
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 2, pp. 69–91. DOI:10.46586/tches.v2022.i2.69-91

Redundancy AES Masking Basis for Attack
Mitigation (RAMBAM)

Yaacov Belenky, Vadim Bugaenko, Leonid Azriel, Hennadii Chernyshchyk,
Ira Dushar, Oleg Karavaev, Oleh Maksimenko, Yulia Ruda, Valery Teper

and Yury Kreimer

FortifyIQ, Inc., 300 Washington Street, Suite 850, Newton, MA 02458 USA
firstname.lastname@fortifyiq.com

https://www.fortifyiq.com/

Abstract. In this work, we present RAMBAM, a novel concept of designing coun-
termeasures against side-channel attacks and the Statistical Ineffective Fault Attack
(specifically SIFA-1) on AES that employs redundant representations of finite field ele-
ments. From this concept, we derive a family of protected hardware implementations
of AES. A fundamental property of RAMBAM is a security parameter d that along
with other attributes of the scheme allows for making trade-offs between gate count,
maximal frequency, performance, level of robustness to the first and higher-order
side-channel attacks, and protection against SIFA-1. We present an analytical model
that explains how the scheme reduces the leakage and how the design choices affect
it. Furthermore, we demonstrate experimentally how different design choices achieve
the required goals. In particular, the compact version exhibits a gate count as low
as 12.075 kGE, while maintaining adequate protection. The performance-oriented
version provides latency as low as one round per cycle, thus combining protection
against SCA and SIFA-1 with high performance which is one of the original design
goals of AES. Finally, we assess the leakage of the scheme for the first and the second
(bivariate) orders using TVLA methodology on an FPGA implementation and observe
resilience to at least 348M traces with 16 Sboxes.
Keywords: Side-channel · DPA · SCA · FIA · AES · Algebraic · Masking · Sbox ·
Fault injection · SIFA

1 Introduction
As Kocher et al. [KJJ99] have shown in their seminal work, cryptographic secrets, e.g.
keys, can be discovered using side-channel attacks that exploit the correlation between
intermediate values of the internal state of the cryptographic algorithm and a physical signal,
such as power consumption or electromagnetic emanation. Various masking schemes that
provide physical security against side-channel attacks by making the signal of intermediate
masked values independent of the original values have been suggested [AG01, Tri03, CB08,
NSGD12]. Many of these schemes were subsequently shown to be ineffective [MPG05,
MPO05, MGH14, CZC+17]. In particular, it was shown that if glitches (multiple transitions
of a single gate during a clock cycle) are not taken into account, then masking alone does
not suffice, and the secret key can still be discovered.

The suggested approaches to overcome the side-channel leakage caused by glitches can
be divided into two categories: glitch elimination and glitch masking. The former suggests
eliminating the very possibility of glitches, typically by employing the dual-rail pre-charge
logic technique [TV04, PM05, LMW14, SBHM20]. This technique fits any circuit and
combines two basic ideas:
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1. the dual-rail technique which implements every signal with two complementary wires
in order to keep the total power consumption constant;

2. the pre-charge logic technique which adds a pre-charge clock cycle before every
functional clock cycle. During every pre-charge clock cycle all wires are brought to
a neutral state, so that during both the pre-charge clock cycle and the following
functional clock cycle not more than one transition may happen at every wire,
meaning no glitches.

The power of the glitch elimination technique lays in its generality. However, it comes
at a cost, in particular in the chip area. Great care should be taken during synthesis
and place-and-route to achieve sufficient symmetry. While in older glitch elimination
schemes [TV04, PM05, LMW14] the latency was at least two clocks per Sbox calculation,
in the recent article [SBHM20] a scheme with one clock cycle latency is presented. Still,
the gate count remains relatively high even at 100 MHz (see in Table 2 below a comparison
against RAMBAM).

The second approach, glitch masking, rather than eliminating the glitches, ensures
that they cannot leak any information due to specific requirements on the algorithm used.
Glitch masking works at the algorithmic level, and most articles take the AES block
cipher as the use case for their research. The data is split into several shares, and the
functions used in the algorithm are replaced by functions working with shares that comply
with certain limitations, which ensure that no side-channel leakage is possible even in the
presence of glitches. We call this approach glitch masking, because the glitches, although
existing, do not provide any information useful for side-channel attacks.

One example of glitch masking is Threshold Implementations (TI) [NRR06], in
which every elementary function complies with three properties, namely correctness,
non-completeness and uniformity. De Cnudde et al. [DCRB+16] presented an efficient
protected AES scheme based on the TI paradigm. As shown in [SJR+20], any masking
scheme naturally resists SIFA-1 attacks (which assume that faults are injected only in the
internal state register) due to the transform property. RAMBAM, being a masking scheme,
benefits from this same resistance. However, as we show in Section 3.4.4, RAMBAM
protects against simultaneous faults in more bits than in other practical schemes, and
this number of bits grows as the redundancy grows. The AES scheme with TI protection
presented in [RAD20] is an exception in that it claims protection against SIFA-2 (with no
limitation of fault targets), and not only against SIFA-1.

In another glitch masking method, Domain Oriented Masking (DOM) [GMK16], the
data is also split into shares, and every share pertains to a domain. Logical operations
between bits from different domains must be immediately followed by adding fresh ran-
domness. The advantage of DOM is a lower required number of shares than in TI. In the
same article an efficient DOM-based AES protected scheme is suggested. De Meyer et
al. [DMRB18] took a different approach to glitch masking, suggesting a combination of
additive and multiplicative masking, with special attention to the “zero problem” (zero
remains zero under any multiplicative masking). The paper also proves the robustness of
the suggested scheme against glitches.

Preventing glitch propagation using these algorithmic glitch masking techniques imposes
severe limitations on the complexity (e.g. the degree of the polynomial calculated) of the
calculation at every clock cycle. As a consequence, the minimal latency is rather high
(about 250 clock cycles for AES). In addition, the number of shares (and therefore the gate
count, performance, and amount of required random bits) in any glitch masking scheme
depends on the maximal order of the attack, against which the scheme is intended to be
robust.

Two more papers [Sug19, WM18] enhance the TI approach by totally removing the
need for using fresh randomness during the calculations. However they defend only against
first order attacks.
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It should also be mentioned that, although in the glitch masking approach the absence
of leakage can be proven, the proof relies on the assumption that the leakage is additive,
namely the leakage of the entire circuit can be calculated as a sum of the leakages of its
parts. De Cnudde et al. [CEM18] showed that this assumption does not necessarily hold
in reality, and, in fact, for a linear operation performed in two completely independent
shares, significant leakage can be measured after tens of millions of traces.

In a completely different research domain, unrelated to security against side-channel
attacks, Wu et al. [WHB99] suggested an efficient implementation of the arithmetic of
finite fields, in particular of finite fields with characteristic 2. According to this article, the
elements of a finite field are represented in a “redundant basis”, where the squaring of field
elements is a bit permutation, which costs nothing in hardware implementation, and field
multiplication is also relatively cheap. The article suggests using this representation for
elliptic curve systems for better efficiency (AES had not yet been adopted as a standard
in 1999, when the paper was published). If one applies this redundant representation to
the field GF (28), in terms of which AES is defined, every byte is redundantly represented
by 17 bits.

Later, Golić et al. [GT03] independently of [WHB99] suggested using a redundant
representation to build a protected multiplicative masking scheme for AES. In the suggested
scheme, the calculations are performed in a ring R that includes GF (28) as a subring.
A homomorphism H : R → GF (28) is defined, and every element of x ∈ GF (28) can
be redundantly represented by any element y ∈ R such that H(y) = x. Although the
mathematics is described in terms different from [WHB99], in fact the scheme from [GT03]
is similar to a particular case of [WHB99]. Namely, the above mentioned redundant
representation of the elements of the field GF (28) by 17 bits according to [WHB99] can
be equivalently expressed as the redundant representation of an element X of GF (28) =
GF (2)[x]/(P ) as X + CP , where C is an arbitrary polynomial over GF (2) of a degree
less than 9, and multiplication is performed modulo x17 − 1 = (1 + x)PQ, where P =
1 + x3 + x4 + x5 + x8 and Q = 1 + x + x2 + x4 + x6 + x7 + x8. In [GT03] the multiplication
is performed modulo PQ with the same P and Q; as a result this representation is
a 16-bit representation which is more suitable for 16-bit microprocessors than the 17-
bit representation according to [WHB99]. The scheme is suggested for practical use in
software AES implementations on 16-bit microprocessors. The paper presented a theoretical
foundation without a practical implementation. Moreover, based on the analytical results,
the authors discover a significant leakage in the suggested scheme. This is likely a result
of a lack of re-randomization (see Section 3.2) during the field inversion.

We present a general scheme of AES protection which we called RAMBAM (Redundancy
AES Masking Basis for Attack Mitigation) protected against both side-channel attacks
and SIFA-1, based on the mathematical foundations similar to [GT03] and [WHB99]. In
RAMBAM, every byte of the internal state is replaced before the first round with its
randomly chosen preimage in R under a ring homomorphism H : R→ GF (28), where R
is a ring of characteristic 2. All the AES rounds are performed in R. Finally, the mapping
H is applied to the output of the last round. Unlike [GT03] we apply re-randomization
(i.e. addition of a random preimage of zero) at every stage of the inversion in the field
implemented as raising to the power of 254. This re-randomization is presumably the main
reason why our experimentally measured leakage is several orders of magnitude lower than
the theoretical leakage reported in [GT03]. RAMBAM was implemented and leakage was
measured on an FPGA board.

We attempt neither to eliminate glitches as in the glitch elimination approach, nor to
ensure that the information that can be extracted from glitches is totally uncorrelated
with the data as in the glitch masking approach. Rather, we introduce a scheme, in which
the leakage drops rapidly with the growth of the security parameter d (the number of
redundant bits in the byte representation), and already for d = 8 we observe no leakage
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with up to 3.48 · 108 traces in the 16 Sbox configuration in the emulation on an FPGA
board.

To summarize, we make the following contributions in the paper:

• We suggest a protection scheme against power analysis attacks with the following
key properties:

– A security parameter that enables trade-offs between security and gate count
– Protection against side-channel attacks of any order, with side channel leakage

that rapidly decreases as a function of the security parameter
– Inherent protection against SIFA-1 up to four simultaneous faults in the internal

state register
– A trade-off between gate count and latency, with minimal latency of one round

per cycle, a latency not feasible in the glitch masking approach
– High throughput per gate (for the version optimized for throughput, about 60%

better than the previous art)

• We add re-randomization during field inversion that greatly reduces the leakage.

• We study the impact of the choices of P , Q and d on the area, the maximal frequency,
and the protection against side-channel and SIFA-1 attacks.

• We study the impact of the choice of the implementation of the Galois field inversion
on the area and the maximal frequency.

• We present theoretically and empirically an upper bound of the leakage in RAMBAM,
which decreases roughly exponentially, as a function of redundancy. In contrast, in
the glitch masking approach leakage exists in reality, although it does not exist in
theory.

The remainder of the article is organized as follows. In Section 2, we describe the
algorithms. In Section 3, we provide the security considerations behind the choice of the
different parameters of RAMBAM. In Section 4, we describe our evaluation of RAMBAM
and demonstrate its results. In Section 5, we draw our conclusions.

2 Protected AES Scheme
2.1 Redundant Representation
All bytes in the AES algorithm are interpreted as elements of the Galois field GF (28),
represented as FP0 = GF (2)[x]/(P0), namely polynomials over GF (2) modulo P0. P0 is a
fixed polynomial irreducible over GF (2), defined in the AES standard as:

P0 = x8 + x4 + x3 + x + 1 (1)

The bits of a byte b7 . . . b0 are interpreted as coordinates of a vector in the basis
〈1, t0, . . . , t7

0〉, where t0 is a root of P0 in GF (28). This byte represents the polynomial∑7
i=0 bit

i
0.

Similarly to P0, any polynomial P out of the 30 irreducible polynomials of degree 8
over GF (2) can be used to construct the field GF (28), represented as FP = GF (2)[x]/(P ).
Using a linear transformation L, it is possible to switch from the standard P0-based
representation to an alternative (P -based) representation in the basis 〈1, t, . . . , t7〉, where
t is a root of P .
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In RAMBAM, in order to randomize the representation, we use a larger algebraic
structure — the ring RP ·Q = GF (2)[x]/(P ·Q), where Q is a polynomial (not necessarily
irreducible) of degree d > 0 over GF (2). We will denote P · Q as Z. Since P · Q is
clearly reducible, RP ·Q is a commutative ring, but not a field. The elements of RP ·Q are
identified with polynomials over GF (2) modulo P · Q of the degree at most 8 + d, and
are represented by (8 + d)-bit words. A ring homomorphism H : RP ·Q → FP is defined as
H(X) = X mod P . Note that the set of all polynomials in RP ·Q of a degree less than 8 is
a subring of RP ·Q isomorphic to FP , and all these polynomials are fixed points of H. We
will identify this subring with FP .

The polynomials P and Q are parameters of each RAMBAM variant. We call the
degree d of the polynomial Q its redundancy, because it reflects the number of additional
(redundant) bits in the representation of every byte.

Formalizing the above, we give the following definition.

Definition 1. Let d be a positive integer, P, Q — polynomials over GF (2) of orders 8
and d, respectively, where P is irreducible. Let B be a byte interpreted per the AES
standard as

∑
bix

i in the field GF (28) represented as GF (2)[x]/(P0), where P0 is defined
by (1). Let t be a byte in the same representation such that P (t) = 0, and let L be
the linear transformation that maps the standard AES representation of any byte to
the representation of the same byte in the basis 〈1, t, . . . , t7〉. Let B∗ be a (8 + d)-bit
value interpreted as the element

∑
b∗i xi of the ring GF (2)[x]/(P ·Q). B∗ is said to be a

redundant representation of B if B∗ mod P = L(B).

Note that any value B has 2d different interchangeable redundant representations.
Therefore it is possible to replace any one of them with another at any moment. This
property lays the foundation for the re-randomization (see Section 3.2).

The two independent parameters L (or, equivalently, t) and Q uniquely define a
redundant representation. The value d is the degree of Q, and P is the minimal polynomial
of t.

2.2 Top-level Algorithm
In this article, we demonstrate an implementation of RAMBAM for AES-128 encryption.
AES encryption with other key sizes and AES decryption with any key size can be
implemented in a similar way.

Algorithm 1 is the top-level RAMBAM algorithm for protected AES 128 encryption with
fixed P, d, Q, L (where addition and multiplication are assumed to be the ring operations).
The algorithm has the same general structure as the standard AES algorithm, with the
following differences:

1. Before the first round, the bytes of both the key and the input data are transformed
from the representation in FP0 to the representation in FP ⊂ RP ·Q. Additionally,
every byte of the input data is randomized by adding P multiplied by a random
polynomial of a degree less than d. After that every byte of the internal state belongs
to RP ·Q and is represented by 8 + d bits. Alternatively, instead of randomizing the
input data, it is possible to randomize the key. On the other hand, the advantage of
randomizing only the input data rather than only the key is that in this case the
area necessary for the key management may be saved, e.g., by using the compact
Sbox implementation by Canright [CB08]

2. AddRoundKeyd and ShiftRowsd are similar to the standard transformations with
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the same names, except that every byte is represented by 8 + d bits.

Algorithm 1: Protected AES128 Encryption
1 Function ProtectedAesEncP,Q,d,L(key_in[16], x_in[16], r[23])a b

Input : key_in[16] — a 16-byte key; x_in[16] — a 16-byte input data;
r[23] — 23 random d-bit values

Output : x_out[16] — a 16-byte output
2 /* Switch to the redundant representation –- change the basis and

randomize the input data */
3 for i = 0 to 15 do
4 keyi = L(key_ini)
5 xi = L(x_ini) + riP

6 end for
7 /* Perform 10 AES rounds in the redundant representation */
8 for roundIndex = 0 to 9 do
9 x = AddRoundKeyd(x, key)

10 key = ProtectedNextRoundKey(key, roundIndex)
11 x = ShiftRowsd(x)
12 x = ProtectedSubBytesP ·Q,d(x, r) /* see Algorithm 2 below */
13 if r 6= 9 then
14 x = ProtectedMixColumnsP ·Q,d(x)
15 end if
16 end for
17 x = AddRoundKeyd(x, key)
18 /* Derandomize and switch the basis */
19 for i = 0 to 15 do
20 x_outi = L−1(xi mod P )
21 end for
22 return x_out
23 end

aThe parameters P, d, Q, L are fixed for a RAMBAM variant.
bHere and in all the sub-algorithms, addition and multiplication are ring operations.

3. In ProtectedMixColumnsP,Q,d multiplication by 2 and by 3 is replaced with mul-
tiplication by L(2) and by L(3), respectively. Since for any given instantiation of
the protected AES scheme these values are constant, operations of multiplication by
them are implemented as fixed linear functions on bits.

4. ProtectedSubBytesP ·Q,d is the only non-linear operation. Its algorithm is described
in Section 2.3.

5. ProtectedNextRoundKeyP,Q,d is the same as NextRoundKey, except that L(rconr)
is used instead of rconr, and ProtectedSubBytes is used instead of SubBytes.

2.3 Implementation of P rotectedSubBytesP ·Q,d

In the AES standard, every byte undergoes the transformation Aff ◦ Inv, where Inv is the
inversion in FP0 , defined at 0 as Inv(0) = 0, and Aff is a fixed affine transformation. Since
the multiplicative group of FP0 has order 255, we can equivalently define Inv(x) = x254.

In a ring of characteristic 2, raising to a power of 2n is a linear transformation. Since
linear transformations are much cheaper in HW than ring multiplication, for implementing
raising to the power of 254 as a sequence of multiplications and raisings to powers of 2n,
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we search for a sequence optimal according to the following criteria, in the descending
order of importance:

1. Minimal number of multiplications (in order to minimize the area);

2. Minimal number of raisings to powers of 2i (in order to minimize the area);

3. Minimal depth of the longest path (in order to increase the maximal frequency).

In Appendix A we prove that the number of multiplications in such a sequence cannot
be less than 4 (and more generally, for inversion by raising to the power of 22n − 2 in
GF (22n), where n > 2, at least n + 1 multiplications are required).

A brute-force search for all possible sequences with exactly 4 multiplications shows
that the requirements 2 and 3 are mutually exclusive, so there are two different versions of
ProtectedSubBytes, one optimized for the area, the other optimized for maximal frequency.
Both of them are not unique.

In both versions, in order to minimize the side-channel leakage, we re-randomize the
result of every multiplication and every raising to a power by adding a random polynomial
divisible by P . See below in Section 3.2 the rationale behind the re-randomization.

Algorithm 2 implements ProtectedSubBytesP ·Q,d optimized for the minimal area.
Algorithm 5 in Appendix B is an alternative version of the same function, optimized for
the maximal frequency; in this version, the size of the array r must be 24 rather than
23. In both versions, the operations that can be performed in parallel are shown as an
indented block in curled brackets.
Algorithm 2: ProtectedSubBytes (optimized for the area)
1 Function ProtectedSubBytesP ·Q,d(x_in[16], r[23])

Input : x_in[16] — 16 (8 + d)-bit values, representing the AES state bytes
r[23] — 23 random d-bit values (only the last 7 are used here)

Output : x_out[16] — 16 (8 + d)-bit values after the Sbox transformation
2 for i = 0 to 15 do
3 t = x_ini

4 t2 = Pow2P ·Q,d(t) + r16P
5 t3 = MulP ·Q,d(t, t2) + r17P
6 t12 = Pow4P ·Q,d(t3) + r18P
7 { /* parallel section */
8 t14 = MulP ·Q,d(t2, t12) + r19P
9 t15 = MulP ·Q,d(t3, t12) + r20P

10 }
11 t240 = Pow16P ·Q,d(t15) + r21P
12 t254 = MulP ·Q,d(t14, t240) + r22P
13 x_outi = RAffP ·Q,d(t254)
14 Rotate r[16 . . . 22] by one position
15 end for
16 return x_out
17 end

In these algorithms, Pow2, Pow4, Pow16, Pow64 - hardwired linear transformations
for raising to the powers of 2,4,16,64 in RP ·Q, respectively, Mul - multiplication in RP ·Q,
and RAff - one of many linear transformations in RP ·Q such that H(RAff(x) = Aff(H(x)),
where Aff - the affine transformation defined in the AES standard.

The multiplications (Mul) are performed using the schoolbook multiplication algorithm
with reduction modulo Z = P · Q, as described in Algorithm 3. The actual modular
reduction is encapsulated in the function ModularShiftLeftZ,d ( Algorithm 4).



76 Redundancy AES Masking Basis for Attack Mitigation (RAMBAM)

Algorithm 3: Multiplication
1 Function MulZ,d(a_in, b_in)

Input : a_in, b_in — two (8 + d)-bit values, each one representing a byte
Output : c_out — a (8 + d)-bit value representing a_in · b_in mod P

2 c_out = 0
3 deg = b_in
4 for i = 0 to 7 + d do
5 if ((ai >> i)&1) = 1 then c_out = c_out + deg
6 deg = ModularShiftLeftZ,d(deg)
7 end for
8 return c_out
9 end

Algorithm 4: ModularShiftLeft
1 Function ModularShiftLeftZ,d(deg)

Input : x_in — a (8 + d)-bit value
Output : x_out — a (8 + d)-bit value

2 x_out = x_in << 1
3 if ((x_out >> (8 + d))&1) = 1 then
4 x_out = x_out + Z
5 end if
6 return x_out
7 end

3 Security Considerations and Optimizations
In this section, we sketch an analytical basis that provides an intuition behind the
algorithms outlined in Section 2. Furthermore, we discuss the degrees of freedom within
these algorithms, the existing options and their impact on the security and on the hardware
implementation.

3.1 Assessment of the Leakage as a Function of Redundancy
First, we assess the leakage of a weakened version of Algorithm 1, in which r[i] = 0,
16 ≤ i < 23 — namely, the input data is randomized, but no re-randomization is applied
in the function ProtectedSubBytes (Algorithm 2). To assess the leakage, we develop a
generic model that derives the leakage from the statistical properties of the intermediate
results in the algorithm. This model mimics the hardware behavior by using the algorithm’s
intermediate results to represent the values of the combinational logic signals in hardware.
However, the model is not tied to any specific realization.

The function ProtectedSubBytes is essentially a loop over the redundant representa-
tions x_ini of the internal state bytes, where the intermediate results of each loop iteration
i depend solely on the value of x_ini. These intermediate results include the intermediate
and the final results of the four invocations of the function Mul (Algorithm 3). We assess
the leakage of the clear value of the input bytes through the average Hamming weight of
the intermediate results in the following way.

1. Build a “trace” of the loop iteration of ProtectedSubBytes for a specific value of
the input x_ini to this loop, with a specific redundancy d and specific polynomials
P and Q. The trace consists of the values of the variable c_out of the function



Yaacov Belenky et al. 77

Mul at all 8 + d iterations of the loop of Mul in all 4 invocations of Mul from
ProtectedSubBytes (total of 4(8 + d) values).

2. Calculate the Hamming weights of these 4(8 + d) values. The result is a vector of
the Hamming weights of the intermediate results.

3. Repeat step 2 for all 2d redundant representations of a specific clear byte value. The
result is a matrix of the Hamming weights of the intermediate results with 4(8 + d)
columns and 2d rows.

4. Calculate the column averages. The result is a vector of the 4(8 + d) averaged
Hamming weights of the intermediate results.

5. Repeat steps 3-4 for all 256 clear byte values. The result is a matrix of the averaged
Hamming weights of the intermediate results with 4(8 + d) columns and 256 rows.

6. For every column, calculate the maximal deviation (an absolute value) from the
column average. The result is a vector of the 4(8 + d) maximal deviations.

7. Take the largest of these maximal deviations and divide it by 8 + d (8 + d is the
number of bits in the redundant representation of each byte). The result is a single
number L. This number characterizes the leakage per bit for specific polynomials
P, Q.

8. Calculate the characteristic of robustness R = 1/L2, which is expected to be propor-
tional to the average number of traces at which the leakage becomes detectable (i.e.,
the absolute value of the t-test is greater than 4.5). (We added this step to ease the
comparison of this theoretical prediction with experimental data for the number of
traces at which the t-test reaches 4.5. Random noise decreases proportionally to the
square root of the number of traces, so for a constant signal the number of traces at
which the signal-to-noise ratio reaches a predefined level is inversely proportional to
the square of the noise level.)

9. Repeat steps 5-8 for all 30 irreducible polynomials P of degree 8, and all 2d−1 poly-
nomials of degree d with a non-zero free term, for a specific value of the redundancy
d. The result is a matrix of the robustness characteristics for all polynomial pairs
P, Q for redundancy d.

10. Repeat step 9 for all the redundancies from 3 to 8.

From this calculation, we learn that the expected leakage significantly depends not only
on the redundancy, but also on the selection of the polynomials P, Q. For every value of
the redundancy we sort the polynomial pairs according to their robustness characteristics.
Comparing the best and the worst pairs for different values of the redundancy we learn that,
while the robustness characteristic of the worst polynomial pairs is almost independent
of the redundancy, the robustness characteristic of the best polynomial pairs increases
roughly exponentially as a function of the redundancy, as shown in Figure 1.

3.2 Re-randomization
The leakage assessment above is based on the fact that in the course of the ProtectedSbox
calculation, applied to one of 2d redundant representations of any given byte value, for
every application of the function Mul only 2d pairs of multiplicand values are possible,
because this pair of values is determined by the input to ProtectedSbox. In order to
make all 22d (instead of 2d) pairs possible, and thus overcome this source of leakage we
re-randomize each intermediate result by adding a random polynomial divisible by P .
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Figure 1: Best and worst robustness characteristics without re-randomization as a function
of redundancy

Indeed, as demonstrated in Section 4.3, the leakage drops drastically. The paper by Golić
et al. [GT03] lacks this step, and we believe it explains a significant difference between our
experimental results and the theoretical leakage calculated in [GT03].

3.3 Reuse of the Random Bits
The number of bits necessary for the re-randomization of one Sbox calculation is kd, where
k is the number of transformations (exponentiations and multiplications) in the function
ProtectedSubBytes (7 for Algorithm 2, 8 for Algorithm 5), and d is the redundancy. We
experimentally found by performing TVLA on an FPGA board (see Section 4.2) that
reusing the same random bits over all the bytes of the internal state and over all the AES
rounds does not affect the leakage, if the same re-randomization addend is not used by the
same logic at consecutive clock cycles. To overcome this problem, we rotate the set of values
used for the re-randomization by one position at each cycle, so that the re-randomization
applied at the same gates at consecutive clock cycles uses different addends. Therefore,
we suggest such a reuse, with the total number of random bits per AES encryption being
(16 + k)d, 16d for the initial key randomization and kd for re-randomization in all the
ProtectedSubBytes calculations. However when comparing the amount of randomness in
RAMBAM against other schemes in Table 2 and Table 3, we do not take this reuse into
account.

3.4 Choice of the Polynomials P and Q

Several criteria guide the selection of P and Q:

1. Q should not be divisible by P .

2. Q should be irreducible.

3. The Hamming Weight of the product P ·Q should be as low as possible.
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4. The product P ·Q should possess specific properties to maximize protection against
SIFA-1.

These criteria are discussed in detail in the following subsections.

3.4.1 Q not Divisible by P

If Q is divisible by P , say Q = P · R, where deg(R) = d − 8, then raising to the power
of 2n modulo Z = P · Q = P 2 · R severely adversely affects the uniformity. If we raise
all 2d representations X + C · P of a byte X to the power of 2n modulo Z = P 2 · R,
where deg(C) < d, then by linearity we have (X + C · P )2n = X2n + C2n · P 2n =
X2n + P 2 · C2n · P 2n−1 = X2n mod P 2. There are only 2d−8 different values modulo
Z = P 2 · R that give the same remainder modulo R, so the number of possible values
decreases by a factor of at least 256. Hence, it is a bad idea to use Q divisible by P .

3.4.2 Irreducible Q

Unlike P which must be irreducible (otherwise GF (2)[x]/(P ) is not a field and cannot
be isomorphic to GF (28)), the scheme works correctly with any Q, either reducible or
irreducible. However we prefer using an irreducible Q for the following reasons. We assume
that Q is not divisible by P for the reason explained above — and since P is irreducible,
it means that P and Q are relatively prime. Therefore the Chinese Remainder Theorem is
applicable to X = P ·Q, and we can analyze multiplication modulo Z separately modulo
P and modulo Q.

Let X be an arbitrary element of GF (28). It has 2d redundant representations X +C ·P
modulo Z, all of them equal to x modulo P . On the other hand, since P and Q are
relatively prime, P is invertible modulo Q, and therefore they all differ modulo Q and
cover all 2d existing values. For this reason, taking two elements X and Y of GF (28), the
frequencies of the values modulo Q of the product of their redundant representations are
distributed the same way as the values are distributed in the multiplication table modulo
Q. Thus multiplication table has 22d entries. If Q is irreducible, then 0 will appear in
2d+1 − 1 entries (only where at least one of the multiplicands is 0), and any other value
will appear in 2d − 1 entries. If Q is reducible, then it has non-trivial divisors, so the table
will include more zero entries, and will be farther from uniformity than in the case of an
irreducible Q. For this reason we prefer irreducible values of Q.

3.4.3 Small Hamming Weight of P · Q

The function ModularShiftLeftZ,d (“doubling”), which is called 8 + d times by the
function MulZ,d, involves a conditional addition (XOR) with Z = P ·Q. The less ‘1’ bits
there are in Z, i.e. the lower the Hamming weight of Z is, the cheaper the doubling is.
For this reason we prefer such pairs 〈P, Q〉 that give P ·Q with a low Hamming weight.

Suppose P and Q are irreducible and d > 1 (d = 1 does not give reasonable protection
anyway). Then:

• HW (Z) = 1 is impossible, otherwise Z is divisible by the polynomial x of degree 1;

• HW (Z) cannot be even, in particular HW (Z) = 2 is impossible, otherwise Z is
divisible by the polynomial x + 1 of degree 1;

Therefore the minimal possible value of HW (Z) is 3.
A brute force search shows that up to d = 11 the only values of d for which there

exists an irreducible polynomial P of degree 8 and a polynomial Q of degree d such that
HW (P ·Q) = 3 are 3, 5 and 8. Moreover, for all these values of d an irreducible Q can be
chosen. For all other values of d, P and Q can be chosen so that HW (Z) = 5, which gives
a slightly higher gate count relative to d.
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3.4.4 SIFA-1 Related Properties of P · Q

The SIFA attack [DEK+18] assumes a fault in several bits of an intermediate state such
that:

• Ineffective faults happen with a non-negligible probability (unlike bit-flip, for which
any fault affects the state);

• The distribution of the states for which the fault is ineffective is non-uniform.

These assumptions are rather weak, and that is what makes this attack so powerful.
Let’s study the applicability of SIFA-1 (a variant of SIFA, which assumes that faults

are limited to the internal state register) to RAMBAM. We assume the RAMBAM variant
implemented in the target device is known to the attacker, and he knows how to derive
the clear value H(X) from a redundant value X. Let’s suppose that using a SIFA-1
attack the attacker manages to find non-uniformity in the distribution of a byte of an
intermediate internal state. Such an attack must target at least some subset of the 8 + d
bits of the register containing a redundant representation of this byte. Suppose this subset
consists of the bits with indices k0, . . . , kn−1, where n ≤ 8 + d. Recall that 2d redundant
representations of a byte value X are given by the formula X + C · P , where

C =
d−1∑
j=0

cjxj

is one of 2d polynomials of a degree less than d. For the bit with index ki of X ′ = X +C ·P ,
i.e. the coefficient of tki in X ′, we can write

X ′kj
= Xkj

+
d−1∑
i=0

cipkj−i

Here we assume pm = 0 if m < 0 or m > 8.
If we interpret X ′k0

, . . . , X ′kn−1
as a vector Y in F n, and c0, . . . , cd−1 as a vector C in

F d (identifying the polynomial C with the vector of its coefficients), then we can write

Y = Y 0 + M · C; where Y 0 = 〈Xk0 , . . . , Xkn−1〉

and the elements of the d× n matrix M are defined as

Mij = pkj−i (2)

It is easy to see that all 2n values of M · C are distributed uniformly, assuming uniform
distribution of C, if and only if rank(M) = n. In this case the values of the vector
Y = Y 0 + M · C are distributed uniformly regardless of the value of Y 0, or equivalently
regardless of the value of X. It means that if rank(M) = n then a SIFA-1 attack targeting
n bits of the redundant state X ′k0

, . . . , X ′kn−1
cannot be successful, since ineffectiveness

of a fault depends of the values of bits X ′k0
, . . . , X ′kn−1

, and those are independent of the
value of X.

For every irreducible polynomial P of degree 8 and for every redundancy d there exists
nmax such that for any n ≤ nmax group of bits (k0, . . . , kn−1) the matrix M defined by
(2) has rank n — meaning that no successful SIFA-1 attack on a target containing up to
nmax bits is possible.

Table 4 in Appendix C shows nmax as a function of P and d, for d between 1 and 20,
and the maximal value of nmax over all the polynomials P for every d. In particular, for
d = 8 the best value is 4, meaning that for specific polynomials P (0x139 and 0x1d7) no
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SIFA-1 attack on 4 or less bits can be successful. For d = 9 with the same polynomials no
SIFA-1 attack on 5 or less bits can be successful.

In comparison, in the glitch elimination scheme [LMW14] two bits (mx and one of the
two bits representing xm) give full information about the clear bit x, therefore a SIFA-1
attack targeting these two bits may succeed. In glitch masking schemes (TI and DOM)
protecting against side-channel attacks of an order r, every bit is represented by r + 1 bits.
Therefore, for an implementation protecting against second order attacks, a SIFA-1 attack
against it that targets 3 bits may succeed.

4 Experimental Results
4.1 Setup
To evaluate the scheme, we produced several RTL implementations, each one for a particular
RAMBAM variant with its own values of the redundancy d and the polynomials P and
Q. For area and performance comparison, we also added the parameter of the number of
Sboxes, creating two variants: a compact variant with a single Sbox and a faster variant
with 16 redundant Sboxes for ProtectedSubBytes and 4 compact Canright Sboxes [Can05]
for round key calculations. We synthesized the RTLs for the following two target platforms:

1. For area and performance evaluation: an ASIC netlist obtained using the Yosys
synthesizer [Wol16] and the NanGate FreePDK45 Open Cell Library [Nan08].

2. For security evaluation: The CW305 Artix FPGA target board by NewAE Technol-
ogy [OC14]. The traces were collected using the NewAE Technology
ChipWhisperer-Lite kit at the rate of four samples per cycle. The power signal
was obtained by measuring the current via a shunt resistor connected serially to the
FPGA supply line.

For every variant we acquired two sets of traces with constant key. The input data
was constant for one set, and pseudorandom for the second set. The number of acquired
traces varied depending on the redundancy. In order to eliminate false positives caused
by environmental factors, the two settings were run in an interspersed manner, switching
between constant input and random input with every encryption operation.

4.2 Security Evaluation
To evaluate the robustness of RAMBAM against SCA, we used the TVLA methodol-
ogy [GJJR11], in accordance with which we carried out two experiments with the same
AES key — one with a constant input and the other with a pseudo-random input. We
performed TVLA for several choices of the parameters, with the redundancy values ranging
from 3 to 8. The algorithm used was Algorithm 1, which assumes the reuse of the random
input.

For this evaluation, we used the low-area implementation with one instance of the
Sbox, which performs one round in 20 clock cycles. The entire AES calculation takes 233
clock cycles (16 clock cycles for internal state loading, 20 · 10 = 200 clock cycles for 10
AES rounds, 1 clock cycle for the last AddRoundKey and de-randomization, and 16 clock
cycles for internal state output).

After 217 clock cycles, it is already possible to feed the next input, in parallel with
receiving the previous output. The presence of the leakage, revealed by TVLA, is a
necessary, but not a sufficient condition for an attack. In particular, any appearance of
clear text in the system, even at the input of the cipher, will exhibit leakage, albeit not
prone to attacks. To avert this phenomenon, we used a modified version of the design, in
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Figure 2: Number of traces at which the t-test reaches 4.5 by absolute value (without
re-randomization — worst and best, and with re-randomization)

which the initial randomization and the final de-randomization of the state are omitted.
Thus, all the data involved in the calculations were kept in the redundant representation.
This approach is in line with the related work [DCRB+16, GMK16, DMRB18]. A full
AES calculation, which takes 203 clock cycles (in this setting, we spend only 2 instead of
32 clock cycles for input/output handling, as it is not essential for the TVLA assessment),
was measured. We performed first order and bivariate second order TVLA analysis.

Table 1: Polynomial pairs used for the first order TVLA
Redundancy Without re-randomization With re-randomization

Worst Best
P Q P Q P Q

3 0x1dd 0xd 0x169 0x9 0x1dd 0xd
4 0x163 0x1f 0x163 0x17 0x163 0x1f
5 0x1dd 0x33 0x1a9 0x3b 0x1a9 0x3b
6 0x1f9 0x45 0x11b 0x47 0x13f 0x43
7 0x1f5 0xff 0x187 0xfb 0x11b 0x89
8 0x1a3 0x101 0x169 0x17b 0x169 0x17b

The results of the first order TVLA as a function of the redundancy are shown
in Figure 2. There are three graphs:

• without re-randomization with the worst pairs of polynomials;

• without re-randomization with the best pairs of polynomials;

• with re-randomization.

The pairs of polynomials corresponding to each point on the graphs in both Figure 1
and Figure 2 are listed in Table 1. For every graph and every redundancy, the estimation of
the average number of traces at which leakage starts, is shown. The point for redundancy
8 with re-randomization is intentionally missing, because we have not reached the point at
which leakage starts. This graph supports the theory in Section 3.1 in the following ways:
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1. A weak dependency of the leakage on the redundancy for the worst polynomials
without re-randomization;

2. An approximately exponential dependence of the leakage on the redundancy for the
best polynomials without re-randomization;

3. A significant difference in the leakage between the versions with and without re-
randomization.

In addition, Figure 3 shows the maximal absolute value of the t-test as a function of the
number of traces up to 1M, for different redundancies (1 Sbox). For all the redundancies
the t-test reaches 4.5 well before 1M traces — except for redundancy 8, for which we
acquired 2.7M traces and found no leakage (not shown in Figure 3).

Figure 4 shows the maximal absolute value of the t-test as a function of the number of
traces up to 348M, for redundancy 8 (16 Sboxes). The difference in the number of traces
between the two versions is due to the different trace sizes.

The results of the second order bivariate TVLA for redundancy 8 with polynomials
P = 0x169, Q = 0x17b with 1.188M traces (1 Sbox) and 348M traces (16 Sboxes) are
presented in Figure 5. In both cases the t-test values never exceed 5.
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Figure 3: Maximal t-test as a function of the number of traces for different redundancy
values (1 Sbox with re-randomization)

4.3 Area and Performance Evaluation
In Table 2, we compare the implementation cost and the effectiveness of RAMBAM
(redundancy 8 with 16 protected Sboxes and 4 Canright [Can05] Sboxes for the key
expansion) with the implementation of Low-Latency Hardware Masking [SBHM20]. Since
in [SBHM20] only latency per round and gate count per Sbox block are provided, the data
for latency and throughput for both schemes is per round.

In Table 3, we compare the implementation cost and the effectiveness of RAMBAM
(redundancy 8 with one Sbox) with the first order secure and second order secure versions
of other schemes with one Sbox — Multiplicative Masking [DMRB18], Masking with d + 1
shares [DCRB+16], Domain-oriented masking [GMK16], and two schemes which use no
fresh randomness [WM18, Sug19].

Note that the advantage in throughput per gate of RAMBAM over [DMRB18] would
significantly grow if two Sboxes are used in both schemes. The reason is that, while the
gate count in both schemes would grow in roughly the same proportion, the number of
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clock cycles per round would change from 16 to 8 for RAMBAM and from 21=5+16
to 13=5+8 for [DMRB18]. For implementations with more Sboxes, the advantage of
RAMBAM over [DMRB18] would grow even more.

Note also that the comparison of the gate count favors the alternative schemes
against RAMBAM, because the gate count for RAMBAM includes randomization and
de-randomization, while the gate count for the other schemes does not include the logic
used to implement the splitting into shares and the recombination of the shares.

Although we reuse the random bits, we do not take this reuse into account in this
comparison. In the single Sbox version, the amount of randomness per Sbox is similar
to the best previous solutions — except for [WM18, Sug19] where no fresh randomness
at all is used, but the protection is against first order attacks only. In the 16 Sboxes
version the amount of randomness in [SBHM20] is lower than in RAMBAM, but the area
is significantly higher even at 100 M.
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Figure 6: Area as a Function of the Redundancy

Table 2: AES-128 realization area and performance comparison for schemes with 16 Sboxes
Area Randomness Round latency Throughput per

Scheme [kGE] [bits/Sbox] [cycles] gate per round
[bit/kGE]

RAMBAM (d = 8) 78.9 561 1 1.623
[SBHM20] 123.1 36 1 1.040

Table 3: AES-128 realization area and performance comparison for schemes with 1 Sbox
Area Randomness AES latency Throughput per gate

Order Scheme [kGE] [bits/Sbox] [cycles] (full AES) [bit/kGE]
Second RAMBAM (d = 8) 12.1 561 233 0.04883

[DMRB18]2 10.94 534 2564 0.0457
[DCRB+16]2 12.64 1624 2764 0.0367
[GMK16]2 12.04 544 2464 0.0433

First [DMRB18]2 6.64 194 2564 0.0762
[DCRB+16]2 7.74 544 2764 0.0603
[GMK16]2 7.34 184 2464 0.0709
[WM18]2 7.65 0 28045 0.0060
[Sug19]2 17.15 0 2665 0.0281

1 Although all the experiments shown above were performed while re-using the same 56 random
bits during the entire AES calculation (rather than 56 bits × 160 Sboxes ≈ 9K bits), in this
comparison we do not take this re-use into account

2 The area of the alternative schemes does not include the logic used to implement the splitting
into shares and the recombination of the shares

3 Although the latency is 233 clock cycles, after 217 cycles, it is already possible to start
feeding the next input, in parallel with receiving the previous output. For this reason, the
throughput calculation is based on 217 clock cycles

4 Based on [DMRB18, Table 6]
5 Based on [Sug19, Table 1]
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5 Conclusions
In this paper, we proposed RAMBAM, a conceptually new algebraic masking, designed to
protect against side-channel attacks and against SIFA-1. The masking mechanism employs
redundant representations in the Galois field and adds re-randomization as a key element
to keep uniform distribution of the masked state.

A key property of the proposed masking is its flexibility, which leads to a wide variety
of configurations. One of the key parameters that allows for this flexibility is the security
parameter d that denotes the redundancy. The analytical model, presented in the paper,
explains the effect of this parameter and the choice of the polynomials on the leakage.

Our experimental results based on the TVLA methodology and obtained from the
FPGA demonstrated that the leakage quickly (at least exponentially) decreases as a
function of the redundancy, so that with d = 8 no leakage could be observed with at least
up to 348M traces in the 16 Sboxes version and at least up to 2.7M traces in the 1 Sbox
version, where the acquisition was limited by the experiment’s setup.

While the article presented the results for AES-128 encryption in comparison to
previous work, other key sizes and decryption can be easily included. When optimized for
performance, RAMBAM provides much lower latency than all previous solutions except
for [SBHM20] — which on the other hand requires a significantly higher area. Optimized
for protection against SIFA-1 attacks, it guarantees robustness to SIFA-1 which targets up
to 4 bits in the internal state register.

Future research may focus on a deeper analysis of the correlation between the re-
dundancy and the leakage. Furthermore, it will be interesting to study applications of
RAMBAM-like approaches to other cryptographic algorithms defined in terms of Galois
field arithmetic, such as ARIA and SM-4.
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A Proof of the Minimal Required Number of Multiplica-
tions

In this appendix we research optimal algorithms of inversion by exponentiation in finite
fields GF (22n) for an arbitrary natural n. The value n = 3 is relevant for AES. We will
denote N = 22n . In such a field, if x 6= 0 then xN−1 = 1, so xN−2 = x−1, and the function
F (x) = xN−2 is the same as the inversion, except that it is defined in 0: F (0) = 0, which
is exactly what is needed for the AES Sbox function. In any field of characteristic 2,
raising to a power of 2k for any natural k is a linear transformation, and is therefore much
cheaper in a HW implementation than a multiplication. We search for optimal sequences
of transformations, each transformation being either raising to a power of 2k for a natural



Yaacov Belenky et al. 89

k or a multiplication, that produces xN−2 from x. By “optimal” we mean a sequence with
the lowest possible number of multiplications.

Note that any such sequence of operations applied to any x ∈ GF (22n), produces
a series of field elements x = x1 = xe0 , xe1 , . . . , xem−1 = xN−2, where the sequence of
exponents e0 = 1, e1, . . . , em−1 = N − 2 is well formed of order n in the sense of the
following definition:

Definition 2. For any natural n, m, a sequence e0, e1, . . . , em−1 is called well formed of
order n if e0 = 1, em−1 = N − 2, and every element of the sequence except for e0 is equal
either to one of the previous elements multiplied by 2k modulo N − 1, or to the sum of
any two previous elements modulo N − 1.

In this definition, raising to a power and addition are performed modulo N −1, because
this is the order of the multiplicative group of GF (22n).

We will prove a lower bound for the number of multiplications in a well formed sequence
of order a as a function of n.

Lemma 1. For any natural n and any natural k < 2n, gcd(2k + 1, 22n − 1) > 1.

Proof. Let t be the maximal natural number such that k is divisible by 2t. Then k = 2tr,
where r is odd. Then it is easy to see that both 2k + 1 = 22tr + 1 and 22n − 1 are divisible
by 22t + 1.

Theorem 1. For n > 2, the number of additions in any well formed sequence of order n
is at least n + 1.

Proof. We will call two remainders modulo N − 1 equivalent if one can be produced from
the other by a cyclic permutation of the digits in the binary representation. It is easy to
see that multiplication by 2k modulo N − 1 is equivalent to a cyclic permutation of the
digits in the binary representation. Therefore, in the sequence of the equivalence classes of
elements of a well formed sequence, multiplications by 2k just repeat the same equivalence
class. Dropping the repetitions, we receive a sequence of equivalence classes c0, c1, . . . , ct

in which every class, except for the first one, is the class of a sum of two elements of
preceding (not necessarily different) classes. The number t of elements in this sequence of
classes, not counting the first one, will be the number of additions in the original sequence.

It is easy to see that

HW (x + y) ≤ HW (x) + HW (y) (3)

where HW (x) (Hamming weight of x) stands for the number of “1” bits in the binary
representation of x. Furthermore, it is easy to see that

HW
(
x mod (2k − 1)

)
≤ HW (x) (4)

because HW
(
x mod (2k − 1)

)
can be calculated by cutting x into k-bit blocks, adding

them up, and applying the same operation to the result if it is still too large. Combining (3)
and (4) we receive

HW
(
(x + y) mod (2k − 1)

)
≤ HW (x) + HW (y) (5)

Defining the Hamming weight of a class as the Hamming weight of any of its elements
(that differ only by a cyclic permutation of their binary digits and therefore have the same
Hamming weight), and using (5) it is easy to prove by induction that HW (ci) ≤ 2i. Since
HW (ct) = HW (N − 2) = 2n − 1, we conclude that t ≥ n.

Now we will prove by contradiction that t 6= n; from that, t ≥ n + 1 will follow.
Suppose t = n, and suppose z = x + y, where z is a representative of ct, and x, y are

representatives of some preceding classes. We have 2n − 1 = HW (z) ≤ HW (x) + HW (y),
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so either HW (x) ≥ 2n−1 or HW (y) ≥ 2n−1. Without loss of generality suppose HW (x) ≥
2n−1. Since x ∈ ci for i < n, the only possibility is that i = n− 1, and for every j < n− 1
the class cj+1 is generated by a sum of two different elements of the same class cj . In
particular, the class c1 is generated by two different elements of c0. Since the elements
of c0 are two powers of two, a sum of two different elements of c0 can be written as
2a+b + 2a = 2a(2b + 1), where a ≥ 0, b > 0, so an element of c1, and therefore any element
of c1, are divisible by 2b + 1. By induction, all elements of the following classes c2, . . . , ct−1,
and in particular x, are divisible by 2b + 1.

Regarding the second addend y of the sum z = x + y, there are two cases.
Case 1. y ∈ c0. Then HW (y) = 1, and HW (N − 2) ≤ HW (x) + HW (y) = 2n−1 + 1.

Since by the assumption n > 2, 2n−1 > 2, and we have HW (N − 2) ≤ 2n−1 + 1 <
(2n−1 + 1) + (2n−1 − 2) = 2n − 1; a contradiction.

Case 2. y ∈ ci for i > 0. Then according to the above both x and y are divisible by
2b + 1, and by Lemma 1 are not coprime with N − 1, but N − 2 = x + y clearly is coprime
with N − 1; a contradiction.

The practical case for AES is n = 3, and the number of multiplications according to The-
orem 1 cannot be less than n+1 = 4. Both versions of the function ProtectedSubBytesP,Q,d

(Algorithm 2 and Algorithm 5) reach this theoretical minimum.

B Alternative P rotectedSubBytes Optimized for the Max-
imal Frequency

Algorithm 5: ProtectedSubBytes (optimized for maximal frequency)
1 Function ProtectedSubBytesP ·Q,d(x_in[16], r[24])

Input : x_in[16] - 16 (8 + d)-bit values, representing the AES state bytes
r[24] - 24 random d-bit values (only the last 8 are used here)

Output : x_out[16] - 16 (8 + d)-bit values after the Sbox transformation
2 for i = 0 to 15 do
3 t = x_ini

4 t2 = Pow2P ·Q,d(t) + r16P
5 t3 = MulP ·Q,d(t, t2) + r17P
6 { /* parallel section */
7 t12 = Pow4P ·Q,d(t3) + r18P
8 t48 = Pow16P ·Q,d(t3) + r19P
9 t192 = Pow64P ·Q,d(t3) + r20P

10 }
11 { /* parallel section */
12 t14 = MulP ·Q,d(t2, t12) + r21P
13 t240 = Pow16P ·Q,d(t15) + r22P
14 }
15 t254 = MulP ·Q,d(t14, t240) + r23P
16 x_outi = RAffP ·Q,d(t254)
17 Rotate r[16 . . . 23] by one position
18 end for
19 return x_out
20 end
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C Robustness Against SIFA-1
Table 4 lists the maximal number of bits in a SIFA-1 target for which SIFA-1 is guaranteed
to fail, as a function of the polynomial P and the redundancy d. The last row shows the
maximal value for a fixed redundancy d over all the polynomials P .

Table 4: Robustness Against SIFA

Redundancy d
P 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0x11b 0 0 0 1 2 2 3 3 3 4 4 5 5 6 6 6 7 8 8 9
0x11d 0 0 0 1 1 2 3 3 3 3 4 4 5 5 6 6 7 7 7 8
0x12b 0 0 1 1 2 2 2 2 2 3 4 5 5 5 6 6 6 7 7 8
0x12d 0 0 1 1 2 2 2 3 3 4 4 4 5 5 6 6 7 7 7 8
0x139 0 0 1 1 1 2 3 4 5 5 5 5 5 5 5 5 6 6 6 7
0x13f 0 0 1 1 1 2 2 2 3 4 4 4 5 6 6 6 6 7 8 8
0x14d 0 0 1 1 1 2 2 3 3 4 4 4 5 5 6 7 7 7 8 8
0x15f 0 1 1 1 2 2 2 2 2 2 3 3 4 4 4 5 5 6 6 7
0x163 0 0 0 1 1 1 2 3 3 4 4 5 5 5 6 6 6 7 7 8
0x165 0 0 1 1 1 2 2 3 3 4 4 4 5 5 6 7 7 7 8 8
0x169 0 0 1 1 2 2 2 3 3 4 4 4 5 5 6 6 7 7 7 8
0x171 0 0 0 1 1 2 3 3 3 3 4 4 5 5 6 6 7 7 7 8
0x177 0 1 1 1 1 1 2 2 3 3 3 4 4 5 5 5 6 6 6 7
0x17b 0 1 1 1 2 2 2 3 3 3 3 4 4 4 5 6 7 7 7 8
0x187 0 0 0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 7 8 8
0x18b 0 0 0 1 1 1 2 3 3 4 4 4 4 5 6 6 7 7 7 8
0x18d 0 0 0 1 1 1 2 3 3 4 4 5 5 5 6 6 6 7 7 8
0x19f 0 0 1 1 2 2 2 2 3 3 3 3 4 4 5 5 5 6 7 8
0x1a3 0 0 0 1 1 1 2 3 3 4 4 4 4 5 6 6 7 7 7 8
0x1a9 0 0 1 1 2 2 2 2 2 3 4 5 5 5 6 6 6 7 7 8
0x1b1 0 0 0 1 2 2 3 3 3 4 4 5 5 6 6 6 7 8 8 9
0x1bd 0 1 1 1 2 2 2 3 3 3 3 4 4 4 5 6 7 7 7 8
0x1c3 0 0 0 0 1 1 2 2 3 4 4 5 5 6 6 7 7 7 8 8
0x1cf 0 0 1 1 1 2 2 2 3 4 4 5 5 6 6 7 7 8 9 9
0x1d7 0 1 1 1 1 2 3 4 5 5 5 5 5 5 5 5 6 6 7 7
0x1dd 0 1 1 1 1 1 2 2 3 3 3 4 4 5 5 5 6 6 6 7
0x1e7 0 0 1 1 1 2 2 2 3 4 4 5 5 6 6 7 7 8 9 9
0x1f3 0 0 1 1 2 2 2 2 3 3 3 3 4 4 5 5 5 6 7 8
0x1f5 0 1 1 1 2 2 2 2 2 2 3 3 4 4 4 5 5 6 6 7
0x1f9 0 0 1 1 1 2 2 2 3 4 4 4 5 6 6 6 6 7 8 8
max 0 1 1 1 2 2 3 4 5 5 5 5 5 6 6 7 7 8 9 9
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