
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 679–721. DOI:10.46586/tches.v2022.i1.679-721

Cryptanalysis of Efficient Masked Ciphers:
Applications to Low Latency

Tim Beyne∗1 , Siemen Dhooghe∗1 , Amir Moradi∗2 and
Aein Rezaei Shahmirzadi∗2

1 imec-COSIC, ESAT, KU Leuven, Leuven, Belgium
firstname.lastname@esat.kuleuven.be

2 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

Abstract. This work introduces second-order masked implementation of LED, Midori,
Skinny, and Prince ciphers which do not require fresh masks to be updated at
every clock cycle. The main idea lies on a combination of the constructions given
by Shahmirzadi and Moradi at CHES 2021, and the theory presented by Beyne et
al. at Asiacrypt 2020. The presented masked designs only use a minimal number
of shares, i.e., three to achieve second-order security, and we make use of a trick to
pair a couple of S-boxes to reduce their latency. The theoretical security analyses of
our constructions are based on the linear-cryptanalytic properties of the underlying
masked primitive as well as SILVER, the leakage verification tool presented at
Asiacrypt 2020. To improve this cryptanalytic analysis, we use the noisy probing
model which allows for the inclusion of noise in the framework of Beyne et al. We
further provide FPGA-based experimental security analysis confirming second-order
protection of our masked implementations.
Keywords: Hardware · Linear Cryptanalysis · Masking · Probing Security · Side-
Channel Analysis · Threshold Implementations

1 Introduction
Ever since the introduction of differential power analysis by Kocher et al. [KJJ99] in 1999,
the cryptographic hardware community has been looking for countermeasures to protect
embedded devices. The benefits as well as difficulties of masking as a countermeasure
against side-channel analysis attacks, have been proven through several scientific articles
and experimental investigations. Masked implementations can be made efficient towards a
cost function like area or latency, and their security can be proven using abstractions such
as the probing model.

Nevertheless, masking typically relies on fresh randomness in order to provide security
in the probing model. The generation of this randomness is often costly, and its security
requirements are currently not very well known. The cost of this generation is also not
often reported in academic literature, leading to a biased view of the efficiency of certain
countermeasures.

For first-order security, one can use threshold implementations as proposed in 2006 by
Nikova et al. [NRR06]. Thanks to the property that these maskings maintain uniformity,
it is possible to build secure masked circuits which do not require any fresh randomness.

∗Authors list in alphabetical order; see https://www.ams.org/profession/leaders/culture/
CultureStatement04.pdf

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.679-721
https://orcid.org/0000-0001-5638-9885
https://orcid.org/0000-0003-0591-7355
https://orcid.org/0000-0002-4032-7433
https://orcid.org/0000-0002-9549-268X
mailto:tim.beyne@esat.kuleuven.be, siemen.dhooghe@esat.kuleuven.be
mailto:aein.rezaeishahmirzadi@rub.de, amir.moradi@rub.de
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
https://www.ams.org/profession/leaders/culture/CultureStatement04.pdf
http://creativecommons.org/licenses/by/4.0/

680 Cryptanalysis of Efficient Masked Ciphers

Recently, due to techniques of Daemen [Dae17] and Shahmirzadi and Moradi [SM21a],
such maskings have become easier to design and their costs have decreased. However,
their extension to higher-order security is not straightforward. Higher-order threshold
implementations were first proposed by Bilgin et al. [BGN+14] and later shown to be not
fully secure by Reparaz [Rep15].

In CHES 2021, Shahmirzadi and Moradi [SM21b] proposed several efficient second-order
masking of popular symmetric primitives that require a significantly lower amount of
randomness compared to other known masked designs. Nevertheless, except for Keccak,
their masked designs still use fresh randomness.

At Asiacrypt 2020, Beyne et al. [BDZ20] proposed a framework to evaluate the security
of higher-order threshold implementations. They applied their framework to design a
second-order implementation of the LED cipher [GPPR11]. However, the underlying
masked design requires seven shares – making it inefficient. Further, their security claims,
which have not been validated in practice, are based on a too restrictive security model.
They consider adversaries who can collect a large number of traces, e.g. 2121. Additionally,
their security lower bound holds for adversaries observing the exact values on wires. This
might be a bit far from reality, where we are typically limited to around 100 million noisy
traces.

As a result, there is a need for second-order masked circuits which do not require fresh
randomness while achieving small area and low latency. To accomplish this, we need
security models which are closer to practice and better masking techniques.

Contributions. In this work, we use a generalization of the bounded-query probing model
from Beyne et al. [BDZ20] called the noisy probing model which bears some similarity
to the model by Dziembowski et al. [DFH+16]. In this model, it is possible to restrict
the power of adversaries by modeling probing results as a noisy leakage function of some
underlying wire-values. An important feature of the model is that, like the model of Beyne
et al., it leads to a concrete security analysis framework based on linear cryptanalysis.
This is enabled by Theorem 1, which strictly generalizes [BDZ20, Theorem 1] to the noisy
probing model. Theorem 1 anticipates the design of maskings that achieve higher-order
probing security, including third-order and higher, without fresh randomness. Specifically,
under the independent leakage assumption, the result implies a trade-off between the
weakening linear-cryptanalytic properties of the masking and the increasing noise level as
the security order increases. From a practical viewpoint, the model allows us to obtain
more realistic and improved security bounds for the concrete second-order secure sharings
that we propose.

We propose two masking techniques that allow for a concrete security analysis in the
noisy probing model and that allow the randomness in each masked S-box to be reused.
These techniques remove an important limitation from the work of Beyne et al. that
required each shared function to be second-order non-complete and uniform, which led
to a high overhead in area and latency. The first technique ensures that the masking
is still non-complete after two register stages which allows for the use of d+ 1 sharings,
meaning the use of a minimal number of shares. However, it requires two register stages
per quadratic function and this harms the latency of the designs. As such, we introduce
a second technique where two masked S-boxes are paired together. Namely, one masked
S-box is fed with the inputs of another in order to temporarily introduce randomness in
its design. This additional randomness is used to ensure second-order non-completeness of
the design using fewer register stages.

By combining the improved security model with the new masking techniques, we provide
second-order secure maskings of LED, Midori, Skinny, and Prince which require no
fresh randomness. Instead, the implementation receives some random bits at the start of
the encryption and remains unchanged during the execution. Their performance figures

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 681

are listed in Table 1 on page 696. We should highlight that we verified the second-order
security of our masked S-boxes using SILVER [KSM20] under the glitch-extended probing
model and of our implementations by FPGA-based practical experiments. The different
case studies show that our techniques are applicable to a wide range of symmetric-key
primitives. Our hardware implementations (HDL code), are provided in full in GitHub .

2 Preliminaries
This section recalls a number of standard concepts related to Boolean masking (Section 2.1),
as well as a number of useful tools in probability theory (Section 2.2), and information on
d+ 1 sharings (Section 2.3).

2.1 Boolean Masking and Threshold Implementations
Boolean masking is a technique based on splitting each secret variable x ∈ F2 in the
circuit into shares x̄ = (x1, x2, . . . , xsx

) such that x =
∑sx

i=1 xi over F2. A random Boolean
masking of a fixed secret is uniform if all sharings of that secret are equally likely.

In this work, we make use of threshold implementations as proposed by Nikova
et al. [NRR06]. This approach has been extended to capture higher-order univariate
attacks by Bilgin et al. [BGN+14]. In the following, the main properties of threshold
implementations are reviewed.

Let F̄ be a layer in the threshold implementation corresponding to a part of the circuit
F : Fn

2 → Fm
2 . The function F̄ : Fnsx

2 → Fmsy

2 , where we assume sx shares per input bit
and sy shares per output bit, will be called a sharing of F . The ith share of the function F̄
is denoted by Fi : Fnsx

2 → Fm
2 , for i ∈ {1, .., sy}. Sharings can have a number of properties

that are relevant in the security argument for a threshold implementation; these properties
are summarized in Definition 1.

Definition 1 (Properties of sharings [NRR06,BGN+14]). Let F : Fn
2 → Fm

2 be a function
and F̄ : Fnsx

2 → Fmsy

2 be a sharing of F . The sharing F̄ is said to be

1. correct if
∑sF (x)

i=1 Fi(x̄) = F (
∑sx

i=1 xi) for all x1, . . . , xsx
∈ Fn

2 ,

2. dth-order non-complete if any function in d or fewer shares Fi depends on at most
sx − 1 input shares,

3. uniform if F̄ maps a uniform random sharing of any x ∈ Fn
2 to a uniform random

sharing of F (x) ∈ Fm
2 .

2.2 Probability Theory and Fourier Analysis
Throughout the paper, random variables are denoted in boldface. The probability space
will always be clear from the context. The average of a random variable x is denoted by
Ex. The probability mass or density function of x will be denoted by px. In the proof of
Theorem 1, we will use the Kullback-Leibler divergence from a random variable x to a
random variable y on the same probability space. This measure of dissimilarity is defined
as the average logarithmic likelihood ratio:

DKL(py || px) = Ey log(py(y)/px(y)) ,

where log is the natural logarithm and the average is with respect to y.
Most of the probability distributions in this paper are discrete distributions on Fn

2 .
In the analysis of such distributions, it is often convenient to work with the Fourier
transformations of probability mass functions. As will be discussed in Section 3.4, this

https://github.com/Chair-for-Security-Engineering/Low_Random_Masking/

682 Cryptanalysis of Efficient Masked Ciphers

is closely related to the well-known technique of linear cryptanalysis [TG91,Mat93]. In
general, the Fourier transformation of a function Fn

2 → C can be defined as in Definition 2
below.

Definition 2. Let f : Fn
2 → C a complex-valued function on Fn

2 . The Fourier transforma-
tion of f is a function f̂ : Fn

2 → C defined by

f̂(u) =
∑

x∈Fn
2

(−1)u>xf(x) .

Equivalently, f̂ is the representation of f in the basis of functions x 7→ (−1)u>x for u ∈ Fn
2 .

The Euclidean norm of a function f : Fn
2 → C will be denoted by ‖f‖2. Since the

Fourier transformation is orthogonal up to a factor 2n/2, it holds that ‖f̂‖2 = 2n/2‖f‖2.
This result is known as Parseval’s theorem.

2.3 Masking with d + 1 Shares
It has been shown that the implementation cost of threshold implementations is high,
particularly at higher orders due to using a large number of input shares, leading to higher
area overhead and requiring a significant amount of fresh randomness when composing
the functions [MPL+11,CBR+15]. More precisely, the number of input shares depends
on the algebraic degree of the target Boolean function, which potentially scales to higher
implementation costs. There have been two independent works trying to make the number
of input shares independent of the algebraic degree [RBN+15,GMK16]. They proposed
methodologies to use d+1 input shares for dth-order security while maintaining glitch resis-
tance in hardware platforms with the same level of security that threshold implementations
offer. Due to using a lower number of input shares, these constructions have smaller area
overhead and latency. These techniques generally demand fresh randomness to achieve
non-completeness in contrast to threshold implementations where fresh masks might be
needed to fulfill uniformity. A masked Boolean function following the d+ 1 sharing method
is divided into two separate parts by a register layer to avoid the propagation of glitches.

Based on the technique presented by Groß et al. [GMK16], a two-share variant of a
2-input AND gate f(a, b) = x can be realized as: (the horizontal line is purely cosmetic)

f0(a0, b0) = a0b0 → x′0

f1(a0, b1, r) = a0b1 + r → x′1 x′0 + x′1 = x0

f2(a1, b0, r) = a1b0 + r → x′2 x′2 + x′3 = x1

f3(a1, b1) = a1b1 → x′3

, (1)

where a0, a1, b0, b1 are the input shares, r is a single-bit of fresh randomness, and x0, x1 are
the output shares. The functions fl are known as coordinate functions whose result should
be stored in registers. The part that generates output shares by XORing the registers’
output is known as the compression layer. To achieve first-order d+ 1 hardware implemen-
tations without fresh randomness, a methodology has been introduced by Shahmirzadi
and Moradi [SM21a] which they also extended to second-order designs [SM21b].

3 A Noisy Probing Model
In this section, an extension of the bounded-query probing model from [BDZ20] will be
introduced. In the modified model, the adversary can probe the circuit but it obtains
noisy rather than exact results. This is a more realistic model and thus allows for a tighter
security analysis.

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 683

The noisy probing model resembles the noisy leakage model first introduced by
Chari et al. [CJRR99] and extended by Prouff and Rivain [PR13]. The main differ-
ence between the two models is in the information given to the adversary. In the noisy
leakage model, the adversary is given a noisy function of all wire values in the circuit. In
our model, as in the (glitch-extended) probing model, an adversary can only probe the
circuit locally. However, unlike in the probing model, the adversaries’ probes reveal only
a noisy leakage function of the wire values. That makes the model similar to the noisy
probing model from Dziembowski et al. [DFH+16]. However, the models differ in the way
noisy leakage functions are defined. In addition, as opposed to the model of Dziembowski
et al., our model is purely information-theoretic, non-asymptotic, and limits the number of
queries that can be made by the adversary. Moreover, in this work, we apply the noisy
probing model to masking applications instead of re-keying applications. Nevertheless, we
believe that reusing the term is justified.

3.1 Security Model
We first introduce the bounded-query probing model from Beyne et al. [BDZ20]. In this
model, the security of a circuit C with input k against a t-threshold-probing adversary
is quantified by means of a left-or-right security game as follows. The challenger picks
a random bit b and provides an oracle Ob, to which adversary A is given query access.
The adversary queries the oracle by choosing up to t wires to probe, we denote this set by
P, and sending it to the oracle along with the inputs k0 and k1. Note that we consider
the input of the circuit to consist of both the plaintext and the key. The oracle responds
by giving back the probed wire values of C(kb). After a total of q queries, the adversary
responds to the challenger with a guess for b. For b ∈ {0, 1}, denote the result of the
adversary after interacting with the oracle Ob using q queries by AOb . For left-or-right
security, the advantage of the adversary A is then defined as

Advt-thr(A) = | Pr[AO
0

= 1]− Pr[AO
1

= 1] | .

Since we are working on hardware, we extend the above model to include the effect of
glitches. These effects can result in significant leakage that is not accounted for by the
standard probing model, see for example the attacks of Mangard et al. on several masked
AES implementations [MPO05]. Whereas one of the adversary’s probes normally results in
the value of a single wire, a glitch-extended probe allows obtaining the values of all wires
in a bundle. As glitches occur in the logic between two memory gates, they are stopped by
registers. In other words, glitches do not propagate through memory gates. As a result,
a glitch-extended probe returns all values leading to the probed wire until registers are
reached. This extension was originally proposed in the work of Reparaz et al. [RBN+15]
and later formalized by Faust et al. [FGP+18].

In this work, we adapt the above model by changing the oracle. More specifically, we
extend the notion of a probe to a noisy probe. Instead of giving back the exact values on
the wire/or bundle, the noisy probe returns a noisy leakage function of the values. The
formal definition of noisy leakage functions is given in Section 3.2. The new security model
is depicted in Figure 1. The advantage of a noisy t-threshold probing adversary A will be
denoted by Advnoisy t-thr(A).

In practice, the above model relates to an attacker performing a tth-order attack on
traces. The attacker only has a limited number of traces which relates to a limited number
of queries. In the above security model, the adversary can pick two secret values for the
masked circuit which resembles a fixed vs. fixed t-test. Because the adversary can pick
the secret value, we will model this as a public value throughout the work. Instead, the
security of the countermeasure is based on the randomness used to mask it.

In Section 5, we provide several second-order maskings of symmetric primitives. For
these case studies we provide upper bounds on the advantage of probing adversaries. Using

684 Cryptanalysis of Efficient Masked Ciphers

AC

Ob

Ob

b

k0, k1,P

f(vb
1, . . . , v

b
t)

b← $
q
queries

Figure 1: The privacy model for glitch-extended t-threshold-probing security consisting of
a challenger C, an adversary A, a left-right oracle Ob, two inputs k0, k1, a set of probes
P, and a noisy leakage function f(vb

1, . . . , v
b
t) of the probed wire values vb

1, . . . , v
b
t in the

circuit C(kb).

the fact that there is noise on the side-channel measurements we can relax that bound and
provide much more efficient randomness-free sharings.

3.2 Noisy Leakage Functions
In order to introduce the noisy probing model, it is necessary to introduce the notion of noisy
leakage functions. Let d and m1, . . . ,md be positive integers. In Definition 3, the Hamming
weight of a vector x = (x1, . . . , xd) ∈

∏d
i=1 F

mi
2 is denoted by wt(x) = |{1 ≤ i ≤ d | xi 6= 0}|.

Furthermore, the set of vectors of weight i will be denoted by Bd(i), i.e. the Hamming
circle of radius i:

Bd(i) = {x ∈
∏d

i=1 F
mi
2 | wt(x) = i} .

Definition 3 provides a quantitative description of noisy leakage functions that will
be useful to obtain our main theoretical result regarding the noisy probing model, i.e.
Theorem 1. In this definition, f is a random function over the set of functions from

∏d
i=1 F

mi
2

to Ω. For example, in the Hamming weight leakage model with additive Gaussian noise
Ω = R. The function qf can be interpreted as a measure of similarity between the
probability density functions pf(x1) and pf(x2) of the noisy leakage under secrets x1 and
x2. The reciprocal noise parameters λ1, . . . , λd then upper bound the Euclidean norm of
the restriction of the Fourier transform of qf to Hamming circles of successively increasing
weights.

Definition 3 (Noisy leakage function). Let Ω ⊆ Rn be a measurable set. A dth order
(λ1, . . . , λd)-noisy leakage function f is a random function from

∏d
i=1 F

mi
2 to Ω such that

1/λi ≥
1

|Bd(i)|

(∑
u,v∈Bd(i) q̂f (u, v)2

)1/2
,

for i = 1, . . . , d where q̂f is the Fourier transform of

qf (x1, x2) =
∫

Ω

pf(x1)(y) pf(x2)(y)
E |f−1(y)| dy ,

with pf(x) the probability density function of f(x).

The noise parameters λ1, . . . , λd characterize the level of the noise, with λi in particular
representing the ‘noise-level’ when values from i probes are combined. In principle, the noise
parameters could be computed empirically from estimates of the probability distributions
of the leakage (i.e. trace points) under all possible secrets. A practical evaluation of these
parameters is left as future work, and we shall rely on plausible estimates instead.

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 685

Relation to Other Leakage Functions In previous work, other definitions of noisy func-
tions have been proposed, in particular in the context of the noisy leakage model by Duc
et al. [DDF14]. There, a statistical distance is used to measure the noise on the random
function. Some examples of statistical distances which can be used in this context are
found in the work by Prest et al. [PGMP19]. In our work, we deviate from using these
statistical distances for a more natural fit for Theorem 1.

The above definition for noisy leakage functions can be computed explicitly for concrete
leakage models, as we will illustrate for the “Hamming weight plus Gaussian noise”
model. Figure 2 shows the value of λ1 for the Hamming-weight leakage model defined
by f(x) = wt(x) + e with e ∼ N (0, σ2) and wt(x) the bitwise Hamming-weight of x.
Unsurprisingly, a larger standard deviation σ results in a larger noise parameter λ1.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.000

25

50

75

100

125

Relative standard deviation [σ/m]

λ
1

Hamming-weight leakage with Gaussian noise

m = 2
m = 4
m = 8

Figure 2: Noise parameter λ1 as a function of the relative standard-deviation σ/m for the
noisy Hamming-weight leakage function defined by f(x) = wt(x) + e with e ∼ N (0, σ2).

Noise Amplification The real-world value of the probing model relies in large part on
the premise that higher-order side-channel attacks require a (geometrically) increasing
number of traces to perform. Hence, it must be the case that combining information from
different probes increases the noise. The following lemma shows that such an amplification
of noise indeed occurs, provided that the leakage functions of the probes are independent.
The latter assumption is commonly referred to as the independent-leakage assumption
and was first stated by Dziembowski and Pietrzak [DP08].

Lemma 1 (Noise amplification). Let f1, . . . , fd be mutually independent λ-noisy first-order
leakage functions with fi from Fmi

2 to Ω for i = 1, . . . , d. The random function g defined by

g(x1, . . . , xd) = (f1(x1), . . . , fd(xd)) .

is a (λ, λ2, . . . , λd)-noisy leakage function of order d from
∏d

i=1 F
mi
2 to Ωd.

Proof. By the independence of f1, . . . , fd, it holds that pg(x1,...,xd) =
∏d

i=1 pfi(xi). Hence,
the function qg from Definition 3 satisfies qg =

∏d
i=1 qfi

and q̂g =
∏d

i=1 q̂fi
. It follows that

for any l ∈ {1, . . . , d},∑
u,v∈Bd(l)

q̂g(u, v)2 =
∑

I⊆[d]
|I|=l

∏
i∈I

1
(2mi − 1)2

∑
u,v∈Fmi

2 \{0}

q̂fi(u, v)2 .

686 Cryptanalysis of Efficient Masked Ciphers

Since 1/λ2 ≥
∑

u,v∈Fmi
2 \{0}

q̂fi
(u, v)2/(2mi − 1)2 and |Bd(l)| =

(
d
l

)
, it holds that

1
|Bd(l)|

(∑
u,v∈Bd(l) q̂g(u, v)2)1/2 ≤ 1(

d
l

)(∑
I⊆[d]
|I|=l

∏
i∈I

1/λ2

)1/2

≤ 1/λl .

Hence, g is (λ, λ2, . . . , λd)-noisy.

A noisy threshold probing adversary A will be said to have independent λ-noisy probes
if its probes jointly yield a leakage function g of the form described in Lemma 1. The
functions f1, . . . , fd can then be interpreted as the leakage functions for the individual
probes.

3.3 Bound on the Advantage
In order to use the security model from Section 3.1 in practice, it is necessary to be able to
bound the advantage of adversaries in terms of some properties of the masking that can be
computed or estimated. For the noiseless bounded-query probing model, [BDZ20, Theorem
1] provides such a bound in terms of the linear-cryptanalytic properties of the masking.
However, the latter theorem is not applicable to the new noisy probing model from
Section 3.1. Hence, in Theorem 1, we provide a generalization of [BDZ20, Theorem 1].
The latter theorem corresponds to the case λ1 = . . . = λt = 1.

Similar to [BDZ20, Theorem 1], Theorem 1 below assumes that any probed wire value
can be labeled as ‘good’ or ‘bad’. The values labeled ‘good’ jointly reveal nothing about the
secret. The ‘bad’ values may reveal secret information, but the leakage can be bounded in
terms of λ1, . . . , λt and ε1, . . . , εt. The parameters λ1, . . . , λt are determined by physical
aspects such as the leakage model and noise level. The parameters ε1, . . . , εt are instead
determined by the mathematical properties of the masking. Specifically, it will be shown
in Section 3.4 how these parameters can be determined using linear cryptanalysis.

Theorem 1. Let A be a noisy t-threshold-probing adversary for a circuit C. Take
λ1, . . . , λt ≥ 1, and ε1, . . . , εt ≤ 1 as non-negative real numbers. Assume that for every
query made by A on the oracle Ob with result z, there exists a partitioning (depending only
on the probe positions) of the probed wire values into two random variables x (‘good’) and
y (‘bad’) such that

1. The noisy leakage function f such that z = f(x,y) is (λ1, . . . , λt)-noisy.

2. The conditional probability distribution py|x satisfies Ex‖p̂y|x1Bt(d)‖22 ≤ εd for all
d ∈ {1, . . . , t}, with 1Bt(d) the indicator function of the set Bt(d) and p̂y|x1Bt(d) the
restriction of p̂y|x to this set.

3. Any t-threshold-probing adversary for the same circuit C and making the same oracle
queries as A, but which only receives the ‘good’ wire values (i.e. corresponding to x)
for each query, has advantage zero.

The advantage of A can be upper bounded as

Advnoisy t-thr(A) ≤ max
1≤d≤t

√
2q εd/λd ,

where q is the number of queries to the oracle Ob.

The proof of Theorem 1 relies on the following technical lemma. Informally, for a
(λ1, . . . , λd)-noisy leakage function f , Lemma 2 upper bounds the dissimilarity between
f(x) and f(x′) with x and x′ independent random variables and x′ uniform random. The

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 687

dissimilarity is measured using the Kullback-Leibler divergence and the bound is expressed
in terms of the noise parameters λ1, . . . , λd of f and the Fourier transformation of the
probability mass function of x.

Lemma 2. Let x be a random variable on V =
∏d

i=1 F
mi
2 with probability mass function

px and f a (λ1, . . . , λd)-noisy leakage function from V to Ω. Let x′ be random variable
uniform random on V and f ′ a noisy leakage function independent from and identically
distributed as f . It holds that

DKL(pf(x) || pf ′(x′)) ≤
d∑

i=1

‖p̂x1Bd(i)‖22
λi

|Bd(i)|
|V |

.

Proof. Let y = f(x) and y′ = f ′(x′). The goal is to upper bound the Kullback-Leibler
divergence (see Section 2.2)

DKL(py || py′) =
∫

Ω
py(y) log py (y)

py′(y) dy .

By the law of total probability, it holds that

py′(y) =
∑
x∈V

py′|x′=x(y) px′(x) = E |f−1(y)|/|V | .

Indeed, px′(x) = 1/|V | for all x ∈ V because x′ is uniform random on V . Hence, by
Jensen’s inequality (since x 7→ log x is a concave function),

DKL(py || py′) =
∫

Ω
py(y) log

(
|V | py(y)
E |f−1(y)|

)
dy ≤ log

∫
Ω

|V | p2
y(y)

E |f−1(y)| dy .

The values p2
y(y) will now be computed. By the law of total probability, it holds that

py(y) =
∑
x∈V

py|x=x(y) px(x) =
∑
x∈V

%y(x) px(x) ,

with %y(x) = pf(x)(y). The Fourier inversion formula px(x) =
∑

u∈V (−1)u>x p̂x(u)/|V |
then yields

|V | py(y) =
∑
u∈V

p̂x(u)
∑
x∈V

(−1)u>x %y(x) = E|f−1(y)|+
∑

u∈V \{0}

p̂x(u) %̂y(u) ,

where the second equality follows from p̂x(0) = |V | and
∑

x∈V pf(x)(y) = E|f−1(y)|/|V |.
Hence,

|V | p2
y(y)

E|f−1(y)| = E|f−1(y)|
|V |

+
2
∑

u∈V \{0} p̂x(u) %̂y(u)
|V |

+
(∑

u∈V \{0} p̂x(u) %̂y(u)
)2

|V |E |f−1(y)| .

Next, we consider the integral of |V | p2
y(y)/E|f−1(y)| with respect to y. By linearity of

integration, it suffices to consider each of the above three terms separately. For the first
term, it holds that ∫

Ω

E|f−1(y)|
|V |

dy = E
∫

Ω

|f−1(y)|
|V |

dy = 1 .

Indeed, conditioned on f , every x ∈ V is mapped to exactly one y ∈ Ω under f . The second
term is zero since∫

Ω

∑
u∈V \{0}

p̂x(u) %̂y(u) dy =
∑

u∈V \{0}

p̂x(u)
∫

Ω
%̂y(u) dy = 0 .

688 Cryptanalysis of Efficient Masked Ciphers

Indeed,
∫

Ω %y dy ≡ 1 and 1̂(u) = 0 for all u 6= 0. Summing the three terms, it follows that

DKL(py || py′) = log
(

1 +
∫

Ω

(∑
u∈V \{0} p̂x(u) %̂y(u)

)2
|V |E |f−1(y)| dy

)

≤
∫

Ω

(∑
u∈V \{0} p̂x(u) %̂y(u)

)2
|V |E |f−1(y)| dy ,

where the inequality log(1 + x) ≤ x was used. By expanding the square, it follows that

DKL(py || py′) ≤
∑

u,v∈V \{0}

p̂x(u)p̂x(v) 1
2m

∫
Ω

%̂y(u)%̂y(v)
E |f−1(y)| dy

≤ 1
2m

∑
u,v∈V \{0}

p̂x(u)p̂x(v) q̂f (u, v) ,

where qf is the function defined in Definition 3:

qf (x1, x2) =
∫

Ω

pf(x1)(y) pf(x2)(y)
E |f−1(y)| dy .

Grouping by weight and applying the Cauchy-Schwarz inequality yields

DKL(py || py′) ≤ 1
|V |

d∑
i=1

∑
u,v∈Bd(i)

p̂x(u)p̂x(v) q̂(u, v)

≤ 1
|V |

d∑
i=1
‖p̂x1Bd(i)‖22

(∑
u,v∈Bd(i) q̂(u, v)2

)1/2

≤ 1
|V |

d∑
i=1
‖p̂x1Bd(i)‖22

|Bd(i)|
λi

,

by definition of the noise parameters λ1, . . . , λd (Definition 3).

The proof of Theorem 1 can now be stated. The first part of the proof is similar to
that of the original theorem for noiseless t-threshold-probing adversaries from [BDZ20]
and consists of a standard game-hopping argument. The second part of the argument is
based on Lemma 2, which replaces the simpler [BDZ20, Lemma 1].

of Theorem 1. Consider the following two additional games:

1. Game ‘t-thr-good’ is a modification of the t-threshold probing game in which the
oracle Ob replaces the ‘bad’ values in each query by uniform random values. In this
game, A essentially only receives information about the ‘good’ wire values.

2. In the game ‘∆-bad’, the adversary chooses a secret input k and is given access to an
oracle with the same noisy t-threshold-probing interface as Ob. This oracle is either
a noisy t-threshold-probing oracle for the real circuit with input k, or a modification
thereof in which the ‘bad’ values in each query are replaced by uniform random bits.
The goal is to distinguish between these two cases.

We construct an adversary B for the game ‘∆-bad’ by running the noisy t-threshold-probing
adversary A. Specifically, B picks a uniform random bit b and forwards the corresponding
secret kb chosen by A to its challenger. Adversary B reports the oracle as real if and only
if A correctly recovers b. Hence, by the triangle inequality,

Advnoisy t-thr(A) ≤ Advt-thr-good(A) + 2Adv∆-bad(B).

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 689

The factor two in front of Adv∆-bad(B) is due to our definition of ‘advantage’, i.e. the
absolute difference between the winning and failure probabilities of B. It is given that
Advt-thr-good(A) = 0, so it suffices to upper bound Adv∆-bad(B).

Denote the result of the ith query of B to its oracle by zi when B interacts with the real
noisy threshold probing oracle and by z′i when B interacts with the (partially) randomized
oracle. Let δTV(·, ·) denote the total variation distance and

⊗
the tensor product. The

distinguishing advantage of the adversary B is then upper bounded by

Adv∆-bad(B) ≤ δTV
(⊗q

i=1 pzi ,
⊗q

i=1 pz′
i

)
≤
√

1
2 DKL

(⊗q
i=1 pzi ‖

⊗q
i=1 pz′

i

)
≤
√
q

2 max
1≤i≤q

DKL
(
pzi
‖ pz′

i

)
, (2)

where the second inequality is due to Pinsker.
Since B makes exactly the same queries to its oracle as A, the wire values probed in

the ith query of B can also be partitioned into ‘good’ and ‘bad’ wire values. Denote these
values by xi and yi respectively when B is interacting with the real threshold probing
oracle, and by x′i and y′i when B interacts with the (partially) randomized oracle.

There exists a (λ1, . . . , λt)-noisy leakage function fi such that the result of the ith

oracle query satisfies zi = fi(xi,yi) and z′i = fi′(x′i,y′i) with fi and f ′i independent and
identically distributed. By definition of ‘∆-bad’, the random variables xi and x′i have the
same probability distribution. Consequently,

DKL
(
pzi
‖ pz′

i

)
= Et DKL

(
pzi|xi=t‖ pz′

i
|x′

i
=t
)
.

Up to an inconsequential reordering of bits, the values (xi,yi) can be considered to be
elements of

∏t
d=1 F

md
2 with md the number of bits reached by probe d and

∑t
d=1md = n

the total number of bits. Hence, it follows from Lemma 2,
∑t

d=1 |Bt(d)| < 2n and the
definition of εd that

DKL
(
pzi‖ pz′

i

)
≤

t∑
d=1

Exi

‖p̂yi|xi
1Bt(d)‖22
λd

|Bt(d)|
2n

≤ max
1≤d≤t

εd/λd .

It then follows from (2) that

Adv∆-bad(B) ≤ max
1≤d≤t

√
q εd

2λd
.

Hence, we conclude that

Advnoisy t-thr(A) ≤ 2Adv∆-bad(B) ≤ max
1≤d≤t

√
2q εd/λd.

3.4 Cryptanalysis of Higher-Order Threshold Implementations
The security bound obtained in Theorem 1 depends on the parameters ε1, . . . , εt. These
values will be determined by performing linear cryptanalysis of the masked cipher. This
section provides a brief summary of the main concepts from [BDZ20] that are necessary
for this analysis. Since the maskings in this paper target second-order security, we assume
t = 2.

690 Cryptanalysis of Efficient Masked Ciphers

Linear Masking Schemes For any linear masking scheme, there exists a vector space
V ⊂ F`

2 of valid sharings of zero. More specifically, an F2-linear secret sharing scheme is
an algorithm that maps a secret x ∈ Fn

2 to a random element of a corresponding coset of
the vector space V. Let ρ : Fn

2 → F`
2 be a map that sends secrets to their corresponding

coset representative. For convenience, we denote Va = a+ V.
Let Ḡ be a correct sharing of a function G : Fn

2 → Fn
2 in the sense of Definition 1. Fix

any x ∈ Fn
2 and let a = ρ(x) and b = ρ(G(x)). The correctness property implies that

Ḡ(Va) ⊆ Vb. It follows that the restriction F : Va → Vb of Ḡ defined by F (x) = Ḡ(x) is a
well-defined function.

Linear Cryptanalysis of Masked Ciphers Linear cryptanalysis is closely related to the
propagation of the Fourier transformation of a probability distribution under a function
F : Va → Vb. This leads to the notion of correlation matrices due to Daemen et al. [DGV94].
The action of F on probability distributions can be described by a linear operator. The
coordinate representation of this operator with respect to the standard basis {δx}x∈V may
be called the transition matrix of F . Following [Bey18], the correlation matrix of F is then
the same operator expressed with respect to the Fourier basis. The (absolute) correlation
matrix of a sharing can be defined as follows. Note that it only depends on the spaces Va

and Vb, not on the specific choice of the representatives a and b.

Definition 4 (Correlation matrix). For a subspace V ⊆ F`
2, let F : V→ V be a function.

The correlation matrix CF of F is a real |V| × |V| matrix with coordinates indexed by
elements u, v ∈ Fn

2/V⊥ and equal to

CF
v,u = 1

|V|
∑
x∈V

(−1)u>x+v>F (x) .

For a function F : Va → Vb, its absolute correlation matrix |CF | is defined by1 |CF
v,u| =

|CF ′

v,u| for all u, v ∈ F`
2/V⊥, where F ′(x) = F (x+ a) + b.

In Definition 4, the vector space V⊥ = {x ∈ F`
2 | ∀v ∈ V : v>x = 0} is the orthogonal

complement of V. The quotient space F`
2/V⊥ is by definition the vector space of cosets of

V⊥. A vector x+ V⊥ ∈ F`
2/V⊥ can be concisely denoted by x. For u ∈ F`

2/V⊥ and x ∈ V,
the expression u>x is well-defined. Consequently, Definition 4 above is proper.

The relation between Definition 4 and linear cryptanalysis is as follows: the coordinate
|CF

v,u| is equal to the absolute correlation of a linear approximation over F with input
mask u and output mask v. That is, |CF

v,u| = |2 Pr[v>F (x) = u>x] − 1| for x uniform
random on Va. An important difference with ordinary linear cryptanalysis is that, for
shared functions, the masks u and v correspond to equivalence classes. This formalizes the
intuitive observation that masks which differ by a vector orthogonal to the space V lead to
identical correlations.

The link between ε1 and ε2 and linear cryptanalysis is completed by Theorem 2 below.
It shows that the coordinates of p̂z are entries of the correlation matrix of the state-
transformation between the specified probe locations. In Theorem 2, the restriction of
x ∈ Va to an index set I = {i1, . . . , im} is denoted by xI = (xi1 , . . . , xim) ∈ F|I|2 . This
definition depends on the specific choice of the representative a, but the result of Theorem 2
does not.

Theorem 2 ([BDZ20], §5.2). Let F : Va → Vb be a function with V ⊂ F`
2 and I, J ⊂

{1, . . . , `}. For x uniform random on Va and y = F (x), let z = (xI ,yJ). The Fourier
transformation of the probability mass function of z then satisfies |p̂z(u, v)| = |CF

ṽ, ũ|, where
ũ, ṽ ∈ F`

2/V⊥ are such that ũI = u, ũ[`]\I = 0, ṽJ = v and ṽ[`]\J = 0.
1Here, we abuse notation since CF

v,u itself cannot be defined in a way that does not depend on the
choice of representatives for u and v.

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 691

Theorem 2 relates the linear approximations of F to p̂z(u, v) and hence provides a
method to upper bound ‖p̂z1B2(2)‖2 and therefore ε2 based on linear cryptanalysis. Upper
bounding the absolute correlations |CF

ṽ, ũ| is nontrivial in general. However, the piling-up
principle [Mat93,TG91] can be used to obtain heuristic estimates.

Finally, note that the maskings discussed in Section 5 do not necessarily satisfy the
uniformity property (see Definition 1) in each layer – but if necessary, we extend the
adversary’s probes to guarantee the uniformity of the probed values. This implies that
‖p̂z1B2(1)‖2 = 0 and consequently ε1 = 0.

4 Masking Techniques
Shahmirzadi and Moradi [SM21b] presented second-order sharings of Skinny, Midori,
Present, and Prince that require only a few bits of randomness per cycle. We use
the theory from Beyne et al. [BDZ20] (summarized in Section 3.4) to create second-order
sharings which require no fresh randomness. To that end, we propose two techniques to
mask S-box layers. The first technique splits each quadratic function into two stages and
uses non-completeness and uniformity properties. The second method builds further on
the first by pairing masked S-boxes to reduce their latency.

4.1 Technique 1: Non-Completeness over Two Stages
In order to apply the theory of Beyne et al., the masking of the S-box must have a
sufficiently small maximum absolute correlation in the sense of Definition 4. Although the
work of Shahmirzadi and Moradi gives efficient uniform sharings, their sharings do not
have this property. For example, consider their uniform sharing of the AND gate using
two bits of randomness (r0, r1) [SM21b, Sect. 3.2.1]:

f0(a0, b0) = a0b0 + b0 → x′0
f1(a0, b1) = a0b1 → x′1 → x′0 + x′1 + x′2 = x0
f2(a0, b2) = a0b2 + b2 + r0 → x′2
f3(a1, b0) = a1b0 + a1 + r1 → x′3
f4(a1, b1) = a1b1 → x′4 → x′3 + x′4 + x′5 = x1
f5(a1, b2) = a1b2 + a1 + b2 → x′5
f6(a2, b0) = a2b0 + b0 + r1 → x′6
f7(a2, b1) = a2b1 → x′7 → x′6 + x′7 + x′8 = x2
f8(a2, b2) = a2b2 + r0 → x′8

Consider the first output share after two cycles: x0 = a0b+ b0 + b2 + r0. Given that
b is considered a constant, the above sharing only linearly combines its input shares.
Instead, we want nonlinear terms, such as a0b0, to occur in the output. This property
will result in Lemmas 3 to 6 in Section 5 and will be used to guarantee the multivariate
security of our maskings. We thus search for uniform sharings of quadratic functions which
have this nonlinearity property. In this work, we use the first-order non-complete and
uniform maskings by Bilgin et al. [BNN+12] as a starting point to create low-randomness
second-order maskings.

The original work of Beyne et al. requires that each stage in the masked design is
second-order non-complete and uniform. This requirement comes at a high price in terms
of the number of shares and thus in area cost. Instead, we relax this requirement by making
sharings which are uniform only every two stages similar to the sharings by Shahmirzadi
and Moradi. Since we will reuse randomness between S-boxes, we additionally require that
our sharings still achieve first-order non-completeness after two stages.

692 Cryptanalysis of Efficient Masked Ciphers

We start from the non-complete and uniform sharings of Bilgin et al. and divide them
into two stages such that each stage is second-order non-complete using the ring re-masking
technique of Reparaz et al. [RBN+15], but we only refresh the cross terms. We illustrate
our approach by giving a uniform masking of an AND-XOR gate, which maps (a, b, c) to
ab+ c. The masking uses random bits r0, . . . , r5.

f0(a0, b0, c0) = a0b0 + c0 → x′0
f1(a0, b1) = a0b1 + r5 + r0 → x′1 → x′0 + x′1 + x′2 = x0
f2(a1, b0) = a1b0 + r0 + r1 → x′2
f3(a1, b1, c1) = a1b1 + c1 → x′3
f4(a1, b2) = a1b2 + r1 + r2 → x′4 → x′3 + x′4 + x′5 = x1
f5(a2, b1) = a2b1 + r2 + r3 → x′5
f6(a2, b2, c2) = a2b2 + c2 → x′6
f7(a0, b2) = a0b2 + r3 + r4 → x′7 → x′6 + x′7 + x′8 = x2
f8(a2, b0) = a2b0 + r4 + r5 → x′8

Each arrow denotes a register stage. Note that the first output share equals a0b0 + a0b1 +
a1b0 + c0 + r1 + r5 which is still non-complete, but now also contains nonlinear terms.

In order to ensure the second-order non-completeness of the second stage of the sharing,
we used fresh randomness in a ring refreshing configuration. Using the theory from
Section 3, it will be shown in Section 5 that this randomness can be reused in every S-box.
This can be seen as follows. Probing two S-boxes with jointly uniformly shared inputs as
in Figure 3 only gives a non-complete set of input shares due to the masking’s properties
even when removing the randomness r from the construction.

S1

S2

x̄

ȳ

r Non-Complete

Figure 3: Two masked S-boxes sharing the same randomness. Probes are indicated by
lightning signs. Since both S-boxes are non-complete without the randomness r, the probes
do not return secret information.

4.2 Technique 2: Paired Masked S-boxes
The technique from Section 4.1 allows us to reduce the number of shares and still create
randomness-free second-order sharings. Indeed, in Section 5 we will apply the above
technique to design low-area, low-randomness sharings of LED, Midori-64, Skinny, and
Prince. However, each quadratic function requires two register stages and this increases
the latency of the masking.

Removing the second register layer breaks the non-completeness property over two
stages that was outlined above, causing a failure to achieve second-order probing security.
Adding randomness to the design is not an option as we intend to reuse all randomness

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 693

in each S-box. Instead, we pair two S-boxes that use each other’s inputs to help achieve
second-order probing security. We also use different randomness for each S-box in the pair,
but this randomness can be re-used for each pair. The overall configuration is depicted in
Figure 4.

Essentially, the idea is that if two probes are placed in the same pair of masked S-boxes,
the randomness (r0, r1) ensures that the probes do not observe secret information. When
probing two different pairs using the same randomness, the inputs from the paired S-boxes
act as fresh randomness.

The above trick should remind the reader of the changing of the guards technique
due to Daemen [Dae17], as we are using the inputs of one masked S-box in another one.
However, here we are not solving the uniformity of the sharing. Instead, we are using the
inputs to ensure the non-completeness property of the sharing.

However, we should be careful with the above trick as the second property required to
apply the theory by Beyne et al. is that the masking needs to have good diffusion. It will
be shown in Section 5 that this helps to increase the number of active masked S-boxes. In
case the output of the masked S-box depends on its paired second S-box, the diffusion
properties of the masked cipher are altered. Instead, we add the inputs of a second S-box
such that the dependency disappears after two stages. Below, we provide an example of
the masking technique for two paired AND-XOR gates:

f0(a0, b0, c0) = a0b0 + c0 + k0 + l0 → x′0
f1(a0, b1) = a0b1 + r5 + r0 + k0 → x′1 x′0 + x′1 + x′2 = x0
f2(a1, b0) = a1b0 + r0 + r1 + l0 → x′2
f3(a1, b1, c1) = a1b1 + c1 + k0 + l0 → x′3
f4(a1, b2) = a1b2 + r1 + r2 + k0 → x′4 x′3 + x′4 + x′5 = x1
f5(a2, b1) = a2b1 + r2 + r3 + l0 → x′5
f6(a2, b2, c2) = a2b2 + c2 + k0 + l0 → x′6
f7(a0, b2) = a0b2 + r3 + r4 + k0 → x′7 x′6 + x′7 + x′8 = x2
f8(a2, b0) = a2b0 + r4 + r5 + l0 → x′8

f0(k0, l0,m0) = k0l0 +m0 + a0 + b0 → y′0
f1(k0, l1) = k0l1 + r11 + r6 + a0 → y′1 y′0 + y′1 + y′2 = y0
f2(k1, l0) = k1l0 + r6 + r7 + b0 → y′2
f3(k1, l1,m1) = k1l1 +m1 + a0 + b0 → y′3
f4(k1, l2) = k1l2 + r7 + r8 + a0 → y′4 y′3 + y′4 + y′5 = y1
f5(k2, l1) = k2l1 + r8 + r9 + b0 → y′5
f6(k2, l2,m2) = k2l2 +m2 + a0 + b0 → y′6
f7(k0, l2) = k0l2 + r9 + r10 + a0 → y′7 y′6 + y′7 + y′8 = y2
f8(k2, l0) = k2l0 + r10 + r11 + b0 → y′8

In red, we denote the added randomness which can be re-used for each pair of AND-XOR
sharings. In blue, we denote the paired gate’s input. The diffusion of the masking remains
unaffected, for example, the output x0 = a0b0 + a0b1 + a1b0 + c0 + r1 + r5 does not depend
on (k0, l0).

In Section 5, we apply the technique requiring two register stages per quadratic function
and the paired S-box technique to several case studies. More specifically, we investigate
LED in Section 5.1, Midori in Section 5.2, Skinny in Section 5.3, and Prince in
Section 5.4.

694 Cryptanalysis of Efficient Masked Ciphers

S1

S2

x̄

ȳ

r0

r1

Figure 4: Two paired masked S-boxes.

5 Case Studies
In this section, we apply the two masking techniques from Sections 4.1 and 4.2, to the
ciphers LED, Midori, Skinny, and Prince. We use SILVER [KSM20] to study the
security of the masked S-boxes and the theory from Section 3 for the security analysis of
the entire masked primitive. Based on this analysis, we can conclude that our maskings
remain secure even against a noisy-probing adversary that can make up to 100 million
(227) queries. The practical analysis in Section 6 supports this conclusion.

In the rest of the paper, we use the same notation as Bilgin et al. [BNN+12], who
classified all 4-bit invertible S-boxes and analyzed their maskings. Based on the study,
4-bit quadratic bijections are classified in six classes up to affine equivalence, namely Q4

4,
Q4

12, Q4
293, Q4

294, Q4
299, and Q4

300. This classification was also provided for cubic bijections,
denoted by C4

i .

5.1 LED
LED is a 64-bit block cipher designed by Guo et al. [GPPR11]. The cipher’s state is
divided into 16 four-bit cells. The variant considered here has a 128-bit master key, from
which subkeys are derived using a nibble-wise permutation. The cipher consists of 12
steps, each comprising four rounds. These rounds consist of the parallel application of
the Present S-box [BKL+07], a ShiftRows step and a column-by-column multiplication
with an MDS matrix.

Masking. The S-box S is given by the hexadecimal lookup table c56b90ad3ef84712
and belongs to the cubic class C4

266. There are several ways to decompose the S-box into
quadratic bijections, we chose the decomposition S = A3 ◦ Q4

12 ◦ A2 ◦ Q4
12 ◦ A1 with A1,

A2 and A3 affine and Q4
12 (lookup table 0123456789cdefab) quadratic. The affine maps

are defined by

A1 : (a, b, c, d) 7→ (a, d, b, b+ c+ 1), (894501cdab6723ef)
A2 : (a, b, c, d) 7→ (c+ d, c, a, a+ b), (0c843fb71d952ea6)
A3 : (a, b, c, d) 7→ (a+ d+ 1, b+ c, a+ c+ d, b+ c+ d+ 1) . (9c3672d841ebaf05)

In our first design, we make a second-order probing-secure masked version of the S-box
in such a way that it remains first-order secure without fresh masks. This enables us to
reuse the fresh masks in all S-boxes and in all rounds, which will be discussed in more
detail in the security analysis paragraph below. To guarantee the security of the design,
the outputs of A1, A2, and the second application of Q4

12 should be stored in registers.
Otherwise, the first-order non-completeness would be violated. Additionally, the masking

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 695

of Q4
12 also needs a register layer before compression, leading to a 5-stage design of the

masked LED S-box. The full description of the coordinate functions and how they are
compressed together is given in Appendix A.

To improve the latency, we can apply our second masking technique (introduced in
Section 4.2) and remove two register layers to make a 3-stage design. To this end, we
integrate the middle and output affine functions, A2 and A3, at the output of the quadratic
functions. Namely, S = G ◦ F ◦A1 with F = A2 ◦ Q4

12 (lookup table 0e843bd71f952ac6)
where

F : (a, b, c, d) 7→ (bd+ c+ d, bd+ c, a, bd+ cd+ a+ b),

and G = A3 ◦ Q4
12 (lookup table 9c3672d841af05eb) where

G : (a, b, c, d) 7→ (a+ d+ 1, cd+ b+ c, bd+ a+ c+ d, cd+ b+ c+ d+ 1).

The second-order probing secure maskings of F and G are given in detail in Appendix C.
Note that the composition of A1 and Q4

12 contains a coordinate function containing
all quadratic monomials in three input variables. Hence, it does not have a 3-share
non-complete and uniform sharing [BNN+12]. For this reason, we implement the input
affine map A1 separately such that the output of A1 is stored in a register to ensure
non-completeness. We then pair two S-boxes, following the second technique described in
Section 4.2 and add randomness to the paired design. These random masks can be reused
for each pair of S-boxes in the entire encryption.

Architecture. The design architecture of our fully-pipelined round-based second-order
LED is depicted in Figure 5. In this design, spanning 5 clock cycles, no S-boxes are paired
and each S-box is implemented independently. Note that we do not place any further
registers to implement the cipher as one of the register stages can be seen as the state
register. As stated before, the fresh masks for one S-box can be re-used for all S-boxes in
all rounds. Hence, we generate 24 random bits at the start and store them for the entire
encryption, avoiding the need to update the random bits every clock cycle. The structure
of the second design is similar to Figure 5, except that two S-boxes are paired together and
each round requires two fewer clock cycles, i.e. A2 and A3 are integrated into the quadratic
bijections and the register layers after them are removed. Since we cannot share random
bits between the paired S-boxes, we need 72 random bits at the start of each encryption.
These bits remain the same throughout the execution of the cipher like in the other design.
The synthesis results for our designs are shown in Table 1. Using polynomial masking
as the underlying masking scheme, the authors of [CBRN14] presented a second-order
secure PRESENT S-box whose randomness complexity and latency are extremely high.
Recently, a design with 7 input shares has been proposed by Beyne et al. [BDZ20] with
a high area overhead. Notably, our designs need fewer fresh masks with lower area and
higher throughput. Note that the number of fresh masks reported in Table 1 includes the
initial sharing and the key schedule.

Security Analysis. We first assess the security of one round of the maskings. For this,
we use the SILVER verification tool [KSM20]. Since the paired S-box is too large for the
tool to handle, we have split the verification into two parts. For the first part, we removed
the fresh masks from our S-box construction and checked their first-order security in the
glitch-extended probing model. Second, we verified the second-order security of one S-box
with fresh masks. In both cases, the security was confirmed by SILVER. Due to the first
part, placing probes in two different pairs is covered. The second part of the verification
together with using fresh randomness in one pair covers the case where the two probes
are placed in the same pair. We conclude that all probe positions in a single round of the
primitive can be labeled as ‘good’ when applying Theorem 1.

696 Cryptanalysis of Efficient Masked Ciphers

m

SR MCMC c

Q12A1A1

C
o
m

p
re

ss
io

n

Q12

A2

C
o
m

p
re

ss
io

n

A3

S-boxSKi Const
rr

rr

Figure 5: Design architecture of our round-based second-order LED-128 encryption
function.

Since the key schedule is an affine function, a probe on the key-addition operation
depends on at most one share of the key. As a result, we can consider the shares of the key
as ‘good’ values when applying Theorem 1. The same reasoning applies to the additional
randomness that is reused across S-boxes.

Before Theorem 1 can be applied to obtain a bound on the security against noisy
2-threshold probing adversaries, the analysis of the ‘bad’ wire values must be completed.
This is the most difficult part of the security analysis and requires determining ε1 and

Table 1: Performance figures of different implementations.
(using Synopsis Design Compiler, and UMC90 standard cell library, excluding RNGs)

Design Security No. of Fresh Masks/ Area Delay Latency Throughput
Order Shares Encryption [bit] [kGE] [ns] [cycles] [MB/s]

LED-128
[CBRN14]a 2 5 520 8.3 - 149 -
[BDZ20]b 2 7 664 28.7 3.82 192 43.6
This work 2 3 408 14.9 2.37 240 70.3
This work 2 3 456 16.3 2.04 144 81.7
Midori-64
[SM21b] 2 3 2432 15.5 2.86 64 174.8
This work 2 3 408 13.9 2.94 64 170
This work 2 3 456 16.6 2.95 48 169.5
Skinny-64-64
[SM21b] 2 3 4352 10.6 1.22 128 204.9
This work 2 3 296 12.4 1.33 128 188
This work 2 3 320 12.3 1.33 96 188
Prince
[SM21b] 2 3 3456 19.4 3.11 84 214.3
[BKN19]c 2 3 21120 13.4 4.00 72 27.7
[BKN19]c 2 5 12032 18.7 4.10 72 27.1
[BKN19]c,d 2 3 41856 32.4 3.42 24 194.9
[BKN19]c,d 2 8 34496 177.6 3.54 24 188.3
This work 2 3 454 19.5 3.08 72 216.4
This work 2 3 584 20.3 3.41 48 195.5

a just an S-box and using NanGate 45
b implemented and synthesized by ourselves
c using TSMC90
d without S-box decomposition

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 697

MixColumns SubCells ShiftRows MixColumns SubCells

ShiftRows MixColumns SubCells ShiftRows MixColumns

Figure 6: Linear trail with a minimal number of active S-boxes over four rounds of LED,
with only one active column in the input- and output masks. The figure shows the nonzero
cells in the output masks of each transformation.

ε2. Due to the first-order security of the masking, ε1 = 0. The value of ε2 is determined
by the correlation of linear approximations resulting from probes placed in two different
rounds. Our estimate of ε2 is obtained using the principles outlined in Section 3.4 and
relies on the piling-up principle. The analysis holds for both maskings of LED.

To upper bound the correlation of linear trails, the following upper bound on the
maximum absolute correlation of linear approximations over the masked LED S-box will be
used. The verification of this result is done using software that is included as supplementary
material.

Lemma 3. Let S̄ : Va → Vb be any restriction of the sharing of S defined above. Denote
its absolute correlation matrix by |CS̄ |. For any u, v ∈ F`

2/V⊥ such that u 6= 0, it holds
that

∣∣CS̄
u,v

∣∣ ≤ 2−2.

A single probe on the LED state results in a value that depends either on one column of
the state (when placed at the MixColumns step) or on the input or output of two (paired)
S-boxes in the same column. Hence, it suffices to consider masks (in the sense of linear
cryptanalysis) that activate at most one column of the input and output state of the
trail. As a result, we search for the activity pattern between two columns of the LED
state activating the least number of S-boxes. This analysis was already made for the LED
masking of Beyne et al. [BDZ20]. There, it was shown that all such two- and three-round
trails have correlation zero. For more than three rounds, the best linear trails span four
rounds and activate 24 S-boxes. This follows from the design of LED, which follows the
wide-trail strategy [DR01]. An example of the activity pattern of such an optimal trail
between two columns is shown in Figure 6.

Thus, for probes placed in rounds i and i + r with r ≥ 3, the relevant linear trails
all have at least 24 active S-boxes. Hence, using Lemma 3, the correlations of these
trails are bounded by 2−48. By the piling-up principle, we expect a similar bound for the
correlation of linear approximations. It then follows that the 2-norm of the nontrivial
Fourier coefficients of the observed bits z can be upper bounded by

ε2 := ‖p̂z1B2(2)‖22 ≤ |supp p̂z| ‖p̂z1B2(2)‖2∞ ≤ 264 2−96 = 2−32,

where we have used the inequality |supp p̂z| ≤ 264, which follows from the fact that the
observed value z consists of at most 64 bits in the glitch-extended probing model: if a
coordinate in S̄ is read, at most 12 shares are learned; if an output of the shared linear
layer is probed, at most 32 shares are observed.

The above analysis motivates the following security claim, which relies only on the
accuracy of the piling-up principle (that resulted in the estimate ε2 ≤ 2−32).

Security Claim 1. Let A be a noisy 2-threshold probing adversary for the masking of
LED described in this section. If A makes at most q queries and the probes of A are

698 Cryptanalysis of Efficient Masked Ciphers

m / c

c / m

SC

MC

 SC

-1

k0

k1

αi

A1A1

C
o
m

p
re

ss
io

n

Q12

C
o
m

p
re

ss
io

n

Q12

S-box r

r

A2

A3A3

Figure 7: Design architecture of our round-based second-order Midori-64 encryp-
tion/decryption function.

independent and λ-noisy, then the advantage of A is bounded by (assuming piling-up)

Advnoisy 2-thr(A) ≤
√

q

λ2 231 .

Due to the above security bound, the advantage of any noisy-probing adversary making
at most 227 queries is at most 2−8 as long as λ ≥ 26. Based on Figure 12d from the
practical evaluation on FPGA, we observe third-order univariate leakage of the masked
Prince with 100 million traces. Assuming similar leakage for the masked LED, we can
assume that there is a third-order distinguisher with advantage one. As a result, we have
that 1 ≤

√
2q/λ3 for q = 227 and thus λ ≤ 29. Note that we expect much higher noise

parameters in ASIC implementations.

5.2 Midori
In this section, we consider the Midori-64 block cipher by Banik et al. [BBI+15]. It has a
64-bit state that is divided into 4-bit cells and a 128-bit key. Round keys are derived by
alternately using the left or right half of the master key. Midori-64 uses a 4-bit cubic
S-box which can be decomposed into two quadratic functions. The diffusion layer consists
of a permutation of the 4-bit cells and the application of an involutive binary quasi-MDS
matrix. We note that Midori-64 has been broken by Todo et al. [TLS16]. We choose this
cipher to provide more variety in the applications of our masking techniques, but we do
not recommend the use of the cipher.

Masking. Midori’s 4-bit S-box S is given by the lookup table cad3ebf789150246 and is
affine equivalent to the class C4

266. We use the same S-box decomposition as presented by
Moradi et al. [MS16]. Namely, we can decompose the S-box as S = A3 ◦Q4

12 ◦A2 ◦Q4
12 ◦A1

with

A1 : (a, b, c, d) 7→ (b, a, d, a+ c), (0a1b82934e5fc6d7)
A2 : (a, b, c, d) 7→ (b+ d, b, a, a+ c+ 1), (84b70c3f95a61d2e)
A3 : (a, b, c, d) 7→ (c, a, c+ d, b+ 1). (8a02df57ce469b13)

The general structure of our 4-stage masked S-box can be seen in Figure 7. Notably,
the output of A1 and A2 should be stored in registers. The masking of Q4

12 also needs a

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 699

register layer before compression. Their sharing is given in Appendix A. This would lead
to a design with a latency of 4 clock cycles.

To reduce the latency of our design by removing the register layer after A2, we follow
the technique described in Section 4.2 and pair two masked S-boxes. More precisely, similar
to LED, we integrate A2 (respectively A3) with Q4

12 and define S = G ◦ F ◦ A1 with
F = A2 ◦ Q4

12 (lookup table 84b70c3f951d2ea6) as

F : (a, b, c, d) 7→ (bd+ cd+ c+ d, bd+ cd+ b, a, bd+ a+ c+ 1),

and G = A3 ◦ Q4
12 (lookup table 9c3672d841af05eb) as

G : (a, b, c, d) 7→ (bd+ c, a, bd+ c+ d, bd+ cd+ b+ 1).

If we would integrate the affine map A1 into the first quadratic bijection Q4
12, then we

would face the same difficulty as observed for LED. That is, all quadratic monomials of
three input variables would appear in one coordinate function. Hence, we keep the affine
map A1 in the decomposition and store its output in a register. Since we removed the
register after the compression layer of F , we pair two S-boxes to ensure their second-order
probing security. As discussed in Section 4.2, this requires adding independent fresh masks
to the two S-boxes in the pair. These fresh masks can be reused for all S-box pairs in the
cipher. The maskings of F and G are given in Appendix E.

Architecture. The design architecture of our round-based second-order Midori-64 im-
plementation, which supports both encryption and decryption, is illustrated in Figure 7.
Note that in this design, the affine functions are implemented separately and the S-boxes
are not paired. In this design, 24-bit fresh masks are generated at the start of encryption
and remain unchanged during the execution. These fresh masks are used in all S-boxes.
The same holds for the low latency design. However, the number of fresh masks is higher,
i.e. the design should receive 72-bit fresh randomness along with the shared input and
key. The synthesis results for this design can also found in Table 1. As a comparison to
the state of the art, a second-order secure Midori-64 is presented in Shahmirzadi and
Moradi [SM21b]. It requires more randomness than our designs. Furthermore, our designs
have roughly the same delay and area overhead.

Security Analysis. We first investigate the probing security of our S-box designs and
of one round of the masked primitive. This verification is performed by the SILVER
tool [KSM20] and was done in the same way as for LED. From the verification, we can
conclude the second-order probing security of one round of the masked LED. Hence, we
conclude that all probe positions in a single round of the primitive can be labeled as ‘good’
following Theorem 1. Similarly, since the key schedule is an affine function, the same
labeling applies for it.

As for LED, the perfect first-order security of the masking implies ε1 = 0. To estimate
ε2, a similar argument as in the case of LED will be used. However, there is one important
novelty in the analysis of Midori below: rather than assuming that the entire key is
constant, which was sufficient for the analysis of LED, we rely on the fact that the adversary
can observe only a few key bits. This significantly reduces the correlation of the best trail.

We first compute the maximum absolute correlation of the masked Midori S-box. The
following lemma provides an upper bound, which can be verified using the software in the
supplementary material.

Lemma 4. Let S̄ : Va → Vb be any restriction of the sharing of the Midori S-box S
defined above. Denote its absolute correlation matrix by |CS̄ |. For any u, v ∈ F`

2/V⊥ such
that u 6= 0, it holds that

∣∣CS̄
u,v

∣∣ ≤ 2−2.

700 Cryptanalysis of Efficient Masked Ciphers

Mix
k1

u

SubCell
k2

Shuffle and Mix SubCell Shuffle and Mix

v

k1

SubCell Shuffle and Mix
k2

Figure 8: Linear trail with a minimal number of active S-boxes over four rounds of Midori,
with only one active column in the input- and output masks. If the randomness of the
keys k1 and k2 is taken into account, then the trail has correlation zero.

As in the analysis of LED, a probe can only activate one column of the Midori state.
For fixed keys, the best trails between two columns essentially follow the ones given by
Banik et al. [BBI+15, Fig. 9] and span four rounds activating 15 S-boxes. Figure 8 depicts
such a trail. Although the correlation of this trail is quite small (≤ 2−30), this is not
sufficient to obtain a good bound on ε2 due to the potentially large size of supp p̂z.

However, taking into account the randomness of the key, the correlation of all four
and five round trails is necessarily zero. Indeed, each of the adversary’s probes reveals
bits from at most one cell of the shared round keys k1 and k2 (note that these bits are
labeled ‘good’). To ensure a zero mask on the key k1, the masks u and v indicated in
Figure 8 must satisfy ui = vi for all cells i ∈ {1, . . . , 16} \ {j}, where cell j is the probed
cell. Since only column j of u can be nonzero, the same must be true for v. However,
this is impossible by the two-round diffusion of Midori, which ensures that at least three
columns of v are nonzero. This implies that the correlation of any trail over four rounds is
zero. The same reasoning applies to five rounds; the only difference is that two cells of k1
are known and two columns of u and v can be nonzero.

Banik et al. [BBI+15, Tbl. 7] showed that a linear trail over 5 rounds of Midori must
activate at least 23 S-boxes. Hence, for probes placed in rounds i and i+ r with r ≥ 6, the
relevant linear trails all have at least 23 active S-boxes. Note that this is an underestimate,
since it does not take into account the influence of the key-addition and the fact that only
one column of the input and output state can be active. Based on this, it can be concluded
that the absolute correlation of the best trail is at most 2−46. It follows that the 2-norm
of the nontrivial Fourier coefficients of the observed bits z can be upper bounded by

ε2 := ‖p̂z1B2(2)‖22 ≤ |supp p̂z| ‖p̂z1B2(2)‖2∞ ≤ 248 2−92 = 2−44,

where we have used the inequality |supp p̂z| ≤ 248, which follows from the fact that the
observed value z consists of at most 48 bits in the glitch-extended probing model: if a
coordinate in S̄ is read, at most 12 shares are learned; if an output of the shared linear
layer is probed, at most 24 shares are observed.

The above analysis motivates the following security claim, which relies only on the
accuracy of the piling-up principle.

Security Claim 2. Let A be a noisy 2-threshold probing adversary for the masking of
Midori described in this section. If A makes at most q queries and the probes of A are
independent and λ-noisy, then the advantage of A is bounded by (assuming piling-up)

Advnoisy 2-thr(A) ≤
√

q

λ2 243 .

Given that the adversary can make up to 227 queries, even without noise the above

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 701

bound yields a maximum advantage of 2−8. The noise can only decrease the advantage of
the adversary.

5.3 SKINNY
In this section, we consider the tweakable block cipher Skinny from Beierle et al. [BJK+16]
with a 64-bit state and a 64-bit tweakey. The state is divided into 4-bit cells which
are processed using the cubic Piccolo S-box [SIH+11], a ShiftRows operation and a
lightweight matrix multiplication with the columns of the state. This matrix only has
branch number two. The tweakey is processed using affine operations.

Masking. The S-box S of Skinny is given by the lookup table c6901a2b385d4e7f
and belongs to the cubic class C4

223. We use the same decomposition as Shahmirzadi
and Moradi [SM21b], namely S = A3 ◦ Q4

294 ◦ A2 ◦ Q4
294 ◦ A1. All affine functions are

bit-permutations up to addition by a constant. The affine functions are defined as

A1 : (a, b, c, d) 7→ (a+ 1, d+ 1, b+ 1, c+ 1), (feba7632dc985410)
A2 : (a, b, c, d) 7→ (d, c, b, a), (084c2a6e195d3b7f)
A3 : (a, b, c, d) 7→ (b+ 1, a+ 1, c+ 1, d+ 1). (fdecb9A875643120)

The full description of the coordinate functions and how we realized a second-order
secure version of Q4

294 is provided in Appendix B. The general structure of the 4-stage
masked S-box is similar to Midori’s S-box. More precisely, we placed register layers at the
input and output of the first application of Q4

294 as well as before the compression layers.
However, we add 16 bits of additional fresh masks to refresh the output of every pair of
S-boxes in a column to compensate for the weak diffusion layer of Skinny. Note that it is
also possible to avoid this extra randomness, as the randomness of the masked key can
serve as a substitute as in the analysis of Midori in Section 5.2. However, recall that the
tweak part of the tweakey can be public and does not necessarily need to be masked. As a
result, the complete construction uses a total of 40-bits of fresh masks.

We then used our second masking technique to improve the latency by pairing two
S-boxes similar to Midori-64 and LED. Namely, the first application of Q4

294 in the first
S-box receives one share from the first application of Q4

294 in the second S-box as input and
vice versa. We note that, since all affine layers are bit-permutations, they do not need to
be integrated with the quadratic functions in the S-box. The sharing of this construction is
provided in Appendix D. In this way, we can omit the register layer after the first Q4

294. In
summary, we provide a three-share second-order probing-secure realization of the Skinny
S-box with 3 register stages making use of 48-bit fresh masks. Again, an additional 16-bits
of fresh randomness should be used in the design to refresh the output of each pair of
S-boxes to avoid multivariate leakage. The total of 64-bit fresh randomness can be re-used
in every pair of S-boxes.

Architecture. The design architecture of our fully-pipelined round-based second-order
Skinny-64 is depicted in Figure 9. Each round is performed in 4 clock cycles. Note that no
further register layer is necessary and one of the register layers in the S-box construction
can be seen as the state register. As stated before, 40-bit fresh masks should be given to the
design at the start of the encryption. The low latency design needs one fewer clock cycle per
round at the cost of additional fresh randomness, i.e. 64-bit fresh randomness should be
fed to the design. Table 1 shows the corresponding performance figures. Recently, a second-
order secure design of Skinny-64-64 was presented by Shahmirzadi and Moradi [SM21b].
It requires more fresh masks per encryption than our design. Furthermore, our low latency
design is 25% faster in the terms of clock cycles. Note that the Skinny key schedule is a

702 Cryptanalysis of Efficient Masked Ciphers

m

SR MCMC c

Q294A1A1

C
o
m

p
re

ss
io

n

Q294

A2

C
o
m

p
re

ss
io

n

A3

TKi

S-box rr

rr
r

Figure 9: Design architecture of our round-based second-order Skinny-64 encryption
function.

linear function and other variants with larger key sizes can be easily implemented even
though we only constructed Skinny-64-64, i.e. with a 64-bit key size.

Security Analysis. We start with the security analysis of one round of the primitive. This
has been analyzed by SILVER [KSM20] following the approach outlined in the security
analysis of LED. However, for this case we were also able to evaluate the second-order
probing security of the paired S-boxes by SILVER due to the fact that the Skinny S-box is
rather simple. Moreover, the number of fresh masks is also lower compared to our Midori
and Present S-box low latency designs. We can thus label all probe positions placed in a
single round of the masked Skinny as ‘good’ when applying Theorem 1. Again, since the
tweakey schedule is an affine function, we can also consider the shared tweakey variables
as ‘good’.

We then switch to the multiple-round probing security analysis and consider the ‘bad’
probe positions for Theorem 1. Since the masking is perfect first-order secure, we have
that ε1 = 0. We now investigate ε2. We first bound the maximum absolute correlation of
the masked Skinny S-box in Lemma 5. This result can be verified using the software in
the supplementary material of the submission.

Lemma 5. Let S̄ : Va → Vb be any restriction of the sharing of S defined above. Denote
its absolute correlation matrix by |CS̄ |. For any u, v ∈ F`

2/V⊥ such that u 6= 0, it holds
that

∣∣CS̄
u,v

∣∣ ≤ 2−2.

As mentioned above, we add some additional randomness to avoid trails with nonzero
correlation over two or three rounds of Skinny resulting from two probes. In particular,
we add these 16 extra random bits after each S-box pair and use a development version of
ArxPy2, equipped with the SMT solver Boolector [NPB15], to search for the best trail
resulting from two probes, taking into account that only one column of the state can be
active in the input- and output masks. Remarkably, we find that the best trail found
by the software covers 6 rounds and activates at least 34 masked S-boxes. Hence, the
correlations of these trails are bounded by 2−68. It then follows that ε2 can be upper
bounded by

ε2 := ‖p̂z1B2(2)‖22 ≤ |supp p̂z| ‖p̂z1B2(2)‖2∞ ≤ 224 2−136 = 2−112 ,

2https://github.com/ranea/ArxPy

https://github.com/ranea/ArxPy

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 703

m / c

RC k1

k0 k0k0́́

c / m

SR
-1

SR
-1

SR
-1

SR
-1

Mʹ

SR
-1

SRSR
-1

SR AA

AA

C
o
m

p
re

ss
io

n

Q294

C
o
m

p
re

ss
io

n

Q294A1A1

C
o
m

p
re

ss
io

n

Q294

S-box-1

A2

A3 A4

rr rr

rr

R
ef

r
es

h
in

g
R

ef
r
es

h
in

g

Figure 10: Design architecture of our round-based second-order Prince encryp-
tion/decryption function.

where we have used the inequality |supp p̂z| ≤ 224, which follows from the fact that the
observed value z consists of at most 24 bits in the glitch-extended probing model: if a
coordinate in S̄ is read, at most 12 shares are learned; if an output of the shared linear
layer is probed, at most 12 shares are observed.

The above analysis motivates the following security claim, which relies only on the
accuracy of the piling-up principle.

Security Claim 3. Let A be a noisy 2-threshold probing adversary for the masking of
Skinny described in this section. If A makes at most q queries and the probes of A are
independent and λ-noisy, then the advantage of A is bounded by (assuming piling-up)

Advnoisy 2-thr(A) ≤
√

q

λ2 2111 .

It is clear that, even without noise, the above bound achieves the desired security level
for up to q ≤ 227 queries.

5.4 PRINCE
Prince is a low-latency and energy-efficient cipher introduced by Borghoff et al. [BCG+12].
The cipher’s state is divided into 16 four-bit cells and the cipher uses a 128-bit key which
is split in two 64-bit subkeys. The nonlinear layer of Prince uses a cubic S-box which can
be split into three quadratic functions and whose inverse is affine equivalent to itself. The
diffusion layer consists of a ShiftRows step mixed with an involutive quasi-MDS matrix.

Masking. Prince uses both its S-box S, given by bf32ac916780e5d4 as a lookup table,
and its inverse S−1, given by b732fd89a6405ec1, during encryption and decryption. The
S-box and its inverse are both affine equivalent to the cubic class C4

223 [MS16]. Based on
the study published by Moradi and Schneider [MS16], we can decompose the inverse S-box
as S−1 = A4 ◦ Q4

294 ◦A3 ◦ Q4
294 ◦A2 ◦ Q4

294 ◦A1 with

A1 : (a, b, c, d) 7→ (b, a, c, a+ d+ 1), (8293c6d70a1b4e5f)
A2 : (a, b, c, d) 7→ (d, c, b+ 1, a+ 1), (c480e6a2d591f7b3)
A3 : (a, b, c, d) 7→ (c, c+ d, b, a+ b), (08c43bf72ae619d5)
A4 : (a, b, c, d) 7→ (a+ b, a+ c+ 1, b+ d, c). (21748bde6530cf9a)

We can use the same sharing of Q4
294 as in our masking of Skinny to make a second-

order masking of the inverse S-box using 38 bits of fresh masks (see Appendix B). However,
we make a slight change to the middle quadratic function: we moved some linear terms

704 Cryptanalysis of Efficient Masked Ciphers

of the direct sharing in order to improve the maximum absolute correlation of the S-box
(Lemma 6). The general architecture of our design is shown in Figure 10. Namely, each
masking of Q4

294 requires a register layer before compression. Further, a register layer
should be placed at the output of A1, A2, and A3. This results in a design with 6 register
stages. To avoid leakage at the reflection layer of Prince, we add 32 bits of extra fresh
randomness after the MixColumns operation. More precisely, we fully refresh a column
consisting of 4 nibbles and re-use the same masks to refresh the other columns as well. It
is interesting to note that Princev2 [BEK+20] does not require this extra randomness
due to its key addition in the reflection layer. Additionally, the alternating use of two
round keys eases the security analysis of its masking.

Finally, note that the S-box and its inverse are affine equivalent as S = A ◦ S−1 ◦ A
which allows us to also implement the S-box proper. The affine layer A is given by

A : (a, b, c, d) 7→ (a+ b+ d+ 1, a+ 1, d, c+ 1). (b8a93021edfc6574)

To improve the latency of our design, we integrated the affine functions into the quadratic
bijection Q4

294 and write the S-box inverse as S = H ◦ G ◦ F with F = A2 ◦ Q4
294 ◦ A1

(lookup table d850ba32c149e76f) as

F : (a, b, c, d) 7→ (a+ d+ 1, c, ac+ cd+ a+ c+ 1, ad+ b+ 1),

G = A3 ◦ Q4
294 (lookup table 08c43bf72a6ed591) as

G : (a, b, c, d) 7→ (c, c+ d, cd+ b, ad+ b+ 1),

and H = A4 ◦ Q4
294 (lookup table 21748bde65039afc) as

H : (a, b, c, d) 7→ (bd+ cd+ a+ b, bd+ a+ c+ 1, cd+ b+ d, c).

Following the technique described in Section 4.2, we pair four S-boxes in each column.
Namely, the F and G functions of the ith S-box with 0 ≤ i ≤ 3 are paired with the F
function of the (i+ 1 mod 4)th S-box and the G function of the (i+ 2 mod 4)th S-box.
The full expression of the coordinate functions and how we paired the functions are given in
detail in Appendix F. Based on this approach, the latency of the masked S-box is reduced
to 3 clock cycles.

Architecture. Figure 10 depicts the design architecture of our fully-pipelined round-based
second-order Prince supporting both encryption and decryption. In this design, each
round is calculated over 6 clock cycles using a total of 70 bits of fresh masks. Namely, 38
bits for the S-box and 32 bits for refreshing after the MixColumns. For the low latency
design, i.e. the 3-stage construction, we need to place a register layer at the input of the
S-box to function as the state register. This design requires more fresh masks. i.e. 168
bits for four paired S-boxes and 32 bits for refreshing after the MixColumns. Table 1 shows
the corresponding performance figures. Compared to state of the art, our designs requires
fewer fresh masks per encryption while maintaining similar area and throughput.

Security Analysis. We start by analyzing the security of a single round of the masked
Prince. This verification was done using SILVER [KSM20]. With SILVER, we examined
the first- and second-order security of our designs as outlined in Section 5.1. The verification
was successful, meaning that we can label all probe positions in one round of the masking
as ‘good’. Since the key-schedule is an affine function, it is possible to label all shares of
the key as ‘good’ values when applying Theorem 1. Similarly, all of the random bits used
in the S-boxes may be labeled ‘good’.

We then move to the ‘bad’ probe positions in Theorem 1. Since the masking is perfect
first-order secure, we have ε1 = 0. We thus focus on ε2. We first upper bound the

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 705

M ′ S-layer M S-layer M

S-layer M S-layer M

Figure 11: Linear trail over Prince starting with one active cell in the first diffusion layer
including the key schedule.

maximum absolute correlation of the masked Prince S-box. This can be verified using
software included in the submission.

Lemma 6. Let S̄ : Va → Vb be any restriction of the sharing of S defined above. Denote
its absolute correlation matrix by |CS̄ |. For any u, v ∈ F`

2/V⊥ such that u 6= 0, it holds
that

∣∣CS̄
u,v

∣∣ ≤ 2−1.678.

A probe in the state of Prince either results in an active column when probing the
diffusion layer or in up to three active cells in a column when probing the masked S-box
(due to the pairing technique). Similar to Midori, we include the key schedule in our
analysis. Using an argument similar to the one used for Midori, it can be shown that the
randomness of the masked key ensures that a trail with nonzero correlation must cover at
least five rounds. In Table 2, we show how many S-boxes are activated given the number
of active cells in the first column of the diffusion layer over 2 rounds.

Table 2: The number of active S-boxes, the number of bits observed by a probe, and a
bound on c, the square correlation times the support of the observation, over two rounds
of the masked Prince given how many cells are activated by a probe.

cells active S-boxes support (bits) c

2 8 17 2−10.84

3 12 25 2−16

4 16 33 2−21

Activating only one cell results in the activity pattern with 16 active S-boxes shown
in Figure 11. This trail is not possible due to the key. Indeed, this would require that at
least two columns of the mask on the state after the third and fourth linear layer are equal.
Furthermore, any other activity pattern starting with one activation in M must activate
at least five additional S-boxes, making it inferior to the two-cell pattern from Table 2.

As a result, the best trail spans at least five rounds and offers ε2 = 2−21.68 (the square
of the best result of Table 2).

The above analysis motivates the following security claim, which relies only on the
accuracy of the piling-up principle.

Security Claim 4. Let A be a noisy 2-threshold probing adversary for the masking of
Prince described in this section. If A makes at most q queries and the probes of A are
independent and λ-noisy, then the advantage of A is bounded by (assuming piling-up)

Advnoisy 2-thr(A) ≤
√

q

λ2 220.68 .

706 Cryptanalysis of Efficient Masked Ciphers

In order to achieve an advantage of at most 2−8 for up to 227 noisy-probing queries,
we require that λ > 211.16. A similar argument to the one given in Section 5.1 would not
work here, as from the practical evaluation we can conclude that λ < 29. However, we
repeat that we expect a much higher noise parameter on ASIC. Moreover, a more detailed
security analysis can provide a better bound.

6 Experimental Analysis
In addition to all theoretical analyses, for the sake of completeness, we have conducted
experimental analyses. To this end, we have taken our full cipher implementation of
Prince introduced in Section 5.4, which needs 6 clock cycles per cipher round and in total
70 bits of fresh randomness. We implemented this design on a Xilinx Spartan-6 FPGA of
SAKURA-G evaluation board [GIS14] and supplied the device with a stable 6MHz clock.
For each required fresh mask bit, we instantiated a Linear Feedback Shift Register (LFSR)
with the feedback polynomial x31 + x28 + 1, which – following the instruction given by
De Meyer et al. [MMW18] – can be efficiently realized in Xilinx FPGAs by means of only
three 6-to-1 Look-Up Tables (LUTs). For each given plaintext to be encrypted, the LFSRs
are just activated for one clock cycle to be updated. In other words, the entire 70-bit fresh
masks stay unchanged until the encryption is terminated.

Using a digital oscilloscope at a sampling rate of 500MS/s, we collected power consump-
tion traces by monitoring the voltage drop over a 1Ω shunt resistor placed on the VDD path
of the target FPGA. We followed the measurement strategy explained by Schneider and
Moradi [SM15] to conduct fixed versus random t-test (also known as TVLA [CDG+13]),
where the encryption engine receives either a fixed or random plaintext while the key is
constant during these measurements. Such an analysis is supposed to detect SCA leakages
without performing any key-recovery attack. Note that all inputs to the device (resp. the
output of the device) are provided in a masked form using 3 shares.

We performed four different analyses, with the first one being an ordinary t-test on
each sample point individually, i.e. first-order univariate. For second-order univariate, we
first made the traces mean-free (for each group of fixed and random individually), and
then squared each mean-free sample point prior to running the same t-test. The same
process has been performed for third-order univariate while cubing each mean-free sample
point instead of squaring. For a bivariate second-order t-test, an individual t-test for each
combination of every two possible sample points should be performed (by multiplying
the corresponding mean-free sample points). Since performing such a high number of
individual tests is not feasible (particularly in our case that every power consumption
signal has 7 000 sample points), we followed the same trick used in [CRB+16,SM21b] by
down-sampling the traces by taking a sample point for each clock cycle (carefully selected
at the middle of the cycle). This allows us to perform individual t-tests for every possible
combination of two clock cycles.

The corresponding results are shown in Figure 12, confirming our theoretical analyses.
In short, we do not detect any first-order or second-order leakage, either univariate or
bivariate. As expected, the design exhibits third-order leakage, as depicted in Figure 12d.
Since the third-order univariate t-test already showed detectable leakage, we omitted the
extension of our multivariate analysis to the third-order case.

7 Conclusions
In this work, we used an extension of the bounded-query probing model from Beyne
et al. [BDZ20], called the noisy probing model. This model can be seen as a hybrid between
the threshold probing model and the noisy leakage model. We have shown that the

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 707

0 2 4 6 8 10 12
Time [s]

P
ow

er

(a) A sample trace

0 2 4 6 8 10 12
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(b) 1st-order t-test

0 2 4 6 8 10 12
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(c) 2nd-order t-test

0 2 4 6 8 10 12
Time [s]

-5

0

5

t-
st

at
is

tic
s

(d) 3rd-order t-test

0 2 4 6 8 10 12
Time [s]

0

2

4

6

8

10

12

T
im

e
[

s]

1

2

3

4

t-
st

at
is

tic
s

(e) 2nd-order bivariate t-test

Figure 12: Experimental analysis of the masked Prince from Section 5.4 using 100 million
traces.

concrete security of maskings can be analyzed within this model using linear cryptanalysis,
extending the results of Beyne et al. [BDZ20]. The inclusion of noise makes the model
more realistic and allows for relaxed design constraints.

We proposed two techniques to create second-order low-randomness masked designs.
The first relaxes the joint need for second-order non-completeness and uniformity. Thanks
to this relaxation, we can make low-randomness masked designs with a minimal number of
shares. The second technique extends the first one by pairing two masked S-boxes. This
technique allows reducing the number of register stages, thus improving the latency of the
masked designs.

We applied these two techniques to several case studies, including LED, Midori,
Skinny, Prince, where the efficiency of the constructed designs can be seen in Table 1.
While conducting theoretical security analyses by the noisy probing model, we confirmed
our claims by FPGA-based experiments conducted on an exemplary construction of ours.

708 Cryptanalysis of Efficient Masked Ciphers

Acknowledgements
We thank Adrián Ranea for his help on building the SMT model for SKINNY. Tim Beyne
and Siemen Dhooghe are supported by a PhD Fellowship from the Research Foundation
– Flanders (FWO). The work described in this paper has been supported in part by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA - 390781972 and through the project 406956718
SuCCESS.

References
[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,

Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A
block cipher for low energy. In ASIACRYPT 2015, volume 9453 of Lecture
Notes in Computer Science, pages 411–436. Springer, 2015.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knezevic, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
PRINCE - A low-latency block cipher for pervasive computing applications
- extended abstract. In ASIACRYPT 2012, volume 7658 of Lecture Notes in
Computer Science, pages 208–225. Springer, 2012.

[BDZ20] Tim Beyne, Siemen Dhooghe, and Zhenda Zhang. Cryptanalysis of masked
ciphers: A not so random idea. In ASIACRYPT 2020, volume 12491 of Lecture
Notes in Computer Science, pages 817–850. Springer, 2020.

[BEK+20] Dusan Bozilov, Maria Eichlseder, Miroslav Knezevic, Baptiste Lambin, Gregor
Leander, Thorben Moos, Ventzislav Nikov, Shahram Rasoolzadeh, Yosuke Todo,
and Friedrich Wiemer. Princev2 - more security for (almost) no overhead. In
SAC 2020, volume 12804 of Lecture Notes in Computer Science, pages 483–511.
Springer, 2020.

[Bey18] Tim Beyne. Block cipher invariants as eigenvectors of correlation matrices.
In ASIACRYPT 2018, volume 11272 of Lecture Notes in Computer Science,
pages 3–31. Springer, 2018.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-order threshold implementations. In ASIACRYPT 2014,
volume 8874 of Lecture Notes in Computer Science, pages 326–343. Springer,
2014.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY
family of block ciphers and its low-latency variant MANTIS. In CRYPTO 2016,
volume 9815 of Lecture Notes in Computer Science, pages 123–153. Springer,
2016.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In CHES 2007, volume 4727 of
Lecture Notes in Computer Science, pages 450–466. Springer, 2007.

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 709

[BKN19] Dusan Bozilov, Miroslav Knezevic, and Ventzislav Nikov. Optimized Threshold
Implementations: Minimizing the Latency of Secure Cryptographic Accelera-
tors. In CARDIS 2019, volume 11833 of Lecture Notes in Computer Science,
pages 20–39. Springer, 2019.

[BNN+12] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg
Stütz. Threshold implementations of all 3 x 3 and 4 x 4 s-boxes. In CHES 2012,
volume 7428 of Lecture Notes in Computer Science, pages 76–91. Springer,
2012.

[CBR+15] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and
Svetla Nikova. Higher-order threshold implementation of the AES s-box. In
CARDIS 2015, volume 9514 of Lecture Notes in Computer Science, pages
259–272. Springer, 2015.

[CBRN14] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, and Svetla Nikova. Higher-
Order Glitch Resistant Implementation of the PRESENT S-Box. In Balka-
nCryptSec 2014, volume 9024 of Lecture Notes in Computer Science, pages
75–93. Springer, 2014.

[CDG+13] Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary Kenwor-
thy, Pankaj Rohatgi, et al. Test vector leakage assessment (TVLA) methodology
in practice. In International Cryptographic Module Conference, volume 20,
2013.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In CRYPTO ’99,
volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer,
1999.

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 Shares in Hardware. In
CHES 2016, volume 9813 of Lecture Notes in Computer Science, pages 194–212.
Springer, 2016.

[Dae17] Joan Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In CHES 2017, volume 10529 of
Lecture Notes in Computer Science, pages 137–153. Springer, 2017.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In EUROCRYPT 2014, volume
8441 of Lecture Notes in Computer Science, pages 423–440. Springer, 2014.

[DFH+16] Stefan Dziembowski, Sebastian Faust, Gottfried Herold, Anthony Journault,
Daniel Masny, and François-Xavier Standaert. Towards sound fresh re-keying
with hard (physical) learning problems. In CRYPTO 2016, volume 9815 of
Lecture Notes in Computer Science, pages 272–301. Springer, 2016.

[DGV94] Joan Daemen, René Govaerts, and Joos Vandewalle. Correlation matrices. In
Fast Software Encryption: Second International Workshop. Leuven, Belgium,
14-16 December 1994, Proceedings, volume 1008 of Lecture Notes in Computer
Science, pages 275–285. Springer, 1994.

[DP08] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography.
In 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2008, October 25-28, 2008, Philadelphia, PA, USA, pages 293–302. IEEE
Computer Society, 2008.

710 Cryptanalysis of Efficient Masked Ciphers

[DR01] Joan Daemen and Vincent Rijmen. The wide trail design strategy. In Cryp-
tography and Coding, 8th IMA International Conference, Cirencester, UK,
December 17-19, 2001, Proceedings, volume 2260 of Lecture Notes in Computer
Science, pages 222–238. Springer, 2001.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):89–120, 2018.

[GIS14] Hendra Guntur, Jun Ishii, and Akashi Satoh. Side-channel attack user reference
architecture board SAKURA-G. In GCCE 2014, pages 271–274. IEEE, 2014.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-Oriented Masking:
Compact Masked Hardware Implementations with Arbitrary Protection Order.
In Theory of Implementation Security - TIS@CCS 2016, page 3. ACM, 2016.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED block cipher. In CHES 2011, volume 6917 of Lecture Notes in Computer
Science, pages 326–341. Springer, 2011.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - statistical
independence and leakage verification. In ASIACRYPT 2020, volume 12491 of
Lecture Notes in Computer Science, pages 787–816. Springer, 2020.

[Mat93] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In EUROCRYPT
’93, volume 765 of Lecture Notes in Computer Science, pages 386–397. Springer,
1993.

[MMW18] Lauren De Meyer, Amir Moradi, and Felix Wegener. Spin Me Right Round
Rotational Symmetry for FPGA-Specific AES. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):596–626, 2018.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the Limits: A Very Compact and a Threshold Implementation of AES.
In EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 69–88. Springer, 2011.

[MPO05] Stefan Mangard, Norbert Pramstaller, and Elisabeth Oswald. Successfully
attacking masked AES hardware implementations. In CHES 2005, volume
3659 of Lecture Notes in Computer Science, pages 157–171. Springer, 2005.

[MS16] Amir Moradi and Tobias Schneider. Side-channel analysis protection and
low-latency in action - - case study of PRINCE and midori -. In ASIACRYPT
2016, volume 10031 of Lecture Notes in Computer Science, pages 517–547,
2016.

[NPB15] Aina Niemetz, Mathias Preiner, and Armin Biere. Boolector 2.0 system
description. Journal on Satisfiability, Boolean Modeling and Computation,
9:53–58, 2015.

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 711

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold im-
plementations against side-channel attacks and glitches. In Information and
Communications Security, 8th International Conference, ICICS 2006, volume
4307 of Lecture Notes in Computer Science, pages 529–545. Springer, 2006.

[PGMP19] Thomas Prest, Dahmun Goudarzi, Ange Martinelli, and Alain Passelègue.
Unifying leakage models on a rényi day. In CRYPTO 2019, volume 11692 of
Lecture Notes in Computer Science, pages 683–712. Springer, 2019.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against side-channel attacks:
A formal security proof. In EUROCRYPT 2013, volume 7881 of Lecture Notes
in Computer Science, pages 142–159. Springer, 2013.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In CRYPTO 2015, volume
9215 of Lecture Notes in Computer Science, pages 764–783. Springer, 2015.

[Rep15] Oscar Reparaz. A note on the security of higher-order threshold implementa-
tions. IACR Cryptol. ePrint Arch., page 1, 2015.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi Mitsuda, Toru
Akishita, and Taizo Shirai. Piccolo: An ultra-lightweight blockcipher. In
CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages 342–357.
Springer, 2011.

[SM15] Tobias Schneider and Amir Moradi. Leakage Assessment Methodology - A
Clear Roadmap for Side-Channel Evaluations. In CHES 2015, volume 9293 of
Lecture Notes in Computer Science, pages 495–513. Springer, 2015.

[SM21a] Aein Rezaei Shahmirzadi and Amir Moradi. Re-consolidating first-order mask-
ing schemes nullifying fresh randomness. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021(1):305–342, 2021.

[SM21b] Aein Rezaei Shahmirzadi and Amir Moradi. Second-Order SCA Security with
almost no Fresh Randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2021(3):708–755, 2021.

[TG91] Anne Tardy-Corfdir and Henri Gilbert. A known plaintext attack of FEAL-4
and FEAL-6. In Joan Feigenbaum, editor, CRYPTO ’91, volume 576 of Lecture
Notes in Computer Science, pages 172–181. Springer, 1991.

[TLS16] Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear invariant attack -
practical attack on full scream, iscream, and midori64. In ASIACRYPT 2016,
volume 10032 of Lecture Notes in Computer Science, pages 3–33, 2016.

712 Cryptanalysis of Efficient Masked Ciphers

A 3-share Q4
12 with 12-bit Fresh Masks

F (a, b, c, d) = (x, y, z, t) with lookup table 0123456789cdefab

x = f(a, b, c, d) = a

y = g(a, b, c, d) = bd+ cd+ b

z = h(a, b, c, d) = bd+ c

t = k(a, b, c, d) = d

a1→ x0
a2→ x1
a0→ x2

g0(d1, c1, b1) = d1c1 + d1b1 → y′0
g1(d1, c2, b2) = d1c2 + d1b2 + b2 + r0 + r1 → y′1 y′0 + y′1 + y′2 = y0
g2(d2, c1, b1) = d2c1 + d2b1 + r1 + r2 → y′2
g3(d2, c2, b2) = d2c2 + d2b2 → y′3
g4(d2, c0, b0) = d2c0 + d2b0 + b0 + r2 + r3 → y′4 y′3 + y′4 + y′5 = y1
g5(d0, c2, b2) = d0c2 + d0b2 + r3 + r4 → y′5
g6(d0, c0, b0) = d0c0 + d0b0 → x′6
g7(d0, c1, b1) = d0c1 + d0b1 + b1 + r4 + r5 → y′7 y′6 + y′7 + y′8 = y2
g8(d1, c0, b0) = d1c0 + d1b0 + r5 + r0 → y′8

h0(d1, b1, c2) = d1b1 + c2 → z′0
h1(d1, b2) = d1b2 + r6 + r7 → z′1 z′0 + z′1 + z′2 = z0
h2(d2, b1) = d2b1 + r7 + r8 → z′2
h3(d2, b20, c0) = d2b2 + c0 → z′3
h4(d2, b0) = d2b0 + r8 + r9 → z′4 z′3 + z′4 + z′5 = z1
h5(d0, b2) = d0b2 + r9 + r10 → z′5
h6(d0, b0, c1) = d0b0 + c1 → z′6
h7(d1, b0) = d1b0 + r10 + r11 → z′7 z′6 + z′7 + z′8 = z2
h8(d0, b1) = d0b1 + r11 + r6 → z′8

d1→ t0
d2→ t1
d0→ t2

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 713

B 3-share Q4
294 with 12-bit Fresh Masks

F (a, b, c, d) = (x, y, z, t) with lookup table 0123456789baefdc

x = f(a, b, c, d) = bd+ a

y = g(a, b, c, d) = cd+ b

z = h(a, b, c, d) = c

t = k(a, b, c, d) = d

f0(b1, d1, a1) = b1d1 + a1 → x′0
f1(b1, d2) = b1d2 + r0 + r1 → x′1 x′0 + x′1 + x′2 = x0
f2(b2, d1) = b2d1 + r1 + r2 → x′2
f3(b2, d2, a2) = b2d2 + a2 → x′3
f4(b2, d1) = b2d1 + r2 + r3 → x′4 x′3 + x′4 + x′5 = x1
f5(b1, d2) = b1d2 + r3 + r4 → x′5
f6(b0, d0, a0) = b0d0 + a0 → x′6
f7(b0, d1) = b0d1 + r4 + r5 → x′7 x′6 + x′7 + x′8 = x2
f8(b1, d0) = b1d0 + r5 + r0 → x′8

g0(d1, c1, b2) = d1c1 + b1 → y′0
g1(d1, c2) = d1c2 + r6 + r7 → y′1 y′0 + y′1 + y′2 = y0
g2(d2, c1) = d2c1 + r7 + r8 → y′2
g3(d2, c2, b1) = d2c2 + b2 → y′3
g4(d2, c0) = d2c0 + r8 + r9 → y′4 y′3 + y′4 + y′5 = y1
g5(d0, c2) = d0c2 + r9 + r10 → y′5
g6(d0, c0, b0) = d0c0 + b0 → y′6
g7(d0, c1) = d0c1 + r10 + r11 → y′7 y′6 + y′7 + y′8 = y2
g8(d1, c0) = d1c0 + r11 + r6 → y′8

c1 → z0
c2 → z1
c0 → z2

d1+
c2

→ t0

d2+
c2

→ t1

d0→ t2

714 Cryptanalysis of Efficient Masked Ciphers

C 3-share Present S-Box with 36-bit Fresh Masks

S = G ◦ F ◦A1 with lookup table c56b90ad3ef84712

A1(a, b, c, d) = (a, d, b, b+ c+ 1) with lookup table 894501cdab6723ef

F (a, b, c, d) = (x, y, z, t) with lookup table 0e843bd71f952ac6

x = f(a, b, c, d) = bd+ c+ d y = g(a, b, c, d) = bd+ c

z = h(a, b, c, d) = a t = u(a, b, c, d) = bd+ cd+ a+ b

(k, l, m, n) are the input variables of the neighboring S-box’s F function.

f0(d1, b1) = d1b1 + k0 + l0 → x′0
f1(d1, b2) = d1b2 + d1 + r0 + r1 + k0 → x′1 x′0 + x′1 + x′2 → x0
f2(d2, b1, c2) = d2b1 + c2 + r1 + r2 + l0 → x′2
f3(d2, b2) = d2b2 + k0 + l0 → x′3
f4(d2, b0) = d2b0 + d2 + r2 + r3 + k0 → x′4 x′3 + x′4 + x′5 → x1
f5(d0, b2, c0) = d0b2 + c0 + r3 + r4 + l0 → x′5
f6(d0, b0) = d0b0 + k0 + l0 → x′6
f7(d0, b1) = d0b1 + d0 + r4 + r5 + k0 → x′7 x′6 + x′7 + x′8 → x2
f8(d1, b0, c1) = d1b0 + c1 + r5 + r0 + l0 → x′8

g0(d1, b1) = d1b1 +m0 + n0 → y′0
g1(d1, b2) = d1b2 + r6 + r7 +m0 → y′1 y′0 + y′1 + y′2 → y0
g2(d2, b1, c2) = d2b1 + c2 + r7 + r8 + n0 → y′2
g3(d2, b2) = d2b2 +m0 + n0 → y′3
g4(d2, b0) = d2b0 + r8 + r9 +m0 → y′4 y′3 + y′4 + y′5 → y1
g5(d0, b2, c0) = d0b2 + c0 + r9 + r10 + n0 → y′5
g6(d0, b0) = d0b0 +m0 + n0 → y′6
g7(d0, b1) = d0b1 + r10 + r11 +m0 → y′7 y′6 + y′7 + y′8 → y2
g8(d1, b0, c1) = d1b0 + c1 + r11 + r6 + n0 → y′8

a1 +m1 + n1 → z0
a2 +m1 → z1
a0 + n1 → z2

u0(d1, b1, c1) = d1b1 + d1c1 + k1 + l1 → t′0
u1(d1, b2, c2) = d1b2 + d1c2 + b2 + r12 + r13 + k1 → t′1 t′0 + t′1 + t′2 → t0
u2(d2, b1, c1, a1) = d2b1 + d2c1 + a1 + r13 + r14 + l1 → t′2
u3(d2, b2, c2) = d2b2 + d2c2 + k1 + l1 → t′3
u4(d2, b0, c0) = d2b0 + d2c0 + b0 + r14 + r15 + k1 → t′4 t′3 + t′4 + t′5 → t1
u5(d0, b2, c2, a2) = d0b2 + d0c2 + a2 + r15 + r16 + l1 → t′5
u6(d0, b0, c0) = d0b0 + d0c0 + k1 + l1 → t′6
u7(d0, b1, c1) = d0b1 + d0c1 + b1 + r16 + r17 + k1 → t′7 t′6 + t′7 + t′8 → t2
u8(d1, b0, c0, a0) = d1b0 + d1c0 + a0 + r17 + r12 + l1 → t′8

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 715

G(a, b, c, d) = (x, y, z, t) with lookup table 9c3672d841af05eb

x = f(a, b, c, d) = a+ d+ 1
y = g(a, b, c, d) = cd+ b+ c

z = h(a, b, c, d) = bd+ a+ c+ d

t = k(a, b, c, d) = cd+ b+ c+ d+ 1

1 + a1 + d1 → x0
a2 + d2 → x1
a0 + d0 → x2

g0(d1, c1) = d1c1 → y′0
g1(d1, c2, b2) = d1c2 + b2 + c2 + r18 + r19 → y′1 y′0 + y′1 + y′2 = y0
g2(d2, c1) = d2c1 + r19 + r20 → y′2
g3(d2, c2) = d2c2 → y′3
g4(d2, c0, b0) = d2c0 + b0 + c0 + r20 + r21 → y′4 y′3 + y′4 + y′5 = y1
g5(d0, c2) = d0c2 + r21 + r22 → y′5
g6(d0, c0) = d0c0 → y′6
g7(d0, c1, b1) = d0c1 + b1 + c1 + r22 + r23 → y′7 y′6 + y′7 + y′8 = y2
g8(d1, c0) = d1c0 + r23 + r18 → y′8

h0(d1, b1) = d1b1 → z′0
h1(d1, b2, a1) = d1b2 + a1 + d1 + r24 + r25 → z′1 z′0 + z′1 + z′2 = z0
h2(d2, b1, c2) = d2b1 + c2 + r25 + r26 → z′2
h3(d2, b2) = d2b2 → z′3
h4(d2, b0, a2) = d2b0 + a2 + d2 + r26 + r27 → z′4 z′3 + z′4 + z′5 = z1
h5(d0, b2, c0) = d0b2 + c0 + r27 + r28 → z′5
h6(d0, b0) = d0b0 → z′6
h7(d0, b1, a0) = d0b1 + a0 + d0 + r28 + r29 → z′7 z′6 + z′7 + z′8 = z2
h8(d1, b0, c1) = d1b0 + c1 + r29 + r24 → z′8

k0(d1, c1) = d1c1 + 1 → t′0
k1(d1, c2, b2) = d1c2 + b2 + c2 + d1 + r30 + r31 → t′1 t′0 + t′1 + t′2 = t0
k2(d2, c1) = d2c1 + r31 + r32 → t′2
k3(d2, c2) = d2c2 → t′3
k4(d2, c0, b0) = d2c0 + b0 + c0 + d2 + r32 + r33 → t′4 t′3 + t′4 + t′5 = t1
k5(d0, c2) = d0c2 + r33 + r34 → t′5
k6(d0, c0) = d0c0 → t′6
k7(d0, c1, b1) = d0c1 + b1 + c1 + d0 + r34 + r35 → t′7 t′6 + t′7 + t′8 = t2
k8(d1, c0) = d1c0 + r35 + r30 → t′8

716 Cryptanalysis of Efficient Masked Ciphers

D 3-share Q4
294 with 12-bit Fresh Masks

F (a, b, c, d) = (x, y, z, t) with lookup table 0123456789baefdc

x = f(a, b, c, d) = bd+ a

y = g(a, b, c, d) = cd+ b

z = h(a, b, c, d) = c

t = k(a, b, c, d) = d

(k, l, m, n) are the output variables of the neighboring S-box’s input affine function.

f0(b1, d1, a1) = b1d1 + a1 + k0 + l0 → x′0
f1(b1, d2) = b1d2 + r0 + r1 + k0 → x′1 x′0 + x′1 + x′2 = x0
f2(b2, d1) = b2d1 + r1 + r2 + l0 → x′2
f3(b2, d2, a2) = b2d2 + a2 + k0 + l0 → x′3
f4(b2, d1) = b2d1 + r2 + r3 + k0 → x′4 x′3 + x′4 + x′5 = x1
f5(b1, d2) = b1d2 + r3 + r4 + l0 → x′5
f6(b0, d0, a0) = b0d0 + a0 + k0 + l0 → x′6
f7(b0, d1) = b0d1 + r4 + r5 + k0 → x′7 x′6 + x′7 + x′8 = x2
f8(b1, d0) = b1d0 + r5 + r0 + l0 → x′8

g0(d1, c1, b2) = d1c1 + b1 +m0 + n0 → y′0
g1(d1, c2) = d1c2 + r6 + r7 +m0 → y′1 y′0 + y′1 + y′2 = y0
g2(d2, c1) = d2c1 + r7 + r8 + n0 → y′2
g3(d2, c2, b1) = d2c2 + b2 +m0 + n0 → y′3
g4(d2, c0) = d2c0 + r8 + r9 +m0 → y′4 y′3 + y′4 + y′5 = y1
g5(d0, c2) = d0c2 + r9 + r10 + n0 → y′5
g6(d0, c0, b0) = d0c0 + b0 +m0 + n0 → y′6
g7(d0, c1) = d0c1 + r10 + r11 +m0 → y′7 y′6 + y′7 + y′8 = y2
g8(d1, c0) = d1c0 + r11 + r6 + n0 → y′8

c1 → z0
c2 → z1
c0 → z2

d1→ t0
d2→ t1
d0→ t2

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 717

E 3-share Midori S-Box with 36-bit Fresh Masks

S = G ◦ F ◦A1 with lookup table cad3ebf789150246

A1(a, b, c, d) = (b, a, d, a+ c) with lookup table0a1b82934e5fc6d7

F (a, b, c, d) = (x, y, z, t) with lookup table 84b70c3f951d2ea6

x = f(a, b, c, d) = bd+ cd+ b+ d y = g(a, b, c, d) = bd+ cd+ b

z = h(a, b, c, d) = a t = u(a, b, c, d) = bd+ a+ c+ 1
(k, l, m, n) are the input variables of the neighboring S-box’s F function.

f0(d1, b1, c1) = d1b1 + d1c1 + k0 + l0 → x′0
f1(d1, b2, c2, d1) = d1b2 + d1c2 + b2 + d1 + r0 + r1 + k0 → x′1 x′0 + x′1 + x′2 → x0
f2(d2, b1, c1) = d2b1 + d2c1 + r1 + r2 + l0 → x′2
f3(d2, b2, c2) = d2b2 + d2c2 + k0 + l0 → x′3
f4(d2, b0, c0, d2) = d2b0 + d2c0 + b0 + d2 + r2 + r3 + k0 → x′4 x′3 + x′4 + x′5 → x1
f5(d0, b2, c2) = d0b2 + d0c2 + r3 + r4 + l0 → x′5
f6(d0, b0, c0) = d0b0 + d0c0 + k0 + l0 → x′6
f7(d0, b1, c1, d0) = d0b1 + d0c1 + b1 + d0 + r4 + r5 + k0 → x′7 x′6 + x′7 + x′8 → x2
f8(d1, b0, c0) = d1b0 + d1c0 + r5 + r0 + l0 → x′8

g0(d1, b1, c1) = d1b1 + d1c1 +m0 + n0 → y′0
g1(d1, b2, c2) = d1b2 + d1c2 + b2 + r6 + r7 +m0 → y′1 y′0 + y′1 + y′2 → y0
g2(d2, b1, c1) = d2b1 + d2c1 + r7 + r8 + n0 → y′2
g3(d2, b2, c2) = d2b2 + d2c2 +m0 + n0 → y′3
g4(d2, b0, c0) = d2b0 + d2c0 + b0 + r8 + r9 +m0 → y′4 y′3 + y′4 + y′5 → y1
g5(d0, b2, c2) = d0b2 + d0c2 + r9 + r10 + n0 → y′5
g6(d0, b0, c0) = d0b0 + d0c0 +m0 + n0 → y′6
g7(d0, b1, c1) = d0b1 + d0c1 + b1 + r10 + r11 +m0 → y′7 y′6 + y′7 + y′8 → y2
g8(d1, b0, c0) = d1b0 + d1c0 + r11 + r6 + n0 → y′8

a1 → z0
a2 → z1
a0 → z2

u0(d1, b1) = d1b1 + 1 + k1 + l1 → t′0
u1(d1, b2, c2) = d1b2 + c2 + r12 + r13 + k1 → t′1 t′0 + t′1 + t′2 → t0
u2(d2, b1, a1) = d2b1 + a1 + r13 + r14 + l1 → t′2
u3(d2, b2) = d2b2 + k1 + l1 → t′3
u4(d2, b0, c0) = d2b0 + c0 + r14 + r15 + k1 → t′4 t′3 + t′4 + t′5 → t1
u5(d0, b2, a2) = d0b2 + a2 + r15 + r16 + l1 → t′5
u6(d0, b0) = d0b0 + k1 + l1 → t′6
u7(d0, b1, c1) = d0b1 + c1 + r16 + r17 + k1 → t′7 t′6 + t′7 + t′8 → t2
u8(d1, b0, a0) = d1b0 + a0 + r17 + r12 + l1 → t′8

718 Cryptanalysis of Efficient Masked Ciphers

G(a, b, c, d) = (x, y, z, t) with lookup table 8a02df57ce9b1346

x = f(a, b, c, d) = bd+ c

y = g(a, b, c, d) = a

z = h(a, b, c, d) = bd+ c+ d

t = k(a, b, c, d) = bd+ cd+ b+ 1

f0(d1, b1) = d1b1 → x′0
f1(d1, b2, c2) = d1b2 + c2 + r18 + r19 → x′1 x′0 + x′1 + x′2 = x0
f2(d2, b1) = d2b1 + r19 + r20 → x′2
f3(d2, b2) = d2b2 → x′3
f4(d2, b0, c0) = d2b0 + c0 + r20 + r21 → x′4 x′3 + x′4 + x′5 = x1
f5(d0, b2) = d0b2 + r21 + r22 → x′5
f6(d0, b0) = d0b0 → x′6
f7(d0, b1, c1) = d0b1 + c1 + r22 + r23 → x′7 x′6 + x′7 + x′8 = x2
f8(d1, b0) = d1b0 + r23 + r18 → x′8

a1 → y0
a2 → y1
a0 → y2

h0(d1, b1) = d1b1 → z′0
h1(d1, b2) = d1b2 + d1 + r24 + r25 → z′1 z′0 + z′1 + z′2 = z0
h2(d2, b1, c2) = d2b1 + c2 + r25 + r26 → z′2
h3(d2, b2) = d2b2 → z′3
h4(d2, b0) = d2b0 + d2 + r26 + r27 → z′4 z′3 + z′4 + z′5 = z1
h5(d0, b2, c0) = d0b2 + c0 + r27 + r28 → z′5
h6(d0, b0) = d0b0 → z′6
h7(d0, b1) = d0b1 + d0 + r28 + r29 → z′7 z′6 + z′7 + z′8 = z2
h8(d1, b0, c1) = d1b0 + c1 + r29 + r24 → z′8

k0(d1, b1, c1) = d1b1 + d1c1 + 1 → t′0
k1(d1, b2, c2) = d1b2 + d1c2 + b2 + r30 + r31 → t′1 t′0 + t′1 + t′2 = t0
k2(d2, b1, c1) = d2b1 + d2c1 + r31 + r32 → t′2
k3(d2, b2, c2) = d2b2 + d2c2 → t′3
k4(d2, b0, c0) = d2b0 + d2c0 + b0 + r32 + r33 → t′4 t′3 + t′4 + t′5 = t1
k5(d0, b2, c2) = d0b2 + d0c2 + r33 + r34 → t′5
k6(d0, b0, c0) = d0b0 + d0c0 → t′6
k7(d0, b1, c1) = d0b1 + d0c1 + b1 + r34 + r35 → t′7 t′6 + t′7 + t′8 = t2
k8(d1, b0, c0) = d1b0 + d1c0 + r35 + r30 → t′8

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 719

F 3-share Prince S-Box Inverse with 42-bit Fresh Masks

S = H ◦G ◦ F with lookup table cad3ebf789150246

F (a, b, c, d) = (x, y, z, t) with lookup table d850ba32c149e76f

x = f(a, b, c, d) = 1 + a+ d y = g(a, b, c, d) = c

z = h(a, b, c, d) = ac+ cd+ a+ c+ 1 t = u(a, b, c, d) = ad+ b+ 1
(k, l, m, n) are the input variables of the neighboring S-box’s F function.

1 + a1 + d1 + c2 → x0
a2 + d2 + c2 → x1
a0 + d0 → x2

c1 → y0
c2 → y1
c0 → y2

h0(d1, c1, a1) = d1c1 + a1c1 + a1 + 1 + k0 + l0 → z′0
h1(d1, c2, a1) = d1c2 + a1c2 + c2 + r0 + r1 + k0 → z′1 z′0 + z′1 + z′2 → z0
h2(d2, c1, a2) = d2c1 + a2c1 + r1 + r2 + l0 → z′2
h3(d2, c2, a2) = d2c2 + a2c2 + a2 + k0 + l0 → z′3
h4(d2, c0, a2) = d2c0 + a2c0 + c0 + r2 + r3 + k0 → z′4 z′3+ = z′4 + z′5 → z1
h5(d0, c2, a0) = d0c2 + a0c2 + r3 + r4 + l0 → z′5
h6(d0, c0, a0) = d0c0 + a0c0 + a0 + k0 + l0 → z′6
h7(d0, c1, a0) = d0c1 + a0c1 + c1 + r4 + r5 + k0 → z′7 z′6 + z′7 + z′8 → z2
h8(d1, c0, a1) = d1c0 + a1c0 + r5 + r0 + l0 → z′8
u0(d1, b1) = d1a1 + 1 +m0 + n0 → t′0
u1(d1, b2, b1) = d1a2 + b1 + r6 + r7 +m0 → t′1 t′0 + t′1 + t′2 = t0
u2(d2, b1) = d2a1 + r7 + r8 + n0 → t′2
u3(d2, b2) = d2a2 +m0 + n0 → t′3
u4(d2, b0, b2) = d2a0 + b2 + r8 + r9 +m0 → t′4 t′3 + t′4 + t′5 = t1
u5(d0, b2) = d0a2 + r9 + r10 + n0 → t′5
u6(d0, b0) = d0a0 +m0 + n0 → t′6
u7(d0, b1, b0) = d0a1 + b0 + r10 + r11 +m0 → t′7 t′6 + t′7 + t′8 = t2
u8(d1, b0) = d1a0 + r11 + r6 + n0 → t′8

720 Cryptanalysis of Efficient Masked Ciphers

G(a, b, c, d) = (x, y, z, t) with lookup table 08c43bf72a6ed591

x = f(a, b, c, d) = c

y = g(a, b, c, d) = c+ d

z = h(a, b, c, d) = cd+ b

t = k(a, b, c, d) = bd+ cd+ a+ b

(o, p, q, s) are the input variables of the neighboring S-box’s G function.

c1 → x0
c2 → x1
c0 → x2

c1 + d1 + q1 → y′0
c2 + q1 + s1 → y′1 y′0 + y′1 = y0
d2 → y′2 y′2 = y1
c0 + d0 + s1 → y′3 y′3 = y2

h0(d1, c1, b1) = d1c1 + b1 + q0 + s0 → z′0
h1(d1, c2) = d1c2 + r12 + r13 + q0 → z′1 z′0 + z′1 + z′2 = z0
h2(d2, c1) = d2c1 + r13 + r14 + s0 → z′2
h3(d2, c2, b2) = d2c2 + b2 + q0 + s0 → z′3
h4(d2, c0) = d2c0 + r14 + r15 + q0 → z′4 z′3 + z′4 + z′5 = z1
h5(d0, c2) = d0c2 + r15 + r16 + s0 → z′5
h6(d0, c0, b0) = d0c0 + b0 + q0 + s0 → z′6
h7(d0, c1) = d0c1 + r16 + r17 + q0 → z′7 z′6 + z′7 + z′8 = z2
h8(d1, c0) = d1c0 + r17 + r12 + s0 → z′8

k0(d1, b1, c1, a1) = d1b1 + d1c1 + b1 + a1 + o0 + p0 → t′0
k1(d1, b2, c2) = d1b2 + d1c2 + r18 + r19 + o0 → t′1 t′0 + t′1 + t′2 = t0
k2(d2, b1, c1) = d2b1 + d2c1 + r19 + r20 + p0 → t′2
k3(d2, b2, c2, a2) = d2b2 + d2c2 + b2 + a2 + o0 + p0 → t′3
k4(d2, b0, c0) = d2b0 + d2c0 + r20 + r21 + o0 → t′4 t′3 + t′4 + t′5 = t1
k5(d0, b2, c2) = d0b2 + d0c2 + r21 + r22 + p0 → t′5
k6(d0, b0, c0, a0) = d0b0 + d0c0 + b0 + a0 + o0 + p0 → t′6
k7(d0, b1, c1) = d0b1 + d0c1 + r22 + r23 + o0 → t′7 t′6 + t′7 + t′8 = t2
k8(d1, b0, c0) = d1b0 + d1c0 + r23 + r18 + p0 → t′8

T. Beyne, S. Dhooghe, A. Moradi, A. Rezaei Shahmirzadi 721

H(a, b, c, d) = (x, y, z, t) with lookup table 21748bde65039afc

x = f(a, b, c, d) = bd+ cd+ a+ b

y = g(a, b, c, d) = bd+ a+ c+ 1
z = h(a, b, c, d) = cd+ b+ d

t = k(a, b, c, d) = c

f0(d1, c1, b1) = d1b1 + d1c1 + b1 → x′0
f1(d1, c2, b2, a1) = d1b2 + d1c2 + a1 + r24 + r25 → x′1 x′0 + x′1 + x′2 = x0
f2(d2, c1, b1) = d2b1 + d2c1 + r25 + r26 → x′2
f3(d2, c2, b2) = d2b2 + d2c2 + b2 → x′3
f4(d2, c0, b0, a2) = d2b0 + d2c0 + a2 + r26 + r27 → x′4 x′3 + x′4 + x′5 = x1
f5(d0, c2, b2) = d0b2 + d0c2 + r27 + r28 → x′5
f6(d0, c0, b0) = d0b0 + d0c0 + b0 → x′6
f7(d0, c1, b1, a0) = d0b1 + d0c1 + a0 + r28 + r29 → x′7 x′6 + x′7 + x′8 = x2
f8(d1, c0, b0) = d1b0 + d1c0 + r29 + r24 → x′8

g0(d1, b1, a1) = d1b1 + a1 + 1 → y′0
g1(d1, b2) = d1b2 + r30 + r31 → y′1 y′0 + y′1 + y′2 = y0
g2(d2, b1, c2) = d2b1 + c2 + r31 + r32 → y′2
g3(d2, b2, a2) = d2b2 + a2 → y′3
g4(d2, b0) = d2b0 + r32 + r33 → y′4 y′3 + y′4 + y′5 = y1
g5(d0, b2, c0) = d0b2 + c0 + r33 + r34 → y′5
g6(d0, b0, a0) = d0b0 + a0 → y′6
g7(d0, b1) = d0b1 + r34 + r35 → y′7 y′6 + y′7 + y′8 = y2
g8(d1, b0, c1) = d1b0 + c1 + r35 + r30 → y′8

h0(d1, b1, c1) = d1c1 + b1 → z′0
h1(d1, b2, c2) = d1c2 + c2 + d1 + r36 + r37 → z′1 z′0 + z′1 + z′2 = z0
h2(d2, b1, c1) = d2c1 + r37 + r38 → z′2
h3(d2, b2, c2) = d2c2 + b2 → z′3
h4(d2, b0, c0) = d2c0 + d2 + r38 + r39 → z′4 z′3 + z′4 + z′5 = z1
h5(d0, b2, c2) = d0c2 + c2 + r39 + r40 → z′5
h6(d0, b0, c0) = d0c0 + b0 → z′6
h7(d0, b1, c1) = d0c1 + d0 + r40 + r41 → z′7 z′6 + z′7 + z′8 = z2
h8(d1, b0, c0) = d1c0 + r41 + r36 → z′8

c1 → t0
c2 → t1
c0 → t2

	Introduction
	Preliminaries
	Boolean Masking and Threshold Implementations
	Probability Theory and Fourier Analysis
	Masking with d+1 Shares

	A Noisy Probing Model
	Security Model
	Noisy Leakage Functions
	Bound on the Advantage
	Cryptanalysis of Higher-Order Threshold Implementations

	Masking Techniques
	Technique 1: Non-Completeness over Two Stages
	Technique 2: Paired Masked S-boxes

	Case Studies
	LED
	Midori
	SKINNY
	PRINCE

	Experimental Analysis
	Conclusions
	3-share Q4,12 with 12-bit Fresh Masks
	3-share Q4, 294 with 12-bit Fresh Masks
	3-share Present S-Box with 36-bit Fresh Masks
	3-share Q4, 294 with 12-bit Fresh Masks
	3-share Midori S-Box with 36-bit Fresh Masks
	3-share Prince S-Box Inverse with 42-bit Fresh Masks

