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Abstract. It is generally accepted that a large-scale quantum computer would be
capable to break any public-key cryptosystem used today, thereby posing a serious
threat to the security of the Internet’s public-key infrastructure. The US National
Institute of Standards and Technology (NIST) addresses this threat with an open
process for the standardization of quantum-safe key establishment and signature
schemes, which is now in the final phase of the evaluation of candidates. SIKE (an
abbreviation of Supersingular Isogeny Key Encapsulation) is one of the alternate
candidates under evaluation and distinguishes itself from other candidates due to
relatively short key lengths and relatively high computing costs. In this paper, we
analyze how the latest generation of Intel’s Advanced Vector Extensions (AVX), in
particular AVX-512IFMA, can be used to minimize the latency (resp. maximize the
throughput) of the SIKE key encapsulation mechanism when executed on Ice Lake
CPUs based on the Sunny Cove microarchitecture. We present various techniques to
parallelize and speed up the base/extension field arithmetic, point arithmetic, and
isogeny computations performed by SIKE. All these parallel processing techniques
are combined in AvxSike, a highly optimized implementation of SIKE using Intel
AVX-512IFMA instructions. Our experiments indicate that AvxSike instantiated
with the SIKEp503 parameter set is approximately 1.5 times faster than the to-date
best AVX-512IFMA-based SIKE software from the literature. When executed on an
Intel Core i3-1005G1 CPU, AvxSike outperforms the x64 assembly implementation
of SIKE contained in Microsoft’s SIDHv3.4 library by a factor of about 2.5 for key
generation and decapsulation, while the encapsulation is even 3.2 times faster.
Keywords: Post-Quantum Cryptography · Isogeny-Based Cryptography · Software
Optimization · Finite-Field Arithemtic · SIMD-Parallel Processing

1 Introduction
In 2016, the NIST became engaged in Post-Quantum Cryptography (PQC) and started
an initiative to solicit, evaluate, and standardize quantum-safe public-key cryptographic
algorithms [CJL+16]. In response to a call for proposals for post-quantum encryption
(resp. key encapsulation) and digital signature algorithms, a total of 72 candidates were
submitted by November 2017. 69 of those submissions met the minimum requirements
for acceptability and entered the first round of the evaluation process. In early 2019, the
NIST selected 26 of the submissions as candidates for the second round; amongst them
were 17 public-key encryption/key-encapsulation algorithms and nine digital signature
schemes. The algorithms for encryption (resp. key encapsulation) include nine that are
based on hard computational problems in lattices, seven whose security rests on classical
problems in coding theory, and one that claims its security from the presumed hardness
of the supersingular isogeny walk problem on elliptic curves [Nat19]. About 18 months
later, in July 2020, the number of candidates was further reduced to only seven, which
entered the third and final round of NIST’s evaluation process. Among the finalists are
four encryption or key-encapsulation schemes; three of them are lattice-based and one

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-10-15 Accepted: 2022-12-15 Published: 2022-02-15

https://doi.org/10.46586/tches.v2022.i2.41-68
mailto:hao.cheng@uni.lu, georgios.fotiadis@uni.lu, johann.groszschaedl@uni.lu, peter.ryan@uni.lu
http://creativecommons.org/licenses/by/4.0/


42 Highly Vectorized SIKE for AVX-512

falls into the code-based category. In addition, the NIST also announced eight so-called
“alternate candidates”, which can still become part of the standard after the third round
(i.e. some of the alternate candidates may be considered in a fourth round [Nat20]).

The Supersingular Isogeny Key Encapsulation (SIKE) protocol [JAC+20] is one of the
alternate candidates for quantum-safe key encapsulation retained by the NIST. Its main
attractions are relatively short secret and public keys, making it somewhat comparable
with conventional (“pre-quantum”) elliptic-curve key exchange protocols like ECDH and
X25519 [HMV04]. Furthermore, since the low-level arithmetic of SIKE is basically long-
integer arithmetic, implementers can (potentially) re-use existing hardware accelerators
and software libraries for pre-quantum cryptosystems like RSA and ECC. SIKE is based
on the Supersingular Isogeny Diffie-Hellman (SIDH) key exchange, which was proposed
by Jao and De Feo in 2011 [JD11] as a post-quantum cryptosystem whose security rests
on the difficulty of finding isogenies between supersingular curves. In short, SIKE applies
a Fujisaki-Okamoto transformation [HHK17] on SIDH to obtain a Key-Encapsulation
Mechanism (KEM) that is secure against Chosen Ciphertext Attacks (CCA). State-of-
the-art parameter sets for SIKE use supersingular curves over quadratic extension fields
of prime characteristic, where the length of the prime is between 434 and 751 bits. The
main drawback of SIKE is high computing costs and long latency, caused mainly by the
serial computation of these isogenies, which represents a serious bottleneck for practical
applications. For example, the currently fastest software implementation of SIKE for the
ARM Cortex-M4 platform [AAM21] is more than two orders of magnitude slower than the
best lattice-based KEMs benchmarked in [KP21]. Therefore, optimization techniques to
accelerate SIDH and SIKE are an important topic in PQC research.

An analysis of the academic literature on performance optimizations for SIDH and
SIKE shows that past research can be broadly divided into two categories. Research in
the first category is concerned with mathematical techniques and higher-level arithmetic
optimizations to make the point arithmetic and isogeny computations more efficient, see
e.g. [ABJK18, CLN16, COR20, FLOR18]. The second category covers research on soft-
ware optimizations for the underlying field arithmetic, whereby the modular reduction
received particular attention [BF20, BI21, SLLH18, TWL+20]. Most of the highly-tuned
implementations published in the literature adopt the Montgomery modular reduction
method [Mon85] since it is extremely efficient in software. The very first implementation
of SIDH was introduced roughly 10 years ago [JD11] and uses the GMP library for the
low-level arithmetic. Since then, many implementations of SIDH or SIKE with dedicated
field-arithmetic functions written in Assembly language have been developed. Microsoft’s
PQCrypto-SIDH library, which is available on GitHub under MIT license, contains the
to-date fastest x64 Assembler implementation of SIKE. This library features most of the
improvements and optimizations that were presented in the literature to accelerate the
SIKE protocol and make it more practical. However, despite a large body of research on
fast software implementation, SIKE is still significantly slower than other post-quantum
KEMs, in particular the lattice-based third-round NIST candidates.

The 64-bit Intel architecture (i.e. x64) serves as the main benchmarking platform to
analyze and compare the efficiency of the NIST PQC candidates. Besides the x64 base
instruction set, 64-bit Intel processors also support different kinds of vector instructions
for a SIMD-parallel execution of workloads. Vector extensions for the Intel architecture
have a history that stretches back some 25 years and began with the introduction of the
MMX extensions for the 32-bit x86 architecture. Thereafter came numerous generations
of Streaming SIMD Extensions (SSE), which support vectors of a length of 128 bits, and
Advanced Vector eXtensions (AVX). The most recent new member of the AVX family is
AVX-512, which augments the execution environment of x64 by 32 registers of a length
of 512 bits and various new instructions. These instructions can operate on e.g. sixteen
32-bit elements or eight 64-bit elements in a SIMD-parallel fashion. AVX-512 comprises
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a set of core instructions called AVX-512F and multiple extensions that are optional and
may be implemented independently. One of these optional extensions provides the so-
called “Integer Fused Multiply and Add” (IFMA) instructions, which were designed to
speed up big-integer arithmetic [GK16]. The IFMA extension is supported by all mobile
and workstation/server processors code-named “Ice Lake” and their successors1.

Contributions. In this paper, we study how the massive parallel processing capabilities
of the latest generation of the AVX vector engines, in particular AVX-512IFMA, can be
used to improve the efficiency of SIKE-based key encapsulation. Since AVX-512IFMA is
a relatively recent extension of the AVX-512 architecture, it is still (widely) unexplored
how its new instructions can be used to speed up SIKE. To our knowledge, there exists
currently only one publication dealing with AVX-512 optimizations for SIKE, namely the
ARITH 2019 paper of Kostic and Gueron [KG19], but their work focuses solely on the
low-level field arithmetic, i.e. they did not explore avenues for parallel processing at the
higher levels of SIKE. Hence, it is still unknown how AVX-512IFMA can be exploited to
unleash the full potential of modern Intel processors for executing SIKE and what latency
(resp. throughput) a carefully optimized implementation could achieve.

The present paper aims to fill this gap by introducing novel techniques to parallelize
(and speed up) the field arithmetic, point arithmetic, and isogeny computations. At the
lowest level, we present a carefully-optimized library for arithmetic operations in Fp and
Fp2 that uses a radix-251 representation for the operands (i.e. 51 bits/limb) and adopts
Montgomery’s algorithm for modular reduction. We developed different variants of this
arithmetic library, including one that minimizes the latency of two (resp. four) instances
of an arithmetic operation, and one that maximizes the throughput of eight instances
using the so-called limb-slicing technique2. At the medium level, we describe techniques
for parallel point arithmetic operations on Montgomery curves, whereby we paid special
attention to find viable trade-offs between the number of parallel instances of point and
field operations, respectively. Finally, at the highest layer, we discuss various approaches
for vectorized isogeny computation and key encapsulation. All these parallel processing
techniques are combined in AvxSike, an optimized implementation of SIKE using Intel’s
AVX-512IFMA instructions. AvxSike supports all four (uncompressed) parameter sets
given in [JAC+20] and comes with a low-latency version and a high-throughput version
of SIKE, which we call AvxSike-LL and AvxSike-HT, respectively. Both versions are
resistant against timing-based side-channel attacks in the sense that they do not contain
any secret-dependent conditional statements or memory accesses. Our latency-optimized
AvxSike instantiated with the SIKEp503 parameters is about 1.5 times faster than the
AVX-512IFMA-based SIKE software presented in [KG19]. It also outperforms Microsoft’s
x64 Assembler implementation3 of SIKE by a factor of about 2.5 for both key generation
and decapsulation, and even 3.2 for encapsulation, when benchmarked on an Intel Core
i3-1005G1 processor. Furthermore, our throughput-optimized AvxSike reaches an up to
4.6-fold higher throughput than Microsoft’s SIKE library.

Availability of the Source Code. The source code of our AvxSike software is available
online at https://gitlab.uni.lu/APSIA/AVXSIKE. This repository contains both the
low-latency version AvxSike-LL and the high-throughput version AvxSike-HT.

1According to Intel there exist currently 13 “Ice Lake” processors for the mobile segment and 43 “Ice
Lake” processors for the workstation/server segment, see https://ark.intel.com/content/www/us/en/
ark/products/codename/74979/products-formerly-ice-lake.html.

2Limb-slicing uses a “reduced-radix” representation for the operands and is somewhat similar to the
bit-slicing technique used in symmetric cryptography, i.e. it allows one to compute a batch of arithmetic
operations in a SIMD-parallel way, which increases throughput at the expense of latency [CGT+21].

3We used version 3.4 of Microsoft’s PQCrypto-SIDH library (i.e. SIDHv3.4), which is available on
GitHub at https://github.com/Microsoft/PQCrypto-SIDH, as starting point for our work and the x64
assembly implementation of SIKE contained in this library as baseline for performance comparisons.

https://gitlab.uni.lu/APSIA/AVXSIKE
https://ark.intel.com/content/www/us/en/ark/products/codename/74979/products-formerly-ice-lake.html
https://ark.intel.com/content/www/us/en/ark/products/codename/74979/products-formerly-ice-lake.html
https://github.com/Microsoft/PQCrypto-SIDH
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Outline. In Section 2, we review the SIKE key encapsulation mechanism and describe
our target platform (focussing on the AVX-512IFMA vector instructions) as well as the
experimental environment for collecting benchmarking results. Then, from Section 3 to
Section 6, we introduce our AvxSike software layer by layer. Section 3 explains two
different types of vectorized integer multiplication and Montgomery reduction. Various
vectorized implementations of quadratic extension-field operations are described in detail
in Section 4. Later, in Section 5, we focus on vectorized implementations of arithmetic
operations on Montgomery curves. In Section 6, we present a low-latency version and
a high-throughput version of AvxSike, our vectorized SIKE software. We compare the
performance of AvxSike, Microsoft’s SIDHv3.4 assembly library, and the IFMA-based
SIKEp503 implementation of Kostic and Gueron in Section 7. Finally, in Section 8, we
draw conclusions and discuss avenues for future work.

2 Preliminaries
We start with a summary of the mathematical background of isogenies of elliptic curves
and proceed with a concise description of the SIKE mechanism [JAC+20]. Later, we give
an overview of the AVX-512 instruction set architecture and introduce our experimental
environment for performance measurements.

Let E and E′ be two elliptic curves over a finite field Fq of prime characteristic p. An
isogeny φ : E → E′ is a non-constant rational map defined over Fq that maps the iden-
tity element of E to the identity element of E′, and we say E, E′ are isogenous if and
only if #E(Fq) = #E′(Fq) [Tat66]. In isogeny-based cryptography, we are interested in
separable isogenies [JD11]. Such isogenies have finite kernel and their degree is defined
as deg φ = # kerφ. In addition, given an elliptic curve E over Fq and a finite subgroup
G ⊆ E(Fq), there exists a unique isogeny φ : E → E′ = E/G, with ker(φ) = G and
deg(φ) = #G. Isogeny-based cryptosystems generally use supersingular elliptic curves
of smooth order since they facilitate the computation of isogenies of exponentially large
degree by composing lower-degree isogenies that can be efficiently computed with Vélu’s
formulæ [Vél71]. Furthermore, every supersingular elliptic curve E defined over Fq can
also be defined over Fp2 , in which case #E(Fp2) = (p+ 1)2.

In the SIKE protocol, supersingular elliptic curves are represented using the Mont-
gomery model [JAC+20]. A Montgomery curve in affine form is given by the equation
E(a,b) : by2 = x3 + ax2 + x, where a, b ∈ Fp2 and b(a2 − 4) 6= 0. It is often beneficial to
work in the projective form, both in terms of curve points and curve coefficients. In this
case, we write E(A:B:C) : BY 2Z = CX3 +AX2Z + CXZ2 with a = A/C, b = B/C, and
(x, y) = (X/Z, Y/Z). Montgomery curves are well known for efficient point arithmetic on
their Kummer line, originally proposed in [Mon87], which entirely ignores the projective
Y coordinate. In addition, they allow one to ignore the coefficient B in point operations
and isogeny computations. Consequently, we will denote by E(A:C) a Montgomery curve
with B = 1 and by P = (XP : ZP ) a point on the curve.

2.1 Supersingular Isogeny Key Encapsulation (SIKE)
SIKE is a key encapsulation mechanism from the family of isogeny-based schemes. It was
inspired by the SIDH protocol of Jao and De Feo [JD11] and is currently evaluated as an
alternate candidate in the NIST PQC standardization process [Nat20].

Public Parameters. We fix two positive integers e2 and e3 such that p = 2e23e3 − 1 is
prime. Primes of this form are Montgomery-friendly, meaning that they allow for some
optimizations of the modular arithmetic, see e.g. [CLN16]. We define the two key spaces
K2 = {0, . . . , 2e2 − 1} and K3 = {0, . . . , 3e3 − 1} for sampling secret keys. Further, we
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also fix a starting supersingular elliptic curve E0 : y2 = x3 + 6x2 + x over Fp2 , where
#E0(Fp2) = (2e23e3)2, and two bases {P2, Q2} and {P3, Q3}, which generate the torsion
subgroups E0[2e2 ] and E0[3e3 ], respectively. The public parameters consist of the curve
E0 and the 3-tuples {xP2 , xQ2 , xP Q2} and {xP3 , xQ3 , xP Q3}, where xP Q2 = xP2 − xQ2 and
xP Q3 = xP3 − xQ3

4.
For each ` ∈ {2, 3}, we denote by (E′, φ`)← isogeny`(E, xR`

) the computation of an
isogeny φ` : E → E′ of degree `e` and kerφ` = 〈xR`

〉, where xR`
= xP`

+ [sk`]xQ`
. Each

secret key sk` is chosen randomly from K` and the corresponding public key is obtained as
pk` = (φ`(xPm), φ`(xQm), φ`(xP Qm)), where m ∈ {2, 3} such that m 6= `.

Algorithm 1: Public key encryption:
SIPKE = (Gen,Enc,Dec)

1 function Gen()
2 sk3 ←$ K3
3 xR3 ← xP3 + [sk3]xQ3

4 (φ3, E3)← isogeny3(E0, xR3 )
5 pk3 ← (φ3(xP2 ), φ3(xQ2 ), φ3(xP Q2 ))
6 return (sk3,pk3)

7 function Enc(pk3,m ∈M, sk2 ∈ K2)
8 xR2 ← xP2 + [sk2]xQ2

9 (φ2, E2)← isogeny2(E0, xR2 )
10 c1 ← (φ2(xP3 ), φ2(xQ3 ), φ2(xP Q3 ))
11 x′R2 ← φ3(xP2 ) + [sk2]φ3(xQ2 )
12 (φ′2, E32)← isogeny2(E3, x

′
R2 )

13 h← SHAKE256(j(E32))
14 c2 ← h⊕m
15 return (c1, c2)

16 function Dec(sk3, (c1, c2))
17 x′R3 ← φ2(xP3 ) + [sk3]φ2(xQ3 )
18 (φ′3, E23)← isogeny3(E2, x

′
R3 )

19 h← SHAKE256(j(E23))
20 m← h⊕ c2
21 return m

Algorithm 2: Key encapsulation:
SIKE = (KeyGen,Encaps,Decaps)

1 function KeyGen()
2 (sk3, pk3)← Gen()
3 s←$ {0, 1}n

4 return (s, sk3,pk3)

5 function Encaps(pk3)
6 m←$ {0, 1}n

7 sk2 ← SHAKE256(m ‖ pk3)
8 (c1, c2)← Enc(pk3,m, sk2)
9 k ← SHAKE256(m ‖ (c1, c2))

10 return (k, (c1, c2))

11 function Decaps(s, sk3, pk3, (c1, c2))
12 m′ ← Dec(sk3, (c1, c2))
13 sk′2 ← SHAKE256(m′ ‖ pk3)
14 xR2 ← xP2 + [sk′2]xQ2

15 (φ2, E2)← isogeny2(E0, xR2 )
16 c′1 ← (φ2(xP3 ), φ2(xQ3 ), φ2(xP Q3 ))
17 if c′1 = c1 then
18 k ← SHAKE256(m′ ‖ (c1, c2))
19 else
20 k ← SHAKE256(s ‖ (c1, c2))
21 return k

SIKE and SIPKE. The SIKE submission comes with four parameter sets that provide
different levels of security and are named according to the size of the underlying prime
p: SIKEp434, SIKEp503, SIKEp610, and SIKEp751. In all versions, the public parameters
e2 and e3 are chosen so that 2e2 ≈ 3e3 . At the core of SIKE is the Supersingular Isogeny
Public Key Encryption scheme (SIPKE) [DJP14], which offers the usual three functions
(Gen, Enc, Dec) for key generation, encryption, and decryption (see Algorithm 1). Note
that the ciphertext consists of two components c1 = (φ2(xP3), φ2(xQ3), φ2(xP Q3)) and
c2 = h⊕m, where h is the hash of j(E32), the j-invariant of curve E32. The first compo-
nent is essential in the decryption process, particularly for the computation of the kernel
generator φ2(xP3) + [sk3]φ2(xQ3), which defines the isogeny φ′3 : E2 → E23. Decryption
works because E32 ∼= E23 and hence j(E32) = j(E23). Like any other key encapsulation
mechanism, SIKE consists of the usual three functions (KeyGen, Encaps, Decaps) for the
key generation, encapsulation, and decapsulation, as described in Algorithm 2. In the
original SIKE submission, the hash function used by both SIPKE and SIKE is actually an
eXtendable Output Function (XOF), namely SHAKE256 [Nat15], which belongs to the
SHA-3 family and has been approved by the NIST and other standardization bodies.

4The x-coordinates of P Q2 = P2 −Q2 and P Q3 = P3 −Q3 are used in the differential addition.
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Security of SIKE. The security of SIKE relies on the SIDH problem, which is defined as
follows: given the curves E0, E2, E3 and points φ2(P3), φ2(Q3), φ3(P2), φ3(Q2), determine
the j-invariant of the curve E2/〈φ2(P3) + [sk3]φ3(Q3)〉 or E3/〈φ3(P2) + [sk2]φ3(Q2)〉. To
date, the best classical algorithm for attacking SIKE is due to Galbraith [Gal99] and has
a complexity of O( 4

√
p), while the best quantum attack is Tani’s claw finding algorithm

[Tan09] with a complexity of O( 6
√
p). In addition, Proposition 1 in the SIKE specification

[JAC+20] proves that the SIPKE scheme described in Algorithm 1 is IND-CPA secure in
the random oracle model, if the SIDH problem is hard and the SIKE mechanism is also
proven to be IND-CCA secure. The parameter sets SIKEp434, SIKEp503, SIKEp610, and
SIKEp751 correspond to NIST security level 1, 2, 3, and 5, respectively [JAC+20].

2.2 Optimized Isogeny Computations
The most demanding part of the SIKE protocol is the isogeny computations. Namely, in
all three functions the SIKE suite consists of, an isogeny φ : E0 → Ee`

of degree `e` has
to be computed, with kernel generated by a point R0 = P0 + [sk`]Q0 ∈ E[`e` ], where
` ∈ {2, 3} and sk` ∈ {0, . . . , `e` − 1}. Instead of directly computing this isogeny φ, the
best practice is to break the computation in smaller parts where we iteratively compute
e` isogenies of degree ` using the Vélu formulæ [Vél71] and compose them to obtain the
desired `e`-isogeny. The straightforward approach is to carry out an iterative procedure
for 0 ≤ i < e`, whereby in each iteration we fix the kernel point Si = [``i−i−1]Ri to be
of order ` and compute an isogeny φi : Ei → Ei+1 = Ei/〈Si〉 of degree `. Thereafter, we
compute the image Ri+1 = φi(Ri) in order to be able to obtain the kernel point on the
new curve Ei+1 for the next isogeny. The desired `e`-isogeny φ : E0 → E` is represented
as the composition φ = φe`−1 ◦ . . . ◦ φ0. This approach is multiplication-oriented since, in
each iteration, a scalar multiplication [``i−i−1]Si has to be performed [JD11].

An alternative method, known as isogeny-oriented, was proposed by Jao and De Feo
[JD11]. The aim in this method is to reduce the number of scalar multiplications at the
cost of extra isogeny computations. This is done by computing an initial list of points
([`j ]R0)j<e`

on the starting curve and then, in each iteration for 0 ≤ i < e`, update this
list as the image of the points under the isogeny φi, i.e. [`j ]Ri+1 = φi([`j ]Ri), for each
j = i, . . . , e` − 1. In [DJP14], De Feo, Jao, and Plût showed that it is possible to speed
up the isogeny-oriented approach by introducing the notion of optimal strategies, which
allow for less scalar multiplications compared to the multiplication-based approach and
less isogeny computations compared to the isogeny-based approach. These strategies are
presented and implemented in the SIKE specification document [JAC+20] for the small
primes ` ∈ {2, 3}. Instead of point additions, the authors of the SIKE specification use
only point doubling for the case ` = 2 and point tripling for the case ` = 3. Moreover, in
the case ` = 2, the authors compute iteratively isogenies of degree 4 instead of 2.

2.3 Intel Advanced Vector Extension AVX-512
AVX-512 is the latest generation of the Advanced Vector eXtensions (AVX) and enriches
the x64 execution environment by thirty-two 512-bit registers (zmm0–zmm31) and various
512-bit instructions. AVX-512 consists of multiple extensions, whereby AVX-512F is the
core extension with a 32-bit vector multiplier. Starting with Cannon Lake (Palm Cove
microarchitecture), Intel integrated the so-called Integer Fused Multiply-Add extension
(AVX-512IFMA, or simply IFMA) into AVX-512 [Int18], which was specifically designed
to speed up public-key cryptographic software relying on large integer arithmetic (this
also includes isogeny-based cryptosystems). Concretely, the two new IFMA instructions
vpmadd52luq and vpmadd52huq multiply a pair of eight packed unsigned 52-bit integers
(one located in each 64-bit element of two 512-bit vectors) to obtain eight intermediate
products, each being 104 bits long. Then, either the lower 52 bits (vpmadd52luq) or the



H. Cheng, G. Fotiadis, J. Großschädl, P. Y. A. Ryan 47

upper 52 bits (vpmadd52huq) of these products are added to the eight packed unsigned
64-bit integers of a 512-bit destination register, which holds the final result. Compared
to the vpmuludq and vpmuldq multiply instruction of AVX-512F, the IFMA extension
does not only offer a wider multiplier of 52 bits, but also combines vector multiplication
and vector addition into a single instruction.

Target Platform and Performance Measurements. AVX-512IFMA started to become
commonly available with the Intel x64 processor family codenamed “Ice Lake” and its
successors, e.g. “Tiger Lake” and “Rocket Lake.” The “Ice Lake” family comprises 10th
generation Intel Core mobile and 3rd generation Xeon scalable server processors based
on the “Sunny Cove” microarchitecture. We developed our AvxSike software on (and
optimized it for) a 10th generation Core, namely the i3-1005G1. On an “Ice Lake” Core
CPU, both vpmadd52luq and vpmadd52luq have a throughput of one instruction/cycle
and a latency of four cycles. AvxSike was written in C and uses compiler intrinsics to
perform AVX-512 vector operations. We compiled the source code of AvxSike and the
Microsoft SIDHv3.4 library with GCC version 9.3.0 and measured their execution times
on our Core CPU, whereby turbo boost was disabled. However, we could not measure
the execution time of the AVX-512IFMA implementation of Kostic and Gueron because
the source code is not publicly available. Therefore, we resort to the timings reported in
[KG19] and include these in our performance comparisons.

3 Prime-Field Arithmetic
In this section, we describe vectorized implementations of big-integer multiplication and
Montgomery reduction at the Fp-arithmetic layer, which are highly performance-critical
operations of our AvxSike software. Note that AvxSike uses only IFMA instructions
(i.e. vpmadd52luq and vpmadd52huq) for all vector-parallel multiplications, i.e. the basic
AVX-512F multiply instructions like vpmuludq and vpmuldq are not executed at all. We
adopt the term “(y × z)-way parallelism” to describe an implementation that performs
y prime-field (or integer-arithmetic) operations simultaneously, whereby each operation
is executed in a z-way parallel fashion and, thus, uses z elements of a vector. For exam-
ple, Algorithm 2 in [KG19] contains pseudo-code of a (1× 8)-way integer multiplication
for SIKEp503, which means it is a single multiplication of 512-bit integers that uses all
eight 64-bit elements of an AVX-512 vector. Due to better instruction-level parallelism
and the possibility of taking advantage of Karatsuba’s method, the theoretically-optimal
(8× 1)-way approach is more efficient than other parallel processing techniques such as
(4 × 2)-way, (2 × 4)-way, and (1 × 8)-way. Taking into account options for higher-level
parallelism offered by the Fp2-arithmetic layer and the curve-arithmetic layer, we found
that all prime-field operations can be executed in either an (8× 1)-way or a (4× 2)-way
fashion, i.e. AvxSike always performs eight or four Fp-operations simultaneously.

In this section (and also the four subsequent sections), we focus on SIKEp503 as case
study to explain our vectorization techniques since it is the only parameter set that was
considered in essentially every previous paper on fast SIKE software, including [KG19].

3.1 Radix-251 Representation
Due to the 52-bit wide vector multiplier, most AVX-512IFMA implementations, such as
[KG19, CFG+21], directly adopt the natural radix-252 (i.e. 52 bits/limb) representation
for the operands. However, in this work, we take advantage of a radix-251 representation
based on two main considerations. First, although a radix of 252 is a reduced radix with
respect to the 64-bit length of an element of an AVX-512 vector (there are still 12 bits
of “headroom” for storing carry bits to delay carry propagation), it is saturating for the
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52-bit multiplier because all limbs must be reduced to 52 bits before IFMA instructions
can be executed on them. This is not ideal for operations like our (8 × 1)-way parallel
version of Karatsuba multiplication [KO63], where the sums of two half-length additions
are operands of the last half-length multiplication5. In such a situation, a representation
based on radix 252 would make it necessary to instantly propagate the carries produced
by the two additions, which does not only require extra instructions, but also generates
one more limb. In contrast, a radix of 251 allows one to simply keep the carry bits and
delay the carry propagation, thereby increasing the length of limbs to 52 bits. A second
reason to favor a radix of 251 is the efficient (4× 2)-way carry propagation introduced in
[OAL18], which we use in our (4× 2)-way implementation of the prime-field arithmetic
operations. This efficient carry propagation is “incomplete” in the sense that, after the
propagation, two limbs are allowed to exceed the nominal limb-length by one bit. But in
our case, when using a radix of 252, it is not possible to tolerate two over-length limbs
(i.e. all limbs strictly have to fit into 52 bits, which costs some extra instructions). On
the other hand, with a radix of 251, this problem does not arise since we can allow two
limbs to have a length of 52 bits, while the other limbs are still 51 bits long. Finally, we
remark that using a radix-251 representation does not increase the number of limbs (in
relation to a radix of 252) for any of the four parameter sets of SIKE.

(8 × 1)-way Limb Vector Set. The main data structure of our (8× 1)-way prime-field
operations is the (8× 1)-way limb vector set composed of eight radix-251 integers. Given
eight integers a, b, c, d, e, f, g, h ∈ Fp, an (8 × 1)-way limb vector set U for SIKEp503 is
defined as:

U = 〈a, b, c, d, e, f, g, h〉 =


[a0, b0, c0, d0, e0, f0, g0, h0]
[a1, b1, c1, d1, e1, f1, g1, h1]

...
[a9, b9, c9, d9, e9, f9, g9, h9]

 = (U0, U1, . . . , U9), (1)

where each Ui = [ai, bi, ci, di, ei, fi, gi, hi] is called a limb vector.

(4 × 2)-way Limb Vector Set. Our (4 × 2)-way field-operations use (4 × 2)-way limb
vector sets, which also based on the radix 251, but contain only four integers. In the case
of SIKEp503, a (4× 2)-way limb vector set V = 〈a, b, c, d〉 has the following form:

V = 〈a, b, c, d〉 =


[a0, a5, b0, b5, c0, c5, d0, d5]
[a1, a6, b1, b6, c1, c6, d1, d6]

...
[a4, a9, b4, b9, c4, c9, d4, d9]

 = (V0, V1, . . . , V4). (2)

Each limb vector Vi = [ai, ai+5, bi, bi+5, ci, ci+5, di, di+5] contains two 51-bit limbs from
each integer, whereby the limbs are arranged in an interleaved pattern.

Reduction Modulo 2p. Similar to SIDHv3.4, both our (8× 1)-way and (4× 2)-way im-
plementation omit the final subtraction in the Montgomery reduction. All prime-field
operations of AvxSike actually perform the reduction modulo 2p instead of p. To give
a concrete example, the modular addition operation first computes t ← a + b and then
performs a subtraction r ← t− 2p. If r < 0 we add 2p to r, otherwise we add 0 (to have
operand-independent execution time). The modular subtraction just directly computes
r ← a− b and then executes the same correction step as the modular addition.

5An 2n-bit integer multiplication according to Karatsuba’s algorithm is computed via the equation
r = a · b = (a0 + a1 · 2n) · (b0 + b1 · 2n) = a0b0 + [(a0 + a1)(b0 + b1)− a0b0 − a1b1] · 2n + a1b1 · 22n. To
obtain (a0 + a1)(b0 + b1), two n-bit additions have to be carried out before the n-bit multiplication.
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3.2 Integer Multiplication
(8 × 1)-way Implementation. All (8× 1)-way prime-field arithmetic functions operate
on (8× 1)-way limb vector sets and were developed based on the “limb-slicing” approach
[CGT+21], which essentially duplicates a 1-way implementation to eight 64-bit elements
using AVX-512 instructions. The multiplication consists of one level of Karatsuba with
product scanning underneath because, according to our experiments, this combination is
faster than other techniques (e.g. basic operand scanning and product scanning) for all
four parameter sets of SIKE. Note that our implementation of the integer multiplication
does not involve a carry propagation, which reduces sequential dependencies among the
instructions (though carries are always propagated during Montgomery reduction).

(4 × 2)-way Implementation. Orisaka, Aranha, and López introduced in [OAL18] an
efficient (4× 2)-way AVX-512F implementation of Montgomery multiplication, which is
composed of integer multiplication, Montgomery reduction, and carry propagation. This
implementation operates on the (4× 2)-way limb vector sets we defined in the previous
subsection and uses the normal vpmuldq multiply instruction of AVX-512F but not the
two IFMA instructions. The integer multiplication part of this implementation is based
on the operand-scanning method. We developed our (4× 2)-way integer multiplication
following the approach of [OAL18] but replaced vpmuldq by IFMA instructions.

3.3 Montgomery Reduction
(8 × 1)-way Implementation. SIKE uses “SIDH-friendly” primes, which are a special
form of Montgomery-friendly primes and allow one to speed up the modular reduction
operation compared to general primes [CLN16]. The optimized Montgomery reduction
for a SIDH-friendly prime p = 2e23e3 − 1 is given in [CLN16, Algorithm 1] and exploits
the fact that the e2 least significant bits of p+ 1 are all 0 (i.e. p+ 1 is nothing else than
3e3 left-shifted by e2 bits). In other words, p+ 1 consists of many limbs that are 0 and
this makes it possible to save a large number of instructions compared to a conventional
Montgomery reduction. As already mentioned above, the reduction operation involves
a carry propagation to get a final result represented by 51-bit limbs.

(4 × 2)-way Implementation. The modular reduction part of the implementation from
[OAL18] is a (4× 2)-way version of conventional Montgomery reduction. We optimized
this implementation by applying the approach of [CLN16] and using IFMA instructions to
obtain our (4× 2)-way Montgomery reduction. In addition, a final carry propagation is
always performed after the Montgomery reduction to get a final result whose limbs are
sufficiently short. As already mentioned earlier, there is one limb vector (containing two
limbs of each field-element) in this final result that is one bit longer than the other limb
vectors, i.e. in our case 52 bits instead of 51 (see [OAL18, Algorithm 4] for details).

3.4 Results and Comparison
Table 1 shows the execution times of integer multiplication, Montgomery reduction, and
Montgomery multiplication of different implementations. As mentioned in Section 1, we
use the SIDHv3.4 x64 assembly library as baseline for comparisons. Since our software is
vectorized, the “cycles/instance” is a useful metric for us, and the speed-up ratio relates
a specific implementation with the baseline under this metric. The (8× 1)-way and the
(4 × 2)-way parallel integer multiplication is respectively 4.9 and 3.9 times faster than
SIDHv3.4. Regarding our parallel Montgomery reduction, the (8 × 1)-way version has
almost the same latency as the (4× 2)-way implementation, which means it is twice as
fast from the viewpoint of a single instance. This massive difference of speed-up factors
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Table 1: Experimental results of Fp-arithmetic operations for SIKEp503.

Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up

SIDHv3.4 x64 asm 1-way 1 100 100 1.00×Integer AvxSike AVX-512 (8× 1)-way 8 165 21 4.85×multiplication AvxSike AVX-512 (4× 2)-way 4 102 26 3.92×

SIDHv3.4 x64 asm 1-way 1 75 75 1.00×Montgomery AvxSike AVX-512 (8× 1)-way 8 144 18 4.17×reduction AvxSike AVX-512 (4× 2)-way 4 140 35 2.14×

SIDHv3.4 x64 asm 1-way 1 201 201 1.00×
Montgomery [KG19] AVX-512 hybrid 1 195 195 1.03×
multiplication AvxSike AVX-512 (8× 1)-way 8 302 38 5.32×

AvxSike AVX-512 (4× 2)-way 4 264 66 3.05×

(in relation to the integer multiplication) can be explained with sequential dependencies
in the (4× 2)-way Montgomery reduction and, as a consequence, lower instruction-level
parallelism compared to the (8 × 1)-way parallel version. Finally, when looking at the
results for the Montgomery multiplication, it is striking that the IFMA implementation
of Kostic and Gueron [KG19] is merely a few cycles faster than SIDHv3.4. According to
[KG19], their Montgomery multiplication combines a (1× 8)-way integer multiplication
using IFMA with an x64 assembly implementation of Montgomery reduction. Thus, it is
necessary to convert between radix-252 vectors and radix-264 large integers, which is an
obvious bottleneck of their software. Since the multiplication is vectorized, but not the
reduction, we can say that their software follows a hybrid implementation approach.

4 Quadratic Extension-Field Arithmetic
We first define an “(x× y × z)-way” parallel Fp2-arithmetic implementation: it performs
x Fp2-operations in parallel, whereby each of them executes y prime-field operations in
parallel, and each of the y prime-field operation uses z 64-bit elements of a vector. In all
algorithms of this section, the variable t denotes an integer having a similar length as an
element of Fp, whereas tt usually represents an integer of roughly twice the length of an
Fp-element; mod p stands for a Montgomery reduction modulo p, but as mentioned in
Section 3.1, the result is in the range of [0, 2p) and not always fully reduced; × denotes
an integer multiplication and + is an integer addition (except of Algorithm 5, where it is
a modular addition). Note that, for reasons of brevity and to have succinct pseudo-code
descriptions of algorithms, we do not distinguish between various (integer and modular)
subtractions, which are uniformly denoted as −, but the result of a subtraction is always
non-negative. We refer readers who are interested in the full details of the algorithms to
the source code of Microsoft’s SIDHv3.4 or our AvxSike.

4.1 Fp2-Multiplication
1-way Parallelization at Fp-level. In this implementation of a parallel Fp2-multiplica-
tion, each Fp2 -multiplication instance performs only one integer-arithmetic or prime-field
operation at a time. Formally, based on the above-defined (x× y × z)-way notation, we
have y = 1. For such a (x× 1× z)-way Fp2-multiplication, we use the same technique as
the SIDHv3.4 library, namely Karatsuba’s method. We explain this variant with a single
Fp2-multiplication instance in Algorithm 3. Unlike to SIDHv3.4, which can perform the
carry propagation through instructions like ADC, ADCX, and ADOX, our AVX-512 software
has to carefully handle the carry propagation. Since carry propagation normally causes
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Algorithm 3: Fp2 -multiplication with 1-way parallelization at Fp-level.
Input: Fp2 elements a = a0 + a1i and b = b0 + b1i.
Output: Fp2 element r = r0 + r1i = (a0b0 − a1b1) + [(a0 + a1)(b0 + b1)− a0b0 − a1b1]i.

1 t1 ← a0 + a1
2 t2 ← b0 + b1
3 tt1 ← a0 × b0
4 tt2 ← a1 × b1

5 tt3 ← t1 × t2
6 tt3 ← tt3 − tt1 − tt2
7 tt1 ← tt1 − tt2
8 r0 ← tt1 mod p

9 r1 ← tt3 mod p
10 return r = r0 + r1i

Algorithm 4: Fp2 -multiplication with 2-way parallelization at Fp-level.
Input: Fp2 elements a = a0 + a1i and b = b0 + b1i.
Output: Fp2 element r = r0 + r1i = (a0b0 − a1b1) + (a0b1 + a1b0)i.

1 tt1 ← a0 × b0 ss1 ← a0 × b1
2 tt2 ← a1 × b0 ss2 ← a1 × b1
3 tt3 ← tt1 − ss2 ss3 ← tt2 + ss1
4 r0 ← tt3 mod p r1 ← ss3 mod p
5 return r = r0 + r1i

strong instruction dependencies, it always requires more clock cycles than a basic limb
addition or subtraction. Algorithm 3 was designed to perform as few carry propagations
as possible; the integer multiplication does not involve a propagation of carries and the
subtractions at line 6 and 7 can “postpone” the carry propagations and integrate them
into the subsequent Montgomery reductions. Using the (8 × 1)-way Fp-arithmetic, we
developed an (8× 1× 1)-way Fp2 -multiplication via Algorithm 3, while the (4× 1× 2)-way
implementation is based on the (4× 2)-way Fp-arithmetic.

2-way Parallelization at Fp-level. In this variant (Algorithm 4), each Fp2 -multiplication
instance is internally parallelized in a 2-way fashion, namely each instance executes two
prime-field (or integer-arithmetic) operations simultaneously, i.e. y = 2 according to the
(x× y × z)-way notation from above. This variant uses the schoolbook method instead
of Karatsuba’s algorithm because it turned out that the latter is less efficient for 2-way
parallelization at the Fp-level. Compared to the (x× 1× z)-way Fp2-multiplication, this
2-way variant has fewer additions, subtractions, and carry propagations, but needs one
more multiplication at the Fp-level. Using (8× 1)-way and (4× 2)-way Fp arithmetic, we
developed a (4 × 2 × 1)-way and a (2 × 2 × 2)-way Fp2-multiplication, respectively. In
terms of a parallel Fp2-multiplication performing four instances, there are currently the
(4× 2× 1)-way and (4× 1× 2)-way options. Note that, although the former option does
not use Karatsuba at the Fp2-layer, its underlying (8 × 1)-way integer multiplication is
implemented with Karatsuba’s algorithm. On the other hand, the (4× 1× 2)-way option
uses Karatsuba at the Fp2 -layer, whereas the (4× 2)-way integer multiplication is simply
a vectorized schoolbook multiplication.

Algorithm 5: Fp2 -multiplication with 4-way parallelization at Fp-level.
Input: Fp2 elements a = a0 + a1i and b = b0 + b1i.
Output: Fp2 element r = r0 + r1i = (a0b0 − a1b1) + (a0b1 + a1b0)i.

1 tt1 ← a0 × b0 ss1 ← a0 × b1 tt2 ← a1 × b0 ss2 ← a1 × b1
2 t1 ← tt1 mod p s1 ← ss1 mod p t2 ← tt2 mod p s2 ← ss2 mod p
3 r0 ← t1 − s2 r1 ← t2 + s1

4 return r = r0 + r1i
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4-way Parallelization at Fp-level. Algorithm 5 illustrates our 4-way Fp2-multiplication
variant. Since the Fp2-multiplication using schoolbook involves four multiplications, it is
possible to execute them all in parallel. Performing the Montgomery reductions before
the operations at line 3 halves the length of the operands, which means the addition and
subtraction at line 3 are single-length operations and can use the fast reduction modulo
2p we briefly described in Section 3.1. For a parallel Fp2-multiplication performing two
instances, this 4-way variant could be used to develop a (2× 4× 1)-way implementation
based on the optimal (8× 1)-way prime-field operations.

4.2 Fp2-Squaring
A conventional squaring operation in Fp2 with the operand a = a0 + a1i is computed as
r = a2 = (a2

0 − a2
1) + 2a0a1i = r0 + r1i, which means two conventional integer squarings

and an integer multiplication are required. A classic optimization, which is also used in
SIDHv3.4, is to replace a2

0 − a2
1 by (a0 + a1)(a0 − a1), i.e. two squaring operations are

substituted by one multiplication. Since the conventional Fp2-squaring consists of three
integer multiplication (or squaring) operations, and the optimized version still involves
two integer multiplications, the 4-way variant for Fp2-squaring is not efficient. Thus, we
only present a 1-way and a 2-way variant for Fp2 -squaring, both of which take advantage
of the optimization described above.

1-way Parallelization at Fp-level. The (x × 1 × z)-way parallel Fp2 squaring is imple-
mented according to Algorithm 6. Using (8× 1)-way and (4× 2)-way Fp-arithmetic, we
developed a (8× 1× 1)-way and a (4× 1× 2)-way version of Fp2 -squaring, respectively.

Algorithm 6: Fp2 -squaring with 1-way parallelization at Fp-level.
Input: Fp2 element a = a0 + a1i.
Output: Fp2 element r = r0 + r1i = (a0 + a1)(a0 − a1) + 2a0a1i.

1 t1 ← a0 + a1
2 t2 ← a0 − a1
3 t3 ← a0 + a0

4 tt1 ← t1 × t2
5 tt2 ← t3 × a1
6 r0 ← tt1 mod p

7 r1 ← tt2 mod p
8 return r = r0 + r1i

2-way Parallelization at Fp-level. The 2-way variant for squaring in Fp2 is specified in
Algorithm 7, whereby a “perfect” parallelization is not possible at line 2. Based on this
algorithm, we developed (4× 2× 1)-way and (2× 2× 2)-way Fp2-squaring with our two
different implementations of the prime-field operations.

Algorithm 7: Fp2 -squaring with 2-way parallelization at Fp-level.
Input: Fp2 element a = a0 + a1i.
Output: Fp2 element r = r0 + r1i = (a0 + a1)(a0 − a1) + 2a0a1i.

1 t1 ← a0 + a1 s1 ← a0 + a0
2 t2 ← a0 − a1
3 tt1 ← t1 × t2 ss1 ← s1 × a1
4 r0 ← tt1 mod p r1 ← ss1 mod p
5 return r = r0 + r1i

4.3 Fp2-Addition and Subtraction
A vectorized implementation of Fp2-addition/subtraction is fairly straightforward. The
addition r = a+ b = (a0 + a1i) + (b0 + b1i) = (a0 + b0) + (a1 + b1)i = r0 + r1i in Fp2 is
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composed of two additions in Fp. Our (x× 2× z)-way implementation executes just the
two additions in parallel, while the (x× 1× z)-way version performs them sequentially one
after the other. The Fp2 -subtraction is vectorized in the same way.

4.4 Results and Comparison
The execution times of Fp2-multiplication and Fp2-squaring for SIKEp503 are shown in
Table 2. We used our “Ice Lake” CPU to measure the execution times of AvxSike and
the Microsoft SIDHv3.4 x64 assembly library, while the timings of Kostic and Gueron’s
IFMA implementation were taken from [KG19]. As explained in [KG19], they used the
schoolbook method instead of Karatsuba’s algorithm to develop their Fp2-multiplication
and Fp2-squaring in order to mitigate the overhead caused by conversions between the
radix-252 vector representation and the radix-264 big-integer representation. The results
in Table 2 show that our vectorized implementations are more efficient than [KG19] and
SIDHv3.4 when considering the “cycles/instance” metric. Furthermore, according to the
measured timings, the (4× 2× 1)-way version is faster than the (4× 1× 2)-way version
for both Fp2-multiplication and squaring, which means vectorization at the Fp-layer has
more impact on the performance than vectorization at the Fp2-layer. Furthermore, the
(2× 4× 1)-way Fp2-multiplication requires fewer cycles than the (2× 2× 2)-way version
because (8× 1)-way integer multiplication is much more efficient than (4× 2)-way, while
the two vectorized reduction variants have similar latency (see Table 1). However, there
is no (2× 4× 1)-way Fp2-squaring, which means we have to use the (2× 4× 1)-way Fp2-
multiplication also for squaring. As a result, when implementing curve arithmetic with
(2× y × z)-way Fp2-operations, the (2× 4× 1)-way version has faster Fp2-multiplication
(by 22 cycles) but slower Fp2 -squaring (by 30 cycles) than the (2× 2× 2)-way version. In
light of these results, we can not decide yet whether (2× 4× 1)-way or (2× 2× 2)-way is
the more efficient option for the higher layers (see Section 5 for further discussions).

Table 2: Experimental results of Fp2 -arithmetic implementations for SIKEp503.

Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up

SIDHv3.4 x64 asm 1-way 1 503 503 1.00×
[KG19] AVX-512 hybrid 1 282 282 1.78×

AvxSike AVX-512 (8× 1× 1)-way 8 900 113 4.47×Fp2 AvxSike AVX-512 (4× 2× 1)-way 4 570 143 3.53×Multiplication AvxSike AVX-512 (4× 1× 2)-way 4 684 171 2.94×
AvxSike AVX-512 (2× 2× 2)-way 2 439 220 2.29×
AvxSike AVX-512 (2× 4× 1)-way 2 395 198 2.55×

SIDHv3.4 x64 asm 1-way 1 427 427 1.00×
[KG19] AVX-512 hybrid 1 287 287 1.49×

Fp2 AvxSike AVX-512 (8× 1× 1)-way 8 666 83 5.13×
Squaring AvxSike AVX-512 (4× 2× 1)-way 4 380 95 4.49×

AvxSike AVX-512 (4× 1× 2)-way 4 576 144 2.97×
AvxSike AVX-512 (2× 2× 2)-way 2 307 168 2.78×

5 Montgomery Elliptic Curve Arithmetic
In this section, we define a “(w × x× y × z)-way” parallel Montgomery-curve arithmetic
implementation: it performs w curve operations (e.g. point doublings, point triplings) in
parallel, whereby each of them executes x Fp2 -operations simultaneously, and each of the
Fp2-operations performs y prime-field operations in parallel, and each of the prime-field
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operations uses z 64-bit elements of a vector. Further, given an elliptic curve E(A:C) in
Montgomery form, we define the three constants A+

24 = A+ 2C, A−24 = A− 2C, as well as
C24 = 4C, which are used in the isogeny computations and the point arithmetic.

5.1 Three-Point Ladder
SIKE uses the three-point ladder algorithm from [FLOR18] as standard way to compute
the kernel generator R← P + [k]Q. For each bit of the scalar k, this algorithm performs
a so-called Montgomery ladder step (xDBLADD), which essentially consists of a differential
point addition and a point doubling; both operations are carried out using (projective)
X and Z coordinates only, i.e. the Y -coordinate is not needed. The ladder step executes
a fixed operation (resp. instruction) sequence, which means the three-point ladder has
constant run-time. Various papers in the literature describe vectorized implementations
of the Montgomery ladder-step, focusing particularly on reducing the latency of X25519
key exchange [Ber06]. For example, [Cho16, FL15, FLD19] discuss how to vectorize the
Montgomery ladder-step in a 2-way fashion, while 4-way parallel implementations were
presented in [CS09, HEY20, NS20]. The benchmarking results in [NS20, Table 2] and in
[HEY20, Table 1] clearly indicate that the 4-way vectorized Montgomery ladder is more
efficient than the 2-way variant on both AVX2 and AVX-512, and hence we decided to
focus on the vectorization of the ladder-step for AvxSike-LL in 4-way fashion, or more
precisely, by adopting (1× 4× y × z)-way parallelization. In addition, Table 2 suggests
that the (4× 2× 1)-way Fp2 -operations are faster than the (4× 1× 2)-way versions, and
so we finally chose the (1× 4× 2× 1)-way implementation for the ladder-step.

In [NS20], Nath and Sarkar analyze in detail four different methods to vectorize the
Montgomery ladder step in 4–way fashion (one from [CS09], one from [HEY20], and two
developed by themselves) and compared in [NS20, Table 1] the operations that all these
methods have to perform. The methods presented in [CS09] and in [NS20] require three
4-way vectorized field-multiplications (resp. field-squarings), plus a special multiplication
by a small constant in each step of the ladder. This special multiplication computes the
product of a field-element and the coefficient of Curve25519, which is much faster than
a conventional field multiplication. However, for some scalar multiplications of SIKE, the
coefficient of the Montgomery curve is not a small constant but an element of Fp2 . As
a consequence, the vectorization of [CS09] and [NS20] will, in the case of SIKE, require
four vectorized Fp2-multiplication (or Fp2-squaring) operations. On the other hand, the
vectorization technique presented by Hisil, Egrice, and Yassi in [HEY20] needs only two
vectorized field multiplications and one vectorized field squaring in each ladder step (no
special multiplication by a small curve-constant is carried out). Thus, the vectorization
proposed in [HEY20] is the better choice for a low-latency SIKE implementation.

Based on the 4-way vectorization from [HEY20] and our (4 × 2 × 1)-way Fp2-opera-
tions, we developed a (1× 4× 2× 1)-way parallel ladder step for the latency-optimized
AvxSike-LL. In addition, to speed up the SIPKE encryption operation (Algorithm 15)
of AvxSike-LL, we implemented a (2× 4× 1× 1)-way ladder step for two simultaneous
scalar multiplications, which uses the efficient (8 × 1 × 1)-way Fp2-operations. For the
throughput-oriented AvxSike-HT software, we developed a (8× 1× 1× 1)-way parallel
ladder step according to the batched X25519 implementation described in [CGT+21].

5.2 Point Doubling and Tripling
Given a point P = (XP : ZP ) on the Montgomery curve E(A:C), we define the double
[2]P = (X[2]P : Z[2]P ) as:

X[2]P = C24(X2
P − Z2

P )2 and Z[2]P = 4XPZP

(
4A+

24XPZP + C24(XP − ZP )2) .
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Algorithm 8 shows our 2-way parallel implementation of the doubling operation. For the
tripling, we took advantage of a new formula that uses the value C24 instead of A−24 as in
the original xTPL function from the SIKE specification (Algorithm 6 in [JAC+20]) since
the latter is less efficient for 2-way vectorization. Given P = (XP : ZP ) on the curve
E(A:C), we compute the point [3]P = (X[3]P : Z[3]P ) via the formulae:

X[3]P = XP

[
C24

(
X2

P − Z2
P

)2 − 4Z2
P

(
4A+

24XPZP + C24(XP − ZP )2)]2

Z[3]P = ZP

[
C24

(
X2

P − Z2
P

)2 − 4X2
P

(
4A+

24XPZP + C24(XP − ZP )2)]2
.

The 2-way implementation of our point-tripling function is described in Algorithm 9.

Algorithm 8: XZ-coordinate point
doubling with 2-way parallelization at
Fp2 -level.

Input: P = (XP : ZP ), (A+
24 : C24).

Output: Q = [2]P = (XQ : ZQ).

1 t0 ← XP + ZP s0 ← XP − ZP

2 t1 ← t20 s1 ← s2
0

3 t0 ← t1 + s1 s0 ← t1 − s1

4 t2 ← C24 × s1 s2 ← A+
24 × s0

5 t3 ← t2 + s2
6 XQ ← t2 × t1 ZQ ← t3 × s0

7 return Q = (XQ : ZQ)

Algorithm 9: XZ-coordinate point
tripling with 2-way parallelization at
Fp2-level.

Input: P = (XP : ZP ), (A+
24 : C24).

Output: Q = [3]P = (XQ : ZQ).

1 t0 ← XP + ZP s0 ← XP − ZP

2 t1 ← t20 s1 ← s2
0

3 t0 ← XP +XP s0 ← t1 − s1
4 t2 ← t1 + t1 s2 ← s0 + s0

5 t3 ← C24 × s1 s3 ← A+
24 × s0

6 t0 ← t3 × t1 s0 ← t0 × t0
7 t1 ← t2 + t2 s1 ← s0 + s2
8 t3 ← t3 + s3 s3 ← t1 − s1
9 t4 ← s3 × t3 s4 ← s0 × t3

10 t4 ← t0 − t4 s4 ← t0 − s4
11 t4 ← t24 s4 ← s2

4
12 XQ ← XP × t4 ZQ ← ZP × s4

13 return Q = (XQ : ZQ)

5.3 Isogeny Generation
Recall that in SIKE the 2e2-isogeny and the 3e3-isogeny are computed as a composition
of 4-isogenies and 3-isogenies, respectively. Given a point R4 = (X4 : Z4) of order 4 on
E(A:C), a 4-isogeny φ4 :E(A:C)→E(A′:C′) is constructed with kerφ4 = 〈R4〉. Algorithm 10
describes our 2-way implementation of such a 4-isogeny computation. This algorithm
outputs the two parameters A+

24 = A′ + 2C ′ and C24 = 4C ′ that define the target curve
E(A′:C′) (where A+

24 = 4X4
4 , C24 = 4Z4

4 ) and the values K0 = 4Z2
4 , K1 = X4 − Z4, and

K2 = X4 + Z4, which are used when evaluating the 4-isogeny φ4 at a point. When the
point R3 = (X3 : Z3) on E(A:C) is of order 3, a 3-isogeny φ3 : E(A:C) → E(A′:C′) has to
be constructed with kerφ3 = 〈R3〉. Algorithm 11 shows our 2-way implementation of the
function to compute an isogeny of degree 3. The 3-isogeny generation algorithm outputs
the values A+

24 = A′ + 2C ′, C24 = 4C ′6 that define the target curve E(A′:C′), namely:

A+
24 = (3X2

3 − 2X3Z3 − Z2
3 )(3X3 + Z3)2 and C24 = −16X3Z

3
3 .

The algorithm also outputs the constants K1 = X3 −Z3 and K2 = X3 +Z3, which will be
used in the evaluation of a 3-isogeny at a point.

6The 3-isogeny generation algorithm in the SIKE specification (Algorithm 15 in [JAC+20]) originally
outputs A−24. Our formula outputs C24 instead of A−24 since our point tripling takes C24 as input.
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Algorithm 10: 4-isogeny computation
with 2-way parallelization at Fp2-level.

Input: P4 = (X4 : Z4).
Output: (A+

24 : C24), (K0 : K1 : K2).

1 K2 ← X4 + Z4 K1 ← X4 − Z4
2 t0 ← Z2

4 s0 ← X2
4

3 t0 ← t0 + t0 s0 ← s0 + s0

4 C24 ← t20 A+
24 ← s2

0
5 K0 ← t0 + t0
6 return (A+

24 : C24), (K0 : K1 : K2)

Algorithm 11: 3-isogeny computation
with 2-way parallelization at Fp2 -level.

Input: P3 = (X3 : Z3).
Output: (A+

24 : C24), (K1 : K2).

1 K2 ← X3 + Z3 K1 ← X3 − Z3
2 t0 ← K2

2 s0 ← K2
1

3 t1 ← X3 +X3 s1 ← s0 − t0
4 t2 ← t21 s2 ← Z2

3
5 t1 ← t2 + t2 s1 ← s1 + s1
6 t3 ← t1 − s1 s3 ← s2 + s2
7 t4 ← t3 + s0 s4 ← t2 − t0
8 C24 ← s1 × s3 A+

24 ← t4 × s4

9 return (A+
24 : C24), (K1 : K2)

5.4 Isogeny Evaluation
Let φ4 : E(A:C) → E(A′:C′) be a 4-isogeny with kernel kerφ4 = 〈(X4 : Z4)〉 and let the
point P = (XP : ZP ) be on curve E(A:C). Then, the point P ′ = φ4(P ) = (XP ′ : ZP ′) is
derived after the evaluation of the 4-isogeny φ4 at P and defined as:

XP ′ = 16
(
(X4XP − Z4ZP )2 + Z2

4 (X2
P − Z2

P )
)

(X4XP − Z4ZP )2

ZP ′ = 16
(
(X4ZP − Z4XP )2 − Z2

4 (X2
P − Z2

P )
)

(X4ZP − Z4XP )2

Our 2-way implementation for the 4-isogeny evaluation is specified in Algorithm 12. In
the case of 3-isogeny, let φ3 : E(A:C) → E(A′:C′) with kernel kerφ3 = 〈(X3 : Z3)〉 and
P = (XP : ZP ) be a point on curve E(A:C). Then, the image of P under the 3-isogeny
φ3 is a point P ′ = φ3(P ) = (XP ′ : ZP ′) such that:

XP ′ = 4XP (X3XP − Z3ZP )2 and ZP ′ = 4ZP (X3ZP − Z3XP )2
. (3)

The 2-way implementation of the 3-isogeny evaluation is presented in Algorithm 13.

Algorithm 12: 4-isogeny evaluation
with 2-way parallelization at Fp2-level.

Input: P = (XP : ZP ), (K0 : K1 : K2).
Output: P ′ = φ4(P ) = (XP ′ : ZP ′ ).

1 t0 ← XP + ZP s0 ← XP − ZP

2 t1 ← K1 × t0 s1 ← t0 × s0
3 t2 ← K2 × s0 s2 ← K0 × s1
4 t0 ← t2 + t1 s0 ← t2 − t1
5 t0 ← t20 s0 ← s2

0
6 t1 ← t0 + s2 s1 ← s0 − s2
7 XP ′ ← t1 × t0 ZP ′ ← s1 × s0

8 return (XP ′ : ZP ′ )

Algorithm 13: 3-isogeny evaluation
with 2-way parallelization at Fp2 -level.

Input: P = (XP : ZP ), (K1 : K2).
Output: P ′ = φ3(P ) = (XP ′ : ZP ′ ).

1 t0 ← XP + ZP s0 ← XP − ZP

2 t0 ← K1 × t0 s0 ← K2 × s0
3 t1 ← t0 + s0 s1 ← t0 − s0
4 t1 ← t21 s1 ← s2

1
5 XP ′ ← XP × t1 ZP ′ ← ZP × s1

6 return (XP ′ : ZP ′ )

5.5 Results and Comparison
Because of dependencies among the involved operations, our AvxSike-LL only requires
a (1× x× y × z)-way implementation of the point tripling and 3-isogeny generation. On
the other hand, for the doubling operation and 4-isogeny generation, we can besides the
(1× x× y × z)-way implementation also use a (2× x× y × z)-way implementation in an
optimized version of SIPKE encryption (see Algorithm 15). Table 3 indicates that the
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(1× 2× 2× 2)-way point-operations outperform their (1× 2× 4× 1)-way counterparts
by a few clock cycles. In addition, the 4-isogeny computation (Algorithm 10) just uses
Fp2 -squaring but not Fp2 -multiplication and, therefore, the (1× 2× 4× 1)-way version is
clearly not efficient in this case. As a result, we chose (1× 2× 2× 2)-way parallelism to
implement all the (1× x× y × z)-way operations for the curve arithmetic. According to
Table 4, the difference (in terms of cycles/instance) between the (8× 1× 1× 1)-way and
the (4× 2× 1× 1)-way parallelism is rather small. Both of these parallelization options
are much more efficient than the (2× 2× 2× 1)-way and (1× 2× 2× 2)-way versions.

Table 3: Experimental results of point-operation implementations for SIKEp503.

Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up
SIDHv3.4 x64 asm 1-way 1 5056 5056 1.00×Ladder AvxSike AVX-512 (8× 1× 1× 1)-way 8 9417 1177 4.30×step AvxSike AVX-512 (2× 4× 1× 1)-way 2 2880 1440 3.51×(xDBLADD) AvxSike AVX-512 (1× 4× 2× 1)-way 1 1757 1757 2.88×
SIDHv3.4 x64 asm 1-way 1 2873 2873 1.00×
[KG19] AVX-512 hybrid 1 1782 1782 1.61×Point AvxSike AVX-512 (8× 1× 1× 1)-way 8 5052 632 4.55×doubling AvxSike AVX-512 (2× 2× 2× 1)-way 2 1660 830 3.46×(xDBL) AvxSike AVX-512 (1× 2× 2× 2)-way 1 1273 1273 2.26×

AvxSike AVX-512 (1× 2× 4× 1)-way 1 1319 1319 2.18×
SIDHv3.4 x64 asm 1-way 1 5794 5794 1.00×

Point [KG19] AVX-512 hybrid 1 3527 3527 1.64×
tripling AvxSike AVX-512 (8× 1× 1× 1)-way 8 10063 1258 4.61×
(xTPL) AvxSike AVX-512 (1× 2× 2× 2)-way 1 2730 2730 2.12×

AvxSike AVX-512 (1× 2× 4× 1)-way 1 2745 2745 2.11×

Table 4: Experimental results of isogeny-operation implementations for SIKEp503.

Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up
SIDHv3.4 x64 asm 1-way 1 1729 1729 1.00×

4-isogeny [KG19] AVX-512 hybrid 1 1379 1379 1.25×
generation AvxSike AVX-512 (8× 1× 1× 1)-way 8 3113 389 4.44×

(get_4_isog) AvxSike AVX-512 (2× 2× 2× 1)-way 2 843 422 4.10×
AvxSike AVX-512 (1× 2× 2× 2)-way 1 673 673 2.57×
SIDHv3.4 x64 asm 1-way 1 3852 3852 1.00×
[KG19] AVX-512 hybrid 1 2292 2292 1.68×4-isogeny AvxSike AVX-512 (8× 1× 1× 1)-way 8 6925 866 4.45×evaluation AvxSike AVX-512 (4× 2× 1× 1)-way 4 3569 892 4.32×(eval_4_isog) AvxSike AVX-512 (2× 2× 2× 1)-way 2 2289 1145 3.36×

AvxSike AVX-512 (1× 2× 2× 2)-way 1 1858 1858 2.07×
SIDHv3.4 x64 asm 1-way 1 2783 2783 1.00×3-isogeny [KG19] AVX-512 hybrid 1 2011 2011 1.38×generation AvxSike AVX-512 (8× 1× 1× 1)-way 8 4508 564 4.93×(get_3_isog) AvxSike AVX-512 (1× 2× 2× 2)-way 1 1350 1350 2.06×
SIDHv3.4 x64 asm 1-way 1 2893 2893 1.00×
[KG19] AVX-512 hybrid 1 1628 1628 1.78×3-isogeny AvxSike AVX-512 (8× 1× 1× 1)-way 8 5130 641 4.51×evaluation AvxSike AVX-512 (4× 2× 1× 1)-way 4 2651 663 4.36×(eval_3_isog) AvxSike AVX-512 (2× 2× 2× 1)-way 2 1521 761 3.80×

AvxSike AVX-512 (1× 2× 2× 2)-way 1 1235 1235 2.34×
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6 Higher Layers
6.1 Low-Latency Implementation
All functions in Algorithm 1 and 2 contain two types of costly operations, namely the
computation of the kernel generator R← P + [k]Q and the generation/evaluation of the
`e`-isogeny for ` ∈ {2, 3}. The former is performed using the three-point ladder, whose
efficient four-way vectorization has been explained in Section 5.1. On the other hand, as
discussed in Section 2.2, SIKE takes advantage of the optimal strategies from [DJP14] to
reduce the execution time of the `e`-isogeny generation and evaluation (these algorithms
for ` ∈ {2, 3} are analyzed in detail in the SIKE specification, see [JAC+20, Algorithm 19
and 20]).

Algorithm 14: Vectorized isogeny2 in SIKEp503 using the optimal strategies.
Input: Curve EA, public parameter e2, point (XR, ZR), and a strategy (s1, . . . , se2/2−1).
Output: Curve EB such that φ2 : EA → EB with deg φ2 = 2e2 , kerφ2 = 〈(XR : ZR)〉.

1 pts ← [ ], i← 0, EB ← EA, k ← 1
2 for j from 1 to e2/2− 1 by 1 do
3 while i < e2/2− j do
4 push(XR, ZR, i) to pts // Append it to the end of pts
5 e← sk

6 (XR, ZR)← xDBLe_1x2x2x2w(XR, ZR, EB , 2e) // [22e]R
7 i← i+ e, k ← k + 1
8 EB , φ← get_4_isog_1x2x2x2w(XR, ZR) // 4-isogeny generation
9 pts ← eval_4_isog_parallel(φ, pts) // Parallel 4-isogeny evaluation

10 pop(XS , ZS , iS) from pts // Remove it from the end of pts
11 XR ← XS , ZR ← ZS , i← iS

12 EB , φ← get_4_isog_1x2x2x2w(XR, ZR) // 4-isogeny generation
13 return EB

Vectorized `e`-isogeny Computation and Evaluation. We pick the 2e2-isogeny case as
example to demonstrate our vectorized implementation (note that the 3e3 -isogeny can be
vectorized in a very similar fashion). It is common practice that, when e2 is even, the
2e2-isogeny is computed as the composition of e2/2 isogenies of degree 4, while an extra
isogeny of degree 2 needs to be computed when e2 is odd. The 2e2-isogeny generation
for even e2 is described in Algorithm 14. Because of dependencies among the operations
in each iteration, we choose the (1× 2× 2× 2)-way parallel point doubling7 to compute
the kernel [22e]R of the 4-isogeny, and the (1 × 2 × 2 × 2)-way 4-isogeny generation to
obtain the coefficients of the target curve. The vector (s1, . . . , se2/2−1) denotes the tree
traversal strategy used for fast isogeny computations. These strategies are described in
[JAC+20, Appendix D] for the four parameter sets of our SIKE implementation. On the
other hand, for the 4-isogeny evaluation at different points in the pts queue, we decided
to develop a dedicated eval_4_isog_parallel function to achieve a fast simultaneous
isogeny evaluation, which uses the more efficient (8× 1× 1× 1)-way and (4× 2× 1× 1)-
way parallel implementations. This function checks at first the number of points in the
pts queue and then uses the different vectorized implementations of 4-isogeny evaluation
(i.e eval_4_isog) with corresponding points in pts to handle the computation8:

7(XQ, ZQ) ←xDBLe(XP , ZP , E, n) denotes computing Q ← [2n]P on curve E by using n times the
point-doubling operation xDBL.

8Note that the number of points in the pts queue (i.e. #pts) is public information. Hence, using the
different vectorized 4-isogeny evaluation implementations does not leak any secrets.
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#pts = 1 : (1× 2× 2× 2)-way #pts = 5 : (4× 2× 1× 1)-way + (1× 2× 2× 2)-way
#pts = 2 : (2× 2× 2× 1)-way #pts = 6 : (4× 2× 1× 1)-way + (2× 2× 2× 1)-way
#pts = 3 : (4× 2× 1× 1)-way #pts = 7 : (8× 1× 1× 1)-way
#pts = 4 : (4× 2× 1× 1)-way #pts = 8 : (8× 1× 1× 1)-way

Optimized SIKE Encapsulation. Even at the highest layer of SIKE, there are options
to parallelize some internal operations. For example, we managed to further optimize
the Encaps operation by parallelizing two scalar multiplications (computed with the same
scalar sk2) and parallelizing two 2e2 -isogeny generation and evaluation operations, which
are denoted as isogeny2 in our optimized Enc function for SIPKE that is described in
Algorithm 15. As stated in Section 5.1, the kernel generator in AvxSike-LL is obtained
with help of the (1× 4× 2× 1)-way three-point ladder. However, Algorithm 15 computes
in line 2 two kernel generators simultaneously, and therefore it is possible to use a more
efficient ladder, namely the (2× 4× 1× 1)-way vectorized version. More importantly, in
line 3, the algorithm performs two 2e2-isogeny generation and evaluation operations in
parallel, which makes it possible to use the (2× 2× 2× 1)-way implementation for the
point doubling and 4-isogeny generation instead of the (1× 2× 2× 2)-way version. This
will lead to a significant difference in performance because the underlying Fp-arithmetic
implementation changes from (4× 2)-way to (8× 1)-way. According to our results, the
optimized SIPKE encryption in Algorithm 15 improves the speed of a SIKE encapsulation
by around 27% compared to the straightforward version of Enc (i.e. Algorithm 1).

Algorithm 15: The optimized SIPKE encryption operation.
1 function EncOpt(pk3,m ∈M, sk2 ∈ K2)
2 xR2 ← xP2 + [sk2]xQ2 x′R2 ← φ3(xP2 ) + [sk2]φ3(xQ2 )
3 (φ2, E2)← isogeny2(E0, xR2 ) (φ′2, E32)← isogeny2(E3, x

′
R2 )

4 c1 ← (φ2(xP3 ), φ2(xQ3 ), φ2(xP Q3 ))
5 h← SHAKE256(j(E32))
6 c2 ← h⊕m
7 return (c1, c2)

6.2 High-Throughput Implementation
Since constant-time SIKE executes a fixed operation sequence, a batched implementation
using AVX-512 is fairly easy to develop. We modified the SIDHv3.4 x64 implementation
by using our (8 × 1 × 1 × 1)-way curve arithmetic, (8 × 1 × 1)-way Fp2-operations, and
(8× 1)-way Fp-operations at the different layers. We also developed a (8× 1× 1× 1)-way
version of some other subroutines of AvxSike-HT, most notably the computation of the
j-invariant (j_inv) and the curve coefficient (get_A), as well as a 3-way simultaneous
inversion (inv_3_way), which takes advantage of the (8× 1)-way Fp-inversion.

Parallel SHAKE256. As explained in Section 2, the hash function used by SIKE is an
XOF, namely SHAKE256, which employs the Keccak permutation. For AvxSike-HT, we
developed a batched SHAKE256 implementation based on AVX-512 instructions that can
process eight inputs independently and in parallel. The eXtended Keccak Code Package
(XKCP) contains various Keccak-related software artifacts, including highly-optimized
implementations of the Keccak permutation for two generations of AVX, namely AVX2
and AVX-5129. Sinha Roy showed in [Sin19] that the AVX2-based Keccak source code
from XKCP can serve as a starting point to build a batched SHAKE256 implementation
capable to process four inputs simultaneously, each using a 64-bit slot of a 256-bit AVX2

9https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600-times8/AVX512

https://github.com/XKCP/XKCP/tree/master/lib/low/KeccakP-1600-times8/AVX512
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vector. We followed Sinha Roy’s idea and used the AVX-512 implementation of Keccak
from the XKCP to batch SHAKE256 with AVX-512 instructions.

7 Experimental Results
Table 5 shows the cycle counts for the different SIKEp503 implementations. The timings
for SIDHv3.4 and AvxSike are measured on our target Ice Lake CPU, while the results
for the implementation reported in [KG19] are taken from the paper. As the first three
implementations in Table 5 are designed to reduce the latency, we can compare them in
terms of speed, while AvxSike-HT aims at increasing throughput and, thus, it makes
sense to compare it with SIDHv3.4 in terms of throughput. Regarding key generation
and decapsulation, AvxSike-LL is about 2.5 times faster than SIDHv3.4 and outperforms
the implementation of [KG19] by a factor of 1.5. Furthermore, due to our optimizations
for encapsulation (see Section 6.1), AvxSike-LL reaches a 3.2-fold higher encapsulation
speed compared to SIDHv3.4, which can be beneficial for e.g. server-side TLS processing
since, when SIKE is integrated into TLS, the server has to perform encapsulations. TLS
servers could profit even more from our high-throughput AvxSike-HT implementation
because it outperforms SIDHv3.4 throughput-wise by a factor of almost 4.6.

Table 5: Execution times (in cycles) of implementations of SIKEp503 on an Intel Core
i3-1005G1 processor. The cycle-counts for SIDHv3.4, Kostic-Gueron’s work [KG19], and
AvxSike-LL are for the execution of one instance of an operation and “Speed-up” is the
speed-up factor compared to SIDHv3.4. The cycle-counts for AvxSike-HT are for the
execution of eight instances of an operation and “Throughput” is the throughput gain
compared to SIDHv3.4 when it executes eight instances.

SIDHv3.4 Kostic [KG19] AvxSike-LL AvxSike-HT
Operation (1 instance) (1 instance) (1 instance) (8 instances)

Cycles Cycles Speed-up Cycles Speed-up Cycles Throughput

KeyGen 8,078,669 4,842,909 1.67× 3,215,375 2.51× 14,179,026 4.56×
Encaps 13,188,788 7,923,514 1.66× 4,111,650 3.21× 22,992,807 4.59×
Decaps 14,026,750 8,513,409 1.65× 5,715,005 2.45× 24,619,263 4.56×

An x64 implementation of SIKE executed on an Ice Lake Core has to use one single
(64 × 64 → 128)-bit multiplier sequentially, whereas AVX-512IFMA is able to perform
eight parallel (52× 52 + 64→ 64)-bit multiply-add operations. But this does not mean
that IFMA instructions can lead to an (almost) eight-fold performance gain, not even in
theory. Though the IFMA engine can carry out eight element-wise multiplications simul-
taneously, various other architectural and micro-architectural features and effects have to
be considered, e.g. different multiplier widths (52 vs. 64 bits), different carry chains and
other sequential dependencies, different instruction latencies and throughputs, as well as
differences in the register space and occupation10. For all these reasons, the theoretical
speed-up factor of an IFMA implementation compared to an x64 implementation like
SIDHv3.4 is far from eight and very difficult to estimate. Kostic and Gueron focused in
[KG19] on optimizing the Fp and Fp2 layer of SIKE, especially the multiplication of field
elements, using AVX-512IFMA and achieved a reduction of the overall execution time
by a factor of roughly 1.7 (these results still represent the speed record for SIKE on an
Intel CPU). On the other hand, AvxSike takes advantage of sophisticated vectorization
of the higher layers of SIKE, in addition to notably more efficient vectorized prime-field

10The SIDHv3.4 library uses a full-radix representation (64 bits/limb) for field elements, which enables
a 100% occupation of the registers (except for the register with the highest limb), while our 51 bits/limb
representation implies that around 20% of each 64-bit element of an AVX-512 register is empty.
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Table 6: Execution times (in cycles) of implementations of SIKEp434, SIKEp610, and
SIKEp751 on an Intel Core i3-1005G1 processor. The cycle-counts for SIDHv3.4 and
AvxSike-LL are for the execution of one instance of an operation and “Speed-up” is the
speed-up factor compared to SIDHv3.4. The cycle-counts for AvxSike-HT are for the
execution of eight instances of an operation and “Throughput” is the throughput gain
compared to SIDHv3.4 when it executes eight instances.

SIDHv3.4 AvxSike-LL AvxSike-HT
Scheme Operation (1 instance) (1 instance) (8 instances)

Cycles Cycles Speed-up Cycles Throughput

KeyGen 5,976,700 2,474,187 2.42× 10,442,609 4.58×
SIKEp434 Encaps 9,690,764 3,062,491 3.16× 16,801,041 4.61×

Decaps 10,357,218 4,341,099 2.39× 18,053,398 4.59×

KeyGen 14,096,085 6,918,618 2.04× 32,172,538 3.51×
SIKEp610 Encaps 25,875,968 10,001,282 2.59× 58,747,976 3.52×

Decaps 26,040,095 13,124,052 1.98× 59,103,361 3.52×

KeyGen 23,843,419 10,212,410 2.33× 46,662,723 4.09×
SIKEp751 Encaps 38,446,643 12,804,923 3.00× 74,885,499 4.11×

Decaps 41,368,995 17,834,974 2.32× 80,684,214 4.10×

arithmetic. Thanks to careful optimizations at the higher layers, AvxSike-LL reaches
1.5 times faster execution times for both key generation and decapsulation compared to
[KG19] (see Table 5). Furthermore, the encapsulation is almost two times faster.

The benchmarking results of Microsoft’s SIDHv3.4 and AvxSike for the other three
parameter sets are given in Table 6. When analyzing the cycle counts achieved by the
low-latency version AvxSike-LL, it is apparent that the speed-up factors (in relation to
SIDHv3.4) for SIKEp434 and SIKEp751 are similar to the speed-up for SIKEp503, though
a bit smaller. This reduced performance gain can be explained by the number of limbs
needed for the elements of a 434-bit and 751-bit prime field, respectively. Namely, due to
the radix-251 representation, the number of limbs is odd in both the 434-bit case (nine
limbs) and the 751-bit case (15 limbs), whereas it is even for the 503-bit field. An odd
number of limbs is not ideal for the structure of (4× 2)-way limb vector set (since there
are four elements unused in the last limb vector) and causes an “underutilization” of the
parallelism in many of the executed AVX-512 vector instructions. Furthermore, also the
register allocation (i.e. how many operands and results can be kept in registers) impacts
the overall performance, which, in turn, depends on the length of the field elements. In
general, the larger the order of the underlying prime field, the more difficult it becomes
to keep operands in the register file and the more register spills will happen in both the
low-latency and the high-throughput version, respectively. While the speed-up factors
for SIKEp434 and SIKEp751 are only marginally smaller than that for SIKEp503, it turns
out that the gap between SIKEp610 and SIKEp503 is bigger. Even though the elements
of a 610-bit field can be represented by an even number of limbs (51× 12 = 612), there
are only two bits of “headroom” in this representation, which is not ideal with respect to
lazy reduction. Concretely, when using the SIKEp610 parameters, a number of additional
modular reductions have to be carried out to prevent overflows, which impacts both the
low-latency version and the high-throughput version of AvxSike.

8 Conclusions
Vector processing engines like Intel’s AVX offer a great potential to reduce the execution
time (or increase the throughput) of public-key cryptosystems, and this is also the case
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for post-quantum KEMs such as SIKE. The AVX-512IFMA instructions deserve special
attention because they allow one to execute eight multiplications of 52-bit operands in
parallel, followed by a parallel addition of the upper or lower halves of the products to
eight 64-bit operands. By developing sophisticated vector processing techniques for field
arithmetic, point arithmetic, and isogeny computations, all of which are integrated into
our AvxSike software, we were able to significantly improve both the latency and the
throughput of SIKE on modern Intel processors. For example, AvxSike-LL instantiated
with the SIKEp503 parameters is about 1.5 times faster than the AVX-512IFMA-based
SIKE implementation described in [KG19] and outperforms Microsoft’s highly-optimized
SIDHv3.4 library by a factor of roughly 2.5 for key generation and decapsulation, while
the speed-up factor for the encapsulation reaches even 3.2. In summary, AvxSike does
not only set new software speed and throughput records for SIKE on Intel CPUs, but also
narrows the gap between SIKE and lattice-based post-quantum KEMs, mainly because
the IFMA instructions are more beneficial for the multiplication in prime fields than the
multiplication in the polynomial rings of e.g. NTRU, Kyber, or Saber.

We envision that follow-up work in two directions can yield interesting results. The
first direction concerns the integration of AvxSike into an existing SSL/TLS protocol
stack like OpenSSL to evaluate the impact of the latency-optimized implementation on
the side of the client and the impact of the throughput-optimized implementation on the
server side. In particular, it would be interesting to figure out to what extent the speed
and throughput improvements of AvxSike propagate up to the protocol layer. A second
research direction could target the question of how beneficial the presented vectorization
techniques can be for compressed SIKE. For example, the public-key compression process
described in [JAC+20] requires the execution of some very expensive operations, such as
pairing and discrete logarithm computations over Fp2 . Since these operations constitute
the main bottleneck in the compression algorithm, it can be expected that utilizing the
parallel processing power of AVX-512IFMA has the potential to significantly accelerate
the overall execution of compressed SIKE.
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Table 7: Benchmarking results of Fp-arithmetic operations.

Scheme Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up
SIDHv3.4 x64 asm 1-way 1 82 82 1.00×Integer AvxSike AVX-512 (8× 1)-way 8 130 16 5.05×multiplication AvxSike AVX-512 (4× 2)-way 4 91 23 3.60×
SIDHv3.4 x64 asm 1-way 1 60 60 1.00×

SIKEp434 Montgomery AvxSike AVX-512 (8× 1)-way 8 112 14 4.29×reduction AvxSike AVX-512 (4× 2)-way 4 128 32 1.88×
SIDHv3.4 x64 asm 1-way 1 169 169 1.00×Montgomery AvxSike AVX-512 (8× 1)-way 8 276 35 4.90×multiplication AvxSike AVX-512 (4× 2)-way 4 231 58 2.93×
SIDHv3.4 x64 asm 1-way 1 131 131 1.00×Integer AvxSike AVX-512 (8× 1)-way 8 255 32 4.11×multiplication AvxSike AVX-512 (4× 2)-way 4 143 36 3.66×
SIDHv3.4 x64 asm 1-way 1 117 117 1.00×

SIKEp610 Montgomery AvxSike AVX-512 (8× 1)-way 8 201 25 4.66×reduction AvxSike AVX-512 (4× 2)-way 4 188 47 2.49×
SIDHv3.4 x64 asm 1-way 1 297 297 1.00×Montgomery AvxSike AVX-512 (8× 1)-way 8 412 52 5.77×multiplication AvxSike AVX-512 (4× 2)-way 4 342 86 3.47×
SIDHv3.4 x64 asm 1-way 1 202 202 1.00×Integer AvxSike AVX-512 (8× 1)-way 8 365 46 4.43×multiplication AvxSike AVX-512 (4× 2)-way 4 241 60 3.35×
SIDHv3.4 x64 asm 1-way 1 149 149 1.00×

SIKEp751 Montgomery AvxSike AVX-512 (8× 1)-way 8 296 37 4.03×reduction AvxSike AVX-512 (4× 2)-way 4 342 86 1.74×
SIDHv3.4 x64 asm 1-way 1 425 425 1.00×Montgomery AvxSike AVX-512 (8× 1)-way 8 692 87 4.91×multiplication AvxSike AVX-512 (4× 2)-way 4 570 143 2.98×

Table 8: Benchmarking results of Fp2 -arithmetic implementations.

Scheme Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up
SIDHv3.4 x64 asm 1-way 1 408 408 1.00×

Fp2 AvxSike AVX-512 (8× 1× 1)-way 8 763 95 4.28×
Multiplication AvxSike AVX-512 (4× 2× 1)-way 4 493 123 3.31×

AvxSike AVX-512 (2× 2× 2)-way 2 398 199 2.05×
SIKEp434 SIDHv3.4 x64 asm 1-way 1 356 356 1.00×

Fp2 AvxSike AVX-512 (8× 1× 1)-way 8 614 77 4.64×
Squaring AvxSike AVX-512 (4× 2× 1)-way 4 368 92 3.87×

AvxSike AVX-512 (2× 2× 2)-way 2 281 141 2.53×
SIDHv3.4 x64 asm 1-way 1 735 735 1.00×

Fp2 AvxSike AVX-512 (8× 1× 1)-way 8 1894 237 3.10×
Multiplication AvxSike AVX-512 (4× 2× 1)-way 4 1099 275 2.68×

AvxSike AVX-512 (2× 2× 2)-way 2 812 406 1.81×
SIKEp610 SIDHv3.4 x64 asm 1-way 1 583 583 1.00×

Fp2 AvxSike AVX-512 (8× 1× 1)-way 8 1184 148 3.94×
Squaring AvxSike AVX-512 (4× 2× 1)-way 4 714 179 3.27×

AvxSike AVX-512 (2× 2× 2)-way 2 559 280 2.09×
SIDHv3.4 x64 asm 1-way 1 954 954 1.00×

Fp2 AvxSike AVX-512 (8× 1× 1)-way 8 1997 250 3.82×
Multiplication AvxSike AVX-512 (4× 2× 1)-way 4 1277 319 2.99×

AvxSike AVX-512 (2× 2× 2)-way 2 940 470 2.03×
SIKEp751 SIDHv3.4 x64 asm 1-way 1 762 762 1.00×

Fp2 AvxSike AVX-512 (8× 1× 1)-way 8 1433 179 4.25×
Squaring AvxSike AVX-512 (4× 2× 1)-way 4 768 192 3.97×

AvxSike AVX-512 (2× 2× 2)-way 2 628 314 2.43×
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Table 9: Benchmarking results of implementations of point operations.

Scheme Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up
SIDHv3.4 x64 asm 1-way 1 4413 4413 1.00×Ladder AvxSike AVX-512 (8× 1× 1× 1)-way 8 8289 1036 4.26×step AvxSike AVX-512 (2× 4× 1× 1)-way 2 2462 1231 3.58×(xDBLADD) AvxSike AVX-512 (1× 4× 2× 1)-way 1 1518 1518 2.91×
SIDHv3.4 x64 asm 1-way 1 2432 2432 1.00×

SIKEp434 Point AvxSike AVX-512 (8× 1× 1× 1)-way 8 4359 545 4.46×doubling AvxSike AVX-512 (2× 2× 2× 1)-way 2 1444 722 3.37×(xDBL) AvxSike AVX-512 (1× 2× 2× 2)-way 1 1153 1153 2.11×
Point SIDHv3.4 x64 asm 1-way 1 4867 4867 1.00×
tripling AvxSike AVX-512 (8× 1× 1× 1)-way 8 8805 1101 4.42×
(xTPL) AvxSike AVX-512 (1× 2× 2× 2)-way 1 2485 2485 1.96×

SIDHv3.4 x64 asm 1-way 1 7292 7292 1.00×Ladder AvxSike AVX-512 (8× 1× 1× 1)-way 8 17556 2195 3.32×step AvxSike AVX-512 (2× 4× 1× 1)-way 2 5277 2639 2.76×(xDBLADD) AvxSike AVX-512 (1× 4× 2× 1)-way 1 3225 3225 2.26×
SIDHv3.4 x64 asm 1-way 1 4102 4102 1.00×

SIKEp610 Point AvxSike AVX-512 (8× 1× 1× 1)-way 8 9436 1180 3.48×doubling AvxSike AVX-512 (2× 2× 2× 1)-way 2 3007 1504 2.73×(xDBL) AvxSike AVX-512 (1× 2× 2× 2)-way 1 2427 2427 1.69×
Point SIDHv3.4 x64 asm 1-way 1 8228 8228 1.00×
tripling AvxSike AVX-512 (8× 1× 1× 1)-way 8 18598 2325 3.54×
(xTPL) AvxSike AVX-512 (1× 2× 2× 2)-way 1 4946 4946 1.66×

SIDHv3.4 x64 asm 1-way 1 9703 9703 1.00×Ladder AvxSike AVX-512 (8× 1× 1× 1)-way 8 19438 2430 3.99×step AvxSike AVX-512 (2× 4× 1× 1)-way 2 6037 3019 3.21×(xDBLADD) AvxSike AVX-512 (1× 4× 2× 1)-way 1 3540 3540 2.74×
SIDHv3.4 x64 asm 1-way 1 5388 5388 1.00×

SIKEp751 Point AvxSike AVX-512 (8× 1× 1× 1)-way 8 10613 1327 4.06×doubling AvxSike AVX-512 (2× 2× 2× 1)-way 2 3404 1702 3.17×(xDBL) AvxSike AVX-512 (1× 2× 2× 2)-way 1 2679 2679 2.01×
Point SIDHv3.4 x64 asm 1-way 1 10633 10633 1.00×
tripling AvxSike AVX-512 (8× 1× 1× 1)-way 8 20939 2617 4.06×
(xTPL) AvxSike AVX-512 (1× 2× 2× 2)-way 1 5587 5587 1.90×
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Table 10: Benchmarking results of implementations of isogeny operations.

Scheme Operation Reference Impl. Vectorization #Inst. Cycles Cyc./inst. Speed-up
SIDHv3.4 x64 asm 1-way 1 1518 1518 1.00×4-isogeny AvxSike AVX-512 (8× 1× 1× 1)-way 8 2828 354 4.29×generation AvxSike AVX-512 (2× 2× 2× 1)-way 2 773 387 3.92×(get_4_isog) AvxSike AVX-512 (1× 2× 2× 2)-way 1 629 629 2.41×
SIDHv3.4 x64 asm 1-way 1 3299 3299 1.00×

4-isogeny AvxSike AVX-512 (8× 1× 1× 1)-way 8 6002 750 4.40×
evaluation AvxSike AVX-512 (4× 2× 1× 1)-way 4 3207 802 4.11×

(eval_4_isog) AvxSike AVX-512 (2× 2× 2× 1)-way 2 1936 968 3.41×
SIKEp434 AvxSike AVX-512 (1× 2× 2× 2)-way 1 1562 1562 2.11×

3-isogeny SIDHv3.4 x64 asm 1-way 1 2117 2117 1.00×
generation AvxSike AVX-512 (8× 1× 1× 1)-way 8 3863 483 4.38×

(get_3_isog) AvxSike AVX-512 (1× 2× 2× 2)-way 1 1248 1248 1.70×
SIDHv3.4 x64 asm 1-way 1 2400 2400 1.00×

3-isogeny AvxSike AVX-512 (8× 1× 1× 1)-way 8 4375 547 4.39×
evaluation AvxSike AVX-512 (4× 2× 1× 1)-way 4 2200 550 4.36×

(eval_3_isog) AvxSike AVX-512 (2× 2× 2× 1)-way 2 1376 688 3.49×
AvxSike AVX-512 (1× 2× 2× 2)-way 1 1114 1114 2.15×
SIDHv3.4 x64 asm 1-way 1 2427 2427 1.00×4-isogeny AvxSike AVX-512 (8× 1× 1× 1)-way 8 5280 660 3.68×generation AvxSike AVX-512 (2× 2× 2× 1)-way 2 1626 813 2.99×(get_4_isog) AvxSike AVX-512 (1× 2× 2× 2)-way 1 1194 1194 2.03×
SIDHv3.4 x64 asm 1-way 1 5467 5467 1.00×

4-isogeny AvxSike AVX-512 (8× 1× 1× 1)-way 8 13091 1636 3.34×
evaluation AvxSike AVX-512 (4× 2× 1× 1)-way 4 6855 1714 3.19×

(eval_4_isog) AvxSike AVX-512 (2× 2× 2× 1)-way 2 4227 2114 2.59×
SIKEp610 AvxSike AVX-512 (1× 2× 2× 2)-way 1 3318 3318 1.65×

3-isogeny SIDHv3.4 x64 asm 1-way 1 3470 3470 1.00×
generation AvxSike AVX-512 (8× 1× 1× 1)-way 8 7658 957 3.63×

(get_3_isog) AvxSike AVX-512 (1× 2× 2× 2)-way 1 2407 2407 1.44×
SIDHv3.4 x64 asm 1-way 1 3981 3981 1.00×

3-isogeny AvxSike AVX-512 (8× 1× 1× 1)-way 8 9517 1190 3.35×
evaluation AvxSike AVX-512 (4× 2× 1× 1)-way 4 4863 1216 3.27×

(eval_3_isog) AvxSike AVX-512 (2× 2× 2× 1)-way 2 2973 1487 2.68×
AvxSike AVX-512 (1× 2× 2× 2)-way 1 2300 2300 1.73×
SIDHv3.4 x64 asm 1-way 1 3177 3177 1.00×4-isogeny AvxSike AVX-512 (8× 1× 1× 1)-way 8 6311 789 4.03×generation AvxSike AVX-512 (2× 2× 2× 1)-way 2 1730 865 3.67×(get_4_isog) AvxSike AVX-512 (1× 2× 2× 2)-way 1 1367 1367 2.32×
SIDHv3.4 x64 asm 1-way 1 7281 7281 1.00×

4-isogeny AvxSike AVX-512 (8× 1× 1× 1)-way 8 14367 1796 4.05×
evaluation AvxSike AVX-512 (4× 2× 1× 1)-way 4 7589 1897 3.84×

(eval_4_isog) AvxSike AVX-512 (2× 2× 2× 1)-way 2 4617 2309 3.15×
SIKEp751 AvxSike AVX-512 (1× 2× 2× 2)-way 1 3657 3657 1.99×

3-isogeny SIDHv3.4 x64 asm 1-way 1 4522 4522 1.00×
generation AvxSike AVX-512 (8× 1× 1× 1)-way 8 8954 1119 4.04×

(get_3_isog) AvxSike AVX-512 (1× 2× 2× 2)-way 1 2700 2700 1.67×
SIDHv3.4 x64 asm 1-way 1 5308 5308 1.00×

3-isogeny AvxSike AVX-512 (8× 1× 1× 1)-way 8 10558 1320 4.02×
evaluation AvxSike AVX-512 (4× 2× 1× 1)-way 4 5416 1354 3.92×

(eval_3_isog) AvxSike AVX-512 (2× 2× 2× 1)-way 2 3282 1641 3.23×
AvxSike AVX-512 (1× 2× 2× 2)-way 1 2633 2633 2.02×
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