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Abstract. High-degree, low-precision polynomial arithmetic is a fundamental compu-
tational primitive underlying structured lattice based cryptography. Its algorithmic
properties and suitability for implementation on different compute platforms is an ac-
tive area of research, and this article contributes to this line of work: Firstly, we present
memory-efficiency and performance improvements for the Toom-Cook/Karatsuba
polynomial multiplication strategy. Secondly, we provide implementations of those
improvements on Arm® Cortex®-M4 CPU, as well as the newer Cortex-M55 processor,
the first M-profile core implementing the M-profile Vector Extension (MVE), also
known as Arm® Helium™ technology. We also implement the Number Theoretic
Transform (NTT) on the Cortex-M55 processor. We show that despite being single-
issue, in-order and offering only 8 vector registers compared to 32 on A-profile SIMD
architectures like Arm® Neon™ technology and the Scalable Vector Extension (SVE),
by careful register management and instruction scheduling, we can obtain a 3× to
5× performance improvement over already highly optimized implementations on
Cortex-M4, while maintaining a low area and energy profile necessary for use in
embedded market. Finally, as a real-world application we integrate our multiplication
techniques to post-quantum key-encapsulation mechanism Saber.
Keywords: Post-Quantum Cryptography · Polynomial multiplication · IoT ·
Cortex-M55 · Cortex-M4 · M-profile Vector Extension (MVE) · Helium vector
extension · Number Theoretic Transform (NTT) · Toom-Cook · Karatsuba

1 Introduction
The rapidly expanding Internet of Things (IoT) has an unprecedented impact on our digital
ecosystem, so much that it is often termed the fourth industrial revolution. However, it
also poses significant challenges. Firstly (sadly, often rather lastly), security: Absence or
insufficient quality of security measures on IoT devices is a frequent headline. Secondly,
performance: Embedded devices have much less compute resources than high-end consumer
devices such as mobile phones or desktops. The dichotomy of the situation is that tight
resource constraints need to be imposed on these devices to allow them to be cost-
effective, but equally they limit performance and, importantly, often impede incorporating
secure cryptographic protocols. Both aspects are in fact closely tied because (public-
key) cryptography is computationally demanding. It is therefore a constant tussle of
cryptographers and embedded engineers alike to fit secure and most advanced cryptographic
protocols into constrained devices, and to have them perform sufficiently well to enable
a wide range of applications. Unsurprisingly, an important criterion to assess a new
cryptographic protocol is to evaluate its suitability for constrained devices.
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The rise of Post-Quantum Cryptography (PQC) exacerbates the problem. Recalling the
context first: Large-scale quantum computers are a threat to our current digital security
infrastructure, especially public-key cryptography (PKC). The reason is that the security
of today’s predominant public-key cryptography – RSA and Elliptic Curve Cryptography
(ECC) – rests on the hardness of computational problems which are known [Sho97,PZ03]
to be solvable in polynomial time using a large quantum computer. Therefore, the National
Institute of Standards and Technology (NIST) started a standardization procedure [NISa]
aimed at the standardization of key-encapsulation mechanisms (KEM), public-key encryp-
tion (PKE) and signature schemes which resist the increased computational abilities of
quantum computers – those schemes form the field of Post-Quantum Cryptography (PQC).
These schemes will eventually replace their counterparts RSA and ECC used in our current
public-key infrastructure. We refer to [NISb,Arm20] for more detailed introductions.

Post-Quantum Cryptography is highly relevant to the problem of balancing cost,
performance and security in the IoT since it tends to have a higher resource footprint
than classical public-key cryptography. It is thus vital to understand the demands and
performance of PQC on embedded devices. Reflecting this, the Cortex-M4 processor has
been designated by NIST as the reference platform for PQC on embedded systems.

The most prominent class of PQC is that of schemes based on structured lattices, and the
underlying computational workload is the multiplication of polynomials of large degree and
low coefficient precision. This problem has been studied extensively, and two approaches
prevailed: Multiplication via the Toom-Cook-Karatsuba algorithms [Too63,Coo66,KO62],
and multiplication via the Number Theoretic Transform (NTT). We are thus interested in
the constraints and performance of these algorithms on embedded systems. Structurally,
both approaches are very similar and amenable to the same tradeoffs [KMRV18,KRS19,
MKV20]. The main benefit of Toom-Cook is the absence of modular arithmetic, which
the NTT heavily relies on. Its main drawback, and the primary factor determining its
memory-usage, is that it expands the input both before (“evaluation”) and during (“point
multiplication”) the core of the multiplication routine, while the NTT operates in-place.

On high-end processors, performance improvements can often be obtained by leveraging
Single Instruction Multiple Data (SIMD) instruction set extensions, such as Arm’s Neon
instruction set on the R- and A-profiles of the Arm architecture, or the Intel® Advanced
Vector Extension (AVX). On embedded systems, however, SIMD instruction extensions
are challenging within the usually tight power, cost and area constraints. The M-profile
Vector Extension (MVE), or Helium vector extension, is a rather recent addition to the
M-profile of the Arm architecture which promises to introduce the performance benefits of
vector extensions to embedded systems while maintaining a low gate and power profile.
The Cortex-M55 processor is the first implementation of the Helium instruction set. The
primary motivation of this work is to evaluate how this future generation of low-cost and
low-energy processors fare in the context of the next generation of public key cryptography.

Contributions We contribute to the study of viability and performance of PQC on
embedded devices. We study two themes: Firstly, how to reduce the resource demands
of PQC for low-end embedded devices such as the Cortex-M4 CPU. Secondly, how to
leverage the Helium instruction set on embedded devices implementing the Helium vector
extension, focusing on the Cortex-M55 processor. Our specific contributions are as follows:

• We revive a known but little used variant of Toom-Cook and Karatsuba called striding
Toom-Cook/Karatsuba to reduce the memory-usage of polynomial multiplication. In
a nutshell, while expansion during evaluation remains, a suitable input reordering
allows to avoid size-doubling on the point-multiplication, thereby saving almost 50%
in memory and also accelerating the interpolation step. See Table 1. We implement
the striding variant of Toom-Cook/Karatsuba on the Cortex-M4 processor.
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• We implement the striding Toom-Cook/Karatsuba and a 32-bit degree-256 negacyclic
NTT on the Cortex-M55 processor, based on the Helium instruction set. We report
an ≈ 5× speedup of our striding Toom-Cook/Karatsuba implementation compared to
previous Cortex-M4 implementations, and an ≈ 3.5× speedup of our implementation
of the NTT compared to the fastest NTT on Cortex-M4 [CHK+21]. NTT-based
multiplication remains faster, albeit by a smaller margin than on Cortex-M4.

• We provide an introduction to the M-profile Vector Extension and to the Cortex-
M55 processor, highlight its similarities and differences compared to other vector
extensions, and share our experience on what to look out for to get the most out of
the instructions. We hope that this will enable researchers to build on our work and
study the use of the Helium vector extension for other workloads, esp. PQC schemes.

Table 1 Comparing features of multiplication based on FFT/NTT and Toom-Cook
NTT [CHK+21] Toom-Cook

Lazy interpolation 3 3 [MKV20]
No expansion during evaluation 3 7

No expansion during inner multiplication 3 3[This work]

Code The code generation tooling and resulting Helium assembly for Cortex-M55 are
available at https://gitlab.com/arm-research/security/pqmx. The repository also
contains detailed instructions for how to explore Helium using a freely available functional
model of the Cortex-M55. The Cortex-M4 code will be made available on the Saber
repository https://github.com/KULeuven-COSIC/SABER.

2 Preliminaries
We denote Zn the ring of integers modulo n ∈ Z. If n = q is a prime, we also write Fq.
Unless stated otherwise, R denotes a commutative ring. We denote R[X] the polynomial
ring over R, and for a monic polynomial P ∈ R[X] we denote R[X]/(P ) the quotient of
R[X] obtained by identifying polynomials with the same remainder modulo P . We will
mostly work with Fq[X]/(Xn + 1) or Z2k [X]/(Xn + 1).

2.1 Polynomial multiplication
In this section we survey the most prominent sub-quadratic polynomial multiplication
strategies: Toom-Cook/Karatsuba and the Number Theoretic Transform (NTT). Good
expositions exist in the literature, so we will be brief. See e.g. the excellent [Ber01].

2.2 Multiplication by evaluation
The idea behind Toom-Cook/Karatsuba and NTT-based multiplication is the same: Mul-
tiplication via evaluation. Given a ring R, two polynomials f, g ∈ R[X] and fixed elements
α1, . . . , αn ∈ R, we have (fg)(αi) = f(αi)g(αi). Each equation puts a constraint on fg,
and by choosing n large enough, we hope to be able to recover fg from (fg)(αi).

Formally, consider the evaluation homomorphism

ẽvα : R[X] f 7−→(f(α1),...,f(αn))−−−−−−−−−−−−−−−−→ R×R× · · · ×R.

It factors through the quotient R[X]/
∏
i(X − αi), which as a set is canonically identified

with R[X]<n, the set of polynomials of degree < n. Depending on the context, we

https://gitlab.com/arm-research/security/pqmx
https://github.com/KULeuven-COSIC/SABER
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can view the evaluation homomorphism either as evα : R[X]/
∏
i(X − αi) → Rn, or as

evα : R[X]<n → Rn. It is an isomorphism if and only if for all i 6= j, αi−αj is invertible in
R. For example, this holds if R is a field and the αi are pairwise distinct. If evα is bijective,
we can thus fully recover a polynomial f ∈ R[X]<n of degree < n from its evaluations
f(αi); equally, we can recover the residue of f ∈ R[X] modulo

∏
i(X − αi) from f(αi).

This technique can be used to calculate products fg if f, g ∈ R[X]/
∏
i(X − αi) or if

f ∈ R[X]≤a, g ∈ R[X]≤b with a + b < n: In both cases, we first compute f(αi), g(αi) –
the “evaluation step” – then the products f(αi)g(αi) – the “point multiplication step” –
and finally recover fg from its evaluations at the αi – the “interpolation step”.

It is common to add the “evaluation at ∞”, giving ev∞α : R[X]≤n → Rn+1 defined
by f 7→ (f(α1), . . . , f(αn), f(∞)), where f(∞) is the coefficient of Xn. This extended
evaluation ev∞α is bijective if and only if evα is. In this case, we can therefore a polynomial
of degree ≤ n from its evaluations at α1, . . . , αn plus its n-th coefficient.

2.2.1 Toom-Cook/Karatsuba

Karatsuba’s algorithm instantiates the “multiplication by evaluation” blueprint with
α0 = 0, α1 = 1, α2 = ∞, thereby allowing to compute the product of two degree-1
polynomials f = a+bX and g = c+dX in terms of their evaluations at 0, 1,∞. Concretely,

f(0) = a, f(1) = a+ b, f(∞) = b, g(0) = c, g(1) = c+ d, g(∞) = d,

and we recover fg from the point multiplications f(0)g(0), f(1)g(1), and f(∞)g(∞) via

fg = (a+ bX)(c+ dX) = ac+ (ad+ bc)X + bdX2

= f(0)g(0) + (f(1)g(1)− f(0)g(0)− f(∞)g(∞))X + f(∞)g(∞)X2.

This works for any ring R since α0 − α1 = −1 is invertible.
The Toom-Cook algorithm generalizes Karatsuba’s. Concretely, we are interested in

4-way Toom-Cook defined by the points 0,∞,±1,± 1
2 , 2 and applied over a ring R where

2k = 0 for some k – we will mainly be looking at Z213 . This setting has been introduced
and studied in [KMRV18], and a few subtle points should be noted – see [KMRV18] for
details: Firstly, to make sense of the fractional evaluations in Z, one scales by αdeg(f), so
that for f = a0 + a1X + a2X

2 + a3X
3 we have f

( 1
2
)

:= 8a0 + 4a1 + 2a2 + a3. Secondly,
evα is not an isomorphism: In fact, if 2k = 0 in R but 2k−1 6= 0, the polynomial
f := 2k−1X(X + 1) satisfies f(α) = 0 for all α ∈ {0,∞,±1,± 1

2 , 2}. However, [KMRV18]
explains that multiplication by evaluation still works if we temporarily operate with k + 3
bits of precision – that is, we lift representatives from Z2k to Z2k+3 below 2k, compute
evaluation, multiplication and interpolation in Z2k+3 , and reduce to Z2k in the end.

2.2.2 Iterating Toom-Cook/Karatsuba

Toom-Cook/Karatsuba multiplication is usually applied iteratively, with R being a polyno-
mial ring itself, transforming a product of two polynomials of large degree into numerous
products of polynomials of smaller degree, which can then be computed by more direct
means such as schoolbook multiplication. We explain this for k-way Toom-Cook.

Given a polynomial f ∈ R[X]<n with n = kr, we can group its monomials into the
blocks { ink ,

in
k + 1, . . . (i+1)n

k − 1}, i = 0, . . . , r − 1, and thereby express f as

f̃ = f0(X) + f1(X)Y + · · ·+ fk−1(X)Y k−1, degX(fi) < n/k, Y = X
n
k .

Formally, we consider lifts under R[X]<n/k[Y ]<k → R[X]<n, Y 7→ Xn/k. Treating R′ :=
R[X] as the coefficient ring, we then apply Toom-Cook to compute R′[Y ]<k ×R′[Y ]<k →
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R′[Y ]<2k−1 via 2k−1 multiplications of elements in R′ and substitute Y = Xn/k afterwards.
Ultimately, this computes a degree-n product via 2k − 1 products of degree n/k.

Toom-Cook and Karatsuba can be combined. E.g., one layer of 4-way Toom-Cook and
two layers of Karatsuba reduce a degree-16n product to 63 degree-n products.

2.2.3 Number Theoretic Transform

The Number Theoretic Transform (NTT) instantiates the “multiplication by evaluation”
blueprint with R = Fq for a prime q with n|q−1. Then, it is known that Fq has a primitive
n-th root of unity ζn, and that Xn − 1 =

∏
i(X − ζin), and evα is an isomorphism

NTT : Fq[X]/(Xn − 1) f 7→(f(1),f(ζ),...,f(ζn−1))−−−−−−−−−−−−−−−−−−−→ Fnq .

If n = 2k, then NTT can be computed iteratively as indicated in the following figure:

Fq[X]/(Xn − ζnn )

Fq[X]/(Xn/2 − ζ1(n/2)
n )

Fq[X]/(Xn/4 − ζ1(n/4)
n ) Fq[X]/(Xn/4 − ζ3(n/4)

n )

Fq[X]/(Xn/2 − ζ0(n/2)
n )

Fq[X]/(Xn/4 − ζ2(n/4
n ) Fq[X]/(Xn/4 − ζ0(n/4)

n )

Here, the k-th entry from the right in the i-th layer is Fq[X]/(Xn/2i − ζrevi(k)(n/2i)
n ), where

revi is the bit-reversal on i+ 1 bits. For example, rev1(2) = rev1(0b10) = 0b01 = 1.
This strategy is akin to the Cooley-Tukey algorithm for the FFT and achieves complexity

n log2(n). Since NTT is a ring isomorphism, we can compute the product of a, b ∈
Fq[X]/(Xn − 1) as NTT−1(NTT(a) ◦NTT(b)), where ◦ is pointwise multiplication in Fnq .

We consider the NTT from an implementation view. Every transition is of the form

R[X]/(X2n − α2)→ R[X]/(Xn − α)×R[X]/(Xn + α).

In terms of the standard monomial basis, R[X]/(X2n − α2)→ R[X]/(Xn − α) is given by
f0 +Xnf1 7→ f0 +αf1, while R[X]/(X2n−α2)→ R[X]/(Xn−α) is given by f0 +Xnf1 7→
f0 − αf1. The transformation (a, b) 7→ (a + ζb, a − ζb) is called a Cooley-Tukey (CT)
butterfly. The Gentleman-Sande (GS) butterfly (a, b) 7→ (a+ b, ζ−1(a− b)) reverses the
Cooley-Tukey butterfly up to 1

2 . The CT and GS are central primitives to implement for
an NTT-based polynomial multiplication; the third is point-wise multiplication in Fq.

2.3 Modular Arithmetic in Fq

We briefly recall two prominent algorithms in the context of modular multiplication:
Barrett reduction and Montgomery multiplication.

The central problem is as follows: Given a modulus n ∈ Z and a “large” a ∈ Z, find
“small” representatives of a modulo n. Two choices stand out: Firstly, the canonical
unsigned representative a mod+ n is the unique representative of a modulo n in the
interval {0, 1, . . . , n− 1}. Secondly, the canonical signed representative a mod± n is the
unique representative of a modulo n in the interval {−

⌈
n
2
⌉
,−
⌈
n
2
⌉

+ 1, . . . ,
⌊
n
2
⌋
}. These

can naïvely be calculated as a mod± n = a− n
⌊
a
n

⌉
and a mod+ n = a− n

⌊
a
n

⌋
, but such

an approach is inacceptable from a performance perspective since division by n is expensive
in general. Barrett and Montgomery reduction are two ways around this by trading the
division by n for a division by a 2-power, which can be cheaply implemented as a bitshift.
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2.3.1 Barrett reduction

The idea behind Barrett reduction is to pick ` such that 2` > n and approximate
⌊
a
n

⌉
=⌊

a 2`

n /2
`
⌉
≈
⌊
a
⌊

2`

n

⌉
/2`
⌉
, where C :=

⌊
2`

n

⌉
can be precomputed. See Algorithm 1. For

a < 2` and ` bounded by the machine word size, the resulting modular reduction a−n·
⌊
aC
2`

⌉
is amenable for direct mapping to many instruction sets: It is a combination of a high-
multiply with rounding for x 7→

⌊
x·C
2`

⌉
and a low-multiply-accumulate for x, a 7→ a− n · x.

We will discuss the details in the case of the Helium vector extension in Section 6.4.1.

2.3.2 Montgomery reduction and multiplication

Montgomery reduction is a way to compute a representative a′ s.t. 2`a′ ≡ a modulo n if
n is odd; in other words, a′ is a small representative of the quotient a

2` computed in Zn –
note that the latter expression makes sense because n is odd, so 2` is invertible modulo n.

If a is already divisible by 2` in Z, we can set a′ := a
2` , computed in Z. Otherwise, if

we pick k := a · n−1 mod± 2`, where a · n−1 is computed in Z2` , we have n · k ≡ a modulo
2` by construction, and so a− n · k is divisible by 2`. We can thus set a′ := (a− n · k)/2`.

We are interested in Montgomery reduction for ` bounded by the machine word size,
and a < 22` a product of two single-width values x, y < 2`. In this case, it can be expressed
in single-width operations: two high-multiplications x, y 7→ xy

2` , k 7→ n·k
2` , and two low

multiplications x, y 7→ xy mod+ 2`, a 7→ a · n−1 in Z2` . See Algorithm 2 for both the
double-width and the single-width description of Montgomery multiplication. We will
discuss the details in the case of the Helium vector extension in Section 6.4.1.

Alg. 1: Barrett reduction
In: n modulus, 2` > n, z < 2`.
Out: Barrett reduction of z

1: t←
⌊
z
⌊

2`

n

⌉
/2`
⌉

2: c← nt
3: return z − c

Alg. 2: Montgomery multiplication
In: n odd modulus, 2` > n, a, b < 2`.
In: ω modular inverse of n w.r.t. 2`.
Out: Montgomery multiplication of a, b

1: h← ab h←
⌊
ab
2`

⌋
, l← ab mod+ 2`

2: r ← hω mod± 2` r ← lω mod± 2`
3: c← r · n c←

⌊
r·n
2`

⌋
4: return (h− c)/2` return h− c

3 M-profile Vector Extension (MVE)
In this section we give an introduction to the M-profile Vector Extension (MVE), also
referred to as Arm® Helium™ Technology. We will focus on aspects of MVE that are
relevant to the algorithms studied in this paper, and refer to [Arme,Mar21] more exhaustive
introductions to the Helium instruction set, as well as to [Armb] for the full reference. We
also found the blog series [Armc, Part 1-4] very useful.

0163248648096112128

Qi[7] Qi[6] Qi[5] Qi[4] Qi[3] Qi[2] Qi[1] Qi[0]

Qj[7] Qj[6] Qj[5] Qj[4] Qj[3] Qj[2] Qj[1] Qj[0]

Qk[7] Qk[6] Qk[5] Qk[4] Qk[3] Qk[2] Qk[1] Qk[0]

+ + + + + + + +

(V
P
R
.
P
0
[
`]
)

(VPST)

VADD(T).u16 Qk, Qi, Qj

Figure 1 Parallel 16-bit addition using VADD.u16, with/without predication
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3.1 A primer on vector architectures
Vector architectures promise to accelerate computation through the introduction of Single
Instruction Multiple Data (SIMD) operations: They add a set of wide registers that are
viewed as vectors of equal-sized blocks called lanes, and provide instructions that operate
on those lanes in parallel. For example, a 128-bit vector register can be viewed as a length-8
vector of 16-bit elements, and a 16-bit vector add instruction (e.g. VADD.u16 in Helium,
see Figure 1) adds the lanes of two such vectors, storing the results in the lanes of a third
vector – thus the term “Single Instruction, Multiple Data”.

It is intuitively clear that vectorization holds great potential for accelerating computa-
tional workloads. However, the exact order of speedup is influenced by a large number
of architectural and microarchitectural parameters, which tend to also have implications
on both hardware cost and software constraints. Choosing a specific set of parameters is
therefore a careful tradeoff tailored to the target domain. We provide some details in the
rest of this section to help the reader put the design choices of Helium and Cortex-M55
and their implications on hardware and software into perspective.

Architecturally, two parameters impacting the speedup potential of a SIMD architecture
are the expressiveness of its instruction set and the size of the vector registers: A SIMD
architecture with 256-bit vectors, such as provided by AVX2 or 256-bit implementations of
Arm’s Scalable Vector Extension (SVE), performs twice as many operations per instruction
compared to SIMD on 128-bit vectors, such as provided by Helium or Neon. Also,
specialized instructions for common operations or operation sequences (such as multiply-
accumulate) lower the number of instructions required to express a computation. It is
clear, however, that tailoring those parameters for performance comes at a significant cost
in hardware.

Another architectural parameter of interest is the number of architectural vector
registers, which constitutes a less obvious tradeoff: To begin, fewer vector registers clearly
imply a lower hardware cost but larger constraints on software. However, the extent to
which those constraints imply a performance loss is less obvious, and very much depends
on the workload under consideration.

Microarchitecturally, primary parameters influencing the potential of vectorization are
the number of SIMD execution units, the latency and throughput of vector instructions,
and out-of-order execution capabilities. For example, the Cortex-X1 CPU has four Neon
execution units and therefore twice the vectorization throughput potential compared to a
Cortex-A78 CPU with two Neon execution units. Whether such potential can be realized,
however, heavily depends on the nature of the workload (e.g. data flow, instruction
distribution) and on the scheduling of instructions: In the case of high-end out-of-order
CPUs, the latter is mostly taken care of by the CPU itself – even to the extent that
multiple iterations of a loop can be executed in parallel to create enough independent
data streams to keep all SIMD units busy. Out-of-order execution also relaxes constraints
on software since instruction scheduling happens dynamically, but the downside of those
powerful microarchitectural features is a significant hardware cost. In-order execution, such
as found in all M-profile processors as well as low-end A-profile processors, considerably
improves cost and efficiency, but there it is the responsibility of the programmer/compiler
to keep the SIMD unit(s) busy through careful instruction scheduling.

To summarize: Within the design space of SIMD architectures and microarchitectures,
there are tradeoffs between hardware cost and performance potential, and hardware cost
and software constraints towards reaching this potential. Whether those constraints can
be met is a workload-specific problem. We will next describe the tradeoffs and constraints
in the case of the Helium vector architecture and the Cortex-M55 microarchitecture. In
Section 6, we will discuss how to solve the software constraints in the case of the PQC
workloads under consideration, thereby realizing the full performance potential of Helium
+ Cortex-M55 while maintaining a low gate and power profile.
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3.2 Introduction to MVE
The M-Profile Vector Extension (MVE) is a feature of the Armv8.1-M architecture [Armb,
Arme], primarily for signal processing and machine learning applications. MVE is also
referred to as the Helium vector extension, in alignment with the Arm® Neon™ Technology
architecture extension for A-profile processors [Arma, Section C.3.5]. However, while
there are similarities between the Helium instruction set and the Neon instruction set, the
Helium vector extension is a new ground-up architecture design specifically tailored for
the extreme area and energy efficiency required in typical Cortex-M applications.

The vector file Like the Neon instruction set, the Helium vector extension uses 128-bit
vector registers. There are 8 vector registers, compared to 32 in the Neon instruction
set, a design choice which can be approached from multiple angles: Firstly, it results in
a lower gate count and power profile. Secondly, the lower vector count is compensated
for by multiple features, including the presence of numerous instructions utilizing both
vector and scalar registers. The suitability of scalar-vector operations is a main difference
between M- and A-profile: On A-profile implementations, the physical distance between
vector and scalar register file is too large to allow for low-latency scalar-vector operations.
The smaller scale of M-profile CPUs means that these operations become feasible.

Implication: Algorithm design A common technique for vectorization of computational
workloads is batching, whereby multiple instances of a higher-level construct are computed
in parallel, rather than the computation of a single instance of the construction being
vectorized and accelerated.

Since batching tends to use a large number of vector registers but a low number
of general purpose registers (GPR), we found it not suitable for use with the Helium
vector extension except for very small computations. Instead, we found that the Helium
instruction set works well for single-instance speedup, using a mix of vector and GPR file.
We will see this in the example of schoolbook multiplications below.

0 1 2 3 4cycles

0 1 2 3 4 5 6 7 8 9beats

VLDR

VMLA

VLDR

VMLA

Figure 2 Instruction overlapping on a dual-beat implementation of Helium

Instruction Overlapping The idea of overlapping the execution of instructions is funda-
mental to CPU microarchitecture and at the heart of the concept of a pipeline. However,
it is commonly hidden from the programmers. The Helium architecture extension deviates
from this by making instruction overlapping part of the architecture.

The execution of each vector instruction is architecturally subdivided into four 32-bit
parts called beats. The operation of each beat may affect multiple lanes: For example,
the VADD.u16 operation operates on two 16-bit lanes per beat. The Helium architecture
extension requires that each beat of an instruction is executed in-order, but it allows
implementations to execute beats from the following instruction whilst still executing beats
from the previous instruction [Armb]. For example, a vector load VLDR instruction can be
overlapped with a vector multiply accumulate VMLA as shown in Figure 2.
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Because the load/store units and arithmetic units can both be kept busy at the same
time, even on a single issue CPU, the architected instruction overlap can significantly
improve performance at minimal area overheads. Moreover, implementations benefit
from the fact that instruction overlapping is architectural because they do not need logic
to maintain the illusion of atomic execution: The Helium architecture extension allows
instructions to be interrupted between architectural beats.

Implication: Instruction design Support for instruction overlapping has to be built into
the design of the architecture: For example, consider a data dependency between two
consecutive instructions A,B on a dual-beat system. In this case, beats B0,B1 of B can
only commence if the inputs (produced by beats A0, A1 of A) are available. Generally, this
is supported by instructions whose beats describe the same amount of work and operate
on lanes independently, and from right to left. This explains why there is a 128-bit left
shift Helium instruction VSHLC (see Figure 3), but no 128-bit right shift. Long multiplies
are another example: The inputs to VMULL in the Neon instruction set are lower and upper
halves of 128-bit vectors. This would not fare well with beat-wise execution, and instead
there are instructions VMULL{B,T} in Helium operating on even or odd parts of the inputs,
which is beat-friendly. We again refer to [Armc, Part 1] for details and more examples.

Qi Rd

Qi Rd0

128 0128-#imm 32 0#imm

128 0#imm 32 0#imm

VSHLC Qi, Rd, #imm

Figure 3 The semantics of the beat-friendly long left shift with carry instruction VSHLC

Implication: Programming discipline There are three main ways to develop code for
the Helium instruction set: Auto-vectorization, intrinsics and handwritten assembly. In
the former cases, the compiler has the responsibility of instruction scheduling. When
handwriting Helium instructions, however, it is important to carefully study the ordering
of instructions in order to make optimal use of instruction overlapping and the available
computational resources. For example, the sequence in Figure 2 would run 50% slower on a
system with 64-bit data paths if we’d batch the multiplies and load operations. Generally,
alternating instructions of different nature (load/store, add/sub, multiply) is preferred.

Low overhead loops Armv8.1-M adds the Low Overhead Branch Extension, allowing
software to indicate how many iterations of a loop will be executed and let the hardware do
counter modification and branching. Importantly, the loop-end instruction LE may cache
details of the loop and allow processors to optimize future iterations, skipping subsequent
LE instructions and overlapping instructions across loop iterations. The following iterations
of the loop can therefore perform as if the loop had been unrolled at compile-time.

#0#4#8#12#16#20#24#28

Xk

Data in memory

Data in registers

VLD20.u32 {Qi, Qj}, [Xk]

VLD21.u32 {Qi, Qj}, [Xk]

Qi[0]

0

Qi[1]

32

Qi[2]

64

Qi[3]

96128

Qj[0]

0

Qj[1]

32

Qj[2]

64

Qj[3]

96128

Figure 4 32-bit deinterleaving load at stride 2
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Interleaving memory operations The Helium instruction set adds support for deinter-
leaving data during loads via the instruction sequences VLD2{0-1} and VLD4{0-3}, and
interleaving data during stores via VST2{0-1} and VST4{0-3}. Logically, those correspond
to a load of {2, 4} · 16 bytes of data, combined with 2× _↔ _× 2 and 4× _↔ _× 4
transpositions. It should be noted that the feasibility of such instructions in an embedded
architecture is a non-trivial question, as the required interleaving logic has to be imple-
mentable at low cost. We refer to [Armc, Part 2] for details on how this is achieved. See
Figure 4 for an illustration of VLD2{0,1}. The instructions can appear in any order and
be interleaved with other operations in support of instruction overlapping.

1 VPTE.s32 LT , Qi , Qj // If Qi[r] < Qj[r]
2 VSUBT .s32 Qk , Qj , Qi // Then Qk[r] := Qj[r] - Qi[r]
3 VSUBE .s32 Qk , Qi , Qj // Else Qk[r] := Qi[r] - Qj[r]

Listing 1 Computing the lane-wise absolute difference via lane predication

Lane predication The Helium vector architecture supports restricting the effect of a
vector instruction to a subset of lanes through lane predication. Here, the subset of “active”
lanes is determined by a dedicated register VPR.P0 (see e.g. Figure 1) which can be set
directly or defined via a “predicate” over contents of vector registers. Moreover, the
predicate can be inverted, thereby allowing for the construction of if-then-else style
instruction sequences using predication. For example, Listing 1 shows how to compute the
absolute difference between two vectors using predication. See also [Mar21, Section 4.4].

3.3 Cortex-M55
The Cortex-M55 processor is the first implementation of the Arm v8.1-M architecture,
including optional support for the Helium vector extension. Cortex-M55r1 is the most
recent revision of the Cortex-M55 processor, providing additional features and performance
optimizations. We give a very brief introduction here and refer to [Armd] for details.

Pipeline and memory The Cortex-M55 processor has a 5-stage in-order pipeline when
Helium is included, and instruction scheduling is single-issue with a few exceptions. In
addition to cache-able main memory, the Cortex-M55 processor supports tightly coupled
memory (TCM) interfaces for instructions and data, allowing fast and deterministic memory
access which is useful for real-time or performance critical applications. The total D-TCM
bandwidth is 128-bit/cycle, allowing 64-bit/cycle bandwidth for processing such as vector
processing, plus 64-bit/cycle for DMA transfers to/from TCM running in the background.
We locate all our code and data in TCM for our measurements.

Vector processing The Cortex-M55 processor is a dual-beat implementation of the
Helium instruction set which supports instruction overlapping. This means that it takes
two cycles to perform the work of a vector instruction, and that parallel execution of
the next instruction can commence in the second cycle, computing resources permitting.
Figure 2 shows how a sequence of alternating VMLA, VLDR would perform on the Cortex-M55
processor, absent of other hazards and assuming data and code in TCM.

The Cortex-M55 processor has separate units for load/store (e.g. VLDR,VSTR), additive
integer operations (e.g. VADD,VSUB), and multiplicative integer as well as floating point
operations (e.g. VMUL). We therefore tried to achieve an alternation of those three kinds of
operations as a first step towards good instruction overlapping. The assembly snippets
below reflect the different instruction types through their color.
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4 Memory efficient striding Toom-Cook
In this section, we describe “striding” Toom-Cook multiplication. While not new – see
e.g. [Ber01] – it does not appear to have been used in lattice-based cryptography before.

Recall from Section 2.2.2 that using classical Toom-Cook k-way for large-degree multi-
plication, the inputs in R[X] are lifted to the isomorphic ring R[X][Y ]/(Xk − Y ) via

a0 + a1X + · · ·+ an−2X
n−2 + an−1X

n−1

= (a0 · · ·+ ak−1X
k−1) + (ak · · ·+ a2k−1X

k−1)Y · · ·+ (an−k · · ·+ an−1X
k−1)Y r−1

where r := n
k , before k-way Toom-Cook is applied to R′[Y ]<r over the base ring R′ = R[X].

The problem with this approach is that even if, ultimately, we care about size-preserving
multiplication in R[X]/(Xn + 1), the base multiplication in R[X]<k is length-doubling:
The polynomial degree is too small for wraparound. This size-doubling during point
multiplication in turn raises the memory usage.

This can be improved by using a different ring isomorphism, effectively changing the
arrangement of X and Y : We lift the polynomials from R[X] to R[Y ][X]/(Xk − Y ) as

(a0 + akY + · · ·+ a(r−1)kY
r−1)X0 + (a1 + ak+1Y + · · ·+ a(r−1)k+1Y

r−1)X1 + · · ·

=
∑
i<k

(ai + ak+iY + · · ·+ a(r−1)k+iY
r−1)Xi

and apply k-way Toom-Cook to R′[X]<k and base ring R′ = R[Y ]<r. The point is: If
our target ring is R[X]/(Xn + 1) = R[X]/(Xrk + 1), then because Y = Xk, our new
base R′ = R[Y ] is in fact R[Y ]/(Xr + 1), another negacyclic polynomial ring with size-
preserving multiplication. In this way, the polynomial reduction can be moved to the point
multiplication, significantly reducing memory usage of Toom-Cook multiplication. Another
advantage is that the interpolation operates on smaller polynomials and is thus faster.

Difference in evaluation: Striding Toom-Cook/Karatsuba evaluation differs from classical
evaluation only through the memory access pattern, which is no longer contiguous but at
stride k. In Section 5 and Section 6 we discuss how to overcome this with low performance-
penalty on the Cortex-M4 and Cortex-M55 processors. Alternatively, one can permute the
input upfront and thereby reduce striding evaluation to classical evaluation. It depends on
the context whether this is feasible – we comment on the case of Saber below.

Differences in interpolation: While classical interpolation gives ab =
∑
i<2k−1 ci(X)Y k

with degX(ci) < 2(n/k) and Y = Xn/k, striding interpolation gives ab =
∑
i<2k−1 ci(Y )Xk

with degY (ci) < n/k and Y = Xk. Resolving the substitution Y = Xn/k in the classical
context means overlapping the upper half of ci with the lower half of ci+1. Resolving the
substitution Y = Xk in the striding context gives ab =

∑
i<k(ci(Xk) +Xkck+i(Xk))Xi –

computing this thus involves a negacyclic rotation of ck+i and addition onto ck.

4.1 Application: Saber
Our primary interest in striding Toom-Cook/Karatsuba multiplication lies in its use for
the Saber PQC scheme. We refer to [BMD+20] or the section pertaining to Toom-Cook
multiplication in the supplementary material for details, but the important point is that the
ring Z213 [X]/(X256 +1) underlying Saber is amenable to iterated application of the striding
method. Concretely, a striding Toom-Cook/Karatsuba based multiplication for Saber
would use a hybrid of one layer of 4-way Toom-Cook to reduce from Z213 [X]/(X256 + 1)
to Z213 [X]/(X64 + 1), one or two layers of Karatsuba to reduce from Z213 [X]/(X64 + 1)
to Z213 [X]/(X{16,32} + 1), and schoolbook multiplication.
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The polynomials used in Saber are generated from packed data on a per-coefficients
level. We expect that it possible to merge the upfront permutation of the input into the
key generation process with small negligible penalty, thereby reducing the evaluation step
to classical Toom-Cook/Karatsuba, but leave exploring the details for future work.

5 Implementation: Cortex-M4
In this section, we describe the implementation aspects of the striding version of Toom-Cook
and Karatsuba on Cortex-M4 processors.

5.1 Toom-Cook/Karatsuba
As explained in Section 4, there are two fundamental differences between the classical and
the striding variants of Toom-Cook multiplication: The access pattern to the coefficients
of the operands and the memory expansion of the products. The sequence of arithmetic
operations performed during evaluation and interpolation is the same for both variants.

The read accesses occur during the evaluation and are performed with offset 64 for
the classical Toom-Cook whereas 4 consecutive coefficients at a time are required for the
striding version. Although the access pattern of the striding variant is more regular, this
is an issue for exploiting the DSP extensions to carry out two operations on halfword
registers in parallel. To circumvent this problem, the polynomials can be stored with a
custom memory layout, in which case the complexity is moved to the packing operation,
or the coefficients of the polynomial can be packed with an offset of 4 after being loaded
into the register. Since we implement the entire multiplication we opt for the latter.
The instruction overhead is equal to the number of word loads, effectively as if we only
performed halfword loads.

The write operations happen during interpolation, when the result is computed from
the weighted polynomials. Here, the striding version has an advantage since it iterates half
the times of the classical due to the non expansion of the products. Additionally, since the
coefficients of the result are generated consecutively, the write operations can be simplified
to 4 per iteration instead of 7. In addition to this simplification of the interpolation, the
non expansion of the products in the striding version allows for a halving in the memory
requirements to store all the weighted polynomials, i.e., a saving of 896 bytes.

The differences in the implementation of the striding version of Karatsuba with respect
to the classical Karatsuba are equivalent to Toom-Cook. There is an overhead in the
instruction count due to the sequential access pattern to the coefficients of the polynomial
during evaluation, and the counterpart during interpolation if one wants to exploit the
single instruction multiple data capabilities of Cortex-M4 processors. However, the non
expansion of the polynomial degree after the multiplication is more beneficial than in
the case of Toom-Cook. In particular, if Karatsuba is applied recursively the memory
utilization can be kept constant by re-utilizing the memory allocated to store the operands
after the evaluation is performed.

5.2 Schoolbook multiplication
It has been shown in [KMRV18,KRS19] that schoolbook multiplication has the highest
impact in the performance of polynomial multiplication. We follow the divide and conquer
approach of [KRS19] to decompose the schoolbook multiplication into smaller multiplica-
tions that can be performed without fetching extra coefficients from memory and aiming to
use the multiply and accumulate instructions. Moreover, to avoid length doubling, we need
to perform a negacyclic convolution in-place. This is a challenge because the DSP exten-
sions of Cortex-M4 processors offer a wide range of multiply and accumulate instructions
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but not their multiply and subtract counterparts. Additionally, extra load instructions are
required due to the negatively wrapped accumulation which further increases the register
pressure, which is key to performance [KMRV18,KRS19]. To circumvent this issue, we
create a custom memory layout where both operands are in consecutive addresses and,
therefore, only one pointer needs to be kept in a register while coefficients of different
operands can be loaded using immediate offsets.

The other implementation decision for the polynomial multiplication is the cut-off
degree from which Karatsuba is not applied anymore and the multiplication is performed
using the schoolbook algorithm. Due to the availability of registers to pre-load coefficients
and the absence of multiply and subtract instructions, we find that the optimal cut-off
is degree 16. For higher cut-offs, the performance will be determined by the dominant
term between the extra load operations required in the striding version of Karatsuba and
the overhead introduced by the negacyclic convolution during schoolbook multiplication.
We have verified that the optimal cut-off is degree 16, with 34, 884 clock cycles for a 256
coefficient polynomial multiplication, while for degree 32 the execution time increases to
36, 340 clock cycles. This choice was expected since 16 was also the optimal cut-off for
other multiplications combining Toom-Cook and Karatsuba [KMRV18,KRS19].

In Section 7 we discuss the performance and memory figures of our proposed multipli-
cation and compare the impact on the full Saber operation to other implementations in
Cortex-M4 processors as well as in the new Cortex-M55 processor.

6 Implementation: Cortex-M55
In this section, we describe our implementations of large-degree, low-precision polynomial
multiplication on the Cortex-M55 CPU, leveraging the Helium vector extension.

6.1 NTT vs. Toom-Cook/Karatsuba on vector architectures
[CHK+21] demonstrates that for Cortex-M4, polynomial multiplication via NTTs can
outperform multiplication via Toom-Cook even for coefficient rings not tailored to the
NTT, such as Z213 . For vectorized implementations, however, the passage to the NTT
comes at a larger cost than for non-vectorized implementations. We provide some details.

Setting expectations Since the Helium vector extension operates on 128-bit vectors and
the Cortex-M55 CPU is single-issue for vector instructions, we consider a 4× speedup a
theoretical limit for a vectorized 32-bit NTT. However, we do not expect to meet this limit,
because the NTT relies on long multiplications for modular arithmetic, and few Helium
instructions can perform more than two 32 × 32 → 64 long multiplications. For Toom-
Cook/Karatsuba based multiplication, we operate on 16-bit lanes, hence get a theoretical
speedup of 8× over scalar code. However, optimized implementations on the Cortex-M4
CPU already leverage the DSP extension to treat 32-bit registers as 2× 16-bit vectors and
thus operate on two 16-bit values at once. We thus expect a speedup somewhere between 4×
and 8×. Considering that NTT-based polynomial and matrix-vector multiplication for the
Saber rings is around 2× as fast as Toom-Cook/Karatsuba based routines [CHK+21, Table
5], it is not clear which approach will be faster when implemented using Helium.

6.2 Vectorizing striding Toom-Cook/Karatsuba
Recall that 4-way Toom-Cook evaluation is a matrix-vector multiplication

R7×4 ×R4×(n/4) −→ R7×(n/4), R = Z216 ,
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with every sub-matrix-vector multiplication R7×4 ×R4 → R7 corresponding to one evalua-
tion transformation. We vectorize this by computing one sub-matrix-matrix multiplication
R7×4 × R4×` → R7×` a time, storing the four rows of the input R4×` and the 7 rows of
the output R7×` in one vector register each. We find that by overwriting input registers
as soon as they are no longer needed, the 8 vector registers available are sufficient for the
transformation. With 128-bit vectors, we compute ` = 128

16 = 8 evaluations at once.
The above vectorization approach works for both classical and striding Toom-Cook.

However, in the case of striding Toom-Cook, we need to de-interleave the input at stride 4
first, for which we leverage the de-interleaving load instruction VLD4{0-3}.

The interleaving of memory operations and arithmetic is crucial to leverage instruction
overlapping. We achieve this by optimizing the evaluation across loops, using preloading
and late storing of input and results. The preloading becomes more challenging for striding
Toom-Cook, where we can use VLD4{0-3} only once we have four free vector registers
available. Listing 2 shows one loop of our vectorized Toom-Cook evaluation.

1 vld43 .u16 {Q0 ,Q1 ,Q2 ,Q3}, [r0]
2 vadd.u16 Q7 , Q0 , Q2
3 vstrw .u32 Q6 , [r14 ,#( -32)]
4 vadd.u16 Q6 , Q1 , Q3
5 vstrw .u32 Q5 , [r0 ,#( -32)]
6 vsub.u16 Q5 , Q7 , Q6
7 vstrw .u32 Q4 , [r0 ,#( -48)]
8 vmla.u16 Q7 , Q0 , r10
9 vstrw .u32 Q5 , [r0 ,#(48) ]

10 vmla.u16 Q5 , Q6 , r11
11 vstrw .u32 Q0 , [r0], #64
12 vmla.u16 Q6 , Q1 , r10
13 vstrw .u32 Q3 , [r14 ,#(32) ]
14 vadd.u16 Q4 , Q5 , Q1
15 vstrw .u32 Q5 , [r14], #48
16 vmla.u16 Q4 , Q2 , r10
17 vmla.u16 Q4 , Q3 , r9

Listing 2 Striding Toom-Cook evaluation

1 ldrd r9 , r7 , [r1 , #48]
2 vmla.u16 Q3 , Q6 , r10
3 vshlc Q2 , r12 , #16
4 vmla.u16 Q2 , Q4 , r5
5 vshlc Q3 , r12 , #16
6 vmla.u16 Q3 , Q4 , r7
7 vshlc Q5 , r12 , #16
8 vmla.u16 Q2 , Q7 , r7
9 ldrd r10 , r8 , [r1 , #8]

10 vmla.u16 Q3 , Q6 , r5
11 vshlc Q2 , r12 , #16
12 vmla.u16 Q2 , Q4 , r6
13 vshlc Q3 , r12 , #16
14 vmla.u16 Q3 , Q4 , r9
15 vshlc Q5 , r12 , #16
16 vmla.u16 Q2 , Q7 , r9

Listing 3 Schoolbook multiplication

We turn to the implementation of Toom-Cook interpolation: As for evaluation, we
vectorize interpolation by computing 8 interpolations at once, keeping the 7 input/output
rows in one vector each and leveraging the interleaving-store VST4{0-3} for the striding.
We’re using the interpolation sequence from [KMRV18].

At the end of the interpolation, we have f0, . . . f6 ∈ Z213 [X4]/(Xn + 1) such that∑
i
fiX

i = (f0 +X4f4) + (f1 +X4f5)X + (f2 +X4f5)X2 + (f3 +X4f6)X3

is the polynomial we’re looking for. Each X4 · f4+k amounts to a negacyclic rotation of
f4+k, which we compute gradually within the interpolation loop, using VSHLC to shift one
128-bit block after each iteration, and remembering the carry-out as the carry-in for the
next iteration. This requires the use of three more general purpose registers for carries.

The interpolation sequence from [KMRV18] is very add/sub-heavy, leading to inevitable
stalls on a dual-beat system when implemented as written. We experimented with replacing
VADD, VSUB by VMLA with constants ±1, but were limited by the pressure on the GPR file.
It is left for future work to optimize this further.

6.3 Schoolbook multiplication
We consider multiplication in Z216 [X]/(Xk+1). While previous vectorized implementations
use batch-multiplication, our algorithm vectorizes a single schoolbook multiplication. To
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our knowledge, the approach is novel, and rests on the shift-with-carry instruction VSHLC
illustrated in Figure 3.

Outline We outline the algorithm for k = 16. We can write

a = (a0 + a8X
8)X0 + (a1 + a9X

8)X1 + . . .+ (a7 + a15X
8)X7 =

∑
i
(ai + a8+iX

8)Xi,

hence ab =
∑
i

[
(ai + a8+iX

8)b
]
Xi. We will now separately discuss the following:

• How to efficiently compute one subproduct (ai + a8+iX
8)b in the sum. We will

express this as an 8-fold batch multiplication over Z216 [X]/(X2 + 1).

• How to shift + accumulate in the sum. We will express this as an iteration of addition
and negacyclic rotation, similar to a linear feedback shift register.

Subproduct computation We write b =
∑
i(bi + b8+iX

8)Xi as before, and hence obtain
(ai + a8+iX

8)b =
∑
j(ai + a8+iX

8)(bj + b8+jX
8)Xj . Now, note that Z216 [X8]/(X16 + 1)

is a subring of Z216 [X]/(X16 + 1) isomorphic to the “complex numbers” Z216 [Y ]/(Y 2 + 1)
– we therefore have to compute a batch multiplication in Z216 [Y ]/(Y 2 + 1) of the fixed
ai + a8+iY with the varying bj + b8+jY , j = 0, 1, . . . , 7.

This batch multiplication is easy to vectorize: If ai and a8+i are in GPRs a0, a1, and
b0, . . . , b7 and b8, . . . , b15 are in vectors b0 and b1, we only have to calculate a scalar-vector
2×2 schoolbook multiplication (a0 +a1Y )(b0 +b1Y ) = (a0b0−a1b1)+Y (a0b1 +a1b0). This
uses 2 GPRs for the a, 2 vector registers for the b, and 2 vector registers for the output.
Multiplication is done via VMUL.u16 / VMLA.u16. Since there is no multiply-subtract
variant of VMLA.u16, the computation of −a1b1 requires flipping the sign of a1 or b1.

Accumulation We need to compute the sum ab =
∑
i

[
(ai + a8+iX

8)b
]
Xi. and discussed

how to compute an individual product (ai + a8+iX
8)b. We now consider how to sum them.

Since ·X is a negacyclic shift (z0, . . . , zk−1) 7→ (−zk−1, z0, . . . , zk−2), computing [(ai +
a8+iX

8)b]Xi from (ai + a8+iX
8)b means a negacyclic shift of i positions. This does not

map well to MVE because the maximum shift amount of VSHLC is 32 bits, hence two 16-bit
coefficients. Instead, setting ai := ai + a8+iX

8, we can rewrite the sum as follows:

ab =
∑

i
[aib]Xi = a0b+ (a1b+ (. . .+ (a6b+ (a7b+ 0)X) · · ·X)X)

Here, we only shift by X, corresponding to a VSHLC Qd, Ra,#16. Moreover, we can handle
the sum through multiply-accumulates in the schoolbook subroutine computing aib+ _.

Implementation considerations We describe how to map the above algorithm to the
Helium instruction set and the microarchitecture of the Cortex-M55 processor.

First, consider a rotation (b0, . . . , b15) 7→ (−b15, b0, . . . , b14), where b is stored in vector
registers b0 = (b0, . . . , b7) and b1 = (b8, . . . , b15): To begin, two chained invocations
of VSHLC with carry GPR c yield b0

′ = (cold, b0, . . . , b6) and b1
′ = (b7, . . . , b14), with

cnew = b15 (in-carry and out-carry in VSHLC use the same GPR). After that, −cnew = −b15
has to be fed back into b0

′. We implement this lazily by buffering cnew in a vector
C = (0, . . . , 0, c) and deferring correcting b0

′. If C is initially 0, we can simultaneously
store c in C and clear it via VSHLC. We only need to correct b0

′ once after the full loop.
A standalone implementation of the anticyclic shift would not perform well on a

dual-beat system like the Cortex-M55 processor, because consecutive invocations of VSHLC
would stall. We will revisit this after studying the nature of each subproduct computation.

Each subproduct involves the following: Firstly, loading of a-input in two GPRs, ideally
using LDRD to load a pair of GPRs at once. Secondly, 4× multiply via VMUL.u16 or
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VMLA.u16. Thirdly, a sign flip in a or b. The lowest instruction count is offered by storing
−b1 in another vector throughout the loop. Flipping a adds a 1-instruction overhead, but
releases pressure on the vector file. At best, we get 1× LDRD and 3× VMLA per subproduct.

As for the negacyclic shift, a naïve implementation would perform poorly on a dual-
beat system because consecutive invocations of VMLA would stall. However, we found that
interleaving subproduct and shift leads to good overlapping and resource utilization on
the Cortex-M55 processor. We show an iteration of the core loop in Listing 3.

Variants There is a variant computing the rotation abX instead of ab: We write

aX = (a0 + a8X
8)X1 + (a1 + a9X

8)X2 + . . .+ (a7 + a15X
8)X8

= (−a15 + a7X
8) + (a0 + a8X

8)X1 + . . .+ (a6 + a14X
8)X7

and apply the same multiply-accumulate strategy as before. The rotation in the a-input is
easy to express through modified immediate offsets in the GPR loads.

Secondly, consider what happens when we accumulate onto the destination vector in
the first iteration. Since the result of first iteration gets shifted 7 times subsequently, this
computes ab+ cX7, where c is the polynomial previously stored in the destination vectors.

The previous points allow for efficient integration of 16→ 32 Karatsuba interpolation
with degree-16 schoolbook multiplication: Recall that we have to compute (fege +Xfogo)+
X(fsgs − fege − fogo). We avoid any manual shift of fogo here by computing Xfogo first,
and then using the multiply-accumulate variant for fsgs − fogo = fsgs +X7(X8 · (Xfogo)):
Here, Xfogo is known, and ·X8 is a single sign-flip and some re-indexing.

6.3.1 Integrating Toom-Cook, Karatsuba, and Schoolbook

We implement a degree 256 negacyclic polynomial through a combination of one layer
of 4-way Toom-Cook for degree 256 → 64 reduction, one layer of Karatsuba for degree
32→ 16 reduction, and an integrated 32↔ 16 followed by 16× 16 schoolbook. We found
this variant slightly more efficient than an implementation of degree-32 schoolbook.

6.4 Number Theoretic Transform

Alg. 3: Barrett reduction
In: Modulus n < 232, |z| < 231

Out: Barrett reduction of z w.r.t. n.
1: VQRDMULH.s32 t, z,

⌊
2`

2n

⌉
2: VMLA.s32 z, t, −n
3: return z

Alg. 4: Montgomery multiplication
In: n < 232, |a|, |b| < 231, ω ≡ n−1 mod 232

Out: Representative h of ab/232 modulo n
1: V[QD]MULH.s32 h, a, b
2: VMUL.u32 l, a, b
3: VMUL.u32 l, l, ω
4: V[QD]MULH.s32 c, l, n
5: V[H]SUB.s32 h, h, c

6.4.1 Modular Arithmetic

Montgomery multiplication Algorithm 4 shows two implementations of single-width
Montgomery multiplication (Algorithm 2), one using the multiply-high instruction VMULH.s32,
whose functional effect is a, b 7→

⌊
ab
232

⌋
, the other the doubling multiply-high instruction

VQDMULH.s32 from fixed-point arithmetic, whose functional effect is a, b 7→
⌊ 2ab

232

⌋
. In the

latter case, the doubling can be corrected through a halving subtraction VHSUB.s32 in
the last instruction. We mention the fixed-point variant for two reasons: Firstly, because
VQDMULH has a scalar-vector variant where one vector is constant. This is useful for the
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VQDMULH.s32 c, l, n step, where n is a constant which we’d ideally store in a GPR rather
than a vector. Secondly, the fixed-point variant can be improved to 4 and 3 instruction
Montgomery multiplication variants, which we discuss now.

Alg. 5: Montgomery via rounding
In: Odd n < 232, |a|, |b| < 231, b odd
In: ω ≡ −n−1 modulo 232 precomputed
Out: Representative h of ab/231 modulo n

1: VQRDMULH.s32 h, a, b
2: VMUL.u32 l, a, b
3: VMUL.u32 l, l, ω
4: VQRDMLAH.s32 h, l, n

Alg. 6: Montgomery via rounding, constant
In: Odd n < 232, |a|, |b| < 231, b odd
In: b′ ≡ −bn−1 modulo 232 precomputed
Out: Representative h of ab/231 modulo n

1: VQRDMULH.s32 h, a, b
2: VMUL.u32 l, a, b′
3: VQRDMLAH.s32 h, l, n

Algorithm 5 shows a variant of Algorithm 4 where the subtraction step VHSUB has been
merged with the high multiply VQDMULH.s32 into a single doubling multiply-high-rounding
with accumulate instruction VQRDMLAH.s32, leveraging v+w

2l =
⌊
v
2`

⌉
+
⌊
w
2`

⌉
for any two

v, w < 2` s.t. v ≡ −w 6≡ 2`−1 modulo 2`, the case 2`−1 being excluded by the important
new assumption that b is odd. This variant of Montgomery multiplication has been
communicated with the authors of [BHK+], and is explored in greater detail in loc.cit.
alongside other improvements to modular arithmetic.

Barrett reduction Algorithm 3 implements Barrett reduction (Algorithm 1). Two things
are noteworthy: Firstly, we have merged the multiplication c← n · t and the subtraction
z − c into a single multiply-accummulate VMLA. Secondly, since VQRDMULH.s32 computes⌊ 2ab

232

⌉
, not

⌊
ab
232

⌉
, we use 2

⌊
2`

2n

⌉
as the approximation to 2`

n instead of
⌊

2`

n

⌉
in Algorithm 1.

The theoretical implications of this modification are studied in greater detail in [BHK+].

Central reduction After the inverse NTT, we need to normalize to signed canonical
representatives in {−

⌊
q
2
⌋
, . . . ,

⌊
q
2
⌋
}. Assuming we are already given a signed representative

in the range {−q + 1, . . . , q − 1}, this can be achieved by two conditional additions of ±q.
In Helium, we implement central reduction using lane predication. See Algorithm 7.

Alg. 7: Central reduction
In: q 32-bit modulus, v ∈ Z4, |vi| < q.
Out: v′ with |v′i| < q/2 and v′i ≡ vi mod q.

1: VPT.s32 LT, v, #0 Predicate next operation on vi < 0
2: VADDT.s32 v, v, q Predicated correction by q
3: VPT.s32 GE, v, # q

2 Predicate next operation on vi ≥ q
2

4: VSUBT.s32 v′, v, q Predicated correction by q

6.4.2 Forward NTT

We compute two layers of radix-2 butterflies at once, using 4 vectors for the butterfly and
leaving 4 for intermediate results and loop optimization (pre-load, late-store). Merging
three layers would require register spilling, so we have not implemented it. See Algorithm 8.

We implement Montgomery multiplication via the 3-instruction rounding strategy
Algorithm 6, choosing odd representatives for the ζi and their twists ζ ′i. For NTT layers 0
to 5, we keep the modulus and root constants in 7 GPRs, reducing the pressure on the
vector file and taking advantage of the scalar-vector instructions. For the last two NTT
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layers, where each size-4 butterfly operates on consecutive 32-bit elements, we use the
de-interleaving load VLD4{0-3} and compute four size-4 butterflies at once. In this case,
we require 6 vectors for the root constants, in addition to the 4 input vectors. However,
we find that with careful register management, the total of 8 vector registers is sufficient.

Alg. 8: Size-4 NTT Cooley-Tukey butterfly
In: a0, a1, a2, a3, ζ0, ζ1, ζ2 ∈ Fq

Out: Radix-4 butterfly of (ai) w.r.t. ζj .
1: a2 ← ζ0a2, a3 ← ζ0a3 Montgomery
2: (a0, a2)← (a0 + a2, a0 − a2), (a1, a3)← (a1 + a3, a1 − a3) Add/Sub
3: a1 ← ζ1a1, a3 ← ζ2a3 Montgomery
4: (a0, a1)← (a0 + a1, a0 − a1), (a2, a3)← (a2 + a3, a2 − a3) Add/Sub

To leverage instruction overlapping, it is vital to interleave the Montgomery multiplica-
tions – consisting of multiplications only – and the add/sub steps – consisting of addition
operations only. Moreover, since there are 6 multiplications but only 4 addition/subtraction
operations, we also interleave loads/stores in order to achieve a stall-free execution.

6.4.3 Point multiplication for full NTT

For the point multiplication in Fnq , our measured code uses Algorithm 4. We comment on
the possibility of using the shorter Algorithm 5: This algorithm is only applicable if one of
the inputs is odd. Here, the following trick can be applied:

Proposition 1. Assume a Montgomery multiplication routine for the NTT which produces
only even representatives. Then, if (xs) is an input vector to the NTT, all entries of its
NTT transform have the same parity, which agrees with the parity of the representative x0.

In particular, if x0 is odd, then all entries in the NTT transform of (xs) are odd.

Proof. Consider the first layer: If n is the size of the NTT, each pair (a = xr, b = xr+n/2)
of elements in the lower and upper half is transformed via (a, b) 7→ (a+ ζb, a− ζb). By
assumption, ζb is represented by an even integer, so at the end of layer 0, the parity of the
elements in the lower half has not changed, and the parity of elements in the upper half is
the same as the parity of the corresponding lower half element. Continue inductively.

As long we ensure that x0 is odd initially, we can therefore force all outputs of the NTT
to have only odd entries, and thus be suitable for our accelerated point multiplication via
Algorithm 5. We leave it for future work to explore the use of this trick further.

6.4.4 Point multiplication for partial NTT

When implementing multiplication in Fq[X]/(X256 + 1) using a 6-layer incomplete NTT,
the base multiplication is in Fq[X]/(X4− ζ). For this, [CHK+21] relies on SMLAL to reduce
the number of Montgomery reductions by operating in double-width values as long as
possible, as does [BHK+], which moreover batches the base multiplication.

As mentioned in Section 3.2, batched implementations are difficult to realize in the
Helium instruction set due to the lower number of vectors. A batched multiplication in
Fq[X]/(X4 − ζ) would need at least 4 + 4 + 4 vectors for the two inputs and the output.
Instead, we vectorize a single multiplication in Fq[X]/(X4 − ζ) as follows: For inputs
a = a0 +a1X+a2X

2 +a3X
3 and b = b0 +b1X+b2X

2 +b3X
3, we first prepare the reversed

and expanded array of 32-bit values b3, b2, b1, b0, ζb3, ζb2, ζb1 in memory. We can then
compute the coefficients of ab as dot products of [a0, a1, a2, a3] with length-4 subvectors of
the expanded array, each of which can be computed with a single invocation of the long-
multiply-accumulate-across instruction VMLALDAV.s32. For example, the X2-coefficient of
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ab is [a0, a1, a2, a3] · [b2, b1, ζb3, ζb2]. Like UMLAL, VMLALDAV.s32 accumulates into a pair of
GPRs. We compute all coefficients of ab in pairs of GPRs each, before moving them into a
vector using VMOV Qx[i], Qx[j], Ra, Rb and applying a single Montgomery reduction.

The approach has some drawbacks: Firstly, we need four loads for b; a batched imple-
mentation would require only one. This can be amortized by simultaneously computing
multiple aib; we have not yet implemented this approach, yet. Secondly, the cost of prepar-
ing b3, b2, b1, b0, ζb3, ζb2, ζb1. Following an approach similar to [BHK+] and adapted to this
context, this can be partly amortized in the application to matrix-vector multiplication
by precomputing b3, b2, b1, b0, ζb3, ζb2, ζb1 as part of the forward NTT. In Section 7 below,
this size-doubling version of the NTT is called “expanded NTT”. We find that the above
schoolbook multiplication strategy offers a good mix of different kinds of operations which
can be interleaved to leverage instruction overlapping.

6.4.5 Inverse NTT

We use Gentleman-Sande butterflies (a, b) 7→ (a+ b, ζ(a− b)), which we compute using
interleaved add/sub sequences and the 3-instruction Montgomery multiplication as in the
forward-NTT. Overflow is prevented through the addition of selected Barrett reductions.

The GS butterflies are inverse to the CT butterflies only up to a factor of 2, which we
need to compensate through a modular division in/after the inverse NTT. We also need to
account for the Montgomery twist by 2−31 ∈ Fq in the point multiplication. We merge half
of the required scalings with the multiplications in the last-layer GS butterflies. For the
other half, we add explicit Montgomery multiplications. One could integrate the scalings
into the GS butterflies for all but the first coefficient with a trick similar to Proposition 1;
however, we would need explicit Barrett reductions at the end of the last layer in this case,
which would only be one instruction shorter than the Montgomery multiplications.

6.5 Side-Channel resistance
All of our code is resistant against timing side-channels on Cortex-M4 and Cortex-M55:
The control-flow is secret-independent, and all instructions we used have data-independent
timing, including predication. We do not attempt resistance against other side-channels.

6.6 Hashing
We have not attempted to develop hashing implementations based on the Helium vector
extension: Both the smaller scale nature of Cortex-M CPUs and the fact that software
executes directly in the physical address space (without virtual to physical translation)
mean that the overhead associated with offloading computation to accelerators is very low.
As a result, many Cortex-M microcontrollers already include accelerators for symmetric
cryptography and hashing. It is expected that these accelerators will be used for the hashing
in PQC schemes, eliminating the need for high performance software-based hashing.

“90’s versions” Numerous PQC schemes offer a “90’s version” replacing the use of SHA-3
by AES and SHA-2, and it has been discussed whether NIST should standardize those
versions. We support NIST standarizing “90’s versions”: Firstly, many existing MCUs
already have hardware acceleration for AES and SHA-2. Secondly, AES and SHA-2 will not
go away anytime soon, and limited gate budget may prevent vendors from shipping MCUs
with both SHA-2 and SHA-3 acceleration. Finally, SHA-2 is a faster software-fallback for
systems which do not have have any hardware acceleration for hashing.
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Table 2 Comparison of Toom-Cook and NTT-based implementations of Ind-CPA and
Ind-CCA versions of the NIST PQC finalist Saber. SW-based hashing waters down
optimizations for polynomial multiplication, but is expected to be HW-accelerated in
practice, see Section 6.6. Numbers are for the SHA3-based Saber, not the 90s version.

Operation Cortex-M4 Cortex-M55
NTT

[CHK+21] TC† TC
[This]

TC
[This]

NTT
[This]

LightSaber

CPA
KeyGen 294k 377k 367k 244k 232k
Encaps 330k 440k 425k 250k 233k
Decaps 58k 101k 96k 22k 20k

CCA
KeyGen 360k 443k 433k 308k 296k
Encaps 513k 622k 607k 429k 412k
Decaps 498k 631k 612k 378k 358k

Saber

CPA
KeyGen 554k 759k 737k 466k 436k
Encaps 606k 858k 829k 480k 442k
Decaps 79k 142k 135k 30k 27k

CCA
KeyGen 658k 862k 840k 568k 538k
Encaps 864k 1115k 1086k 735k 697k
Decaps 835k 1128k 1091k 655k 615k

Firesaber

CPA
KeyGen 879k 1260k 1222k 750k 693k
Encaps 947k 1395k 1346k 772k 706k
Decaps 101k 184k 174k 40k 36k

CCA
KeyGen 1008k 1389k 1350k 877k 820k
Encaps 1255k 1703k 1654k 1077k 1011k
Decaps 1227k 1732k 1674k 985k 914k

† Saber implementation from [KRSS] using Toom-Cook for polynomial multiplication instead of NTT.

7 Results
7.1 Development setup
Benchmarking for the Cortex-M4 processor We have developed our code based on the
pqm4 framework [KRSS]. We have focused our development on polynomial multiplication
only without optimizing other operations in Saber. To measure the performance, we have
executed the benchmark environment provided by pqm4 on a STM32F4 Discovery board
featuring a 32-bit Arm Cortex-M4 with FPU core, 1MB of Flash, and 192KB of RAM.

Benchmarking for the Cortex-M55 processor We developed our code using the Fixed
Virtual Platform (FVP) for the Arm® Corstone®-300 MPS21, containing a functional
model of the Cortex-M55. To measure performance, we have used an FPGA model for
the Cortex-M55r1 CPU which is expected to be publicly released by the end of 2021. An
image including the Cortex-M55r0 CPU is already available2. Researchers can get access to
Cortex-M55 RTL and cycle-accurate models through the Arm Academic Access program3.

Code generation Most of our Helium and Cortex-M4 assembly was developed with the
help of a small Python-based code-generation framework, similar to [KRS19]. The main
tasks the framework performs are register management and address offset calculations when

1Freely available at https://developer.arm.com/tools-and-software/open-source-software/
arm-platforms-software/arm-ecosystem-fvps

2 https://developer.arm.com/tools-and-software/development-boards/
fpga-prototyping-boards contains more information on prototyping boards and FPGA images.

3https://www.arm.com/academicaccess

https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
https://developer.arm.com/tools-and-software/open-source-software/arm-platforms-software/arm-ecosystem-fvps
https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards
https://developer.arm.com/tools-and-software/development-boards/fpga-prototyping-boards
https://www.arm.com/academicaccess


502 Polynomial multiplication on embedded vector architectures

Table 3 Comparing different stages of NTT multiplication for Saber. “Expand” is the
NTT-variant discussed in Section 6.4.4.

NTT-based polynomial multiplication
NTT inv-NTT Base multiplication Poly-Mul

Full Partial Expand Full Partial Point deg-4 Full Partial
Cortex-M4
[CHK+21]† – 5794 – – 7791 – 3886 – –

Cortex-M55
[This work] 2027 1473 1835 2559 1940 569 1151 7194 6411

† [CHK+21] provides batched implementations; numbers reported here are averaged.

Table 4 Performance of polynomial multiplication based on Toom-Cook/Karatsuba. Sum-
decompositions refer to shares of Toom-Cook/Karatsuba during interpolation/evaluation.

Toom-Cook/Karatsuba based polynomial multiplication
Evaluation
256→ 32

Interpolation
32→ 256

Schoolbook
(32x32) Poly-Mul

Cortex-M55
[This work]

289+330
= 619

370+531
= 901 267 7790

Evaluation
256→ 16

Interpolation
16→ 256

Schoolbook
(16x16) Poly-Mul

Cortex-M4
[This work]

2188+7x(3x128+260)
= 6696

7x(3x91+179)+3187
= 6351 302 34884

loading contiguous or scattered buffers. While the final assembly can possibly be written
by hand, we found the tool useful for quick experimentation with different approaches. For
very simple code-sequences, such as the Karatsuba algorithm or NTT base multiplication,
we have written the assembly by hand.

There are alternatives to handwritten assembly, e.g. auto-vectorization and intrinsics.
The benefit is that the programmer operates at the level of C, while giving up assembly-
level control potentially unlocking the final bit of performance. We explore handwritten
assembly in this work to understand the capabilities of the Cortex-M55 processor and the
Helium instruction set, without wondering how much penalty we pay from using C.

7.2 Polynomial and matrix-vector multiplication
Table 5 and Table 4 show the performance of our matrix-vector multiplication routines,
running on the Cortex-M55 CPU, compared to prior implementations on the Cortex-M4
CPU. We found that the incomplete NTT with expansion (see Section 6.4.4) outperforms
a full NTT, and is about 3.4× faster than the incomplete NTT implementation from
[CHK+21]. For Toom-Cook, we obtain a ≈ 5× speedup compared to [MKV20]. The results
are in line with the expectations established in Section 6.1. Overall, we confirm the finding
of [CHK+21] that NTT-based polynomial multiplication outperforms Toom-Cook-based
multiplication, but we note that the difference is smaller than on the Cortex-M4 CPU.

Table 3 and Table 4 provide a more detailed breakdown of the performance of various
components of NTT and Toom-Cook/Karatsuba based polynomial multiplication.

7.3 Saber
We have integrated our polynomial and matrix-vector multiplication routines into a top-
level implementation of the NIST PQC finalist Saber. Table 2 shows the results for both
Toom-Cook/Karatsuba and NTT-based implementations in comparison with prior art.

As observed and explained above, the difference between Toom-Cook/Karatsuba and
NTT on the Cortex-M55 processor is smaller than on the Cortex-M4 processor. We also
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Table 5 Comparison of different approaches for Matrix-Vector multiplication.
Matrix-Vector Multiplication

NTT Toom-Cook + Karatsuba

Dim Cortex-M4
[CHK+21]

Cortex-M55r1
(this work) Speedup Cortex-M4

[MKV20]
Cortex-M55r1
(this work) Speedup

l=2 66k 18.4k 3.5x 159k 28.1k 5.6x
l=3 125k 35.9k 3.4x 317k 61.6k 5.1x
l=4 205k 58.9k 3.4x 528k 107.7k 4.9x

Table 6 Comparison of the memory utilization of Saber on Cortex-M4 processor when
implementing different polynomial multiplication algorithms.

NTT [CHK+21]‡ TC classical† TC striding [This]
KeyGen/Encaps/Decaps KeyGen/Encaps/Decaps KeyGen/Encaps/Decaps

LightSaber 5,3 / 5,3 / 5,3 KB 6,1 / 6,0 / 6,0 KB 4,3 / 4,3 / 4,3 KB
Saber 6,4 / 6,3 / 6,3 KB 6,6 / 6,5 / 6,6 KB 4,8 / 4,8 / 4,8 KB
FireSaber 7,4 / 7,3 / 7,4 KB 7,1 / 7,1 / 7,1 KB 5,3 / 5,3 / 5,3 KB
† Saber implementation from [KRSS] using Toom-Cook for polynomial multiplication instead of NTT.
‡ Stack-optimized implementation of [CHK+21] from PQM4 [KRSS], commit
https://github.com/mupq/pqm4/commit/992f0f226503d43b6d33278ecb60a9168ed8d787.

see that implementations based on the striding technique are slightly faster than classical
Toom-Cook/Karatsuba. Additionally, the main benefit of the striding approach is the
reduced memory usage. We show this in Table 6, where the memory footprint of different
Saber implementations on Cortex-M4 is compared. The striding Toom-Cook approach
provides a memory compact alternative to the NTT based implementation.

We repeat the common observation that arithmetic underlying Saber, and many other
PQC schemes, is outweighed by the computational complexity of hashing; see Section 6.6.

8 Conclusion
In this work, we have introduced the Helium vector extension for the M-profile of the Arm
architecture and studied its use for structured lattice-based cryptography in the example
of the Cortex-M55 processor and the NIST PQC finalist Saber. We have demonstrated
that even within the tight constraints of the embedded market, features like instruction
overlapping, scalar-vector operations and careful instruction design allow a speedup close
to the theoretical optimum for the core mathematical primitives – despite only 8 vector
registers and an in-order, single-issue pipeline of the Cortex-M55 processor. We have also
introduced and implemented a memory-efficient variant of the Toom-Cook multiplication
suitable for highly constrained devices. Though we have performed numerous optimizations,
there is still scope for further improvements and extension: We hope that our results will
motivate further research into the capabilities of the Helium vector extension, esp. within
the realm of PQC, and to explore further schemes and optimizations.
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