i] to the position i, which can be
represented by Eq.(14).

TP [i] =
{

16× i mod 63, 0 ≤ i < 63
63, i = 63 (23)

Representing SB: Each element Xi of the 64-bit input X is substituted through the
faulty S-box S′ . The fault location of S′ is l, and the fault value is f . After determining
the values of l and f , we can construct the equations for S′ as shown in Eq.(24) where
specific values of 0 and 0xc are assigned to l and f for the purpose of illustration.

y0 : {1, 3, 4, 8}
y1 : {2, 4, 9, 10, 11, 12, 13}
y2 : {1, 2, 6, 8, 10, 11, 14, 15}
y3 : {3, 5, 6, 7, 9, 10, 14, 15}

(24)

F will generate NAK +NSB +NPL = 944 equations for each round.

6.1.2 Representation of the Key Schedule

We will briefly introduce the key schedule of PRESENT-128. The initial master key will
be stored in the register K = {K0,K1, · · · ,K31} = {k0‖k1‖ · · · ‖k127}, and its high 64
bits are used as the first round key K1 = {k1

0‖k1
1‖ · · · ‖k1

63} = {k64‖k65‖ · · · ‖k127}. After
extracting the round key Kr, the key register K is updated as follows:

(1) The register is cyclically shifted by 61 bits to the upper bit.
(2) K31 = S[K31]
(3) K30 = S[K30]
(4) [k62k63k64k65k66]=[k62k63k64k65k66]⊕ round_counter

where (1) can be represented by Eq.(13), and TP [i] = (i+ 61) mod 128.

6.2 LED Block Cipher
The LED [GPPR11] is a lightweight block cipher proposed in CHES 2011, which uses an
AES-like SPN structure. It does not have the key schedule, and the master key directly
participates in encryption. The size of a LED block is 64 bits, and each element is stored
in nibble. The state matrix is 4× 4. But unlike AES, its state is loaded in rows. There
are two versions of LED: LED-64 and LED-128. We mainly discuss LED-64.

The round function of LED is quite similar to AES, which includes AddConstants
(AC), SubCells (SB), ShiftRows and MixColumnsSerial (PL), and addRoundKey
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(AK). Eq.(25) represents the round function of LED-64. Different from other block ciphers,
AK will be used per four rounds (i.e., a step). Therefore, LED-64 has 32 rounds and only
8 of them uses the round keys. And LED performs key whitening in the last round.

F =
{

PL(SB(AC(AK(Xr,K), [rc]))), r ≡ 0 mod 4
PL(SB(AC(Xr, [rc]))), r 6≡ 0 mod 4 (25)

where 0 ≤ r < 32 and [rc] is the round constant.

6.2.1 Representation of the the Round Function

Representing AK and AC: The state matrix of the LED is XORed with the key or
constant, which can be represented by Eq.(5) and Eq.(6) respectively. Since n = 64, we
have NAK = NAC = 64.

Representing SB: Due to the fact that LED and PRESENT use the same S-box, this
representation for LED can be referred to Section 6.1. And NSB = 816.

Representing PL: PL of LED differs from PRESENT, which includes ShiftRows and
MixColumnsSerial. ShiftRows is a bit-based permutation, which can be represented
by Eq.(13). It takes a matrix as input and shifts the state matrix i-th row cyclically by i
elements. Therefore, TP could be represented as shown in Eq.(26).

TP [i] =
⌊
i

16

⌋
× 16 + (i−

⌊
i

16

⌋
× 16 +

⌊
i

16

⌋
× 12) mod 16, 0 ≤ i < 64 (26)

MixColumnsSerial in LED is a MDS matrix multiplication, whose representation
can be referred to Section 4.1.3 and Table 3. NPL = 64 + 320 = 384.

F will generate NAC +NSB +NPL = 1264 equations. And a single step will generate
NAK + 1264× 4 = 5120 equations.

6.2.2 Representation of the Key Schedule

There is no key schedule in LED-64, the master key can be represented by a 64-bit variable.

6.3 SKINNY Block Cipher
SKINNY is an SPN-based tweakable lightweight block cipher proposed in CRYPTO 2016
by Beierle et al. [BJK+16], which can be expressed as SKINNY-n-k according to different
block size n and key size k. Specifically, it can be divided into three categories: SKINNY-
n-n, SKINNY-n-2n and SKINNY-n-3n. Both SKINNY-64-64 and SKINNY-64-128 are
analyzed in this paper, and SKINNY-64-64 is utilized for illustration in this subsection.

SKINNY-64-64 has 32 rounds, whose round function F consists of five operations: Sub-
Cells (SB), AddConstants (AC), AddRoundTweakey (AK), ShiftRows and Mix-
Columns (PL). F can be represented as shown in Eq.(27), where 0 ≤ r < 32 and [rc] is
the round constant.

F = PL(AK(AC(SB(Xr), [rc]),Kr)) (27)

6.3.1 Representation of the Round Function

The round function in SKINNY is very similar to LED, except for its AK and PL.
Representing AK and AC: SKINNY also uses a state matrix to represent states. AC

can be represented by Eq.(6), but AK is slightly different. SKINNY-64-64 only uses half of
the round key for each round. Despite the fact that the round key contains 16 element
(4×4), AK only selects eight of them (the first two rows of the matrix) in the state matrix.
Therefore, AK can be represented by Eq.(28). And NAK = NAC = 64.

xi + ki + yi = 0, 0 ≤ i < 32
xi + yi = 0, 32 ≤ i < 64 (28)
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Representing SB: The S-box of SKINNY is different from PRESENT and LED. For
SKINNY S-box, when determining l and f , the relationship between Xi and Yi is similar
to Eq.(11), which can be derived by using the technique in Section 4.1.2. And NSB = 816.

Representing PL: The PL of SKINNY is similar to LED, which contains two types
of permutation. ShiftRows has a different cyclic shift direction as compared to LED.
Therefore it can be represented by Eq.(14). TP is the same as Eq.(26).

For MixColumns, a binary matrix M multiplies each column of the state matrix.
However, this step is not on the finite field. Since only the XOR operation is involved,
the number of equations generated by MixColumns is equal to the block size n. And
NPL = 64 + 64 = 128.

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 (29)

The round function of SKINNY-64-64 can be represented withNAK+NAC+NSB+NPL =
1072 equations.

6.3.2 Representation of the Key Schedule

The key schedule of SKINNY-64-64 only contains permutation operations. The 64-bit
master key is stored in the tweakey array TK of 16 nibbles. The round key is the first 8
nibbles of TK in each round. TK is updated as follows. A permutation P is applied to
TK: for all 0 ≤ i < 16, we set TK[i] with TK[P [i]] where

P = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7]

Eq.(14) is also applicable in this case, where TP [i] = P [i/4] ∗ 4 + i mod 4, 0 ≤ i < 64.

7 Experiment and Evaluation
In this section, we will introduce our setup and design of the experiments, which cover a
variety of lightweight block ciphers.

7.1 Experiment Setup
In our experiment, we simulate fault injection via software, and use CryptoMiniSAT v5.8.0
[SNC09] to solve the algebraic equations. We implement the experiments on a PC which
has 16GB memory and an AMD Ryzen 5 4600H CPU at 3.0GHz. The operating system is
a 64-bit Windows 10.

The experiments generally follow the procedures below. (1) We simulate the encryption
of the victim. Basically we generate random plaintexts and use the faulty S-box for
encryption. (2) We collect a certain number of ciphertexts for analysis. (3) We conduct
the analysis using APFA. We first construct a system of algebraic equations for both the
encryption and the key schedule, and associate the actual faulty ciphertext. Then we add
constraints for multiple rounds and represent them as equations. Finally we solve the
algebraic system of equations using CryptoMiniSAT.

7.2 Identify the Injected Fault
Before we perform APFA on the target block cipher, we have to identify the injected
fault (i.e., the fault value f and the fault location l). According to Section 5.1, Maximun
Likelihood Estimation (MLE) technique in [ZZJ+20] is adopted to identify f . Table 4
shows the results of MLE to estimate f for five different block ciphers. The average number
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of ciphertexts that are required to infer f is listed. For the fixed l, we performed 100
simulation experiments for each f (1 ≤ f < 2w) and the average number is shown in Table
4. Compared with Table 1, the average number of ciphertexts to identify f is less than the
number required to recover the key using APFA. In other words, even in the scenario where
the f is unknown, we can use the faulty ciphertexts to recover f first before proceeding to
the next analysis, where the ciphertexts that are required in APFA are already enough for
deducing f . Once f is identified, the value of unknown l can also be enumerated by the
solver according to the method in Section 5.2. The following subsections are based on the
preprocessing that both f and l are already identified.

Table 4: The average number of ciphertexts required to obtain f .
Ciphers PRESENT-80 PRESENT-128 LED-64 SKINNY-64-64 SKINNY-64-128
Numbers 13.5 13.4 12.9 13.3 13.4

7.3 Attack on PRESENT
In [ZZJ+20], the authors conducted PFA on PRESENT-80. When exploiting the fault
leakages in the penultimate round of PRESENT, it takes about 101 faulty ciphertexts on
average to recover the 80-bit key. And the authors did not manage to attack PRESENT-128
due to full key spanning over three rounds, which might be considered as a challenge in
[ZZJ+20]. In APFA, we increased Nr, the number of analysis rounds for PRESENT-80
from 2 to 5. With the use of more rounds of free fault leakages φ, we reduced the number
of faulty ciphertexts that are required to be under 20. The results are shown in Figure 2.
And it is worth mentioning that APFA can extract the full key with 100% success rate.
The only difference lies in the slightly different solving times.

PRESENT-128 has a lager key size than PRESENT-80. This expands the search space
of the key, and the recovery of the full 128-bit master key requires at least three rounds,
i.e., Nr ≥ 3. In our experiment, about 28 ciphertexts are enough to recover the master key
of PRESENT-128, as shown in the blue curve in Figure 2. However, a further reduction on
the fault leakage φ will cause the solving time to be extremely long (over 3 ∗ 104 seconds).
Another important observation to note is that it seems there is a limit on the number
of rounds that are required (i.e., the depth Nr). More specifically, with about 35~40
ciphertexts and Nr = 3 (φ ≥ 35× 3), PRESENT-128 can already be broken with just a
few seconds as shown in Figure 2, which means three rounds are already enough for APFA.
Then in Figure 3, a further increase on φ (e.g., Nr ranges from 3 to 10) will not reduce
the solving time. Instead, it will increase the solving time (up to 250 seconds) because the
solver has to spend more time processing those redundant equations from deeper rounds.

7.4 Attack on LED
The structure of LED is quite different, whose AK operation is repeated every four rounds
(termed as a step) instead of every round. The constraint is added only once in one step,
which requires 5584 equations. And those round functions without AK in the last step
(Nr = 4) of the LED will generate a larger number of redundant equations, which will
limit the ability of the constraint to reduce the key search space. When the analysis depth
is further increased to the penultimate step (Nr = 8), the newly added constraints will
not provide capability to reduce the key search space. Based on this fact, we can only
exploit the last step, i.e., Nr = 4. The experimental result of the LED is shown in Figure
4. With the help of the SAT solver, we reduced Nc to be under 23. It can be discovered
in the orange curve in Figure 4 that there is an inflection point (i.e., Nc ranges 25~30).
More specifically, when Nc is less than 27, φ is not enough for the solver to quickly obtain
the solution of key. Since only the last step can be exploited, when φ is insufficient, it
can only rely on the search strategy of the solver itself. In general, APFA has a greater
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improvement on LED compared to EPFA [XZY+20], which only needs 23/75 ≈ 30.67% of
ciphertexts to recover the full 64-bit key.
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Figure 2: APFA on PRESENT-80
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Figure 3: APFA on PRESENT-128
with 40 faulty ciphertexts.
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Figure 4: APFA on LED-64.

7.5 Attack on SKINNY
We attack both SKINNY-64-64 and SKINNY-64-128. As compared with LED, SKINNY
contains more fault leakages due to AK operation in each round. As compared with
PRESENT, the key schedule of SKINNY is simpler, which just uses permutation functions.

The red curve in Figure 5 shows that APFA has a significant improvement on SKINNY-
64-64 compared to EPFA [XZY+20], which is about 155 times of reduction. Moreover, we
coped with SKINNY-64-128, which cannot be handled by EPFA. For SKINNY-64-128,
the round key K can be represented as K = {K1‖K2}, where Ki is 64-bit sub-key and
‖ is the concatenation operation. However, in the cipher design, AK is implemented as
AK(X,K1 ⊕K2), which makes adding constraints slightly different, i.e., PL−1(K) is
replaced by PL−1(K1 ⊕K2).

For SKINNY, how the number of analysis rounds Nr corresponds to Nc is shown in
Figure 6, where the red curve can depict the change process of the fault leakages φ required
by SKINNY-64-64. We use the minimum Nc that required for each Nr (the black node)
and calculate the average value of φ, which is 117.3. Since the recovery of full key requires
at least two rounds, the theoretical φ for SKINNY-64-64 is about 98 [ZZJ+20], which is
close to 117.3.
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Figure 5: APFA with SKINNY-64-64 and
SKINNY-64-128.
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7.6 Evaluation
Table 5 lists the evaluation results for the five lightweight block ciphers. APFA can
effectively reduce the number of required ciphertexts. More specifically, Nc for PRESENT-
80, LED-64 and SKINNY-64-64 are reduced by 101/18 ≈ 5.61 times, 75/23 ≈ 3.26 times
and 1550/10 ≈ 155 times, respectively. Since the key sizes of PRESENT and SKINNY only
affect their key schedule (See Row 1~2 and 4~5), the values of Ne and ψ are unchanged
under different key sizes. Comparing the two versions of PRESENT (Row 1~2) or SKINNY
(Row 4~5), it can be found that increasing the key size does not significantly increase the
required Nc for APFA. In other words, APFA is not sensitive to the key size.
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Table 5: Evaluation metrics for different cipher.
Row Cipher Nc Nr Ne ψPFA EPFA This paper
1 PRESENT-80 101 - 18 5 1088 7.35%2 PRESENT-128 - - 28 4
3 LED-64 - 75 23 4 5584 1.43%
4 SKINNY-64-64 - 1550 10 14 1152 6.94%5 SKINNY-64-128 - - 33 9

There is an observation that LED-64 has a greater Ne and a lower ψ than other ciphers.
Moreover, LED can only utilize the constraints of the last step, which means a smaller ψ
will bring the less capability (for the constraints) to reduce the key search space.

8 APFA on Other Ciphers
In addition to lightweight SPN-based block ciphers, we also explore APFA on the cipher
LBlock which is with a Feistel structure and AES which is a classic block cipher.

8.1 APFA on LBlock
LBlock [WZ11] is a Feistel-based lightweight block cipher, proposed by Wu et al. in CANS
2011. The block size of LBlock is 64 bits and the key size is 80 bits. It consists of a
32-round iterative structure, where the state of each round is expressed as Xi‖Xi−1 (Xi

is a 32-bit block). And it can be represented as Eq.(30). The round Function F of LBlock
consists of KeyAddition (AK), Substitution (SB) and LinearPermutation (PL).

Xi = F(Xi−1,Ki−1)⊕ (Xi−1 <<< 8)
F = PL(SB(AK(Xi,Ki))) (30)

where 2 ≤ i ≤ 33 and <<< is the left cyclic shift operation.
When a fault is injected into LBlock, due to the design of Feistel structure, the fault

leakage of F is masked by the previous intermediate state Xi−1 as shown in Eq.(30). In
this case, the proposed APFA can still work when those ineffective ciphertexts can be
identified and collected. The adversary needs to encrypt the same plaintext for twice, one
for the normal encryption and the other for the encryption with faulty S-box S′ . Thus he
can collect those ciphertexts that have not accessed S′ during the whole encryption.

There are 8 different parallel S-boxes S0, S1, · · · , S7 in SB of LBlock. Assume a single
fault has been injected into one S-box, the probability of those ciphertexts that do not
access the faulty S-box is about (1− 1/16)32 × 100% ≈ 12.68%. Such probability is still
relatively high and cannot be ignored in practice. The APFA on the LBlock is slightly
different from those on previous lightweight SPN-based block ciphers. Suppose the faulty
S-box is Si and the fault location is l. Since these ineffective ciphertexts do not visit Si[l],
we have Xi ⊕Ki 6= l where Xi and Ki are an element of the intermediate block and round
key, respectively. Therefore, a new constraint, i.e., Ki 6= Xi ⊕ l, can be applied to the
round key. The difference lies in the constraint construction where the impossible value is
the XORed result between the key and the fault location instead of the fault value itself.

We perform multiple fault injections for different S-boxes. For each fault injection, 14
ciphertexts are collected, and a total of 112 ciphertexts are obtained for eight S-boxes.
For these ciphertexts we created the corresponding equations and added constraints on
the round keys. The full 80-bit key can be recovered when the last nine rounds of fault
leakage were utilized, i.e., Nr = 9.

8.2 APFA on AES
Advanced Encryption Standard (AES) is a well-known block cipher released at NIST in
2001 [DR99]. For AES-128, n = 128, w = 8, R = 10. The round function F of AES includes
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AddRoundKey (AK), SubBytes (SB), ShiftRows and MixColumns (PL), which can
be represented as follows:

F = AK(PL(SB(Xr)),Kr), 1 ≤ r ≤ 10 (31)

Since the round function for AES and LED is quite similar, the construction of F
can be referred to Section 6.2. However due to the size w, the number of variables and
equations that are generated is relatively high. We get Ne = 22400 and ψ ≈ 0.64%. AK
and SB need 128 and 20592 equations, respectively. PL of AES also consists of two types
of permutation functions, and it will generate 768 equations. When applying APFA on
AES, there are two major difficulties. The first is the huge amount of equations. For the
original PFA in [ZLZ+18], the theoretical number of ciphertexts required to recover the
full key is about 1561. If we construct the equations for half of the ciphertexts (roughly
780) to the penultimate round, the script file size is already close to 1GB. The second is
the large search space. When pursuing the least number of ciphertexts that are required,
once the total amount of ciphertexts is not enough, the unknown search space of the last
round key becomes larger (the size of the search space is 256). And the complexity of the
system will grow exponentially. Therefore, it is very difficult to use the multi-round fault
leakages of AES.

For the sake of completeness, we simply apply APFA to the final round of AES, in
order to verify its feasibility on those classic and heavy block ciphers. We add a pair of
plaintext and faulty ciphertext as a verification equation, and combine it with the entire
equation system of AES. The result is shown in Table 1. And its Nc = 1300 and Nr = 1,
which requires 54514 seconds. In general, as for AES, the improvement from APFA is not
that much as compared to EPFA. Note that the acceleration of EPFA adopts a different
hardware approach (using GPU). However it is still comparable to the original PFA. Since
the S-box is an order of magnitude larger than the lightweight block cipher, this result can
still be acceptable.

9 Conclusion
In this paper, we propose Algebraic Persistent Fault Analysis (APFA), which is a new type
of analysis combining persistent fault analysis and algebraic fault analysis. It uses fewer
ciphertexts as well as deeper rounds of fault information to recover the key. We manage
to launch APFA on various SPN-based block ciphers. In addition to SPN-based, we also
verify the feasibility of APFA on Feistel-based light weight block ciphers (e.g., LBlock)
and classic block ciphers (e.g., AES).

APFA requires only one fault injection and can effectively reduce the number of faulty
ciphertexts. It is quite effective for the cryptanalysis on lightweight block ciphers, especially
when the round key participates in more rounds, and the permutation layer is relatively
simple. In particular, as for APFA on SKINNY-64-64, it only requires about 10 ciphertexts
to recover the full key, which is reduced by 155 times compared with EPFA.
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