
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 557–588. DOI:10.46586/tches.v2022.i1.557-588

Racing BIKE: Improved Polynomial
Multiplication and Inversion in Hardware

Jan Richter-Brockmann1,2 , Ming-Shing Chen1 , Santosh Ghosh2 and
Tim Güneysu1,3

1 Ruhr-Universität Bochum, Horst-Görtz Institute for IT-Security, Bochum, Germany
2 Security and Privacy Research, Intel Labs, Intel Coorperation, Hillsboro, Oregon

3 DFKI, Bremen, Germany
jan.richter-brockmann@rub.de,ming-shing.chen@rub.de,santosh.ghosh@intel.com,tim.

gueneysu@rub.de

Abstract. BIKE is a Key Encapsulation Mechanism selected as an alternate candidate
in NIST’s PQC standardization process, in which performance plays a significant role
in the third round. This paper presents FPGA implementations of BIKE with the
best area-time performance reported in literature. We optimize two key arithmetic
operations, which are the sparse polynomial multiplication and the polynomial
inversion. Our sparse multiplier achieves time-constancy for sparse polynomials of
indefinite Hamming weight used in BIKE’s encapsulation. The polynomial inversion is
based on the extended Euclidean algorithm, which is unprecedented in current BIKE
implementations. Our optimized design results in a 5.5 times faster key generation
compared to previous implementations based on Fermat’s little theorem.
Besides the arithmetic optimizations, we present a united hardware design of BIKE
with shared resources and shared sub-modules among KEM functionalities. On Xilinx
Artix-7 FPGAs, our light-weight implementation consumes only 3 777 slices and
performs a key generation, encapsulation, and decapsulation in 3 797 µs, 443 µs, and
6 896 µs, respectively. Our high-speed design requires 7 332 slices and performs the
three KEM operations in 1 672 µs, 132 µs, and 1 892 µs, respectively.
Keywords: BIKE · QC-MDPC · PQC · Reconfigurable Devices · FPGA.

1 Introduction
Due to extensive research and advanced progress in quantum computation during the last
decades [Gam20], in 2017, the National Institute of Standards and Technology (NIST)
announced a Post-Quantum Cryptography (PQC) standardization process with the target
to find public-key cryptographic algorithms that provide security in the presence of quantum
computers [NIS17].

After the call for proposals, the NIST received 69 submissions which were revised
with respect to security, efficiency (e.g., key sizes and latency), and implementation
costs for software and hardware. Eventually, after the third round, they selected seven
finalists and eight alternate candidates [NIS20b]. While the finalists are all considered
for standardization, the alternate candidates will be reviewed and may be evaluated in a
fourth round such that they potentially could be standardized as well [NIS20b].

The Bit Flipping Key Encapsulation (BIKE) [ABB+20] is one of the NIST’s alternate
candidates in the Key Encapsulation Mechanism (KEM) category. The security of BIKE
relies on the hardness of decoding linear error-correcting codes. More specifically, as under-
lying linear codes, BIKE utilizes Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC)
codes, which were first presented by Misoczki et al. [MTSB13] in 2013.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.557-588
https://orcid.org/0000-0002-8454-4755
https://orcid.org/0000-0002-2420-496X
https://orcid.org/0000-0003-0069-7971
https://orcid.org/0000-0002-3293-4989
mailto:jan.richter-brockmann@rub.de, ming-shing.chen@rub.de, santosh.ghosh@intel.com, tim.gueneysu@rub.de
mailto:jan.richter-brockmann@rub.de, ming-shing.chen@rub.de, santosh.ghosh@intel.com, tim.gueneysu@rub.de
http://creativecommons.org/licenses/by/4.0/

558 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

In this work, we target to improve the efficiency of the KEM functionalities of BIKE
by an Field-Programmable Gate Array (FPGA) hardware design. Since NIST announced
that performance plays an important role in their PQC standardization efforts [NIS20a],
researchers presented several optimization techniques for BIKE on the suggested platforms
including the AVX2 instruction set on x86, embedded microprocessors, and FPGAs. For ex-
ample, Drucker et al. [DGK20a] optimized BIKE for x86 Central Processing Units (CPUs).
Chen et al. [CCK21] presented optimization techniques for x86 and Arm Cortex M4.
Richter-Brockmann et al. [RBMG21] proposed an optimized scalable hardware implemen-
tation for reconfigurable devices. In this paper, we propose new optimization techniques for
efficient FPGA implementations of BIKE and report significant improvements compared
to previous works.

Related Works on FPGAs. Although there were several early works implementing
QC-MDPC codes on hardware devices for variants of the McEliece cryptosystem [VMG14,
HVMG13] and for the Niederreiter framework [HC17], the first hardware implementation
of BIKE was presented with the round-two submission of NIST’s PQC standardization
process [ABB+19]. The implementation was designed for an older version of BIKE (called
BIKE-1) and only supported the key generation and encapsulation.

In 2020, Reinders et al. [RMGS20] proposed a complete hardware design which, however,
targets the older parameters of BIKE. Besides, they presented an efficient hardware
implementation for a novel constant-time decoder.

Recently, Richter-Brockmann et al. [RBMG21] presented the first complete hardware
design of the current BIKE version [ABB+20]. They implemented for the first time
the Black-Gray-Flip (BGF) decoder on hardware, introduced an optimized polynomial
inversion module (based on Fermat’s little theorem), and proposed a scalable multiplier.

In further detail, BIKE poses several challenges on the arithmetic level. For improving
the polynomial multipliers in code-based schemes, Hu et al. [HWCW19] presented two
different approaches. While the first design is based on a schoolbook multiplication, the
second multiplier improves multiplications by exploiting the sparseness of the polynomials
used in QC-MDPC codes. Additionally, they instantiated their designs to create a key
generation module based on previous parameter sets of BIKE.

Barenghi et al. [BFG+19] presented similar approaches to implement polynomial
multiplications for the code-based scheme LEDAcrypt [BBC+19]. They explored different
configurations of schoolbook and sparse multipliers for Xilinx FPGAs.

Contribution. In this work, we revise previous concepts and identify significant improve-
ments and systematic explorations of the hardware implementation of BIKE on FPGAs.
Specifically, we introduce an optimized polynomial multiplier that exploits the sparseness
of QC-MDPC codes while performing all multiplications applied in BIKE in constant time.
In addition to that, we present a novel component for polynomial inversion based on
the extended Euclidean algorithm (extGCD) accelerating the key generation in hardware.
For that we adapt the extGCD from the constant-time algorithm recently proposed by
Bernstein and Yang [BY19], and demonstrate that this approach clearly outperforms
previous implementations based on Fermat’s little theorem in the specific case of BIKE.
As a design constraint, our implementation is highly scalable to instantiate specifically
tailored cryptographic components for any use-case.

Besides these major arithmetic-oriented optimizations, we also substitute symmet-
ric cryptography from encapsulation and decapsulation implementations presented in
[RBMG21] with a single Keccak core to demonstrate the authors’ assertion of achieving
a lower footprint by applying this modification. Additionally, we present a combined
hardware implementation of BIKE that consolidates all three KEM algorithms in one
single, united design. This approach enables resource and module sharing between the

J. Richter-Brockmann et al. 559

KEM algorithms achieving a design that reduces the overall implementation costs.
Our implementations are written in Verilog and are publicly available at https:

//github.com/Chair-for-Security-Engineering/RacingBIKE.

Outline. In Section 2, we briefly introduce BIKE and cover the background of polynomial
arithmetic that is necessary for our hardware implementations. Section 3 starts with an
introduction of our design considerations. Afterwards, we introduce our modifications
with respect to the random oracles, present our multiplier and inversion modules, and
describe the composition of an united hardware design. In Section 4, we evaluate all
designs with respect to implementation costs and performance. Before we conclude our
work in Section 6, we briefly discuss the resistance against side channels and address the
transferability of our approaches to software implementations in Section 5.

2 Preliminaries
In this section, we describe the algorithms and parameters forming BIKE. Then, we
summarize important polynomial arithmetic.

2.1 Notations
Throughout this work, we use the following notations:

• F2: Finite field of two elements {0, 1}.

• F2[X]: Polynomials with coefficients in F2, or bit polynomials.
In this work, we store a polynomial a = a0 + a1X + · · · ∈ F2[X] as a bit sequence of
coefficients (a0, a1, . . .). The 0-th bit corresponds to the coefficient a0; the first bit
corresponds to the coefficient a1; and so on.

• r: The parameter defining the length of polynomials in BIKE.

• R := F2[X]/(Xr − 1): The cyclic polynomial ring used in BIKE.
Multiplication in R is generally implemented as multiplication of bit polynomials in
F2[X] and followed by a modulo operation by Xr − 1 for terms of degrees ≥ r.

• |f |: Hamming weight of a bit polynomial f .

• b: Bandwidth (in bits) for accessing data from memory in our FPGA implementation.

• f [i] is the i-th b-bit chunk of a polynomial f for 0 ≤ i <
⌈
r
b

⌉
.

2.2 BIKE
We divide this section in three paragraphs describing the KEM functions of BIKE, intro-
ducing required hash functions, and summarizing BIKE’s parameters.

KEM Functions. The BIKE KEM comprises three algorithms — key generation, encap-
sulation, and decapsulation. The key generation (see Algorithm 1) outputs a key pair. It
randomly samples two sparse polynomials (h0, h1) ∈ R2 and a random string σ as the
private key. By inverting h0 and multiply the result by h1, the key generation computes
the public key h as shown in line 3.

Algorithm 2 describes the encapsulation which starts by sampling a message m and
deriving two error polynomials (e0, e1) from H(m). Afterwards, it computes the first part
of the cryptogram c0 by multiplying e1 by the public key h and adding (xor) the result to

https://github.com/Chair-for-Security-Engineering/RacingBIKE
https://github.com/Chair-for-Security-Engineering/RacingBIKE

560 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

Algorithm 1: Key Generation.
Input :BIKE parameters n,w, t, `.
Output :Private key (h0, h1, σ) and public key h.

1 Generate (h0, h1) $← R2 both of odd weight |h0| = |h1| = w/2.
2 Generate σ $← {0, 1}` uniformly at random.
3 Compute h← h1h

−1
0 .

4 Return (h0, h1, σ) and h.

Algorithm 2: Encapsulation.
Input :Public key h.
Output :Encapsulated key K and ciphertext C = (c0, c1).

1 Generate m $← {0, 1}` uniformly at random.
2 Compute (e0, e1)← H(m).
3 Compute C = (c0, c1)← (e0 + e1h,m⊕ L(e0, e1)).
4 Compute K ← K(m,C).
5 Return (C,K).

Algorithm 3: Decapsulation.
Input :Private key (h0, h1, σ) and ciphertext C = (c0, c1).
Output :Decapsulated key K.

1 Compute syndrome s← c0h0.
2 Compute {(e′0, e′1),⊥} ← decoder(s, h0, h1).
3 Compute m′ ← c1 ⊕ L(e′0, e′1).
4 if H(m′) 6= (e′0, e′1) then
5 Compute K ← K(σ,C).
6 else
7 Compute K ← K(m′, C).
8 Return K.

e0. This step represents the encoding procedure of linear codes but with the difference
that the errors are added intentionally. The second part of the cryptogram c1 is generated
by adding the message m to the output of the hash function L. Eventually, the algorithm
derives the shared key K by hashing the cryptogram and the message with K.

Algorithm 3 shows the decapsulation that recovers the error polynomials (e0, e1) from
the cryptogram C. It first computes the syndrome s in line 1 as a common procedure
for decoding linear codes. The syndrome and the private key (h0, h1) are then fed into a
decoder to determine the error polynomials (e′0, e′1). The BIKE specification [ABB+21]
applies a BGF decoder which was extensively investigated in [DGK20b]. If the decoding is
successful, the algorithm calculates the message m′ from the ciphertext C and the error
polynomials (cf. line 3). To ensure that m′ and the determined error polynomials match
the one generated in the encapsulation, it applies the same sampling algorithm H to m′
and compares the result to the error polynomials returned from the decoder. In case the
pair is valid, it computes the shared key K = K(m′, C). Otherwise it computes K using
the secret string σ belonging to the private key.

Hash Functions. In BIKE, the encapsulation and decapsulation utilize the three functions
H, K, and L which are modeled as random oracles and defined over the following domains:

J. Richter-Brockmann et al. 561

Table 1: BIKE parameters.
Security r w t

Level 1 12 323 142 134
Level 3 24 659 206 199
Level 5 40 973 274 264

H : {0, 1}` → {0, 1}2r
[t] K : {0, 1}r+2` → {0, 1}` L : {0, 1}2r → {0, 1}`

The latest specification [ABB+21] unifies the three random oracles to hash functions
based on Keccak [BDPA13]. H maps an `-bit string into a 2r-bit string with Hamming
weight t. It is implemented by a SHAKE256-based Pseudo-Random Number Generator
(PRNG) while it was realized by AES-256 in previous versions. K and L uses a SHA3-384
implementation replacing the SHA2-384 of previous versions.

Parameters. Table 1 summarizes the parameters of BIKE for various security levels
of NIST’s PQC standardization process. As already introduced above, the parameter
r represents the length of polynomials used in BIKE. The parameter w specifies the
Hamming weight of the private key polynomials (h0, h1), satisfying |h0| = |h1| = w/2. The
parameter t defines the decoding radius, i.e., the Hamming weight of the errors randomly
sampled in the encapsulations. Eventually, ` specifies the length of the shared key of the
KEM, which is fixed to 256 bits for all security levels.

2.3 Polynomial Multiplication by Sparse Polynomials
In BIKE, all multiplications in R comprise a sparse operand f ∈ R with |f | � r. For
the key generation, h1 is the sparse polynomial in the multiplication h1 · h−1

0 . For the
encapsulation, e1 is sparse in e1 · h. For the decapsulation, h0 is sparse in c0 · h0. The
decoder contains some additional multiplications by the sparse polynomials (h0, h1) which
are part of the private key.

We represent a sparse polynomial as a set of indexes corresponding to its non-zero terms.
For example, the set If = {i1, . . . , it} represents the sparse polynomial f = Xi1 + · · ·+Xit

with the Hamming weight |f | = t. Multiplying a dense polynomial g by the sparse
polynomial f simply accumulates t products of multiplications g ·Xi for i ∈ If . Since g
is represented as a bit sequence, multiplication by Xi shifts the bit sequence i-bit to the
left and modulo by Xr − 1 moves the shifted bit segment exceeding the r-th bit to the
empty bit segment starting from the 0-th bit. In other words, the multiplication simply
accumulates t rotated g by i1, . . . , it bits.

2.4 Polynomial Inversion with the Extended Euclidean Algorithm
The key generation (cf. Algorithm 1) computes the multiplicative inverse of a secret
polynomial h0 ∈ R. Previous works, e.g., [ABB+20,HWCW19,RBMG21], computed the
inversion by raising h0 to the power of 2r − 2 (Fermat’s little theorem).

In this work, we compute the inversion with the extended Euclidean algorithm
(extGCD). The extGCD takes two input polynomials (f, g) and outputs three poly-
nomials (gcd (f, g), u, v), where gcd (f, g) is the great common divisor of f and g and
gcd (f, g) = u · f − v · g. All polynomials are in F2[X] in the context of BIKE.

In a nutshell, we compute extGCD(Xr−1, h0) for the inverse h−1
0 . Under the parameters

of BIKE, the polynomial Xr − 1 has two factors Xr − 1 = (X − 1)(
∑r−1
i=0 X

i). Since
|h0| = w/2 is an odd number, h0 is not a multiple of X − 1. Since |h0| 6= r, h0 is also

562 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

not the polynomial
∑r−1
i=0 X

i. Hence, the extGCD(Xr − 1, h0) outputs (1, u, v) s.t. 1 =
u · (Xr − 1)− v · h0, and v is the inverse h−1

0 since v · h0 ≡ 1 mod (Xr − 1).
However, a traditional extGCD is unsuitable for cryptographic applications because

it usually contains branches that depend on the inputs. While the inputs are secret, an
attacker can collect the information about the inputs through running-time differences.
Hence, we have to apply a constant-time extGCD to prevent the leakage of timing side-
channel information.

In this work, we adopt the constant-time version of the extGCD proposed by Bernstein
and Yang [BY19]. In contrast to the traditional extGCD that eliminates the head
coefficients of polynomials at any degree, the constant-time extGCD in [BY19] always
eliminates the 0-th bit of polynomials. This leads to extra coefficient reversal processes
for inputs to move its head coefficient to the 0-th bit position and before output for
recovering the polynomial to its original coefficient order.1 Considering for example an input
polynomial f , the coefficient process is equivalently to perform the f ′ ← f(1/X) ·Xdeg(f)

operation. This operation moves the original head coefficients of f to a new position
of degree 0, which is accessed by f ′[0]. Thus the extGCD always eliminates the head
coefficients at the 0-th bit.

Division Steps and Transition Matrix. In this work, we simplify the extGCD in [BY19]
regarding F2[X] for the BIKE application. The algorithm consists of a constant number
of simple division steps (divsteps) for the two input polynomials. Define divstep :
Z× F2[X]× F2[X]→ Z× F2[X]× F2[X] as

divstep(δ, f, g) =
{

(1− δ, g, (g(0)f − f(0)g)/X) if δ > 0 and g(0) 6= 0,
(1 + δ, f, (f(0)g − g(0)f)/X) otherwise.

Here, δ means the degree difference between f and g. The divstep outputs two polynomials.
The first polynomial aims for the polynomial of the higher degree among two input
polynomials. The other is the result of subtraction of two polynomials for eliminating one
head term, and it adjusts the new head term to the degree-0 coefficient by the division of
X.

Since the division of X causes negative degrees, we adjust the representation of
polynomials to prevent negative degrees. If the polynomial f contains a monomial of
negative degree, e.g., 1/Xi, we will store f as an alternative polynomial f ′ s.t. f =
f ′ · (1/X)i and degrees of all monomials of f ′ are non-negative. For applying divstep
multiple times, define (δn, fn, gn) = divstepn(δ, f, g), i.e., applying the divstep to inputs
(δ, f, g) for n times.

Bernstein and Yang describe the transition of the two polynomials (f, g) under the
divstep operation as a matrix-vector multiplication. Let T (δ, f, g) be a 2× 2 transition
matrix which performs the transition (f, g)→ (f1, g1) as matrix multiplication:

(
f1
g1

)
= T (δ, f, g)

(
f
g

)
, where T (δ, f, g) =



(
0 1
g(0)
X

−f(0)
X

)
if δ > 0 and g(0) 6= 0,(

1 0
−g(0)
X

f(0)
X

)
otherwise.

Define the transition matrix of i-th step as Ti = T (δi, fi, gi). After n steps, the input
polynomials (f, g) become(

fn
gn

)
= Tn−1 · · ·T0 ·

(
f
g

)
=
(
un vn
qn wn

)(
f
g

)
.

1See [BY19, Section 6.5] for an alternative method skipping the reversal. It requests a post-process for
polynomials before output.

J. Richter-Brockmann et al. 563

Note that we use w instead of the original r in [BY19] to avoid the symbol conflict.
Since we aim for the polynomial inversion in BIKE, we keep only two vectors (f, g)

and (v, w) in our storage space for storing all (fi, gi) and (vi, wi) for i in 0, . . . n, instead
of tracking full transition matrices. The polynomials (f, g) and (v, w) are stored in
different formats. Since (vi, wi)T is part of the transition matrix, they are polynomials
with monomials of negative degrees. Hence, we store the vector (vi, wi) in a form of
(v′i, w′i) · (1/X)i and i increases with steps to keep the polynomials (v′i, w′i) with non-
negative degrees. Since (fi, gi)T and (vi, wi)T are multiplied by the same transition matrix,
we update the two vectors with similar operations except the degree adjustment. We
remove the coefficient of the constant term of g for the division by X but increase the
coefficients of v by one degree to keep the correct form of (v′i, w′i) · (1/X)i.

Last, we describe the overall algorithm for the polynomial inversion in BIKE. We
initialize the two input polynomials f = Xr − 1, g = h0(1/X) · Xr, and their degree
difference δ = 1. Note that g is initialized as a bit-reversal form. The (v, w) polynomials
are initialized to (0, 1) as the right column of an identity matrix. Then we perform 2r − 1
divsteps to update (δ, f, g) and (v, w) as well. After divsteps, we reverse the coefficients
of the polynomial v and output it as the inverse h−1

0 .

3 Optimization Strategies
In this section, we propose several optimization strategies to improve the hardware imple-
mentation of BIKE. We start by describing the exchange of the symmetric cryptographic
building blocks, i.e., AES-256 and SHA2-384 with a single Keccak core. Then, we
introduce a new design of a multiplier exploiting the sparseness of QC-MDPC polynomials.
Afterwards, we present an improved inversion module based on the algorithm proposed
by Bernstein and Yang [BY19]. We conclude this section with an united hardware design
which consolidates all three KEM algorithms of BIKE in one implementation.

3.1 Design Considerations
We start with our design considerations. First, our implementations utilize the framework
presented in [RBMG21] while we modify and optimize several hardware modules described
in the following sections. Besides these modifications, the main structure is based on the
original implementation. However, we translate all modules to Verilog.

Second, we keep the same bandwidth parameter b in our modified modules as proposed
in the original implementations from [RBMG21]. Hence, our design is scalable with b as
well, and we benchmark our designs with the same instantiations of b ∈ B = {32, 64, 128}.
Larger b generally improve the latency of the corresponding computation since b-bit chunks
of polynomials can be accessed and processed in parallel.

3.2 Random Oracles
The BIKE team recently updated the random oracles H, K, and L in their latest speci-
fication of version 4.2 [ABB+21]. They adapted the core components of these functions
from AES256 and SHA2-384 to SHAKE256 and SHA3-384 with an unified Keccak core,
respectively. While Richter-Brockmann et al. suggested the unified symmetric core would
be beneficial for a hardware implementation, they, however, did not test their suggestions
in [RBMG21].

In this work, we modify the implementations presented in [RBMG21] to the latest
specification of hash functions and report the comparisons in Section 4.1. Therefore, we
implement a simple Keccak core which only contains the round function and a controlling

564 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

interface. In the following, we describe the implementations of wrappers that are connected
to the Keccak core and form the random oracles.

First, for the H function, we instantiate a SHAKE256 from the Keccak’s round
function. As in Algorithm 2, H uses a 256-bit message m as seed for SHAKE256 which is
requested by an dedicated interface in our implementation. Then, with correct padding
and controlling of the Keccak core, the wrapper divides the 1 088 output bits into 32-bit
chunks. The integrated sampler uses the chunks to generate the indexes of error polynomials
(e0, e1) and rejects illegal samplings. If the sampler has consumed all randomness, the
wrapper initiates an additional squeezing phase of SHAKE256.

Second, for generating the private key (h0, h1) in the key generation (cf. Algorithm 1),
our wrapper operates similarly to the H function besides different Hamming weights.

Third, for the L function, the wrapper uses the error polynomials (e0, e1) and provides
them in the absorbing phases to the Keccak core. In this case, it performs a SHA3-384
hashing operations. Besides the correct padding, the wrapper ensures to concatenate the
error polynomials by eight-bit blocks. Last, it truncates the 384-bit hash value to a 256-bit
value and adds it to m.

Fourth, our wrapper for the K function is realized similarly to the L function. However,
the input to the SHA3-384 slightly differs since a 256-bit string needs to be concatenated
with an r-bit polynomial and with another 256-bit string. Nevertheless, it truncates the
384-bit output to 256 bits in the same way.

3.3 Sparse Polynomial Multiplier
In this section, we present the hardware design of the sparse polynomial multiplier for
BIKE. In 2019, Hu et al. [HWCW19] already applied the approach of sparse multiplications
to BIKE. However, compared to their design, our optimized implementation achieves a
better area-time product and reduces the latency (for detailed information see Section 4.2).
Additionally, our design keeps the time-constancy for the encapsulation while computing
e0 + e1 · h with the indefinite Hamming weight of e1.

As in Section 2.3, given a multiplication pres = psparse · parb. where psparse, parb. ∈ R
and |psparse| � r. Further, the polynomial psparse is represented as a set of indexes of
non-zero terms and parb. is a r-bit sequence divided into

⌈
r
b

⌉
chunks. Then, we conduct

the multiplication by reading the non-zero indexes of psparse, rotating parb. by the indexes
to the left, and accumulating the rotated results to the product pres.

General Sparse Multiplier. Figure 1 shows a simplified architecture of the general sparse
multiplier which iterates over the indexes of the sparse polynomial psparse. Each iteration
is initiated by reading a non-zero index from psparse. Meanwhile, it starts to access the
values of the polynomial parb. in an ascending order starting at the second uppermost
address, proceeding with the uppermost, and then keep going from address zero. This
procedure simplifies to deal with the most-significant bits in parb. since r mod b 6= 0 (r
is always prime). Figure 1 neglects the hardware to deal with this exception (mostly
multiplexers) for clarity.

While processing a particular index from psparse, the lower log b bits of the index
determine the number of bits to shift the input from parb. to the left. The shifted output
is added to the current intermediate result depicted by the xor-gates in Figure 1. We
instantiate two memories to store the intermediate results of the multiplication. This
allows us to read the current intermediate result from one memory and write the new
result to the other one in the same clock cycle.

The upper part of the schematic in Figure 1 determines the addresses for both memories.
When an index of the sparse polynomial is read, the upper bits are sampled in a register
used as initial value for a counter. To handle the jump from the highest address (i.e.,

⌊
r
b

⌋
)

to zero, our final design contains slightly more logic. Again, Figure 1 neglects this logic

J. Richter-Brockmann et al. 565

+

Rotate

−

/arb_in
b

/sparse_in
b

/
[log b−1:0]

/
[: log b]

/
2·b

/
b

resa_in
resb_in

sel

init

10

1

1
sel

1

0

0

1

1

0

resa_addr

resb_addr

res_out

+ − Addition/subtraction modulo
⌈
r
b

⌉
XOR

regrot

Figure 1: Schematic architecture of the general sparse multiplier.

for the sake of clarity. However, the output of the counter is subtracted by one, and two
multiplexers decide which of the address values are used to access which of the memories.
The decision signal sel is determined based on the LSB from the address counter used to
read out the indexes of the sparse polynomial.

For each index of the sparse polynomial, our multiplier spends
⌈
r
b

⌉
+ 4 clock cycles for

shifting and accumulating the intermediate results. The total latency is given by

Lmult(th) =
(⌈r
b

⌉
+ 4
)
· th+ 1 (1)

where th denotes the weight of the sparse polynomial (e.g., for the key generation in BIKE
th = w

2). The circuit switches to the DONE state in the additional clock cycle.
This design iterates over a fixed number of indexes of the sparse polynomial. While

this approach is capable of processing the secret polynomials (h0, h1), it cannot process
the multiplication e1 · h in the encapsulation with a constant latency since the Hamming
weight of e1 is unknown. Therefore, we modify the design of the general sparse multiplier
into a dedicated multiplier for BIKE in the next paragraph.

Tailored Constant-time Multiplier for BIKE. To deal with the indefinite weight of e1
in the encapsulation, we utilize the relation |e0|+ |e1| = t defined by BIKE. It allows to
rephrase the encoding operation as an addition of two multiplications

c0 = e0 · 1 + e1 · h. (2)

For computing c0, we modify the general sparse multiplier introduced above and add a
multiplexer choosing h or 1 as input for parb. depending on e0 or e1. To indicate whether
e0 or e1 is processed, we add an additional leading bit to the indexes and set the MSB
of the indexes belonging to e0 to ’1’. We embed this operation directly into the sampling
function H. Hence, the multiplexer selects its output according to the MSB of the indexes
of the sparse polynomial.

In order to illustrate the two modes of the multiplication engine, we provide a small
example for r = 11, b = 4, and parb. = X10 + X8 + X7 + X6 + X5 + X4 + X3 + 1 =
101 1111 1001 (corresponds to h in Equation 2). For the error polynomials, we exemplary
assume e0 = X5 and e1 = X7 and their corresponding indexes e0,idx = 1 0101 and
e1,idx = 0 0111, respectively. For both modes, we assume that the current intermediate
result is pint = 010 1001 0110.

Figure 2 visualizes the multiplication e1 · parb. where each dashed line separates the
data flow between the clock cycles. In this case, the expected result is

X7 ·101 1111 1001⊕010 1001 0110 = 100 1101 1111⊕010 1001 0110 = 110 0100 1001.

566 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

parb. in: 1111 0101 1001 1111 0101

regrot in: 0001 0000 1011 0000 1001 1011 1111 1001 0101 1111

regrot out: 0000 0000 0001 0000 1011 0000 1001 1011 1111 1001 0101 1111

shifted: 0000 0000 1000 0000 1000 0000 1101 1000 1100 1000 1111 1000

pint in: 1001 0010 0110

result out: 0100 0110 1001

index of the sparse polynomial: 0 0111 write to
addr 0x01

write to
addr 0x02

write to
addr 0x00

Figure 2: Example for a multiplication with an index from e1.

pone in: 0000 0000 0001 0000 0000

regrot in: 0000 0000 0000 0000 0001 0000 0000 0001 0000 0000

regrot out: 0000 0000 0000 0000 0000 0000 0001 0000 0000 0001 0000 0000

shifted: 0000 0000 0000 0000 0000 0000 0010 0000 0000 0010 0000 0000

pint in: 1001 0010 0110

result out: 1011 0010 0110

index of the sparse polynomial: 1 0101 write to
addr 0x01

write to
addr 0x02

write to
addr 0x00

Figure 3: Example for a multiplication with an index from e0.

As described above, the module first reads the second uppermost chunk from the input
polynomial which is 1111 in our example. Since r = 11 and b = 4, only the most significant
bit from this chunk is required and stored in the register regrot (cf. Figure 1). The remaining
three bits are taken from the uppermost chunk. Afterwards, the process proceeds in a
regular pattern by reading a new chunk and moving the old chunk to the lower part of
regrot. The multiplier determines the starting address to read the first chunk from the
intermediate result by the upper bits of the error index, i.e., 0x01 in our example. This
describes the required shift on word level. The output of the register is shifted to the left
by 3 bit which are the least log(b) bits from index e1,idx and describe the required shift on
bit level. Hence, the first chunk of the new intermediate result is written to address 0x01.
Note, when the multiplier writes the result to address 0x02, the most significant bit is set
to 0 since it does not belong to a valid polynomial of size r = 11.

The procedure for a multiplication with the index e0,idx is similar. Instead of providing
the polynomial parb. to the multiplier, the polynomial pone = 1 = 000 0000 0001 is selected
by the most signification bit of e0,idx. The corresponding data flow is visualized in Figure 3.
It is clearly visible that the multiplication with an index from e0 requires the same amount
of clock cycles such that a constant-time operation is guaranteed.

To this end, Figure 4 shows the adjustment for processing the operand parb. in the
multiplier. Note, the polynomial of one does not require an extra memory but is generated
on the fly. While accessing the 0-th chunk of parb., the circuit feeds a b-bit chunk of 0...01
to the multiplexer. Otherwise, the multiplexer always gets a zero b-bit chunk. Hence, the
multiplier always finishes the multiplication from Equation 2 in Lmult(t) clock cycles.

J. Richter-Brockmann et al. 567

Rotate

/arb_in
b

/0...01︸ ︷︷ ︸
r bits

b

sparse_in

/MSB

0

1

/
2·b

regrot

Figure 4: Modifications to the input operand of the tailored multiplier.

Last, we add an additional input to the multiplier design determining the number
of non-zero indexes of the sparse polynomial for the two possible weights (t, w/2) of the
sparse input polynomials.

3.4 Polynomial Inversion
We present our hardware design and optimization for the polynomial inversion in this section.
In 2020, Marotzke [Mar20] had reported an implementation for the polynomial inversion
required in NTRU Prime, a post-quantum KEM. The inversion module utilizes Bernstein
and Yang’s extGCD algorithm [BY19] optimized to perform inversions of polynomials of
degree 760 with coefficients in prime fields, where the arithmetic takes place in Digital
Signal Processor (DSP) units. Since our design targets to invert polynomials in R with
large degrees (i.e., ≥ 12 323), the two implementations pursue different purposes and are
not directly comparable.

In the following, we first divide the computation of divstep into two subroutines.
Then, we introduce the main framework of the inversion and the two subroutines followed
by our hardware designs.

Performing the divstep. Recalling Section 2.4, an extGCD for polynomial inversion
computes 2r − 1 divsteps. In [BY19], based on the shape of the transition matrix,
Bernstein and Yang optimized the multiplication by the transition matrix in a single
divstep as two simple functions:

1. a conditional swap: replacing (δ, f, g) with (−δ, g, f) if δ > 0 and g(0) 6= 0.
2. an elimination: replacing (δ, f, g) with (1 + δ, f, (f(0)g − g(0)f)/X).

Since the head coefficient f(0) is always one for computing the inversion in BIKE, we
need only two information bits deduced from (δ, g(0)) in each divstep as instructions for
updating (f, g) and (v, w). The first bit indicates the swap operation and the second bit is
g(0) used in the elimination operation. We refer to the two information bits as control bits
of one divstep in this paper. Furthermore, we split one divstep into two operations:

1. get_control_bits(): calculates the control bits based on the values of δ and the
necessary coefficients of the polynomials (f, g), and

2. update_fg_or_vw(): updates the polynomials (f, g) and (v, w) based on the com-
puted control bits.

Main Framework. Algorithm 4 describes the main framework of the polynomial inversion.
As introduced above, the algorithm uses four temporary polynomials f , g, v, and w
while g is initialized with the bit-reversed input polynomial gin. The main parts of the
algorithm are 2r − 1 divsteps, which are decoupled into series of get_control_bits()
and update_fg_or_vw() subroutines. Last, the algorithm shifts v one bit to the right,
reverses its coefficients, and returns v as the inverse of the input polynomial.

568 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

Algorithm 4: Main framework for the polynomial inversion.
Input : Input polynomial gin and step size s.
Output : Inverted polynomial gout = g−1

in

1 N ←
⌈
r
b

⌉
;

2 f [N], g [N], v [N], w [N]← 0; // Initialize polynomials (arrays)
3 w[0] = 1; f [0] = 1; f [N − 1]← 2r mod b;
4 g ← bitreverse (gin); // Reverse the bits of the input polynomial
5 δ ← 1 ; // Degree difference of polynomials f and g
6 τ ← 2r − 1 ; // Number of divsteps to be executed
7 while τ ≥ s do
8 δ, c← get_control_bits(δ, f [0], g[0], s);
9 for j = 0 to N do

10 f0, f1 ← f [j], ((j + 1) > N ? 0 : f [j + 1]);
11 g0, g1 ← g[j], ((j + 1) > N ? 0 : g[j + 1]);
12 f [j], g[j]← update_fg_or_vw(c, f1, f0, g1, g0, s, 1);
13 end
14 for j = N to 0 do
15 v0, v1 ← (j == 0 ? 0 : v[j − 1]), v[j];
16 w0, w1 ← (j == 0 ? 0 : w[j − 1]), w[j];
17 v[j], w[j]← update_fg_or_vw(c, v1, v0, w1, w0, s, 0);
18 end
19 τ ← τ − s ;
20 end
21 if τ > 0 then
22 δ, c← get_control_bits(δ, f [0], g[0], τ);
23 for j = N to 0 do
24 v0, v1 ← (j == 0 ? 0 : v[j − 1]), v[j];
25 w0, w1 ← (j == 0 ? 0 : w[j − 1]), w[j];
26 v[j], w[j]← update_fg_or_vw(c, v1, v0, w1, w0, s, 0);
27 end
28 end
29 v ← shift_right(v); // Shift one bit to the right
30 return bitreverse (v);

In the algorithm, we introduce a parameter s to control the step size, allowing to
proceed s divsteps in each iteration in parallel (cf. line 7). The get_control_bits()
and the update_fg_or_vw() take the parameter as well and proceed s steps accordingly.
Therefore, the subroutine get_control_bits() determines 2s control bits and updates δ
based on the state of (δ, f [0], g[0]). Afterwards, a loop iterates over all four polynomials f ,
g, v, and w and updates them by update_fg_or_vw() for s steps in each call. Starting
from line 22, the algorithm covers the remaining steps and updates only (v, w) accordingly.

Besides the step size s, the execution time of Algorithm 4 scales with the bandwidth
parameter b as well. Enlarging b decreases the number of chunks N and therefore, less
numbers of iteration are executed in the inner loop since update_fg_or_vw() updates
one chunk in each execution. In our design, the choice for s is also limited by s ≤ b since
get_control_bits() takes inputs of one polynomial chunk only. We describe the details
of get_control_bits() and update_fg_or_vw() in the following paragraphs.

Determining Control Bits. Algorithm 5 details the process of get_control_bits().
The algorithm takes four inputs, which are the degree difference δ, two b-bit chunks

J. Richter-Brockmann et al. 569

Algorithm 5: Compute control bits.
Input :Current δ, f [0], g[0], and the step size s.
Output :Updated δ and an array of control bits c[2s]

1 f, g ← f [0], g[0] ;
2 for i = 0 to s− 1 do
3 swap← ((−δ < 0) ? 1 : 0) & (g ∧ 1);
4 α← g ∧ 1;
5 c[i · 2]← swap;
6 c[i · 2 + 1]← α;
7 δ ← swap ? − δ + 1 : δ + 1;
8 f, g ← (swap ? g : f), (g ⊕ (f · α))/2 ;
9 end

10 return δ, c;

× + +

+

−1 1 1

1

/
LSB

0

> 0? ≫

c[i · d+1]c[i · d] · · · c[i · d+d−2] c[i · d+d−1]

0

1

0

1

0

1

0

1

0

1

0

1

1

0

init

init

init

f [0]

δ

g[0]

f ′

δ′

g′

d times

+ Addition × Multiplication XOR

Figure 5: Hardware design for the computation of the control bits.

(f [0], g[0]) from the polynomials (f, g), and the step size s. The algorithm outputs the
updated δ and 2s control bits c for s divsteps. For generating the control bits for the s
divsteps, the algorithm uses only s bits from each input polynomial instead of the full
coefficients. Note, however, the algorithm is a sequential process where the control bits of
iteration i depends on the results of the previous iterations.

Our hardware design for get_control_bits() incorporates this characteristic such
that we aim to fully utilize the computational capacity and hence execute d iterations of
the loop shown in Algorithm 5 in one clock cycle. Therefore, Figure 5 shows a schematic
draft of this approach where one iteration is highlighted by the red dashed border. For
larger step sizes s, however, unrolling the whole loop in a hardware implementation would
result in a long critical path. Hence, we introduce a round-based circuit that is executed⌈
s
d

⌉
times since d ·

⌈
s
d

⌉
≥ s. We store the generated control bits in registers to use them

immediately for updating the polynomials (f, g) and (v, w) by update_fg_or_vw().

Updating Polynomials. We summarize the details of update_fg_or_vw() in Algorithm 6.
The algorithm expects as inputs the control bits c, two 2b-bit chunks of the polynomials
(f, g) or (v, w), the step size s, and one bit specifying whether the input chunks originating

570 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

Algorithm 6: update_fg_or_vw()
Input :Control bits c, two 2b-bit chunks of f and g, and the step size s .
Output :Updated b-bit chunks r0 and r1

1 for i = 0 to s− 1 do
2 f, g ← (c[i · 2] ? g : f), (c[i · 2 + 1] ? g ⊕ f : g);
3 if is_updating_fg then
4 g ← g/2 ; // Shift right, i.e., dividing by X
5 else
6 f ← f · 2 ; // Shift left, i.e., multiplying by X
7 end
8 end
9 if is_updating_fg then

10 r0, r1 ← f [0 : b], g[0 : b] ; // lower b bits
11 else
12 r0, r1 ← f [b : 2b], g[b : 2b] ; // higher b bits
13 end
14 return r0, r1;

from the pairs (f, g) or (v, w). The algorithm updates the given chunks for s divsteps
according to the control bits c. Since (f, g) and (v, w) are multiplied by the same transition
matrix in the same divstep, the arithmetic for updating the polynomials is identical.
The different formats of storing polynomials (see Section 2.4) cause the difference of the
two operating modes, which shift polynomials in different directions and output different
chunks of polynomials.

Figure 6 shows our hardware design for updating the polynomials (f, g). The basic
block (highlighted by the red dashed border) updates the polynomials for one divstep,
consisting of simple shifts, an addition (xor), and multiplexing operations. The whole
submodule can finish the computation with s consecutive basic blocks which, however,
would result in a long critical path without any further modifications. Therefore, to control
the length of the critical path, we introduce pipeline registers after u basic blocks. Hence,
there are

⌊
s
u

⌋
pipeline stages in the module. Note, we implement a similar module to

update (v, w).
Although, Figure 6 depicts two full b-bit chunks for each input associated with the

different polynomials, the algorithm actually only requires b+ s bits of data from the
input polynomials. The algorithm inputs the 2b-bit chunks because it accesses polynomials
in chunks of b bits from the memory. However, the module only instantiates logic for
processing s+ b data such that no area overhead occurs.

Overall Design of the Polynomial Inversion. The entire polynomial inversion module
consists of two counters controlling the reversion of the bits and the final right shift
(cf. Algorithm 4). Additionally, we instantiate get_control_bits() and two versions of
update_fg_or_vw() (updating (f, g) and (u,w) in parallel) as described above. Since
the algorithm works on four temporary polynomials, the inversion module utilizes eight
Block-RAMs (BRAMs) allowing to read and write the intermediate results in the same
clock cycle. Nevertheless, the latency of the proposed design depends on several parameters,
i.e., r, b, s, d, and u. It is determined by

Linv(s, d, u) = λ ·
(

3 +
⌈ s
d

⌉
+
⌈ s
u

⌉
+
⌈r
b

⌉)
︸ ︷︷ ︸

main computation

+ ρ+
⌈ s
d

⌉
+
⌈r
b

⌉
︸ ︷︷ ︸

remainder

+ 3 ·
⌈r
b

⌉
+ 13︸ ︷︷ ︸

bitreverse & shift

(3)

J. Richter-Brockmann et al. 571

g1, g0
≫

c[1]
≫

f1, f0

c[0]

≫

c[3]
≫

c[2] Register stage

≫

c[i·u+1]

r1

≫

c[i·u]

r0

Basic block

u times

s times

Figure 6: Hardware implementation of the update process for the f and g polynomial.

where λ =
⌊ 2·r−1

s

⌋
and ρ =

⌈ 2·r−1−λ·s
u

⌉
. Note, our design for s = 1 does not follow Equa-

tion 3 since it is a handcrafted and optimized design which achieves a slightly smaller
latency and requires only seven BRAMs instead of eight.

3.5 United Hardware Design
Given the optimized modules for the polynomial arithmetic and the modifications for the
random oracles, we now present an united hardware design of BIKE consolidating the key
generation, encapsulation and decapsulation in one module. Such a design allows to share
resources between the different KEM operations. For example, we only instantiate one single
multiplier, one Keccak core with the corresponding wrappers described in Section 3.2,
and a limited number of BRAM modules. The number of required BRAMs is given by
the decapsulation since its implementation utilizes the most memories (cf. [RBMG21]).
However, this design decision implies that only one of the three KEM algorithms of BIKE
can be executed at the same time. Therefore, we implement a control interface that allows
to enable the desired algorithm by a three bit instruction, load and read data (polynomials
and 256-bit strings), and request randomness used as seed for the PRNG. A top-level
draft of this implementation is shown in Figure 7. While all building blocks that are used
by more than one KEM algorithms are marked by a green border, the black modules are
only required for a single KEM operation (the inversion module and sampler are used only
in the key generation, and the BFIter module together with the Hamming weight and
threshold computation only in the decapsulation).

The Finite-State Machine (FSM) on the right side manages all input/output operations
and the control flow of the three KEM algorithms. The input interface expects a six-bit
instruction identifying which data should be loaded. For the key generation no initial
data is required. The encapsulation requires the public key h which needs to be loaded
to a BRAM before the computation can be started. To perform a decapsulation, the
implementation assumes that the user load the two parts of the cryptogram (c0, c1), the
two polynomials of the private key (h0, h1), and σ. The output interface returns the same
data and additionally the shared key K. After the required data has been accessed, all
memories are reset by overwriting the content with zero.

4 Implementation Results
In this chapter, we evaluate the proposed optimizations and modifications for a hardware
implementation of BIKE. First, we show that the modifications of the random oracles are

572 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

H-Function K-Function L-Function

Register Bank

Memory Bank

Sa
m
pl
er

h
0
,h

1

In
ve
rs
io
n

Multiplier BFIter

HW TH

K
ec

ca
k

F
SM

clk
resetn

/instruction
busy

done

/randomness

/data_in

/data_out

Figure 7: Top-level view of the united hardware design.

beneficial for a hardware design of BIKE. Second, we report implementation results for the
proposed sparse multipliers and compare them to designs from the literature. Third, we
demonstrate the scalability of our inversion module by presenting implementation results
for different configurations. Fourth, since both – the multiplication and inversion – influence
the footprint and performance of the key generation, we provide dedicated implementation
results for a stand-alone key generation design. Fifth, we present the implementation results
of the united hardware design and compare it to other implementations of code-based
PQC schemes. We generate all results for an Artix-7 XC7A200T FPGA manufactured by
Xilinx.

4.1 New Random Oracles
As described in Section 3.2, BIKE’s new specification [ABB+21] updates the random oracles
from AES-256 and SHA2 to an unified Keccak core. To test how the design choice of
cryptographic primitives effects the performance of hardware implementations, we compare
the implementations of the original VHDL code2 from [RBMG21] with our adapted version
applying the new specification with a replaced Keccak core. We performed no other
optimizations for a fair comparison.

Table 2 reports the comparisons for the encapsulation and decapsulation. For both
KEM algorithms and all hardware configurations, the adapted versions achieve slightly
better results in terms of area and latency. Especially the number of required registers
decreases by roughly 880 in the adapted implementation for all designs. To this end,
these implementation results show that the modifications of the random oracles are indeed
beneficial for hardware implementations of BIKE.

4.2 Multiplier
Table 3 shows the implementation results for our two multiplier designs configured for
the lowest security level of BIKE, i.e., for r = 12 323. The first design is the general
sparse multiplier where the sparse polynomial always has a fixed Hamming weight, i.e.,
the Hamming weight is determined before synthesis. In BIKE, such cases occur in the
key generation and decapsulation where |psparse| = w/2. The second design reads the
Hamming weight of the sparse polynomial via an input interface. Hence, it can be used
for all multiplications required in BIKE. Additionally, the design performs the encoding

2The authors published their code at https://github.com/Chair-for-Security-Engineering/BIKE/

https://github.com/Chair-for-Security-Engineering/BIKE/

J. Richter-Brockmann et al. 573

Table 2: Comparison of KEM functions w.r.t. different random oracle settings (r = 12 323).
Resources Performance

Logic Memory Area Cycles Freq. Latency
b LUT DSP FF BRAM Slices Cycles MHz ms

Encapsulation with adapted random oracles
32 bit 6 604 0 2 409 3 1 906 151 587 121.95 1.24
64 bit 8 388 0 2 444 5 2 408 39 264 121.95 0.32

128 bit 15 135 0 2 625 10 4 268 11 136 119.05 0.094
Encapsulation of the previous specification from [RBMG21]

32 bit 6 730 0 3 298 3 2 143 152 694 121.95 1.25
64 bit 8 253 0 3 327 5 2 538 40 368 121.95 0.33

128 bit 14 829 0 3 471 10 4 540 12 240 121.95 0.10

Decapsulation with adapted random oracles
32 bit 9 070 7 3 055 10 2 570 1 624 402 125 13
64 bit 14 011 9 3 415 15 3 933 515 823 116.28 4.44

128 bit 29 697 13 4 170 29 8 234 186 364 100 1.86
Decapsulation of the previous specification from [RBMG21]

32 bit 9 380 7 3 943 10 2 971 1 626 674 125 13.01
64 bit 16 140 9 4 307 15 4 942 518 105 116.28 4.46

128 bit 30 430 13 5 063 29 8 785 188 646 100 1.89

in the encapsulation in constant time. To this end, the hardware utilization is slightly
higher as for the general sparse multiplier. Note, for the second multiplier design, we
report performance numbers for the multiplication performed in the encapsulation, i.e.,
|psparse| = t = 134. The number of clock cycles for different Hamming weights follows
Equation 1.

Table 3 also lists the results of the schoolbook-based (dense) multiplier from [RBMG21]
and of the sparse multiplier design from [HWCW19]. Since the authors of [RBMG21] only
reported implementation results for r = 10 163, we extracted the multiplier from their code
and synthesized it for r = 12 323. As expected, the sparse multiplier clearly outperforms
the schoolbook-based design with respect to area. For a fixed Hamming weight of 71,
the sparse multiplier also achieves better performance results. However, for b = 128 the
schoolbook multiplier achieves slightly better performance results than the tailored sparse
multiplier which it trades with a huge area footprint. Therefore, the sparse multiplier is
clearly superior with respect to the Area-Time (AT) product.

Compared to the multiplier from [HWCW19], our design achieves a considerably lower
latency albeit our results were generated for a larger parameter set. Our design mainly
differentiates from their implementation in two parts. First, we decided to instantiate two
memories to store the intermediate results of the multiplication’s product. This allows us to
perform a read and write access in the same clock cycle while the implementation by Hu et
al. requires two clock cycles. Note, for Xilinx FPGAs one could exploit the read-then-write
option allowing to perform a read and write access in the same clock cycle to the same
address reducing the amount of required BRAM modules. However, we decided not to
use this option but rather instantiate two memories since it is a more generic approach
which is universally applicable to other hardware devices as well. Second, our rotation
unit performs the whole rotation within one clock cycle while the design by [HWCW19]
requires dlog be clock cycles. Even though our multiplier architectures consume slightly
more slices, it clearly improves the AT product.

We also tried to compare our results to the design proposed in [BFG+19] but we were

574 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

Table 3: Comparison of sparse polynomial multipliers for r = 12 323.
Resources Performance

Logic Memory Area Cycles Frequency Latency
b LUT FF BRAM Slices Cycles MHz µs

General sparse multiplier (|psparse| = w/2 = 71)
32 319 127 2 132 27 691 234.36 118.16
64 549 190 4 197 13 988 222.22 62.94

128 1 136 381 8 378 7 172 184.95 38.78
Tailored sparse multiplier for BIKE (|psparse| = t = 134)

32 349 135 2 151 52 261 238.15 219.5
64 629 204 4 245 26 399 222.52 118.8

128 1 249 386 8 437 13 535 184.3 73.44
Sparse multiplier from [HWCW19] (r = 10 163, |psparse| = 71)

32 – – 2 100 158 614 240 660.89
64 – – 3 157 90 880 220 413.09

128 – – 5 292 51 688 210 246.13

Dense polynomial multiplier from [RBMG21]
32 697 105 1.5 220 150 155 201.37 745.67
64 2 595 137 3 864 37 829 173.82 230.91

128 9 539 293 6 3 332 9 701 183.66 52.82

not able to figure out which value the authors applied for the parameter BW (corresponds
to our bandwidth parameter b) so that a fair comparison is difficult. However, we assume
that their design is similar to our multiplier design which uses fixed Hamming weights.

4.3 Inversion Module
In this section, we first evaluate the polynomial inversion module described in Sec-
tion 3.4 for b ∈ B and for r = 12 323 and compare our approach afterwards to the design
from [RBMG21] which is based on Fermat’s little theorem. Note, in all experiments we
fix the maximum number of basic blocks instantiated between two register stages for the
updating process of (f, g), and (v, w) to u = 8 achieving a critical path that is smaller
than 10 ns. Additionally, we generate all results in this subsection for a target frequency
of 100 MHz.

Detailed Evaluation of the Inversion Module Figure 8a shows the number of required
slices and the latency in clock cycles for b = 32, 1 ≤ s ≤ 32, and d = 2. The area
footprint linearly increases with the step size parameter s while the number of clock
cycles follows Equation 3. Moreover, we include the configuration for the best AT product
(slices × cycles/106) visualized by the green dashed line. The configuration for s = 23
achieves the best result with an AT product of 432. A more detailed evaluation of the
implementations can be found in the appendix in Table 7.

Figure 8b shows the implementations results for different step sizes s for b = 64. The
trends for the required clock cycles and for the area utilization are very similar to the
configurations for b = 32. The smallest configuration requires 4 880 299 clock cycles but only
consumes 377 slices while the fastest design performs one inversion within 91 678 clock cycles
by consuming 5 457 slices. The design with the best AT product is obtained for s = 31 (a
detailed evaluation can be found in the appendix in Table 8).

J. Richter-Brockmann et al. 575

5 10 15 20 25 300

500

1,000

1,500

s = 23

Step size s

Sl
ic
es

0

0.5

1
·107

C
lo
ck

C
yc
le
s

tinyUtilization
tinyLatency

(a) Implementation results for b = 32, and d = 2.

10 20 30 40 50 600

2,000

4,000

6,000

s = 31

Step size s

Sl
ic
es

0

2

4

·106

C
lo
ck

C
yc
le
s

tinyUtilization
tinyLatency

(b) Implementation results for b = 64 and d = 2.

20 40 60 80 100 1200
0.5

1
1.5

2
·104

s = 16

Step size s

Sl
ic
es

0

1

2

·106

C
lo
ck

C
yc
le
s

tinyUtilization
tinyLatency

(c) Implementation results for b = 128 and d = 1.

Figure 8: Implementation results for the polynomial inversion for a Xilinx Artix-7 FPGA
and a target frequency of 100 MHz setting r = 12 323. The green dashed lines indicate the
configurations with the best area-time product.

The implementation results for b = 128 are plotted in Figure 8c where the best AT
product is obtained for s = 16. To achieve reasonable critical paths (maximum possible
frequency larger than 100 MHz), we reduce the number of unrolled rounds to compute the
control bits c to d = 1. With s = 128 we can instantiate our fastest inversion module which
finishes one polynomial inversion in only 47 386 clock cycles. However, the implementation
costs drastically increase to 21 435 slices. Again, a detailed evaluation is given in the
appendix in Table 9 and Table 10.

Comparison to Related Work. We compare our inversion module to the approach
presented in [RBMG21] which is based on Fermat’s little theorem in Table 4. The
corresponding numbers are extracted from their implementation of the key generation.

With Fermat’s little theorem, given a g ∈ R, [RBMG21] computes the inverse as
g2r−1−1. To efficiently raise the degree of g, they used a square-and-multiply chain from
the Itoh-Tsujii Algorithm (ITA) [IT88] achieving a latency of

Linv-Fermat ≈ log(r) · (r + Lschool) + |rbin| ·
(⌈r
b

⌉
+ Lschool

)
(4)

576 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

where rbin = r − 2 and Lschool =
⌈
r
b

⌉
· (
⌈
r
b

⌉
+ 3) + 1. Note, Equation 4 describes just an

approximation of the required clock cycles since the implementation from [RBMG21] is
highly optimized to the use-case of BIKE. However, compared to the dominant term⌊ 2·r−1

s

⌋
·
⌈
r
b

⌉
from Equation 3, our inversion module has an extra parameter s, allowing to

achieve more optimized configurations.
In Table 4, we present results for the light-weight (s = 1) and high-speed (s = b)

configuration as well as the design with the best area-time product. For comparison
with the area cost, we report a configuration targeting the number of clock cycles of the
approach from [RBMG21]. While finishing the inversion with the same amount of clock
cycles, Table 4 shows that the inversion module based on the extGCD achieves a smaller
footprint. This implies that the extGCD implementation results in a better area-time
product. We note that the inversion based on Fermat’s little theorem always requires a
dense polynomial multiplier, which increases the area cost notably. For the design with
the best area-time product, our approach consumes roughly twice the amount of logic but
finishes the inversion with only one sixth clock cycles setting b = 32.

While writing this article, Deshpande et al. [DdPM+21] presented a hardware imple-
mentation of Bernstein and Yang’s inversion algorithm for computing the modular inverse
for integers. Their implementation targets integer sizes of 255 bits to 2 048 bits which
requires units for integer additions with carry logic. Since we compute the inverse of bit
polynomials of at least 12 323 bits and perform carry-less additions, i.e., the XOR operation,
the two implementations target different applications, and a comparison of performance
numbers would be misleading.

Additionally, referring to the sequential design of [DdPM+21], they always compute
the control bits for only one divstep and update the integers with one divstep. This
corresponds to the configuration of s = 1 in our design introduced in Section 3.4. Hence,
our inversion module provides more configurations allowing to finely adapt to various
circumstances.

4.4 Key Generation
We report implementation results for stand-alone key generation modules in Table 5 and
compare them to the key generation module from [RBMG21]. We evaluate our designs
only on the key generation because the polynomial inversion module is used solely in this
KEM operation. Because our design is based on the extGCD instead on Fermat’s little
theorem, we do not install a dense polynomial multiplier that is required for the inversion
with Fermat’s little theorem. Instead, we use a sparse multiplier which is far more efficient
(in both area and latency) than the dense multiplier in the key generation (cf. Table 3).
Although the module of key generation consists of various components, including the
PRNG based on SHAKE256, the main operations occur in the inversion module and the
multiplier.

As described before, both designs perfectly scale with the bandwidth parameter b while
the inversion module provides an additional configuration via the step size s. Nevertheless,
for each b ∈ B, we only pick two configurations for the inversion: (1) setting s = b which
results in the fastest configurations we can achieve, and (2) instantiating the inversion
module with the lowest AT product determined in Section 4.3.

The fastest key generation, that we can implement with our approaches, is obtained
for b = s = 128. The key generation only takes 484 µs but requires over 25 000 slices. The
maximum frequencies for the designs with b = 128 are slightly higher than for b = 64
because the parameter d is decreased to d = 1. We decided to synthesize these designs
for d = 1 since otherwise the critical path for the computation of the control bits would
drastically increase. Note, the results for b = 64 and b = 128 for the designs adjusted to
the best AT product achieves roughly the same performance because b is doubled while s
is halved. Therefore, the design for b = 64 is more efficient due to the lower footprint.

J. Richter-Brockmann et al. 577

Table 4: Comparison of our inversion module to related work for r = 12 323.
Resources Performance

Logic Memory Area Cycles Frequency Latency
b LUT FF BRAM Slices Cycles MHz µs

Our light-weight designs (s = 1)
32 580 117 7 196 9 637 363 100 96 637
64 1 020 183 7 377 4 880 299 100 48 803

128 1 805 247 14 671 2 514 091 100 25 141
Our high-speed design (s = b)

32 5 038 943 8 1 473 316 504 100 3 165
64 18 610 3 563 8 5 457 91 678 100 917

128 75 269 14 028 16 21 435 47 386 100 474
Our design with the best area-time product (s = 23, s = 31, s = 16)

32 3 359 643 8 995 434 255 100 4 343
64 7 801 1 473 8 2 269 172 522 100 1 725

128 8 322 1 245 16 2 560 182 138 100 1 821
Our design targeting the clock cycles of [RBMG21] (s = 4, s = 7, s = 11)

32 905 179 8 313 2 416 672 100 24 167
64 2 391 334 8 786 708 310 100 7 083

128 5 615 1 157 16 1 807 253 533 100 2 535
Inversion Module used in [RBMG21]

32 1 721 343 5 495 2 670 881 131.58 20 299
64 3 597 419 5 994 748 769 113.64 6 589

128 11 878 722 10 3 352 258 555 96.15 2 689

Since our proposed inversion module is highly scalable, there are many other possible
configurations. An estimation of the expected footprint and clock cycles can be obtained
by using the results provided in the appendix.

Unfortunately, the authors of [RBMG21] did not implement a PRNG to provide
randomness to the sampler which makes a comparison more difficult. Therefore, we
determined the hardware utilization of our Keccak core which consumes roughly 800 slices.
Considering these additional costs, our design adjusted to the AT products of the inversion
modules is roughly 5.5 times faster while it only consumes 3.6 more number of slices for
b = 32.

4.5 United Design
We present the implementation results of the united hardware design of BIKE, introduced
in Section 3.5, in Table 6 for the lowest security level. Results for Level 3 and Level 5 can
be found in the appendix in Table 11. We created three different implementations where
the first one is a light-weight design (b = 32), the second one is a design with a trade-off
between hardware resources and performance (b = 64), and the last one is a high-speed
design with b = 128. The instantiations of the inversion module are the designs with the
best AT product identified in Section 4.3.

Table 6 also contains the estimated implementation results for a united hardware
design of BIKE from [RBMG21]. For the light-weight configuration, our design clearly
outperforms the previous design with respect to the hardware resources and performance.
This improvement is mainly due to the new multiplier design and inversion module.

For the high-speed design, our proposed implementation consumes only half the amount

578 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

Table 5: Comparison of stand-alone key generation modules for r = 12 323.
Utilization Performance

Configuration Logic Memory Area Cycles Frequency Latency

b s d PRNG* LUT FF BRAM Slices Cycles MHz ms

This work – High Speed (s = b)
32 32 2 3 9 880 3 321 5 3 070 344 777 130.91 2.63
64 64 2 3 24 564 6 255 10 7 776 106 243 104.65 1.02
128 128 1 3 82 457 17 510 19 25 009 55 135 113.95 0.484

This work – Best AT product for inversion
32 23 2 3 7 791 3 004 5 2 179 462 533 125 3.7
64 31 2 3 12 741 4 169 10 3 694 187 097 98.04 1.91
128 16 1 3 14 705 4 709 19 4 121 189 897 113.64 1.67

KeyGen from [RBMG21]
32 – – 7 2 074 659 4 649 2 671 076 131.58 20.30
64 – – 7 4 432 1 285 5 1 285 748 964 113.64 6.59
128 – – 7 12 654 3 554 10 3 554 258 750 96.15 2.69

* The PRNG (Keccak) is used to sample (h0, h1) (the core consumes roughly 800 slices).

of slices while achieving comparable performance results. Particularly, the latency of the
key generation is significantly improved due to the inversion module. However, the number
of clock cycles for the encapsulation and decapsulation slightly increased. This slight
increase is due to the sparse polynomial multiplier.

Since the latency of the sparse multiplier is proportional to the Hamming weight of the
sparse polynomial (cf. Equation 1), the schoolbook multiplier achieves a better performance
when the Hamming weight of the sparse polynomial exceeds a certain value. More precisely,
the latency of the schoolbook multiplier from [RBMG21] is defined by

Lschool =
⌈r
b

⌉2
+ 3 ·

⌈r
b

⌉
+ 1. (5)

In case Lmult(th) results in a larger latency than Lschool for a Hamming weight th and
a fixed dr/be, the schoolbook multiplier finishes the corresponding multiplication in less
clock cycles. In BIKE, this phenomena only appears for b = 128 and for the parameter
sets of the security levels 1 and 3. However, especially for b = 128 the sparse multiplier
achieves a considerably better AT product as shown in Table 3.

Besides implementation results for BIKE, Table 6 also provides implementation costs
and performance values for other code-based cryptographic schemes submitted to the
NIST standardization process. As already pointed out in [RBMG21], the comparison to
the Classic McEliece implementation is difficult. On the one hand, the reported numbers
are only for the Public-Key Encryption (PKE) scheme and not for the KEM. On the other
hand, the Classic McEliece design consumes a huge amount of BRAMs which requires to
use larger and more expensive FPGAs.

The hardware design for HQC was recently presented in the latest specification
[MAB+21] and is based on a high-level synthesis. While our hardware design of BIKE
achieves similar performance results for the encapsulation and decapsulation, HQC has a
faster key generation since no polynomial inversion is required.

Eventually, the last part of Table 6 reports recent hardware implementation results from
other post-quantum schemes which were selected as finalists in the NIST standardization
process. We list the corresponding implementation costs and performance numbers from
lattice-based schemes including CRYSTALS-KYBER, LightSaber, and NTRU Prime. In
general, the comparison shows that lattice-based schemes cost less area and achieve lower
latencies than the code-based KEM operations.

J. Richter-Brockmann et al. 579

Table 6: Comparison of hardware implementations of post-quantum schemes.
Utilization Performance

Logic Memory Area Frequency Key Gen Encaps Decaps

Design LUT DSP FF BRAM Slices MHz cycles† µs cycles† µs cycles† µs

This work, united design
Light weight 12 319 7 3 896 9 3 777 121 463 3 797 54 443 841 6 896
Trade-off 19 607 9 5 008 17 5 617 100 187 1 870 28 280 421 4 210
High speed 25 549 13 5 462 34 7 332 113 190 1 672 15 132 215 1 892

BIKE [RBMG21]
Light weight 12 868 7 5 354 17 4 078 121 2 671 21 903 153 1 252 1 628 13 349
High speed 52 967 13 7 035 49 15 187 96 259 2 691 12 127 189 1 972

HQC [MAB+21]
Light weight 8 900 0 6 400 14 3 100 132 630 4 773 1 500 11 364 2 100 15 909
High speed 20 000 0 16 000 12.5 6 600 148 40 270 89 601 190 1 284

mceliece348864pke [WSN18]
Light weight 25 327 0 49 383 168 – 108 1 600 14 800 2.7 25.2 18.3 169.8
High speed 81 339 0 132 190 236 – 106 203 1 920 2.7 25.8 12.7 120.7

CRYSTALS-KYBER
[XL21] 7 412 2 4 644 3 2 126 161 3.8 23.4 5.1 30.5 6.7 41.3
[DMG21] 9 457 4 8 543 4.5 – 220 2.2 10 3.2 14.7 4.5 20.5

LightSaber [DMG21]
Light weight 24 688 0 14 785 1.5 – 370 1.6 4.3 2.2 5.8 2.8 7.6
High speed 65 890 0 28 230 1.5 – 310 0.9 2.9 1 3.3 1.3 4.2

NTRU Prime [Mar20]
– 9 538 19 7 803 14 1 841 271 1 305 4 815 142 524 260 958

pke Results are only for the PKE and not for the KEM. † in thousand.

5 Discussion

In this section, we briefly discuss the resistance of our implementations against side-
channel attacks and address the transferability of our optimization approaches to software
implementations.

5.1 Resistance against Side Channels

In this work, we present a constant-time hardware implementation of BIKE which prevents
the timing side-channel leakage. However, we did not apply any specific countermeasure
against power Side-Channel Analysis (SCA). In [RMGS20], the authors briefly discussed
the resistance of their BIKE hardware implementation against power side channels. They
suggested that a parallel processing of b = 128 bit chunks makes it hard to identify single
bit dependencies in the power trace. Since our implementation also supports a 128 bit
bandwidth, it follows the same argumentation. Additionally, using BIKE with ephemeral
keys (suggested as one operation mode in the BIKE specification [ABB+21]), makes a
side-channel attack even harder since the attacker can only use single traces.

Nevertheless, this is not a guarantee for resisting power side-channel attacks. For
example, analyzing a power trace of our proposed multiplication engine from Section 3.3
would probably reveal if an index of e0 or e1 is processed due to the Hamming weight
difference of |1| and |h|. The multiplication with an index from e0 probably generates
different power traces than a multiplication with e1 such that the Hamming weights of
|e0| and |e1| are leaked. It requires further research to investigate the effect with respect
to security from leaking |e0| and |e1|. The leakage can be avoid by using two sparse
multipliers, where one is dedicated to e1 · 1 and the other is dedicated to e2 · h running in
parallel.

580 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

5.2 Transferability to Software

In this section we discuss the possibility of transferring the presented approaches to software
implementations for polynomial inversions and spare polynomial multiplications targeting
various platforms.

When considering the inversion algorithms for the key generation, given the latency
of extGCD inversion (Equation 3) and Fermat’s inversion (Equation 4), the key issue
is the latency of the exponentiation and multiplication (Lschool) operations in the ITA
algorithm on the target platforms. Although the multiplication involves complicated
hardware circuits, it is a sunk cost in software when the underlying platform supports
related instructions. Therefore, for platforms with native instructions of bit-polynomial
multiplication, e.g., the pclmulqdq instruction in x86, we believe Linv-Fermat is smaller
than Linv. For platforms without instructions for bit-polynomial multiplication, Linv is
likely to be smaller than Linv-Fermat. However, besides the platform, the latency of the
multiplication also depends on the implemented algorithms. Recently, Chen et al. [CCK21]
reported an efficient FFT-based bit-polynomial multiplication on the 32-bit Arm Cortex-M4
platform. Hence, we expect extGCD based inversion outperforms Fermat’s inversion in
even smaller platforms without efficient multiplication implementations, e.g., 8-bit AVR
microcontrollers.

Regarding the sparse polynomial multiplication in BIKE, we mainly consider the side-
channel leakage of the degrees of sparse terms. If a software implements the sparse-dense
multiplication by accumulating the shifted dense polynomial with the degrees of sparse
terms, then it might leak the degrees of sparse terms through a cache-time attack. This is
a reason that recent software implementations, e.g., [CCK21,DGK20a], implemented the
multiplication with algorithms for dense polynomial multiplication. Thus, we believe that
the spare polynomial multiplication will be useful for small microcontrollers without data
cache.

6 Conclusion

In this work, we propose various optimization strategies and present an improved hardware
design for BIKE, one of the NIST’s alternate KEM candidates.

For arithmetic optimizations, we implement a constant-time sparse polynomial multi-
plier for all three KEM algorithms of BIKE. Compared to a schoolbook implementation,
our design improves the area-time product of at least five times for all design parameters.
Our implementation also achieves a better latency except for the high-speed design (i.e.,
b = 128) for the encapsulation and the decapsulation. Additionally, we propose a hardware
implementation of the polynomial inversion based on the extended Euclidean algorithm.
Compared to previous results based on Fermat’s little theorem, our new design not only
achieves better latency but also provides smaller area-time products for the key generation
in BIKE. Moreover, due to its scalable design, the instantiation of the inversion module
can be tailored to various circumstances providing higher throughputs or smaller area
footprints.

Besides these arithmetic optimizations, we show that the random oracles of a unified
Keccak core in the new specification of BIKE indeed result in a more efficient hardware
design compared to the design using versions of both AES256 and SHA2. Based on our im-
provements, we developed a united hardware design with shared resources and sub-modules,
achieving a better latency with less area compared to previous BIKE implementations.
All together, our high-speed implementation performs a key generation in 1 672 µs, an
encapsulation in 132 µs, and a decapsulation in 1 802 µs on Xilinx Artix-7 FPGAs.

J. Richter-Brockmann et al. 581

Acknowledgments
The work described in this paper has been funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) as part of the Excellence Strategy of the German
Federal and State Governments – EXC 2092 CASA - 390781972 and by the projects
QuantumRISC (16KIS1038) and PQC4Med (16KIS1044) supported by the German Federal
Ministry of Education and Research BMBF.

References
[ABB+19] Nicolas Aragon, Paulo SLM Barreto, Slim Bettaieb, France Worldline, Loïc

Bidoux, Olivier Blazy, Philippe Gaborit, Tim Güneysu, Carlos Aguilar
Melchor, Rafael Misoczki, et al. BIKE: Bit Flipping Key Encapsulation -
Round 2 Submission. 2019. https://bikesuite.org/files/round2/spec/
BIKE-Spec-Round2.2019.03.30.pdf.

[ABB+20] Nicolas Aragon, Paulo SLM Barreto, Slim Bettaieb, France Worldline, Loïc
Bidoux, Olivier Blazy, Philippe Gaborit, Tim Güneysu, Carlos Aguilar
Melchor, Rafael Misoczki, et al. BIKE: Bit Flipping Key Encapsulation -
Round 3 Submission. 2020. https://bikesuite.org/files/round2/spec/
BIKE-Spec-2020.02.07.1.pdf.

[ABB+21] Nicolas Aragon, Paulo SLM Barreto, Slim Bettaieb, France Worldline, Loïc
Bidoux, Olivier Blazy, Philippe Gaborit, Tim Güneysu, Carlos Aguilar Mel-
chor, Rafael Misoczki, et al. BIKE: Bit Flipping Key Encapsulation. 2021.
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.07.26.1.pdf.

[BBC+19] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo Pelosi, and
Paolo Santini. LEDAcrypt: QC-LDPC Code-Based Cryptosystems with
Bounded Decryption Failure Rate. In Code-Based Cryptography - 7th Interna-
tional Workshop, volume 11666 of Lecture Notes in Computer Science, pages
11–43. Springer, 2019.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In EUROCRYPT, volume 7881 of Lecture Notes in Computer Science, pages
313–314. Springer, 2013.

[BFG+19] Alessandro Barenghi, William Fornaciari, Andrea Galimberti, Gerardo Pelosi,
and Davide Zoni. Evaluating the Trade-offs in the Hardware Design of the
LEDAcrypt Encryption Functions. In 26th IEEE International Conference
on Electronics, Circuits and Systems, pages 739–742. IEEE, 2019.

[BY19] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation and
modular inversion. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(3):340–
398, 2019.

[CCK21] Ming-Shing Chen, Tung Chou, and Markus Krausz. Optimizing BIKE for the
Intel Haswell and ARM Cortex-M4. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2021(3):97–124, Jul. 2021.

[DdPM+21] Sanjay Deshpande, Santos Merino del Pozo, Victor Mateu, Marc Manzano,
Najwa Aaraj, and Jakub Szefer. Modular Inverse for Integers using Fast
Constant Time GCD Algorithm and its Applications. International Conference
on Field-Programmable Logic and Applications (FPL), 2021.

https://bikesuite.org/files/round2/spec/BIKE-Spec-Round2.2019.03.30.pdf
https://bikesuite.org/files/round2/spec/BIKE-Spec-Round2.2019.03.30.pdf
https://bikesuite.org/files/round2/spec/BIKE-Spec-2020.02.07.1.pdf
https://bikesuite.org/files/round2/spec/BIKE-Spec-2020.02.07.1.pdf
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.07.26.1.pdf

582 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

[DGK20a] Nir Drucker, Shay Gueron, and Dusan Kostic. Additional Implementation
of BIKE (Bit Flipping Key Encapsulation). github, 2020. https://github.
com/awslabs/bike-kem.

[DGK20b] Nir Drucker, Shay Gueron, and Dusan Kostic. QC-MDPC Decoders with
Several Shades of Gray. In International Conference on Post-Quantum
Cryptography, pages 35–50. Springer, 2020.

[DMG21] Viet Ba Dang, Kamyar Mohajerani, and Kris Gaj. High-Speed Hardware
Architectures and Fair FPGA Benchmarking of CRYSTALS-Kyber, NTRU,
and Saber. 2021.

[Gam20] Jay Gambetta. IBM’s Roadmap For Scaling Quantum Technology. IBM
Research Blog, 2020. https://www.ibm.com/blogs/research/2020/09/
ibm-quantum-roadmap/.

[HC17] Jingwei Hu and Ray CC Cheung. Area-Time Efficient Computation of
Niederreiter Encryption on QC-MDPC Codes for Embedded Hardware. IEEE
Transactions on Computers, 66(8):1313–1325, 2017.

[HVMG13] Stefan Heyse, Ingo Von Maurich, and Tim Güneysu. Smaller Keys for Code-
Based Cryptography: QC-MDPC McEliece Implementations on Embedded
Devices. In CHES 2013, pages 273–292. Springer, 2013.

[HWCW19] Jingwei Hu, Wen Wang, Ray CC Cheung, and Huaxiong Wang. Optimized
Polynomial Multiplier Over Commutative Rings on FPGAs: A Case Study on
BIKE. In 2019 International Conference on Field-Programmable Technology
(ICFPT), pages 231–234. IEEE, 2019.

[IT88] Toshiya Itoh and Shigeo Tsujii. A Fast Algorithm for Computing Multiplica-
tive Inverses in GF (2m) Using Normal Bases. Information and computation,
78(3):171–177, 1988.

[MAB+21] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loıc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, and IC Bourges. Hamming Quasi-Cyclic (HQC) – third round
version, 2021.

[Mar20] Adrian Marotzke. A Constant Time Full Hardware Implementation of Stream-
lined NTRU Prime. In CARDIS 2020, volume 12609 of Lecture Notes in
Computer Science, pages 3–17. Springer, 2020.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo SLM Barreto.
MDPC-McEliece: New McEliece Variants from Moderate Density Parity-
Check Codes. In IEEE International Symposium on Information Theory,
pages 2069–2073. IEEE, 2013.

[NIS17] NIST. Call for Proposals – Post-Quantum Cryptog-
raphy. Technical Report, CSRC, 2017. https://
csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization/Call-for-Proposals.

[NIS20a] NIST. Guidelines for submitting tweaks for Third Round Finalists
and Candidates, 2020. https://groups.google.com/a/list.nist.gov/g/
pqc-forum/c/LPuZKGNyQJ0/m/O6UBanYbDAAJ.

https://github.com/awslabs/bike-kem
https://github.com/awslabs/bike-kem
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://www.ibm.com/blogs/research/2020/09/ibm-quantum-roadmap/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LPuZKGNyQJ0/m/O6UBanYbDAAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/LPuZKGNyQJ0/m/O6UBanYbDAAJ

J. Richter-Brockmann et al. 583

[NIS20b] NIST. PQC Standardization Process: Third Round Candidate An-
nouncement. Information Technology Laboratory - Computer Secu-
rity Resource Center, July 2020. https://csrc.nist.gov/News/2020/
pqc-third-round-candidate-announcement.

[RBMG21] Jan Richter-Brockmann, Johannes Mono, and Tim Guneysu. Folding BIKE:
Scalable Hardware Implementation for Recongurable Devices. IEEE Transac-
tions on Computers, pages 1–1, 2021.

[RMGS20] Andrew H. Reinders, Rafael Misoczki, Santosh Ghosh, and Manoj R. Sastry.
Efficient BIKE Hardware Design with Constant-Time Decoder. In IEEE
International Conference on Quantum Computing and Engineering, QCE
2020, pages 197–204. IEEE, 2020.

[VMG14] Ingo Von Maurich and Tim Güneysu. Lightweight Code-Based Cryptography:
QC-MDPC McEliece Encryption on Reconfigurable Devices. In Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1–6.
IEEE, 2014.

[WSN18] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based Niederreiter
Cryptosystem using Binary Goppa codes. In International Conference on
Post-Quantum Cryptography. Springer, 2018.

[XL21] Yufei Xing and Shuguo Li. A Compact Hardware Implementation of CCA-
Secure Key Exchange Mechanism CRYSTALS-KYBER on FPGA. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):328–356, 2021.

https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement

584 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

A Additional Implementation Results

Table 7: Implementation results for the polynomial inversion for r = 12 323, b = 32, and
d = 2. We fixed the frequency to 100 MHz and selected an Artix-7 XC7A200T FPGA as
target platform.

Utilization Performance

Step Size s LUT FF Slices Clock Cycles Latency [ms] Area-Time

s = 1 580 117 196 9 637 363 96.37 1 888.92
s = 2 732 168 254 4 819 461 48.19 1 224.14
s = 3 852 175 296 3 221 840 32.22 953.66
s = 4 905 179 313 2 416 672 24.17 756.42
s = 5 1 131 187 369 1 938 658 19.39 715.36
s = 6 1 166 193 375 1 615 612 16.16 605.85
s = 7 1 389 199 458 1 388 442 13.88 635.91
s = 8 1 493 206 491 1 215 082 12.15 596.61
s = 9 1 697 346 547 1 085 811 10.86 593.94
s = 10 1 788 355 576 977 307 9.77 562.93
s = 11 1 929 366 601 890 844 8.91 535.40
s = 12 1 808 373 578 816 606 8.17 472.00
s = 13 1 977 383 613 755 776 7.56 463.29
s = 14 2 063 393 639 702 045 7.02 448.61
s = 15 2 245 403 685 657 123 6.57 450.13
s = 16 2 479 414 759 616 026 6.16 467.56
s = 17 2 526 557 767 582 617 5.83 446.87
s = 18 2 619 570 823 550 536 5.51 453.09
s = 19 2 765 585 847 522 962 5.23 442.95
s = 20 2 905 601 893 496 832 4.97 443.67
s = 21 3 068 613 934 474 289 4.74 442.99
s = 22 3 232 631 999 452 929 4.53 452.48
s = 23 3 359 643 995 434 255 4.34 432.08
s = 24 3 679 655 1 105 416 076 4.16 459.76
s = 25 3 705 802 1 096 401 483 4.01 440.03
s = 26 3 869 819 1 191 386 055 3.86 459.79
s = 27 3 998 840 1 177 372 758 3.73 438.74
s = 28 4 149 865 1 287 359 732 3.60 462.98
s = 29 4 411 877 1 342 347 967 3.48 466.97
s = 30 4 549 900 1 350 336 542 3.37 454.33
s = 31 4 735 921 1 410 326 729 3.27 460.69
s = 32 5 038 943 1 473 316 504 3.17 466.21

J. Richter-Brockmann et al. 585

Table 8: Implementation results for the polynomial inversion for r = 12 323, b = 64, and
d = 2. We fixed the frequency to 100 MHz and selected an Artix-7 XC7A200T FPGA as
target platform.

Utilization Performance

Step Size s LUT FF Slices Clock Cycles Latency [ms] Area-Time

s = 1 1 020 183 377 4 880 299 48.80 3 679.75
s = 2 1 245 296 425 2 440 543 24.41 1 037.23
s = 3 1 662 306 566 1 635 573 16.36 925.73
s = 4 1 540 312 515 1 226 827 12.27 631.82
s = 5 1 890 322 618 986 589 9.87 609.71
s = 6 1 947 327 676 822 189 8.22 555.80
s = 7 2 391 334 786 708 310 7.08 556.73
s = 8 2 637 348 893 619 870 6.20 553.54
s = 9 2 633 613 878 556 605 5.57 488.70
s = 10 2 865 629 922 500 983 5.01 461.91
s = 11 3 045 632 1 015 457 752 4.58 464.62
s = 12 3 208 645 1 021 419 605 4.20 428.42
s = 13 3 444 658 1 122 389 269 3.89 436.76
s = 14 3 623 665 1 201 361 593 3.62 434.27
s = 15 3 964 685 1 245 339 252 3.39 422.37
s = 16 4 506 704 1 422 318 034 3.18 452.24
s = 17 4 429 969 1 369 302 188 3.02 413.70
s = 18 4 537 985 1 417 285 547 2.86 404.62
s = 19 4 697 992 1 440 271 869 2.72 391.49
s = 20 4 975 1 010 1 566 258 284 2.58 404.47
s = 21 5 439 1 030 1 657 247 128 2.47 409.49
s = 22 5 476 1 046 1 758 235 997 2.36 414.88
s = 23 5 804 1 064 1 766 226 780 2.27 400.49
s = 24 6 323 1 095 1 892 217 286 2.17 411.11
s = 25 6 280 1 353 1 928 210 606 2.11 406.05
s = 26 6 724 1 383 2 064 202 512 2.03 417.98
s = 27 6 769 1 390 2 034 195 970 1.96 398.60
s = 28 6 862 1 407 2 080 189 120 1.89 393.37
s = 29 7 517 1 442 2 197 183 338 1.83 402.79
s = 30 7 733 1 462 2 281 177 317 1.77 404.46
s = 31 7 801 1 473 2 269 172 522 1.73 391.45
s = 32 8 379 1 500 2 560 167 122 1.67 427.83
s = 33 8 324 1 772 2 425 163 434 1.63 396.33
s = 34 8 339 1 799 2 480 158 638 1.59 393.42
s = 35 8 687 1 814 2 621 154 980 1.55 406.20
s = 36 9 016 1 836 2 692 150 602 1.51 405.42
s = 37 9 288 1 860 2 735 147 325 1.47 402.93
s = 38 9 552 1 882 2 871 143 367 1.43 411.61
s = 39 9 909 1 911 2 851 140 261 1.40 399.88
s = 40 10 426 1 945 3 090 136 942 1.37 423.15
s = 41 10 374 2 227 3 092 134 830 1.35 416.89
s = 42 10 751 2 260 3 202 131 489 1.31 421.03
s = 43 10 989 2 282 3 247 129 160 1.29 419.38
s = 44 11 233 2 310 3 315 126 248 1.26 418.51
s = 45 11 737 2 357 3 417 123 887 1.24 423.32
s = 46 11 853 2 379 3 419 121 188 1.21 414.34
s = 47 12 516 2 430 3 694 119 236 1.19 440.46
s = 48 12 758 2 459 3 623 116 750 1.17 422.99
s = 49 12 960 2 740 3 673 115 272 1.15 423.39
s = 50 13 305 2 777 3 873 112 992 1.13 437.62
s = 51 14 176 2 818 4 211 111 420 1.11 469.19
s = 52 13 762 2 837 3 973 109 135 1.09 433.59
s = 53 15 295 2 882 4 397 107 763 1.08 473.83
s = 54 14 616 2 903 4 200 105 695 1.06 443.92
s = 55 16 613 2 975 4 825 104 302 1.04 503.26
s = 56 16 031 3 002 4 701 102 454 1.02 481.64
s = 57 15 994 3 289 4 618 101 473 1.01 468.60
s = 58 16 445 3 326 4 780 99 613 1.00 476.15
s = 59 16 491 3 345 4 697 98 399 0.98 462.18
s = 60 17 232 3 397 5 005 96 761 0.97 484.29
s = 61 17 711 3 435 5 116 95 757 0.96 489.89
s = 62 17 171 3 462 4 984 94 115 0.94 469.07
s = 63 18 103 3 510 5 318 93 095 0.93 494.15
s = 64 18 610 3 563 5 457 91 678 0.92 500.29

586 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

Table 9: Implementation results for the polynomial inversion for r = 12 323, b = 128, and
d = 1. We fixed the frequency to 100 MHz and selected an Artix-7 XC7A200T FPGA as
target platform.

Utilization Performance

Step Size s LUT FF Slices Clock Cycles Latency [ms] Area-Time

s = 1 1 805 247 671 2 514 091 25.14 16 869.55
s = 2 2 134 517 801 1 269 570 12.70 1 016.93
s = 3 2 519 527 944 854 765 8.55 806.90
s = 4 2 880 542 1 030 647 311 6.47 666.73
s = 5 3 257 553 1 158 522 881 5.23 605.50
s = 6 3 616 565 1 224 439 857 4.40 538.38
s = 7 4 239 578 1 393 380 569 3.81 530.13
s = 8 4 496 587 1 498 336 130 3.36 503.52
s = 9 4 857 1 117 1 618 304 329 3.04 492.40
s = 10 5 315 1 139 1 689 276 380 2.76 466.81
s = 11 5 615 1 157 1 807 253 533 2.54 458.13
s = 12 6 083 1 170 1 936 234 457 2.34 453.91
s = 13 6 286 1 183 2 001 218 341 2.18 436.90
s = 14 6 866 1 202 2 211 204 576 2.05 452.32
s = 15 7 284 1 215 2 299 192 648 1.93 442.90
s = 16 8 322 1 245 2 560 182 138 1.82 466.27
s = 17 7 860 1 758 2 407 174 300 1.74 419.54
s = 18 8 398 1 787 2 561 166 069 1.66 425.30
s = 19 8 553 1 792 2 623 158 655 1.59 416.15
s = 20 9 161 1 824 2 903 151 958 1.52 441.13
s = 21 9 392 1 834 2 877 145 876 1.46 419.69
s = 22 10 000 1 866 3 197 140 424 1.40 448.94
s = 23 10 510 1 881 3 174 135 372 1.35 429.67
s = 24 11 576 1 930 3 487 130 730 1.31 455.86
s = 25 11 088 2 427 3 370 127 494 1.27 429.65
s = 26 11 836 2 471 3 569 123 540 1.24 440.91
s = 27 12 205 2 488 3 742 119 903 1.20 448.68
s = 28 12 346 2 507 3 816 116 590 1.17 444.91
s = 29 13 172 2 550 3 999 113 350 1.13 453.29
s = 30 13 565 2 567 4 046 110 447 1.10 446.87
s = 31 14 739 2 612 4 512 107 758 1.08 486.20
s = 32 14 632 2 624 4 334 105 154 1.05 455.74
s = 33 14 854 3 162 4 382 103 386 1.03 453.04
s = 34 15 394 3 201 4 547 101 075 1.01 459.59
s = 35 17 161 3 249 5 225 98 997 0.99 517.26
s = 36 16 025 3 238 4 864 96 884 0.97 471.24
s = 37 17 789 3 314 5 295 95 011 0.95 503.08
s = 38 17 007 3 295 5 113 93 106 0.93 476.05
s = 39 18 682 3 365 5 590 91 309 0.91 510.42
s = 40 18 997 3 386 5 560 89 762 0.90 499.08
s = 41 20 059 3 956 5 853 88 790 0.89 519.69
s = 42 19 581 3 953 5 776 87 176 0.87 503.53
s = 43 20 206 4 000 5 901 85 822 0.86 506.44
s = 44 20 562 4 037 6 044 84 446 0.84 510.39
s = 45 21 092 4 052 6 158 83 047 0.83 511.40
s = 46 21 587 4 076 6 390 81 772 0.82 522.52
s = 47 23 411 4 157 6 754 80 623 0.81 544.53
s = 48 23 283 4 189 6 851 79 454 0.79 544.34
s = 49 22 459 4 701 6 597 78 768 0.79 519.63
s = 50 23 571 4 742 6 772 77 701 0.78 526.19
s = 51 24 722 4 799 7 379 76 768 0.77 566.47
s = 52 24 364 4 821 7 173 75 667 0.76 542.76
s = 53 25 137 4 864 7 296 74 855 0.75 546.14
s = 54 25 516 4 887 7 366 73 874 0.74 544.16
s = 55 26 330 4 932 7 765 73 033 0.73 567.10
s = 56 27 413 4 995 8 144 72 178 0.72 587.82
s = 57 28 143 5 522 8 223 71 741 0.72 589.93
s = 58 28 594 5 594 8 151 70 850 0.71 577.50
s = 59 28 171 5 587 8 310 70 105 0.70 582.57
s = 60 28 393 5 640 8 209 69 347 0.69 569.27
s = 61 29 925 5 696 8 545 68 739 0.69 587.37
s = 62 30 319 5 734 8 769 67 957 0.68 595.91
s = 63 30 852 5 775 8 847 67 327 0.67 595.64
s = 64 32 695 5 864 9 527 66 686 0.67 635.32

J. Richter-Brockmann et al. 587

Table 10: Implementation results for the polynomial inversion for r = 12 323, b = 128,
and d = 1. We fixed the frequency to 100 MHz and selected an Artix-7 XC7A200T FPGA
as target platform.

Utilization Performance

Step Size s LUT FF Slices Clock Cycles Latency [ms] Area-Time

s = 65 31 221 6 352 8 847 66 414 0.66 587.56
s = 66 31 436 6 389 9 158 65 746 0.66 602.10
s = 67 30 577 6 397 8 972 65 067 0.65 583.78
s = 68 32 594 6 503 9 607 64 547 0.65 620.10
s = 69 35 630 6 620 10 104 64 018 0.64 646.84
s = 70 33 656 6 572 9 761 63 480 0.63 619.63
s = 71 35 061 6 638 10 077 62 933 0.63 634.18
s = 72 36 133 6 719 10 485 62 378 0.62 654.03
s = 73 36 613 7 276 10 416 62 151 0.62 647.36
s = 74 38 766 7 388 11 314 61 748 0.62 698.62
s = 75 38 813 7 410 11 239 61 162 0.61 687.40
s = 76 37 402 7 400 10 770 60 744 0.61 654.21
s = 77 39 655 7 480 11 572 60 319 0.60 698.01
s = 78 38 221 7 473 11 045 59 709 0.60 659.49
s = 79 39 225 7 561 11 016 59 269 0.59 652.91
s = 80 41 260 7 653 11 871 59 002 0.59 700.41
s = 81 41 334 8 206 11 838 58 853 0.59 696.70
s = 82 40 519 8 219 11 344 58 389 0.58 662.36
s = 83 41 921 8 315 11 794 57 918 0.58 683.08
s = 84 42 303 8 364 12 025 57 625 0.58 692.94
s = 85 43 112 8 427 12 378 57 140 0.57 707.28
s = 86 44 150 8 471 12 741 56 836 0.57 724.15
s = 87 45 026 8 552 13 084 56 525 0.57 739.57
s = 88 46 817 8 654 13 632 56 210 0.56 766.25
s = 89 46 236 9 187 13 206 55 977 0.56 739.23
s = 90 46 659 9 248 13 038 55 647 0.56 725.53
s = 91 48 035 9 326 13 776 55 312 0.55 761.98
s = 92 46 928 9 348 13 154 54 972 0.55 723.10
s = 93 49 552 9 461 14 406 54 820 0.55 789.74
s = 94 51 236 9 514 14 461 54 470 0.54 787.69
s = 95 48 958 9 518 13 927 54 114 0.54 753.65
s = 96 51 575 9 644 14 776 53 754 0.54 794.27
s = 97 52 032 10 221 14 911 53 839 0.54 802.79
s = 98 52 507 10 290 14 760 53 466 0.53 789.16
s = 99 54 072 10 373 15 308 53 088 0.53 812.67
s = 100 52 470 10 375 14 946 52 905 0.53 790.72
s = 101 54 968 10 517 15 569 52 719 0.53 820.78
s = 102 54 428 10 506 15 225 52 326 0.52 796.66
s = 103 57 494 10 651 16 235 52 132 0.52 846.36
s = 104 58 278 10 710 16 475 51 730 0.52 852.25
s = 105 57 104 11 241 15 935 51 762 0.52 824.83
s = 106 57 155 11 314 16 171 51 554 0.52 833.68
s = 107 58 343 11 416 16 257 51 343 0.51 834.68
s = 108 58 391 11 443 16 525 51 128 0.51 844.89
s = 109 59 464 11 547 16 778 50 910 0.51 854.17
s = 110 59 938 11 563 16 937 50 688 0.51 858.50
s = 111 60 228 11 677 16 895 50 463 0.50 852.57
s = 112 63 192 11 787 17 473 50 234 0.50 877.74
s = 113 60 735 12 262 16 590 50 220 0.50 833.15
s = 114 61 661 12 364 17 550 49 982 0.50 877.18
s = 115 64 408 12 476 18 190 49 741 0.50 904.79
s = 116 63 069 12 475 17 966 49 496 0.49 889.25
s = 117 63 678 12 579 17 887 49 248 0.49 880.90
s = 118 67 589 12 727 18 588 48 996 0.49 910.74
s = 119 64 989 12 706 18 025 48 960 0.49 882.50
s = 120 66 836 12 784 18 754 48 702 0.49 913.36
s = 121 69 566 13 467 19 483 48 644 0.49 947.73
s = 122 67 738 13 479 18 871 48 600 0.49 917.13
s = 123 72 170 13 641 20 145 48 330 0.48 973.61
s = 124 71 966 13 736 20 013 48 057 0.48 961.76
s = 125 73 447 13 795 20 338 48 006 0.48 976.35
s = 126 72 494 13 814 19 953 47 727 0.48 952.30
s = 127 72 596 13 900 20 096 47 671 0.48 958.00
s = 128 75 269 14 028 21 435 47 386 0.47 1 015.72

588 Racing BIKE: Improved Polynomial Multiplication and Inversion in Hardware

Table 11: Implementation results of the united design for Level 3 and Level 5.
Utilization Performance

Logic Memory Area Frequency Key Gen Encaps Decaps

Design LUT DSP FF BRAM Slices MHz cycles† µs cycles† µs cycles† µs

United design for r = 24 659
Low weight 13 850 7 4 010 15 4 152 116 1 775 15 268 157 1 348 2 381 20 479
Trade-off 20 049 9 5 039 17 5 688 100 693 6 929 80 801 1 198 11 982
High speed 25 811 13 5 460 34 7 242 113 681 5 997 42 367 605 5 325

United design for r = 40 973
Low weight 13 973 7 4 002 34 4 192 113 4 809 42 324 343 3 020 5 217 45 911
Trade-off 21 373 9 5 160 34 6 145 94 1 847 19 580 174 1 847 2 620 27 770
High speed 26 441 13 5 601 34 7 288 111 1 798 16 186 90 808 1 321 11 885
† in thousand.

	Introduction
	Preliminaries
	Notations
	BIKE
	Polynomial Multiplication by Sparse Polynomials
	Polynomial Inversion with the Extended Euclidean Algorithm

	Optimization Strategies
	Design Considerations
	Random Oracles
	Sparse Polynomial Multiplier
	Polynomial Inversion
	United Hardware Design

	Implementation Results
	New Random Oracles
	Multiplier
	Inversion Module
	Key Generation
	United Design

	Discussion
	Resistance against Side Channels
	Transferability to Software

	Conclusion
	Additional Implementation Results

