
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 414–460. DOI:10.46586/tches.v2022.i1.414-460

Masked Accelerators and Instruction Set
Extensions for Post-Quantum Cryptography

Tim Fritzmann1, Michiel Van Beirendonck2, Debapriya Basu Roy1, Patrick
Karl1, Thomas Schamberger1, Ingrid Verbauwhede2 and Georg Sigl13

1 Technical University of Munich, TUM Department of Electrical and Computer Engineering,
Chair of Security in Information Technology, Munich, Germany

{tim.fritzmann,debapriya.basu-roy,patrick.karl,t.schamberger,sigl}@tum.de
2 imec-COSIC KU Leuven

Kasteelpark Arenberg 10 - bus 2452, 3001 Leuven, Belgium
{michiel.vanbeirendonck,ingrid.verbauwhede}@esat.kuleuven.be

3 Fraunhofer Institute for Applied and Integrated Security, Garching, Germany

Abstract. Side-channel attacks can break mathematically secure cryptographic sys-
tems leading to a major concern in applied cryptography. While the cryptanalysis
and security evaluation of Post-Quantum Cryptography (PQC) have already received
an increasing research effort, a cost analysis of efficient side-channel countermea-
sures is still lacking. In this work, we propose a masked HW/SW codesign of the
NIST PQC finalists Kyber and Saber, suitable for their different characteristics.
Among others, we present a novel masked ciphertext compression algorithm for
non-power-of-two moduli. To accelerate linear performance bottlenecks, we devel-
oped a generic Number Theoretic Transform (NTT) multiplier, which, in contrast
to previously published accelerators, is also efficient and suitable for schemes not
based on NTT. For the critical non-linear operations, masked HW accelerators were
developed, allowing a secure execution using RISC-V instruction set extensions. With
the proposed design, we achieved a cycle count of K:214k/E:298k/D:313k for Kyber
and K:233k/E:312k/D:351k for Saber with NIST Level III parameter sets. For the
same parameter sets, the masking overhead for the first-order secure decapsulation
operation including randomness generation is a factor of 4.48 for Kyber (D:1403k)
and 2.60 for Saber (D:915k).
Keywords: Post-quantum cryptography · Kyber · Saber · masking · RISC-V ·
accelerators · instruction set extensions

Introduction
Rapid progress in the area of quantum computers drives the need for new cryptographic
algorithms resistant against attacks that use quantum computers. While classical public-
key cryptography, such as RSA and Elliptic Curve Cryptography (ECC), will be broken
with a large-scale quantum computer, Post-Quantum Cryptography (PQC) refers to a set
of algorithms that are supposed to be secure against cryptanalytic attacks using a quantum
computer. To accelerate the transition from classical to quantum-secure cryptography,
the National Institute of Standards and Technology (NIST) started a standardization
process [Nat16] and recently selected seven algorithms as finalists and eight alternate
candidates [AASA+20]. Out of the seven finalists, five schemes are based on the hardness
of structured lattice problems. Lattice-based cryptography has become one of the most
important PQC categories as it is characterized by a very high performance and relatively
small ciphertext and key sizes.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.414-460
mailto:tim.fritzmann@tum.de,debapriya.basu-roy@tum.de,patrick.karl@tum.de,t.schamberger@tum.de,sigl@tum.de
mailto:michiel.vanbeirendonck@esat.kuleuven.be,ingrid.verbauwhede@esat.kuleuven.be
http://creativecommons.org/licenses/by/4.0/


Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 415

In the last years, there has been a strong focus on efficient implementations of PQC
on constrained devices, with the ARM Cortex-M4 microcontroller as the main target
platform [KRSS18, AABCG20, MKV20]. To increase the performance of such devices
but keeping the flexibility of a SW solution, HW/SW codesign strategies were recently
introduced for PQC [FSM+19, FSF+19, FDNG19]. A new trend is to use platforms based
on RISC-V, which is an open Instruction Set Architecture (ISA) constructed using the
reduced instruction set principles. The RISC-V initiative has led to a new processor
design era, fostering the development of open-source processors and the integration of ISA
extensions. In this context, related works developed ISA extensions for PQC achieving
high performance and flexibility [AEL+20, FSS20].

While current PQC implementations claim to be resistant against timing Side-Channel
Attacks (SCA), more advanced attacks (e.g. power or electromagnetic attacks) where the
attacker has physical access to the device have been mostly neglected during the design of
optimized implementations. In particular, Differential Power Attacks (DPA) are of major
concern [KJJ99]. Simple Power Attacks (SPA) are very sensitive to noise, but DPA reduces
the influence of noise by utilizing information from multiple measurements. Therefore, this
work focuses on DPA protected PQC implementations.

Related works. Prior works already discuss DPA countermeasures for PQC and in
particular for lattice-based cryptography. The first masked lattice scheme based on the
Learning with Errors Problem (LWE) was proposed in [RRVV15], and subsequently
improved in [RdCR+16]. Protection mechanisms for the GLP signature scheme were
analyzed in [BBE+18] and blinding countermeasures for the signature scheme BLISS were
developed in [Saa18]. A protected implementation of a predecessor of the NIST PQC
second round scheme NewHope was proposed in [OSPG18], but security flaws were found
in some of the underlying algorithms [VBDV21, BDH+21]. Later, the second round scheme
qTESLA [GR19] and the signature finalist Dilithium [MGTF19] were protected. The Public-
Key Encryption (PKE) / Key-Encapsulation Mechanism (KEM) finalist Saber [BDK+21]
was masked for an ARM Cortex-M4. Concurrent to our work, [BGR+21] presented a
masked implementation of Kyber on ARM Cortex platforms. Further works proposed
higher-order conversions with prime modulus for the binomial sampling [SPOG19] and a
fast protection mechanism for polynomial multiplications [HP21].

Contributions. Although there has been good progress due to all of these works, a
clear picture of efficient countermeasures and related implementation costs is still not
available for the NIST PQC finalists. In particular, NIST assumes that only one of the
lattice-based PKE/KEM finalists Kyber, Saber, or NTRU will be standardized after the
third round. In contrast to the other two lattice-based finalists, NTRU is not based on the
Learning With Errors (LWE) problem and is considered less efficient than the other two
competitors but has a longer history [AASA+20]. The selection of NTRU as a winner of
the NIST standardization process seems to strongly depend on intellectual property issues
that might affect the LWE-based candidates. While the differences between NTRU and
the other finalists are more obvious, it remains an important goal to evaluate the influence
of the small but important differences between Kyber and Saber. The work of [BGR+21]
and this work are the first ones that present a masked implementation of Kyber. Therefore,
Kyber and Saber have never been directly compared from a protection perspective before.
Moreover, it has been postulated that Saber is more efficient to mask [BDK+21] because
the prime modulus in Kyber seems to complicate the introduction of countermeasures.

To provide a comparison in this regard, we propose a masked implementation of Kyber
and Saber on a RISC-V microcontroller. At the same time, we propose the first hardware
accelerators and ISA extensions for masking lattice-based cryptography. An open-source
processor, e.g., a RISC-V core, is in many ways an ideal platform for masking. On one hand,
we accelerate computational bottlenecks but keep the flexibility of software solutions. On



416Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

the other hand, masking critical routines in open-sourced hardware gives us tight control
over any side-channel leakage related to the microarchitecture of the processor [BGG+15].

In contrast to the non-masked ISA extensions for NewHope/Kyber/Saber in [FSS20]
and NewHope/Kyber in [AEL+20], our HW/SW codesign provides accelerators for the
bottlenecks of masked implementations, as well as more generic and powerful accelerators
usable for a variety of schemes. In a masked implementation, many operations have to be
duplicated, and performance bottlenecks become more evident. Although the polynomial
multiplication was already thoroughly studied, to the best of our knowledge, a generic
multiplier covering a wide range of schemes is still missing. Prior works analyzed the
usage of the Number Theoretic Transform (NTT) for schemes that originally use other
multiplication methods [FSS20, CHK+21], but an efficient hardware solution is still missing.

Our specific contributions can be summarized as follows.

Generic accelerators and instruction set extensions. We provide:

• A generic NTT-based hardware multiplier suitable for a variety of lattice-based
PKE/KEM and signature schemes supporting positive/negative wrapped convolu-
tions, incomplete NTTs, and prime lifts;

• New cycle count records for Saber and Kyber on a RISC-V platform with ISA
extensions and hardware accelerators.

Masked accelerators. We provide:

• A novel algorithm for masked compression with prime moduli;

• Masked hardware accelerators for hashing, binomial sampling, A2B/B2A conversions,
and compression;

• Measures towards secure system design with share separation;

• The first masked HW/SW codesigns for PQC with Saber and Kyber as case study
(one of the first masked Kyber implementation in general).

The implementation of this work is publicly available at https://gitlab.lrz.de/
tueisec/masked-post-quantum-crypto.

Paper organization. Section 1 provides an overview about mathematical hard problems
used to construct lattice-based cryptography, the theoretical background of masking as one
of the main countermeasures against SCA, and the decapsulation operation of the PQC
finalists Kyber and Saber. Section 2 presents how the masking method can be applied for
Kyber and Saber. In Sections 3 and 4, hardware accelerators for the linear and non-linear
operations are presented. The system integration of these accelerators is described in
Section 5. The experimental results of the leakage assessment of our accelerators and
the performance evaluation for Kyber and Saber are given in Section 6. The work is
summarized in Section 7.

1 Preliminaries
1.1 Module Learning With Errors and Module Learning with Rounding
The NIST PQC finalists Kyber and Saber are based on the Module Learning with Errors
(MLWE) and Module Learning with Rounding (MLWR) problems, respectively. The
MLWE and MLWR problems are both variants of the Ring Learning with Errors (RLWE)
problem [LPR10].

Let bxc denote the flooring operation, i.e. rounding towards negative infinity. The
rounding operation bxe rounds towards the nearest integer with ties being rounded up,

https://gitlab.lrz.de/tueisec/masked-post-quantum-crypto
https://gitlab.lrz.de/tueisec/masked-post-quantum-crypto


Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 417

in other words, it holds that bxe = bx + 0.5c. We also reserve the notations bxcf and
bxef which implies flooring (resp. rounding) x up to f fractional digits. We reserve bold
notation for matrices and vectors (of polynomials).

Let Rq = Zq/〈φ(x)〉 be a polynomial ring with the integer q and the cyclotomic
polynomial φ(x). An MLWE instance is defined by (A, b = A · s + e) with the public
matrix A ∈ Rk1×k2

q sampled from a uniform distribution U , the secret s ∈ Rk2
q sampled

from a binomial distribution Ψη1 with parameter η1, and the error e ∈ Rk1
q sampled from

Ψη2 with parameter η2. In contrast, the MLWR instance is defined by (A, b = bpq (A · s)e),
replacing the error by a deterministic rounding function that scales the product by p/q and
rounds the result to the nearest integer modulo p. As it is known to be a hard problem to
distinguish MLWE/MLWR samples from a uniform sample pair and to recover the secret
from b, these samples are well suited to build cryptographic schemes.

1.2 Accelerator Types
Hardware accelerators for computationally intensive tasks can be used to improve the
overall performance of PQC implementations. Such accelerators can be divided into two
categories.

Loosely coupled accelerators. This type of accelerator is placed outside of the main
processor. The design is usually independent of the processor and thus allows a good
portability. The accelerator can be connected via a bus system. Due to the high bus
communication overhead, loosely coupled accelerators are mostly suitable for large and
computationally intensive tasks with a low interaction between processor and accelerator.

Tightly coupled accelerators. This type of accelerator is directly integrated into the
main processor and can be accessed using ISA extensions. The advantages are that no
complex bus communication is required to access data from the register files. Usually,
these kinds of accelerators are much smaller compared to loosely coupled accelerators.
This does not only decrease the area requirements but can also lead to a high flexibility.

1.3 Masking
Masking [CJRR99] is a well-known countermeasure against SCA. It splits a secret variable
into multiple parts called shares. A first-order masking uses two shares, and aims to
protect against SCA that extract information from the first-order statistical moment. The
algorithm is executed on these shares individually to hide any power consumption that
would be correlated with the original secret.

As we deal with matrices and vectors of polynomials, which are further split into shares,
we use several separate indices. To index a matrix or a vector, we use square brackets,
e.g. A[i][j]. We use a subscript, e.g. b[0]i, to access the i-th coefficient of the polynomial
b[0] (or also the i-th bit of a variable depending on the context). Finally, we reserve
a superscript, e.g. b[0]i, to access the i-th share of b[0]. In algorithms and figures, we
highlight shared variables with s shares, by explicitly writing them as b{0:s−1}.

Threshold Implementations (TI). TI is an effective method to prevent SCA and
leakages caused by glitches [NRR06]. The concept is based on multi-party computations.
For a TI the following properties must hold: correctness (the result after the computa-
tions remains correct), non-completeness (the partial functions and computations are at
least independent of one input share), and uniformity (input and output are uniformly
distributed). For a security order of d and a function of algebraic degree t, the number of
input shares must be s ≥ td+ 1. Thus, first-order TIs require a minimum of three input
shares for non-linear functions.



418Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Domain Oriented Masking (DOM). DOM is another masking method that provides
side-channel resistance and glitch protection [GMK16]. In contrast to the function-oriented
nature of TI, DOM operates on share domains. Operations that process shares from a single
domain are uncritical as they can only leak information from one particular share domain.
Without the information of the remaining domains, an attacker gains no advantage. Non-
linear operations that combine shares from different domains require additional randomness
to refresh the cross-domain operations. Registers in the cross-domain paths make sure that
the terms are refreshed before being combined to the resulting shares and thus, prevent
glitches. The first-order DOM representation of an AND-gate is an important example for
DOM [GMK16].

1.4 Horizontal Attacks on Masked Implementations

The aim of this work is to present novel masked accelerators and to compare Saber and
Kyber from a masking perspective. The algorithms outlined in Section 2 aim to protect
our implementation against first-order DPA. Apart from the implemented masked equality
test, these components extend readily to higher-order masking, which secures against
higher-order DPA.

Besides DPA, other side-channel attack vectors must be considered as well. In particular,
there is a broad category of attacks that analyze side-channel traces horizontally. These
attacks are able to defeat masking countermeasures as the leakage of both corresponding
shares is already present in a single horizontal trace. Single-trace template attacks against
masked NTT software implementations have been shown in [PPM17, PP19] and against
Keccak in [KPP20]. The attacks of these works are based on Soft-Analytical Side-Channel
Attacks (SASCA) [VCGS14], which take the output of a template attack and feed it into
a graph representation to apply belief propagation. This method allows to retrieve correct
results, although a single trace is usually not sufficient due to, e.g., a low SNR measurement.
In contrast to the previously described attacks, where shares are retrieved independently,
[NDGJ21] uses a deep-learning model to directly combine leakage of the individual shares
horizontally. They show an attack on the masked Saber implementation of [BDK+21],
recovering the secret key in as few as 16 traces.

Increasing the masking order provides only limited extra security against these types of
attacks, since each share is still present horizontally in the trace. Effective countermeasures
against such attacks are hiding techniques, especially shuffling, as they break the temporal
localization of leakage within a trace. As these countermeasures are usually less expensive
than masking and can be implemented similarly for Kyber and Saber, we leave their
evaluation for future work. An evaluation of such hiding countermeasures for R-LWE
schemes was conducted in [OSPG18]. The authors reported 1% overhead on top of the
masked design. In [RPBC20] the authors evaluate different possibilities of shuffling for the
NTT as a countermeasure against single-trace attacks and reported an overhead in the
range of 181% up to 356% in comparison to an unprotected NTT software implementation.

Hiding is an interesting field of research for an open-source platform like RISC-V
because countermeasures can be integrated in hardware (within a dedicated accelerator)
or in software. Hardware implementations have the advantage that multiple shares can
be processed simultaneously. This way, the trace can no longer be partitioned into each
of the shares. Additionally, in both software or hardware, shuffling countermeasures can
be extended with blinding techniques [Saa18, ZBT19, HP21] to further increase the noise
levels. In our design, the integration of hiding techniques might require further pre- and
post-processing steps and hardware modifications, e.g., changes in address units. A detailed
analysis of the integration of hiding techniques is outside the scope of this work.



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 419

Algorithm 1: Saber.CPA.Dec.
Input: Secret key s
Output: Message m

1 u← c1
2 v ← h2 − 2εp−εT · c2
3 m = (v + (s mod p) · uT )� (εp − 1)

Algorithm 2: Kyber.CPA.Dec.
Input: Secret key s
Output: Message m

1 u← Decompressq(c1, du)
2 v ← Decompressq(c2, dv)
3 m = Compressq(v − s · uT , 1)

Algorithm 3:
Saber.CPA.Enc.

Input: Public key pk = (seedA,b)
Input: Message m
Input: Seed r
Output: Ciphertext c = (c1, c2)

1 A seedA← U(Rk×kq )

2 s′ XOF (r)← Ψη

3 u← A · s′
4 v ← bT · (s′ mod p)− 2εp−1 ·m
5 c1 ← (u + h)� (εq − εp)
6 c2 ← (v + h1)� (εp − εT )

Algorithm 4:
Kyber.CPA.Enc.

Input: Public key pk = (seedA,b)
Input: Message m
Input: Seed r
Output: Ciphertext c = (c1, c2)

1 A seedA← U(Rk×kq )

2 (s′, e1, e2) XOF (r)← Ψη1 ×Ψη2 ×Ψη2

3 u← A · s′ + e1
4 v ← bT · s′ + e2 + d q2c ·m
5 c1 ← Compressq(u, du)
6 c2 ← Compressq(v, dv)

1.5 Kyber and Saber Decapsulation

Both Kyber and Saber include a CPA-secure encryption scheme, from which they build
a CCA-secure KEM. Since the plain encryption scheme can be already broken without
DPA using CCA-style attacks, we choose to mask the CCA-secure KEM. Moreover, DPA
typically requires a large amount of collected traces to be effective. The CCA-secure
decapsulation is the only feasible target, since this constitutes the only operation where
multiple traces can be collected for the same long-term secret key. As such, we focus our
masking efforts on the decapsulation of Kyber and Saber.

In some scenarios, key generation or encapsulation might also need to be protected
against SCA. However, in that case, the adversary usually has access to only a single
trace to either retrieve the long-term secret key or the ephemeral session key, respectively.
Attacks that target these operations therefore typically fall into the category of horizontal
attacks. As mentioned before, we leave a detailed treatment of hiding techniques, and
consequently secure implementations of key generation and encapsulation, as future work.
Masking techniques cannot fully protect against the horizontal type of attacks, but they
can still be used to harden the implementation. Both key generation and encapsulation
require the same primitive operations as decapsulation, and our masking techniques would
be equally applicable for these routines.

In Algorithms 1–6, we recall the decapsulation of Kyber and Saber, which uses the
CPA-secure encryption and decryption as subroutines. We use a simplified notation that
highlights both the similarities and differences between the two schemes. The listings
use common symbols and operators, they hide the encodings into byte arrays, and they
abstract away from the various transformations into and out of NTT domain. We note
that Kyber uses a prime modulus q = 3329, whereas Saber chooses power-of-two moduli
q = 213 and p = 210. For a full description of Kyber and Saber, we refer to their respective
round 3 specification documents [SAB+20, DKR+20]. Both Kyber and Saber use a variety
of symmetric primitives, all of which are based on the SHA3 standard: the hash functions
G and H, an extendable output functions XOF , and a key-derivation function KDF.



420Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Algorithm 5:
Saber.CCAKEM.Decaps.

Input: Ciphertext c
Input: Secret key sk = (s,pk,H(pk), z)
Output: Key K

1 m′ := Saber.CPA.Dec(s, c)
2 (K̄′, r′) := G(m′||H(pk))
3 c′ := Saber.CPA.Enc(pk,m′, r′)
4 if c = c′ then
5 K := KDF(K̄′||H(c))
6 else
7 K := KDF(z||H(c))
8 end

Algorithm 6:
Kyber.CCAKEM.Decaps.

Input: Ciphertext c
Input: Secret key sk = (s,pk,H(pk), z)
Output: Key K

1 m′ := Kyber.CPA.Dec(s, c)
2 (K̄′, r′) := G(m′||H(pk))
3 c′ := Kyber.CPA.Enc(pk,m′, r′)
4 if c = c′ then
5 K := KDF(K̄′||H(c))
6 else
7 K := KDF(z||H(c))
8 end

2 Masking Kyber and Saber

In this section, we describe the algorithms and methods necessary to create masked
implementations of Kyber and Saber. These algorithms define the hardware architectures
of our secure accelerators. Our masked implementations of the decapsulation operation in
Saber and Kyber are illustrated in Figures 1 and 2, respectively.

As MLWE/MLWR-based schemes, Saber and Kyber use polynomial arithmetic as their
main computational building block. Linear operations, such as ring multiplications with
an unmasked input, additions, and subtractions, can be duplicated and performed on
each arithmetic share individually. As a result, expensive operations such as polynomial
multiplications become increasingly attractive to accelerate in hardware. Our developed
generic hardware accelerator for polynomial arithmetic is presented in Section 3. The
polynomial multiplications that we accelerate are highlighted in yellow in Figures 1 and 2.

Non-linear operations are more complex to mask. These operations combine information
from both of the shares, and special care must be taken such that they do not jointly
leak the secret unmasked value. In Figures 1 and 2, these operations are highlighted in
blue. Typically, these operations are expressed in terms of bit-operations, and it is often
more natural to fall back to methods based on Boolean masking. The combination of both
arithmetic and Boolean masking in Saber and Kyber requires the use of mask conversion
algorithms to switch from either Boolean to Arithmetic (B2A) or Arithmetic to Boolean
(A2B) masking.

A masked implementation of Saber decapsulation targeting the ARM Cortex-M4 has
been proposed in [BDK+21]. The authors of [BDK+21] show that Saber is relatively
efficient to mask, and argue that this is due to Saber’s choice for a power-of-two modulus
and the deterministic rounding of MLWR. For the non-linear masked routines, they use
a masked Keccak implementation [BDPVA10], a masked binomial sampler [SPOG19],
and a masked comparison algorithm [OSPG18], and these exact same methods can be
reused for a masked implementation of Kyber. We integrate them into our secure masked
accelerators and discuss their hardware architectures in Section 4. To implement B2A and
A2B conversions, the authors of [BDK+21] adopt an algorithm due to Goubin [Gou01] and
a table-based algorithm [CT03], respectively. Both of these algorithms are specialized for
power-of-two moduli and can therefore not directly be reused for Kyber. Motivated by this
observation, we choose to implement different B2A and A2B techniques. In the remainder
of this section, we first outline the B2A and A2B conversions that we implement, and we
subsequently use them to propose a novel method for masked ciphertext compression.



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 421

Xc1

s1

X

s2

+

h2

c2 �

−
A2B

�

�
G

H(pk)

K̂ ′

XOF Ψη B2A
X

X

U

seedA

X

X

b

+

h

+

h1

+

+

�
�

A2B

A2B
�

�

�

�

c′01

c′11

c′02

c′12

=

return H(K̂ ′, c)

yes

return H(z, c)

no

Figure 1: Masked decapsulation of Saber [BDK+21]. Linear performance bottlenecks
highlighted in yellow, non-linear masked routines highlighted in blue, operations that
require Boolean masking grouped in light grey.

Xc1

s1

X

s2

c2 Dq(·, dv)

+
Cq(·, 1) G

H(pk)

K̂ ′

XOF

XOF

XOF

Ψη1

Ψη2

Ψη2

B2Aq

B2Aq

B2Aq

X

X

X

X

+

+

+

+

U

seedA

b

+

+

B2Aq

Cq(·, du)

Cq(·, dv)

c′01

c′11

c′02

c′12

=

return H(K̂ ′, c)

yes

return H(z, c)

no

Figure 2: Masked decapsulation of Kyber. Linear performance bottlenecks highlighted in
yellow, non-linear masked routines highlighted in blue, operations that require Boolean
masking grouped in light grey.



422Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

2.1 B2A and A2B Conversions
B2A and A2B conversions allow to securely convert between an arithmetic masking
x = A0 +A1 and a Boolean masking x = B0 ⊕B1. These methods may choose to keep a
single random mask A1 = B1 = R, in which case the conversions compute either

B0 = (A0 +R)⊕R , or A0 = (B0 ⊕R)−R

without unmasking x.
A2B and B2A conversion methods were first proposed by Goubin [Gou01]. In software

implementations, A2B conversions can efficiently be implemented using table-based meth-
ods [CT03, Deb12, VBDV21]. This is the approach taken in [OSPG18] and [BDK+21].
The drawbacks of table-based methods are that they do not extend to higher-order security,
require work-arounds to handle prime moduli [OSPG18], and that they are relatively
difficult to translate to a hardware implementation that also resists glitches. B2A con-
versions, on the other hand, are typically not table-based. In [BDK+21], Goubin’s B2A
method is used, which is specialized for power-of-two moduli. Some ad-hoc methods for
prime-modulus B2Aq and A2Bq conversion were proposed in [OSPG18], and subsequently
formalized in [BBE+18] and [SPOG19].

In contrast to the previous masked implementations [OSPG18] and [BDK+21], we
employ A2B and B2A conversions that are based on secure masked arithmetic addition
over Boolean shares (SecAdd) [CGV14]. Our reasoning is many-fold. First, since both
A2B and B2A conversion can be expressed in terms of SecAdd, we are able to accelerate
both operations with a single hardware block. Second, in [BBE+18] this secure adder was
extended to work with prime moduli. SecAddq essentially makes two calls to SecAdd, such
that B2Aq and A2Bq can additionally be accelerated with the same SecAdd hardware.
Third, SecAdd only requires the masked implementation of a binary adder, and efficient
TI implementations of ripple-carry or Kogge-Stone variants have already been proposed
[SMG15]. Finally, the A2B and B2A approaches based on secure addition are readily
extensible to higher-order security, which is not the case for table-based A2B or Goubin’s
B2A algorithms. We now describe the conversion based on SecAdd in detail. Our focus
is on univariate, first-order side-channel security, and wherever possible we simplify the
algorithms to focus on this case. For a general description focusing on arbitrary orders
and (multivariate) composability, we refer to the original works [CGV14, BBE+18].

SecAdd takes as inputs the Boolean maskings x{0:1} = (x0, x1) and y{0:1} = (y0, y1) and
outputs a Boolean masking s{0:1} = (s0, s1) such that (s0 ⊕ s1) = (x0 ⊕ x1) + (y0 ⊕ y1).
SecAddq [BBE+18] can be constructed from SecAdd by securely computing a second sum
(s′0 ⊕ s′1) = (s0 ⊕ s1) + (q′0 ⊕ q′1), where (q′0, q′1) is a Boolean masking of −q in two’s
complement form. If x + y ≥ q, then s′ = (x + y − q) is the correct sum (x + y) mod q,
and it also holds that s′ ≥ 0. Alternatively, if x+ y < q, then s = (x+ y) is the correct
sum and s′ < 0. Since s′ is negative in one case and positive in the other, the masked sign
bit c = sign(s′) can be used to select the correct sum:

SecMux(s{0:1}, s′{0:1}
, c{0:1}) = SecAnd((c‖...‖c){0:1}, s{0:1})⊕SecAnd(¬(c‖...‖c){0:1}, s′{0:1}).

Having a distinct sign bit requires that s′ is computed up to at least w = dlog2(q)e+ 1
bits, i.e. one bit larger than the initial masks. SecAddq is illustrated in Algorithm 7.

We propose a new simplified version of SecAddq, which assumes that the input shares
already satisfy (x0 ⊕ x1) + (y0 ⊕ y1) = x+ y − q in two’s complement1. In this case, it is
possible to directly compute s′ = x + y − q through SecAdd(x{0:1}, y{0:1}). If s′ < 0, q

1In what follows, we’ll see that this is easily possible for the A2B and B2A conversions based on SecAdd.



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 423

Algorithm 7: SecAddq [BBE+18]
Input: x{0:1} = (x0, x1),y{0:1} = (y0, y1)

such that x = x0 ⊕ x1, y = y0 ⊕ y1

Result: z{0:1} = (z0, z1) such that
z = z0 ⊕ z1 = x+ y mod q

1 q′{0:1} ← (2w − q, 0)
2 s{0:1} ← SecAdd(x{0:1},y{0:1})
3 s′{0:1} ← SecAdd(s{0:1},q′{0:1})
4 c{0:1} ← (s′{0:1} � (w − 1))
5 z{0:1} ← SecMux(s{0:1}, s′{0:1}

, c{0:1})

Algorithm 8: SecAddq simplified
Input: x{0:1} = (x0, x1),y{0:1} = (y0, y1)

such that
x+y+(2w−q) = (x0⊕x1)+(y0⊕y1)

Result: z{0:1} = (z0, z1) such that
z = z0 ⊕ z1 = x+ y mod q

1 s′{0:1} ← SecAdd(x{0:1},y{0:1})
2 c{0:1} ← (s′{0:1} � (w − 1))
3 c′{0:1} ← (c0 · q, c1 · q)
4 z{0:1} ← SecAdd(s′{0:1}, c′{0:1})

Algorithm 9: A2B [CGV14]
Input: x{0:1} = (A0, A1) such that

x = A0 +A1 mod 2k
Result: x{0:1} = (B0, B1) such that

x = B0 ⊕B1

1 R0, R1 $← Z2k

2 B{0:1}
1 ← (A0 ⊕R0, R0)

3 B{0:1}
2 ← (A1 ⊕R1, R1)

4 x{0:1} ← SecAdd(B{0:1}
1 ,B{0:1}

2 )

Algorithm 10: A2Bq [BBE+18]
Input: x{0:1} = (A0, A1) such that

x = A0 +A1 mod q
Result: x{0:1} = (B0, B1) such that

x = B0 ⊕B1

1 R0, R1 $← Zq
2 B{0:1}

1 ← (A0 ⊕R0, R0)
3 B{0:1}

2 ← ((A1 + (2w − q))⊕R1, R1)
4 x{0:1} ← SecAddq(B{0:1}

1 ,B{0:1}
2 )

must be added again to find the correct sum. This time, rather than using c = sign(s′)
to multiplex between s′ and s′ + q, we compute the correct sum as s = s′ + c · q. This is
easily possible, since the multiplication with q distributes over the masking c0 ⊕ c1 = c, i.e.
q · c0 ⊕ q · c1 = q · c. Our simplified SecAddq routine is shown in Algorithm 8. It avoids the
masked multiplexer altogether.

A2B conversion follows directly from SecAdd. Given an arithmetic masking x = A0 +A1,
the secure addition of A0 and A1 with outputs in Boolean masked form is exactly an A2B
conversion. A2B and A2Bq based on this idea are illustrated in Algorithms 9 and 10. In
these algorithms, the shares A0 and A1 are first themselves shared as a Boolean masking,
before being fed into SecAdd. As we hinted at before, we have full control over this initial
Boolean masking. Therefore, for A2Bq, we create an initial masking of A0 +A1 − q, and
use our simplified version of SecAddq.

B2A conversion uses a similar idea. Given a Boolean masking x = B0 ⊕ B1, the first
arithmetic share A0 is simply sampled randomly. The second arithmetic share can then be
computed from the first one by securely computing A1 = (B0 ⊕B1)−A0 mod 2k. Like in
the A2B case, first a Boolean masking is created of −A0 mod 2k and subsequently this is
fed into SecAdd. The result is a Boolean masking A1 = B0⊕B1, which can be decoded2 to
find the second share A1. B2A and B2Aq are illustrated in Algorithms 11 and 12. Again,
to utilize our simplified and more efficient version of SecAddq, we simply create an initial
two’s complement Boolean sharing of (−A0 mod q)− q instead.

2.2 Masked Compression
Both Saber and Kyber include a compression operation that rounds away some low-order
bits of a ring element. In Line 3 of the decryption step, the compression operation is
used for message decoding, i.e. mapping (d q2c ·m+ e) back to m. In the encryption step,
Lines 5 and 6, the same operation is used to compress the ciphertext components u and v.

2This requires a secure FullXor(B) for composability proofs [CGV14].



424Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Algorithm 11: B2A [CGV14]
Input: x{0:1} = (B0, B1) such that

x = B0 ⊕B1

Result: x{0:1} = (A0, A1) such that
x = A0 +A1 mod 2k

1 A0, R
$← Z2k

2 B{0:1}
1 ← ((2k −A0)⊕R,R)

3 B{0:1}
2 ← SecAdd(x{0:1},B{0:1}

1 )
4 x{0:1} ← (A0, B0

2 ⊕B1
2)

Algorithm 12: B2Aq [BBE+18]
Input: x{0:1} = (B0, B1) such that

x = B0 ⊕B1

Result: x{0:1} = (A0, A1) such that
x = A0 +A1 mod q

1 A0, R
$← Zq × Z2w

2 B{0:1}
1 ← (((q −A0) + (2w − q))⊕R,R)

3 B{0:1}
2 ← SecAddq(x{0:1},B{0:1}

1 )
4 x{0:1} ← (A0, B0

2 ⊕B1
2)

For Saber, ciphertext compression is inherently tied to the security of its MLWR instance,
whereas Kyber initially3 only compressed the ciphertext components to reduce their size.

The Kyber compression function takes an input x ∈ Zq and outputs an integer in
{0, . . . , 2d − 1}, where d < dlog2(q)e:

Compressq(x, d) = d(2d/q) · xc mod 2d (1)

For Saber, where q = 213 is a power of two, Compress2k can be expressed as a more simple
logical shift. In order to round the result instead of flooring, the constant h1, h2 or h are
added before the shift.

Compression must discard some lower-order bits of arithmetically masked ring elements.
Discarding these bits is inherently a Boolean operation, and A2B conversion can help to
mask this operation effectively. In [BDK+21], a new technique is proposed to optimize
A2B conversion for masked logical shifting in Saber. Compression for prime moduli has
so far only been treated in the context of message decoding in [RRVV15] and [OSPG18].
We first review these existing approaches and show that they do not extend efficiently
to ciphertext compression. Subsequently, we outline a novel method to mask Compressq,
which is simple and efficient to implement.

2.2.1 MaskedCompress2k

For power-of-two moduli, ciphertext compression constitutes a simple rounded logical shift.
In an arithmetic sharing, (xmsb‖xlsb) = (A0

msb‖A0
lsb)+(A1

msb‖A1
lsb), this shift needs special

consideration because the lower bits A0
lsb +A1

lsb might contain a carry that must be added
to the upper bits before they are shifted out. A straightforward solution is to first perform
A2B conversion, since a Boolean masking (xmsb ‖ xlsb) = (B0

msb ‖ B0
lsb) ⊕ (B1

msb ‖ B1
lsb)

does not have any carries.
The masked Saber implementation of [BDK+21] optimizes table-based A2B conversion

to only compute the carry for the lower bits, rather than a full conversion. This carry is
subsequently added to the higher bits, leaving them as an arithmetic sharing. The full
procedure is termed A2A conversion.

The A2A optimization also applies to the A2B conversion based on SecAdd. In this
setting, when only the carry-out is required, all the summation logic can be pruned from
the binary adder. Furthermore, since the carry is only needed at the final position, any
carry look-ahead logic can be implemented maximally sparse. However, this optimization
would also prevent us from supporting B2A conversion with the same SecAdd hardware.
Hence, we implement the more simple solution, i.e. a full A2B conversion and subsequent
share-wise logical shift.

3Since round 3, Kyber-512 relies to a small extent on the rounding noise to add security as well.



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 425

0

q
2

q
4

3q
4

m = 0

m = 1

0

q
2

q
4

3q
4 m = 0 m = 1

m = 1

m = 0

0

211

q
2

q

−q
4

A2Bq(·)

m = 1 m = 0

0

211

213−q
2 q

2

SecAdd(·,−q
2)

Figure 3: MaskedDecodeq. The final result is a Boolean masking where the most significant
bit is a masking (m0 ⊕ m1) = m. Adapted from [OSPG18] to use A2Bq instead of
TransformPower2. Operations that require Boolean masking grouped in light gray.

2.2.2 MaskedDecodeq

Masked decoders have been proposed in [RRVV15] and [OSPG18]. Rather than dividing
by the modulus, the decoding step is expressed as an interval comparison:

Decodeq(m) = Compressq(m, 1) =
{

0 for m ∈ [d3q/4e, bq/4c]
1 for m ∈ [dq/4e, b3q/4c]

. (2)

For an arithmetic masking x = A0 +A1, [RRVV15] proposes a probabilistic decoder that
uses information on the quadrants of A0 and A1 in a masked table lookup. A different
approach is taken in [OSPG18], where a series of A2B-related transformations are used
to create a masked decoder. Lacking an existing A2Bq transform, the authors propose
another conversion, TransformPower2, that transforms an arithmetic masking mod q to
a masking mod 2k. Nevertheless, we do have an A2Bq conversion available, and use it
to simplify the masked decoder of [OSPG18]. The resulting process is shown in Figure 3.
The final result is a Boolean masking where the most significant bit is a masking of the
decoded result: (m0 ⊕m1) = m.

2.2.3 MaskedCompressq

Unfortunately, the techniques of masked decoding do not extend to masked compression.
When dealing with 2 intervals of width q

2 , it is possible to position their boundary exactly
at a power of two as in Figure 3. However, already for d = 2 we have 4 intervals of width
q
4 , and this technique is no longer applicable.

We propose a substantially different masked compression technique. Rather than
expressing it as an interval comparison, we analyze and mask the required division by the
modulus q. The key idea is simple. First, we observe that the compression tolerates an
approximate quotient x′ ≈ (2d/q) · x. In other words,

Compressq(x, d) = d(2d/q) · x+ ec mod 2d , (3)

remains correct for a small bounded error e. The reason for this is apparent if we express
(2d/q) · x as a binary fraction:



426Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

(2d/q) · x =

b 2d·x
q c︷ ︸︸ ︷

· · · ·
←−−−−→

d

.
2d·x mod q

q︷ ︸︸ ︷
· · · · · · · · · · · ·
←−−−−−−−−−−−−−−−−−−→

∞

. (4)

The fractional part equals 2d·x mod q
q , and it is strictly limited to the set of values {0,...,q−1}

q .
This fractional part is never exactly 0.5, but instead the edge-case values are b

q
2 c
q = 1664

3329

and d
q
2 e
q = 1665

3329 , which should be rounded down and up, respectively. These values are
still rounded correctly, even when subject to a small error − 1

2q ≤ e <
1
2q :

d
b q2c
q

+ ec = 0 (5)

d
d q2e
q

+ ec = 1 . (6)

As a result, the approximate quotient d(2d/q) · x+ ec is rounded correctly, given the same
bound on e.

Our simple but crucial observation to build MaskedCompressq is that we can compute
such an approximate quotient individually from the shares of x = x0 + x1 mod q, using
only finite-precision arithmetic. For example, using integer division, we can compute

b(2d/q) · x0cf + b(2d/q) · x1cf = ((2d/q) · x+ e) mod 2d , (7)

which is a strict underestimate of the real quotient (2d/q) · x mod 2d with e < 0. More
generally, we can compute rounded share-wise quotients,

b(2d/q) · x0ef + b(2d/q) · x1ef = ((2d/q) · x+ e) mod 2d , (8)

with a bounded error e. In both cases, the rounding error e can be arbitrarily lowered by
increasing the number of fractional bits f . As a result, for an appropriately large choice of
f that fixes − 1

2q ≤ e <
1
2q , the share-wise ‘fixed-point’ quotients of Equations 7 and 8 can

be used to correctly retrieve the output of Compressq.

We now analyze the requirements on f in detail. The share-wise quotients of Equations 7
and 8 consist of d integer and f fractional bits, with the remaining bits being truncated or
rounded, respectively:

(2d/q) · xi =

b 2d·xi

q c︷ ︸︸ ︷
· · · ·
←−−−−→

d

.
b 2d·xi mod q

q cf︷ ︸︸ ︷
· · · · · ·
←−−−−−−−−→

f

2d+f ·xi mod q
q︷ ︸︸ ︷

· · · · · ·
←−−−−−−−−→

∞

. (9)

When the quotients are truncated as in Equation 7, b(2d/q) · x0cf and b(2d/q) · x1cf
produce a strict underestimate of the real quotient (2d/q) · x. This underestimate has the
effect of truncating the actual quotient (2d/q) · x, and possibly omits a carry-in from the
additive shares at the f -th fractional bit:

b(2d/q) · x0cf + b(2d/q) · x1cf = b(2d/q) · xcf −
{0, 1}

2f mod 2d . (10)

Nevertheless, this underestimate can still be rounded correctly, if f is chosen such that
fractional values larger than 0.5 do not underflow below 0.5. Specifically, when (2d/q) · x



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 427

Algorithm 13: MaskedCompressq
Input: x{0:1} = (x0, x1) such that x = x0 + x1, d, f > log2(2q)
Result: z{0:1} = (z0, z1) such that z = z0 ⊕ z1 = Compressq(x, d)

1 x′0 ← b(2d+f · x0)/qc mod 2d+f

2 x′1 ← (b(2d+f · x1)/qc+ 2f · 0.5) mod 2d+f

3 z{0:1} ← A2B(x′{0:1}) // (d + f)-bit A2B

4 z{0:1} ← z{0:1} � f

takes the edge-case fractional value d
q
2 e
q , it must hold that b d

q
2 e
q cf −

1
2f ≥ 0.5. For Kyber,

this holds for f ≥ 13.4
We can similarly analyze the rounded quotients of Equation 8. By rounding at the

(f + 1)-th binary digit, the worst-case rounding error is |ei| < 1
2f+1 for each share-wise

quotient.5 The total rounding error for two shares therefore remains strictly bounded by
|e| < 2 · 1

2f+1 . To satisfy − 1
2q ≤ e <

1
2q , it suffices that f > log2(2q), which again results

in f ≥ 13 for Kyber. As truncation is easier to implement than rounding and results in
the same bound, we choose to implement it in our algorithm.

After computing share-wise quotients with a certain precision f , we obtain a ‘fixed-point’
arithmetic sharing:

x′0 = b(2d/q) · x0cf (11)
x′1 = b(2d/q) · x1cf (12)

(2d/q) · x ≈ x′0 + x′1 mod 2d , (13)

with d integer bits and f fractional bits. For an appropriately large choice of f , this
‘fixed-point’ arithmetic sharing allows us to recover the output of Compressq(x, d):

Compressq(x, d) = dx′0 + x′1c mod 2d (14)
= bx′0 + x′1 + 0.5c mod 2d . (15)

Somewhat surprisingly, we have reduced MaskedCompressq exactly to the problem of
MaskedCompress2k . The final output of Compressq(x, d) constitutes the upper d bits of
the (d+ f)-bit arithmetic sharing (x′0, x′1 + 0.5), which we compute with a (d+ f)-bit
A2B conversion and subsequent share-wise logical shift. As before, the A2A conversion of
[BDK+21] is applicable to optimize the computation of the carry-in, but prevents unified
hardware in our case.

We illustrate our MaskedCompressq routine in Algorithm 13 and also graphically in
Figure 4, using only integer arithmetic and flooring divisions.6 The simplicity is apparent,
requiring only a single A2B call that combines information from the shares. For higher-
order security, f must be chosen to tolerate rounding errors from an increasing number of
shares. As a result, the required bit-size of the A2B grows logarithmically with the number
of shares. For first-order security with f = 13, the largest value for d is du = 11 in Kyber-
1024, requiring a 24-bit power-of-two A2B conversion. Using our novel MaskedCompressq
algorithm, masked Kyber does not require any actual A2Bq conversion.

4Since 1665
3329 = ′b0.1000000000001... as a binary fraction, an underflow is allowed at the 13-th position.

5More precisely, |ei| ≤
b q

2 c
q

2f .
6As an implementational note, for d > 7, (2d+f ) · xi can grow larger than 32-bit. The result must be

placed in a uint64_t, and special care must be exercised that the division of a uint64_t by the constant q
compiles to a constant-time operation.



428Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

A2B
×

×

+� (d+ f)

� (d+ f)

2f−1

1/q

� f

� f/
d + f

/
d + f

/
d + f

/
d + f

/
dlog2(q)e

/
dlog2(q)e

/
d

/
d

Cq(·, d)
/

dlog2(q)e

/
dlog2(q)e

/
d

/
d

Figure 4: MaskedCompressq

2.3 Masked Equality Test
At the end of the decapsulation, the re-encrypted ciphertext c′ = c′0⊕ c′1 must be checked
for equality against the input ciphertext c. The end result of the check is no longer
sensitive, but the re-encrypted ciphertext itself must not be unmasked.

Both first-order and higher-order secure algorithms for masked equality testing have
been proposed in [OSPG18] and [BPO+20], respectively. In [OSPG18], the main idea is to
use an additional hashing step and check whether H(c⊕ c′0) equals H(c′1)7. The collision-
resistance of H guarantees that the two hashes are only equal for a valid ciphertext, and
the pre-image resistance ensures that the hashes no longer contain exploitable information
about c′.

Recently, it was shown that both the [OSPG18] and [BPO+20] methods leak some
information on c′, and that this information can be used to significantly decrease the
security of the underlying MLWE instance [BDH+21]. The method of [OSPG18] contains
a flaw because it checks the equality of the two masked ciphertext components c′{0:1}

1 and
c′{0:1}

2 separately. The individual equalities are still sensitive, which was already noted by
the authors of the masked Saber implementation [BDK+21]. Luckily, the method permits
a simple fix, by performing the test atomically for both ciphertext components. We take
the same approach as [BDK+21] and check whether

H(c1 ⊕ c′01 ‖ c2 ⊕ c′02 ) ?= H(c′11 ‖ c′12 ) . (16)

By performing the hash atomically on the concatenation of both ciphertext components,
the leakage present in [OSPG18] can be prevented [BDH+21]. By implementing the
masked equality test from [OSPG18], we limit this component to first-order side-channel
security. While we prefer to use methods that extend to higher orders, the masked equality
test of [BPO+20] is not applicable to Saber or Kyber due to the ciphertext compression
operation. Generalizing this component so that it is extensible to higher masking orders is
left as future work.

2.4 Comparing Masking for Kyber vs Saber
In Figures 1 and 2, it can be seen that Kyber and Saber have highly similar masked
architectures. The difference between MLWE and MLWR is apparent, in the extra XOF ,

7The XOR becomes a subtraction if c′{0:1} is arithmetically shared as in [OSPG18].



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 429

Ψη2 , and B2Aq calls required to sample the error terms e1, and e2 for Kyber. B2Aq
has roughly twice the complexity of B2A, essentially because SecAddq makes two calls
to SecAdd. Kyber further needs an additional B2Aq conversion to convert the Boolean
masking m{0:1} back to an arithmetic sharing mod q. This operation is ‘free’ for Saber,
since the required share-wise left-shift 2εp−1 · m{0:1} already has the added effect of
converting to an arithmetic sharing mod p implicitly.

Using our new MaskedCompressq algorithm, masked ciphertext compression is re-
markably similar for Saber and Kyber. For both, the involved non-linear operation is
a power-of-two A2B conversion, where only the high-order bits of the resulting Boolean
masking must be kept. However, Saber only requires a 13-bit A2B conversion, whereas
Kyber-1024 requires a 24-bit conversion. Moreover, the conversion width for Kyber grows
(logarithmically) with the number of shares.

Specialized hardware could be used to favor masking methods for either Saber or Kyber.
In this work, our aim is to be generic and support masking for both schemes with identical
hardware. Therefore, in Section 4.3, we implement a 32-bit Kogge-Stone SecAdd that
supports A2B conversion for both Saber and Kyber. Especially Saber could benefit from
a smaller and faster adder, or from A2B/B2A algorithms specialized for power-of-two
moduli [BCZ18]. In Section 4.2, we describe a generic hardware architecture for masked
binomial sampling. This architecture could in turn be optimized for Kyber, which uses
smaller η than Saber.

3 HW Accelerators for Linear Operations
In a masked setting, all polynomial arithmetic is duplicated. A hardware accelerator
for these operations is therefore increasingly important. As the goal of this work is to
mask Kyber and Saber, we build a unified hardware accelerator that efficiently supports
polynomial arithmetic for both schemes. A common hardware accelerator for arithmetic
operations in Kyber and Saber needs to cover a wide range of different requirements.
In this chapter, we present a novel NTT-based hardware accelerator that meets these
requirements. Due to the generic design strategy, the developed architecture automatically
covers a variety of other lattice-based schemes (see Table 1).

3.1 Number Theoretic Transform (NTT)
The NTT is an efficient method to reduce the complexity of the polynomial multiplication
from O(n2) to O(n log2(n)). It is a variant of the Fast Fourier Transform (FFT) with
operations in the field Zq instead of the complex numbers.

Let a, s ∈ Zq/φ(x) be two ring polynomials of degree n − 1. Then the polyno-
mial multiplication using the forward and inverse NTT can be computed with c =
INVNTT(NTT(a)�NTT(s)), where � denotes the coefficient-wise multiplication.

In lattice-based cryptography, the product of a polynomial multiplication of length 2n
is usually reduced by the cyclotomic polynomial φ(x) (frequently xn − 1 or xn + 1). The
polynomial reduction by xn − 1 is also referred to as positive wrapped convolution and the
reduction by xn + 1 as negative wrapped convolution. Let ωn ∈ Zq be the n-th root of
unity with ωnn = 1 mod q and ωin 6= 1 mod q for ∀i ∈ [0, n− 1]. The forward transform
of the coefficients ai and the inverse transform of âi are computed with

âi =
n−1∑
j=0

γj · ωijn · aj , ai = 1
n
· γ−i

n−1∑
j=0

ω−ijn · âj , (17)

where γ is the 2n-th root of unity γn for negative wrapped convolutions and γ = 1 for
positive wrapped convolutions. With pre- and postprocessing using the powers of γ a
length-2n NTT with zero-padding can be avoided and a length-n NTT is sufficient.



430Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Table 1: NTT parameters of several lattice-based algorithms.
Scheme n q φ(x) NTT-based dlog2(q′)e
NewHope-512/1024 512/1024 12289 xn + 1 yes 14
Kyber 256 3329 xn + 1 yes 12
Dilithium 256 8380417 xn + 1 yes 23
Falcon-512/1024 512/1024 12289 xn + 1 yes 14
Saber 256 8192 xn + 1 no 34
ntruhps2048509 509 2048 xn − 1 no 31
ntruhps2048677 677 2048 xn − 1 no 32
ntruhps4096821 821 4096 xn − 1 no 34
ntruhrss701 701 8192 xn − 1 no 36
LAC-128 512 251 xn + 1 no 25
LAC-192/256 1024 251 xn + 1 no 26

3.2 Design Rationale - NTT
Table 1 summarizes polynomial arithmetic parameters used in several lattice-based algo-
rithms. While some schemes already use parameters suitable for the NTT, others choose a
prime not suitable for a direct application of the NTT.

NTT with prime lift. The original prime q can be lifted to any ‘NTT friendly’ prime
q′ > n · q2 for an NTT-based polynomial multiplication. The intermediate values and
result of the polynomial multiplication have coefficients not larger than n · q2. If q′ is set
sufficiently large, precision errors caused by the modular arithmetic are avoided [PNPM15].
After polynomial multiplication with the NTT, the coefficients can be reduced by the
original prime q. Using signed arithmetic, the maximum absolute value of the coefficients
during the computation is n · q2/4 when the coefficients are represented in [−q/2, q/2).
Some schemes always multiply large polynomials with small polynomials sampled from the
error distribution, allowing to further decrease the value of q′. However, for schemes as
NTRU, large polynomials with coefficients in [0, q) are multiplied with polynomials having
the same coefficient range. As in this work all schemes of Table 1 shall be supported by
the same hardware architecture and unsigned arithmetic is more suitable for hardware
circuits, the rule q′ > n · q2 is applied.

All NTT-based schemes of Table 1 have primes smaller than 23 bits. To cover all
ranges, in this work, we develop a flexible Montgomery multiplier for any prime up
to 24 bits. For algorithms that are not NTT-based, a lifted prime q′ has to be found
that covers the remaining algorithms. To allow an easy reduction, the Solinas prime
q′ = 239 − 212 + 1 = 549755809793 is chosen. For this prime the condition q′ ≡ 1 mod 2n
(the prime has the form q′ = 2kp+ 1) holds and the n-th as well as the 2n-th root of unity
exists (e.g., for n ∈ [256, 512, 1024, 2048]).

Positive and negative wrapped convolution. Choosing γ = 1 or γ = γn = √ωn
with ωnn = 1 mod q, ωn−1

n = γnn = −1 mod q, and n = 2k leads to positive and negative
wrapped convolutions for NTT-based schemes, respectively. Lifting to a higher prime
only works if no reduction errors are introduced during the convolution. Negacyclic
convolutions involve negative intermediate results that lead to an erroneous output when
reduced by q′. These reductions can be avoided using signed arithmetic. For unsigned
arithmetic, polynomial multiplications with polynomials of length n′ = 2n, zero-padding,
and consecutive polynomial reduction by φ(x) can be used. Positive wrapped convolutions
can still be realized with an NTT of length n′ = n.

Incomplete NTT. The prime q is usually chosen such that φ(x) can be factored into

n = 2k linear terms φ(x) =
n−1∏
i=0

φi(x) mod q. This allows the full application of the

NTT and the basecase multiplication of two transformed polynomials corresponds to a
simple coefficient-wise multiplication. The concept of the incomplete NTT for lattice-based



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 431

cryptography was first proposed in [LS19] and a similar concept was later adopted to the
second round Kyber specification. Kyber reduced its prime value (consequently key and
ciphertext sizes) and chose a value where the n-th root of unity exists but not the 2n-th
root of unity. This prevents applying a full NTT and only l − 1 layers of the NTT are
applied resulting into n/2 polynomials of degree two. More precisely, the cyclic polynomial

is factored to φ(x) = xn + 1 =
n/2−1∏
i=0

(x2 − ω2i+1
n ) =

n/2−1∏
i=0

(x2 − ω2br(i)+1
n ) with br denoting

the bit reversal function.

NTT algorithms. When exploiting symmetry, periodicity, and scale properties of the
Fourier transformation, the complexity of Equation 17 can be reduced with an divide-
and-conquer approach from O(n2) to O(n log2(n)). The two most common methods for
splitting a large Fourier transform into smaller pieces are the Cooley-Tukey (CT) [CT65]
and the Gentleman-Sande (GS) [GS66] algorithms. The butterfly operation, which is
the main operation of these algorithms, consists of simple arithmetic in Zq. The Cooley-
Tukey decimation-in-time (DIT) approach computes x′ ← x + y · ω and y′ ← x − y · ω
with ω, x, y ∈ Zq and ω usually a power of ωn (also known as Twiddle factor). The
Gentleman-Sande decimation-in-frequency (DIF) approach computes x′ ← x + y and
y′ ← (x− y) · ω.

Different in-place variants of the Cooley-Tukey and Gentleman-Sande algorithms exist,
denoted as NTTCTbr→no, NTTCTno→br, NTTGSbr→no, and NTTGSno→br, where, e.g., no → br
indicates that the input is in normal and the output in bit-reversed order. The bit-reversal
can be completely avoided with a combination of the different variants NTTCTno→br and
INVNTTGSbr→no [POG15].

Likewise to previous works, we use different algorithms for the forward and inverse NTT
to avoid the bit-reversal step, although the bit-reversal operation is simple in hardware.
Using a DIT algorithm for the forward transform and a DIF algorithm for the inverse
transform has the further advantage that the multiplications by the powers of γn can be
integrated into precomputed tables for the Twiddle factors.

Algorithms 14 and 15 illustrate the operations for our flexible NTT. Starting with the
original NTT/INVNTT algorithms, we modify the algorithms to support an early abort for
an incomplete NTT, as required by Kyber. The incomplete NTT can be activated using
the early_abort signal. Moreover, we integrated support for either positive or negative
wrapped convolutions. The wrapping method can be switched using the negacyclic signal.
Thus, all schemes of Table 1 can use the same algorithms. Note that the INVNTT requires
a final scaling by n−1. For NTT-based schemes, the Twiddle table is stored in Montgomery
domain in order to make use of a flexible Montgomery multiplier. In negacyclic NTT-based
schemes, the Twiddle table contains n (n/2 at early aborts) merged values for the powers
of ωn and γn in bit-reversed order and the same amount of precomputed values for the
inverse transform. For schemes with positive wraparound or schemes not based on NTT,
n precomputed values of the powers of ωn are stored in the Twiddle table.

3.3 Architecture - NTT
Designing an efficient and flexible NTT with support of all mentioned lattice-based schemes
requires new design approaches and multiple components. Figure 5 illustrates the hardware
architecture of our proposed loosely coupled NTT accelerator. It consists of seven different
main modules: two RAM blocks (NTT and Twiddle RAM), four address units (NTT,
INVNTT, Point, and Wrap), and a Modular Arithmetic Unit.

NTT and Twiddle RAM. The two memory blocks are used for storing the in-
put/output coefficients and the precomputed Twiddle table, respectively. The size of
these memory blocks is chosen large enough to support all parameter sets. To increase the



432Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Algorithm 14: NTT transform
Input: a ∈ Zq/φ(x), twiddle_table,

early_abort, negacyclic
Result: â ∈ Zq/φ(x)

1 if early_abort then
2 stop← n/2
3 else
4 stop← n
5 end
6 t← n
7 for m = 1 to stop− 1 by m = 2m do
8 t← t/2
9 for i = 0 to m− 1 by 1 do

10 j1 ← 2it, j2 ← j1 + t
11 if negacyclic then
12 m′ ← m
13 else
14 m′ = 0
15 end
16 ω ← twiddle_table[m′ + i]
17 for j = j1 to j2 − 1 by 1 do
18 z1 ← aj+t · ω mod q
19 aj ← aj + z1 mod q
20 aj+t ← aj − z1 mod q

21 end
22 end
23 end

Algorithm 15: INVNTT transform
Input: â ∈ Zq/φ(x), invtwiddle_table,

early_abort, negacyclic
Result: a ∈ Zq/φ(x)

1 if early_abort then
2 m← n/2, t← 2, k ← 0
3 else
4 m← n, t← 1
5 end
6 for m to m > 1 by m = m/2 do
7 j1 ← 0
8 if negacyclic then
9 m′ ← m/2

10 else
11 m′ = 0
12 end
13 for i = 0 to m/2− 1 by 1 do
14 j2 ← j1 + t
15 if early_abort then
16 ω ← invtwiddle_table[k++]
17 else
18 ω ← invtwiddle_table[m′ + i]
19 end
20 for j = j1 to j2 − 1 by 1 do
21 z1 ← aj , z2 ← aj+t
22 aj ← z1 + z2 mod q
23 aj+t ← (z1 − z2) · ω mod q

24 end
25 j1 ← j1 + 2t
26 end
27 t← 2t
28 end

Figure 5: Loosely coupled NTT Unit (dashed lines for configuration signals).



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 433

Algorithm 16: Basecase multiplication (incomplete NTT)
Input: f̂ , ĝ ∈ Zq/φ(x), twiddle_table, invtwiddle_table
Result: ĥ = f̂ ◦ ĝ ∈ Zq/φ(x)

1 for i = 0 to n/4 by 4 do
2 ω ← twiddle_table[n/4 + i]
3 ĥ4i ← f̂4i+1 · ĝ4i+1 · ω + f̂4i · ĝ4i mod q

4 ĥ4i+1 ← f̂4i · ĝ4i+1 + f̂4i+1 · ĝ4i mod q
5 ω ← invtwiddle_table[n/4− i− 1]
6 ĥ4i+2 ← f̂4i+3 · ĝ4i+3 · ω + f̂4i+2 · ĝ4i+2 mod q

7 ĥ4i+3 ← f̂4i+2 · ĝ4i+3 + f̂4i+3 · ĝ4i+2 mod q

8 end

efficiency, the dual-port capabilities of the RAM blocks are exploited. The PKE/KEM
schemes usually have coefficients of less than 16 bits. As the deployed system is based on
a 32-bit architecture, the input data_in (and the output) can contain two coefficients in
one word.

NTT/INVNTT Address Unit. It generates the two read and write addresses to load
and store two coefficients as well as the read address for the Twiddle factor according
to Algorithms 14 and 15. The signals ntt and invntt trigger the corresponding address
computations. Optionally, early_abort and negacyclic can be set. The signal mont is
used to select the number of pipeline stages to delay the write signals according to the
delay in the arithmetic units.

Point Address Unit. It computes the addresses for pointwise multiplications, additions,
and subtractions. The signal basemul is used to select basecase multiplications at schemes
with early abort. Let f, g ∈ Zq/φ(x) and let NTT(f) ◦ NTT(g) = f̂ ◦ ĝ = ĥ denote the
basecase multiplication with n/2 products. These products are computed with

ĥ2i + ĥ2i+1x = (f̂2i + f̂2i+1x)(ĝ2i + ĝ2i+1x) mod x2 − ω2br(i)+1
n . (18)

To ideally exploit the NTT hardware architecture, we split the basecase computation into
four parts according to Algorithm 16. Each multiplication and addition step can be carried
out in n/4 cycles (plus pipeline slack), whereas the address is incremented always by four.

Wrap Address Unit. This address unit is used for schemes not based on NTT to
reduce the length-n′ polynomial product by φ(x) = xn + 1. At this negative wrapping, the
lower part of the polynomial is subtracted by the higher part.

Modular Arithmetic Unit. It performs the butterfly operation of Algorithm 14 (Lines
18-20) and Algorithm 15 (Lines 21-23). Figure 6 illustrates the architecture of this unit.
Its main components are a generic modular multiplier, a modular adder, and two mod-
ular subtractors. The signals ntt, invntt, pointwise, pointwise_add, pointwise_sub,
mul_ninv are used to configure the multiplexers to either perform DIT or DIF butter-
fly operations, pointwise multiplications (out1 = in1 · in2 mod q), pointwise additions
(out1 = in1 + in2 mod q), pointwise subtractions (out1 = in1− in2 mod q) or multipli-
cations by constants (out1 = in1 · n−1 mod q).

Generic Modular Multiplier. As stated previously, our proposed generic modular
multiplier architecture supports Montgomery modular multiplications up to 24 bits. For
multiplications with lifted primes for ‘NTT unfriendly’ schemes, it also supports modular
multiplication using a reduction-friendly Solinas prime (239 − 212 + 1). While designing
this dual multiplier, our objective has been to ensure that the architecture provides high
operating frequency with pipelining support. Moreover, costly resources like FPGA DSP
blocks are shared between the two multiplication modes.



434Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Figure 6: Modular Arithmetic Unit. Black: decimation in time, blue dashed: decimation
in frequency, gray: pipeline stages and other functionalities.

Figure 7: Architecture of dual multiplier supporting up to 24-bit Montgomery multiplica-
tions and 39-bit modular multiplications using Solinas prime P = 239 − 212 + 1.

The architecture of the proposed dual multiplier is shown in Figure 7. The multiplier
takes a and b as input multiplicands. The design also requires the Montgomery modulus
M and M ′ = −M−1 mod R, where R = 224 was chosen. The control input mont
determines whether a Montgomery multiplication or multiplication modulo Solinas prime
is executed. In Figure 7, the modules with color blue are shared between both multiplication
modes, modules with color dark gray are dedicated modules for multiplications modulo
Solinas prime, and modules with color light gray are dedicated modules for Montgomery
multiplications. As we can see, the DSP blocks and a few multiplexers are part of the
shared resources, whereas the dedicated modules contain mainly adders and subtractors.
The adders and subtractors are implemented by efficient usage of fast carry chains [KG16].
The reduction logic for multiplications modulo Solinas prime is implemented using the
target prime structure and involves only two additions and three subtraction operations.
To allow a high operating frequency, the Montgomery and Solinas multiplier have pipeline
registers included (12 and 6 stages respectively). For simplicity, the pipelining registers
are not shown in Figure 7.



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 435

Table 2: Resource and performance overview for loosely coupled NTT (measurements of
this work evaluated for Artix 7 FPGA XC7A100T).

Design Device LUTs FFs Slices DSP BRAM Max. Freq. NTT Cycles

[FS19] FPGA 980 395 − 26 2 −
n = 256: 1, 800
n = 512: 4, 616
n = 1024: 10, 248

[BUC19] ASIC (40 nm) − − − − − 72MHz
n = 256: 1, 289
n = 512: 2, 826
n = 1024: 6, 155

[MKÖ+20] FPGA

7, 400 5, 000 − 24 24 147MHz n = 256: 160
8, 100 5, 200 − 24 24 141MHz n = 512: 345

16, 000 14, 000 − 56 24 125MHz n = 1024: 490
22, 000 17, 000 − 248 96 125MHz n = 4096: 3, 276

[FSS20] FPGA/ASIC (65 nm) 2, 908/− 170a)/− − 9/− 0/− 45MHz
n = 256: 1, 935
n = 512: 8, 169b)

n = 1024: 18, 537b)

This work FPGA 2, 454 1, 917 774 7 4.5 153MHz

n = 256: 4, 096(+14/8)
n = 512: 9, 216(+14/8)
n = 1024: 20, 480(+14/8)
n = 2048: 45, 056(+14/8)
n = 4096: 98, 304(+14/8)

a) Does not include resources of register file.
b) Does not include time for bit reversal.

3.4 Results - NTT
All resource utilization and frequency results of this work are extracted after place and route
phase using Xilinx Vivado. The chosen platform of this work is the NewAE Technology
Target Board CW305 equipped with an Artix 7 FPGA XC7A100T. Table 2 compares
flexible NTT designs of previous works with our design. However, to the best of our
knowledge, none of the previous works provides a similar level of flexibility. Our design
supports the following features: 1) configurable on runtime; 2) the highest parameter range
covering all mentioned lattice-based algorithms (n up to 4096, q up to 39 bits); 3) positive
and negative convolutions; 4) early abort; 5) pointwise multiplications, additions, and
subtractions.

The amount of clock cycles of our NTT architecture is 2n · log(n) plus 14 or 8 cycles
latency depending on whether Montgomery or Solinas prime reductions are performed.
Previous works, such as [FS19, FSS20], take advantage of the small coefficient size of some
schemes and pack two coefficients in one memory line. As we also want to support large
coefficient widths, we decided to not store two coefficients in one word and also to not
compute two parallel butterfly computations. The cycle count can be further reduced
by using multiple data RAM blocks (e.g. 8 in [BUC19]) to reduce the memory access
bottleneck. This allows to load and process multiple coefficients in parallel. As shown
in [MKÖ+20], this can significantly reduce the cycle count. However, using multiple RAM
blocks and butterfly units gets extremely expensive in terms of area and also increases the
design complexity.

Due to the power-of-two modulus for Saber, using our generic NTT for polynomial
multiplications is not a natural choice. Therefore, we compare our design with alternative
multiplier strategies in Table 3. [MTK+20] presented a Saber co-processor for multipli-
cations based on the Toom-Cook algorithm. Although their design has a similar LUT
and FF consumption, they use significantly more DSP slices. Moreover, our architecture
is more flexible and supports different parameter sets. In [RB20], a high-speed school-
book multiplier with reductions by the prime 7681 is implemented that makes use of 256
multiply-accumulate units. Although it is much faster, it also comes with a huge resource
overhead and less flexibility compared to our approach. In [BR20], the approaches of
[RB20] have been further extended and optimized to require fewer resources, but also
omitting the prime reduction capability. [ZZY+20] presented a high-speed multiplier based



436Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Table 3: Resource and performance comparison for polynomial multiplication alternatives
for Saber n = 256 (measurements of this work evaluated for Artix 7 FPGA XC7A100T).

Design Algorithm Version Prime Support LUTs FFs DSP BRAM Max. Freq. Cycles
[MTK+20] Toom-Cook – no 2, 927 1, 279 38 2 125MHz 11, 835a)

[RB20] Schoolbook 256-MAC-prime yes 31, 298 25, 088 256 2 250MHz 256b)

[BR20] Schoolbook
HS-I-256 10, 844 5, 150 0

2 250MHz
256b)

HS-I-512 no 22, 118 4, 920 0 128b)

HS-II-DSP 15, 625 14, 136 128 131b)

[ZZY+20] Karatsuba – no 13, 735 4, 486 85 6 100MHz 81b)

This work NTT – yes 2, 454 1, 917 7 4.5 153MHz 19, 976c)

a) Includes only arithmetic operations in polynomial multiplication.
b) Expects coefficients to be loaded already into registers.
c) Includes memory accesses.

on the Karatsuba algorithm that again, is faster but also at a much higher resource cost.
For comparison, metrics like latency × area can be used to rank the efficiency of

designs, as multiple metrics are converted into a single value. In case of Table 3, however,
we decided to omit such a comparison. Converting the DSPs into, e.g., LUTs, can be
misleading as only a fraction of a DSP’s functionality is actually used for multiplication.
Besides that, the designs in [RB20, BR20, ZZY+20] have been implemented on Xilinx
UltraScale+ FPGAs, that come with different DSPs (DSP48E2) than the Artix-7 fabric
we used (DSP48E1). For example, [BR20] explicitly states that their optimization requires
modern DSPs with larger operand width.

Although there are much faster alternatives for the polynomial multiplication when
optimizing for Saber, the high resource cost of the designs is not suitable for our embedded
scenario. With a co-design, the extremely low latencies would not have such a strong
influence on the overall performance. Our design provides an appropriate balance between
resource cost and performance, and at the same time supports a wide range of parameters.
When optimizing for a specific algorithm, our design would even require fewer resources.
For instance, only supporting Saber or Kyber requires fewer BRAM resources as the
polynomial length is small compared to the other schemes in Table 1. Moreover, fewer
address units and pipeline registers would be required.

4 HW Accelerators for Non-Linear Operations
In this section, we describe hardware architectures for the non-linear operations of Kyber
and Saber. These operations need to combine information from both shares and therefore
require special treatment in a masked design. In contrast to the NTT accelerator, the
accelerators proposed in this section are designed for a tight processor coupling.

4.1 Masking Keccak
Most lattice-based NIST schemes use the Keccak functions SHA3 and SHAKE to create
hash outputs and pseudo-random numbers. Keccak hardware implementations have a
particularly good energy efficiency for random number generation because Keccak generates
a high amount of bits per round [BUC19]. The core operation of the Keccak algorithms is
the Keccak state permutation function f-1600. One round of this function can be split
into the following operations: Theta (θ), Rho (ρ), Pi (π), Chi (χ), and Iota (ι). While
Theta, Rho, Pi, and Iota are linear functions consisting of XOR and rotation operations,
the function Chi is a non-linear operation, which additionally requires AND as well as NOT
operations. The linear functions can be performed on the shares individually. Therefore,
we discuss in the following only the non-linear function Chi in more detail.



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 437

Figure 8: Masked Chi accelerator. Dashed lines illustrate register stages and control
signals.

Chi operation (χ). The Keccak state can be represented as a three-dimensional array
A[x, y, z] with the coordinates x ∈ [0, 4], y ∈ [0, 4], and z ∈ [0, 63]. Let A[x, y] determine
an input lane (a 64 bit word) and B[x, y] the output lane of a specific operation. The χ
operation is defined by B[x, y] = A[x, y]⊕ ((A[x+ 1, y] + 1) ∧ A[x+ 2, y]) for x and y in
[0, 4]. As proposed in [BDPVA10], the output shares B0[x, y] and B1[x, y] of the masked
input shares A0[x, y] and A1[x, y] can be computed with

B0[x, y]← A0[x, y]⊕ (A0[x+ 1, y] + 1)A0[x+ 2, y]⊕A0[x+ 1, y]A1[x+ 2, y] and (19)

B1[x, y]← A1[x, y]⊕ (A1[x+ 1, y] + 1)A1[x+ 2, y]⊕A1[x+ 1, y]A0[x+ 2, y] . (20)

If the operations in Equations 19 and 20 are executed from left to right, the authors
in [BDPVA10] argue that all intermediate computations are independent of native variables.
Instead of using fresh randomness, different parts of the state are reused to form independent
computations.

To accelerate the computations in Equations 19 and 20, we developed the hardware
design of Figure 8. The accelerator consists of three steps. In the first step, for each
share, five 32-bit lanes of a fixed y coordinate are loaded via a secure address decoder into
two separated register files. Depending on the address value, the input in1 and in2 are
either stored in the registers Reg A1 or Reg A2. In the second step, the Chi operation is
computed. Therefore, Equation 19 is split into two parts: B̂0[x, y] = A0[x, y] + (A0[x+
1, y] + 1)A0[x+ 2, y] and B0[x, y] = B̂0[x, y] +A0[x+ 1, y]A1[x+ 2, y]. Equation 20 is split
in the same way. While the first part contains only computations with a single share,
the second part includes both shares. However, the critical shares are already blinded
by independent state bits. To avoid leakages due to glitch effects, the computations are
separated by registers. Finally, the result of the Chi operation is written to the output
and the next 32-bit lanes can be loaded. This procedure requires 2× 5 repetitions until
the whole Chi operation is performed. Loading the complete states into an accelerator
would only lead to a small performance improvement as the actual Chi computation of the
proposed accelerator requires only two cycles. However, it would significantly increase the
area costs.



438Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Figure 9: Bit-slicing accelerator. Dashed lines illustrate control signals.

4.2 Masking Binomial Sampling
Many efficient LWE-based schemes require sampling from a centered binomial distribution.
A centered binomial sample can be retrieved by

Ψη =
η−1∑
i=0

(xi − x′i) mod q , (21)

with xi and x′i denoting the bits of uniformly distributed η-bit integers.
The authors in [SPOG19] proposed two different masked sampling methods for software

implementations. The first method, which is based on [OSPG18], was specially designed for
first-order masked implementations. The second method turns the input into a bit-sliced
representation and computes the Hamming weight of x and x′ using a secure AND function.

In this work, we develop a generic binomial sampling accelerator suitable for various
values of η. More specifically, Kyber-512 (η = 2, η = 3), Kyber-768 (η = 2), Kyber-1024
(η = 2), Lightsaber (η = 5), Saber (η = 4), and Firesaber (η = 3) are supported with the
same architecture. Our proposed architecture is based on the second software method
presented in [SPOG19]. Two separate accelerators were developed for performing the
binomial sampling. This includes a bit-slicing accelerator and a masked adder tree.

Bit-slicing accelerator. The bit-slicing method allows computing multiple samples in
parallel. Although still more efficient than non-bit-slicing approaches, the conversion from
the Keccak output into bit-sliced format turns out to be relatively costly in software if the
sampling is performed according to the specification of, e.g., Kyber or Saber [BDK+21].
However, in hardware turning the Keccak output into bit-sliced format corresponds to a
simple rewiring. Figure 9 shows the top-level architecture of the bit-slicing accelerator.
The uniformly distributed Keccak squeeze is stored in up to 2ηmax registers within the
accelerator with ηmax = 5. The transformation in the accelerator is performed according
to Algorithm 17 for different values of η. Depending on the value of addr, the address
decoder at the output selects the desired 32-bit values of xi[0 : 31] or x′i[0 : 31] with
i ∈ [0, η − 1]. The bit-slicing accelerator also supports the reverse operation for unpacking
bit-sliced values of xi[0 : 31] into normal representation.

Masked adder tree. After transforming the Keccak squeeze into bit-sliced format, the
two sums s[0 : 31] =

∑η−1
0 xi[0 : 31] and s′[0 : 31] =

∑η−1
0 x′i[0 : 31] must be computed

and subtracted according to Equation 21, where this time i denotes the index of 32-bit
variables and not the bit location. Note that these sums compute 32 binomial samples in
parallel. These computations can be performed in hardware using the adder tree shown
in Figure 10 (a). To simplify the subsequent description of the binomial sampler, the
brackets are omitted, e.g., instead of xi[0 : 31] we write xi. The adder tree consists of η



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 439

Algorithm 17: Bit-slicing transform η

Input: Byte array b = {b0, b1, . . . , b8η−1} ∈ B8η with B denoting the set [0, 255]
Result: Bit-sliced 32-bit terms xi[0 : 31], and x′i[0 : 31] with i ∈ [0, η − 1]

1 s← BytesToBitstream(b)
2 for i = 0 to 31 by 1 do
3 for j = 0 to η − 1 by 1 do
4 xj [i]← (s� (2η · i+ j)) ∧ 1
5 x′j [i]← (s� (2η · i+ j + η)) ∧ 1
6 end
7 end

stages with η half adders each. The computation of the binomial sampling can be split
into two steps. In the first step, the sum s is computed using the input x and z, whereas
z is initially set to zero. Now, in each stage, the 32-bit values of x are subsequently added
to the intermediate sum of the previous stage. The carries of these computations are
always forwarded to the next half adder of the same stage and the intermediate sums are
forwarded to the next stage. After η stages the circuit outputs the sum s. In the second
step, the sum of the previous step is assigned to the input z = s and additions with the
inverse of x′ are performed within the stages. This corresponds to the desired subtraction
of s and s′.

Masked adder tree based on TI. Let the sum and carry computations in the
adder tree be split into two functions f1 : (x0, z0) → (s0) with s0 = x0 ⊕ z0 and
f2 : (ci−1, zi−1, zi) → (ci, si) with ci = (ci−1 ∧ zi−1) and si = zi ⊕ ci for i 6= 0. The
direct sharing approach presented in [BNN+12] can be used to construct functions that
are in accordance to the TI principles. With the three input shares of x{0:2}

i , the sum
s
{0:2}
i and carry c{0:2}

i can be computed with the following splits:

s0
0 = x0

0 ⊕ z0
0 , s1

0 = x1
0 ⊕ z1

0 , s2
0 = x2

0 ⊕ z2
0 (22)

c0
i = (c1

i−1 ∧ z1
i−1)⊕ (c1

i−1 ∧ z2
i−1)⊕ (c2

i−1 ∧ z1
i−1); s0

i = z0
i ⊕ c0

i (23)
c1
i = (c2

i−1 ∧ z2
i−1)⊕ (c0

i−1 ∧ z2
i−1)⊕ (c2

i−1 ∧ z0
i−1); s1

i = z1
i ⊕ c1

i (24)
c2
i = (c0

i−1 ∧ z0
i−1)⊕ (c0

i−1 ∧ z1
i−1)⊕ (c1

i−1 ∧ z0
i−1); s2

i = z2
i ⊕ c2

i (25)

While the linear functions in these equations can always be computed with a single share,
for the non-linear functions, at least one share is always missing during the computations
(non-completeness property). When converting the proposed adder tree using TI principles
and the functions f1 and f2, the architecture of Figure 10 (b) is obtained. It is not possible
to fulfill the uniformity property of a non-linear Boolean operation that has two inputs and
one output [NRS11]. Therefore, the uniformity property for each output of the function f2
needs to be recovered using fresh randomness. Changing the adder tree to use full adders
where three-input operations are used to avoid the refreshing step is theoretically possible.
However, such an architecture would lose the flexibility as for each η another circuit would
be required. Therefore, another alternative to reduce the randomness requirements is
investigated.

Masked adder tree based on DOM. When the uniformity property is preserved,
secure TI implementations can be realized with a low amount of randomness. As this is
not the case for our adder tree and the generation of fresh randomness is in most platforms
expensive, we investigate the behavior of the adder tree architecture with DOM principles.
As shown in Figure 10 (c), the DOM approach significantly reduces the complexity. Instead
of three instances of f1 and 3 · (ηmax−1) instances of f2 in each level only two and ηmax−1



440Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

instances are required, respectively, when using the DOM approach. The computation
ci = (ci−1 ∧ zi−1) in f2-DOM is realized with the secure DOM-AND. For the generation of
32 binomially distributed coefficients, the adder tree based on TI requires 4·ηmax ·(ηmax−1)
random 32-bit values plus (2 ·ηmax) values for randomizing the zero-input of z. In contrast,
the DOM approach requires 2 · ηmax · (ηmax − 1) plus ηmax random values. For instance,
with ηmax = 5 the amount of randomness reduces from 90× 32-bit to 45× 32-bit.

4.3 Secure Adder
The secure arithmetic addition for masked Boolean shares is an essential element for the
generic B2A and A2B conversions. Two secure adder designs based on the ripple-carry
adder and a pipelined Kogge-Stone adder were proposed in [SMG15]. The Kogge-Stone
adder achieves a lower latency as it belongs to the class of carry-lookahead adders. It splits
the carry computation into a generate and propagate part. Due to its good performance,
the suggested Kogge-Stone adder suits well to our application and the proposed architecture
was adopted for our design. The TI-based Kogge-Stone adder for three shares, shown in
Figure 11, is constructed using three stages for performing 4-bit additions. The vertical
stages create propagate bits p{0:2}

i and generate bits g{0:2}
i . The first stage, requires the

linear function f1 : (x{0:2}
i ,y

{0:2}
i )→ p

{0:2}
i with

p0
i = x0

i ⊕ y0
i , p1

i = x1
i ⊕ y1

i , p2
i = x2

i ⊕ y2
i (26)

and the non-linear function f2 : (x{0:2}
i ,y

{0:2}
i , ri)→ g

{0:2}
i with

g0
i = (x1

i ∧ y1
i )⊕ (x1

i ∧ y2
i )⊕ (x2

i ∧ y1
i )⊕ ri , (27)

g1
i = (x2

i ∧ y2
i )⊕ (x0

i ∧ y2
i )⊕ (x2

i ∧ y0
i )⊕ (x0

i ∧ ri)⊕ (y0
i ∧ ri) , (28)

g2
i = (x0

i ∧ y0
i )⊕ (x0

i ∧ y1
i )⊕ (x1

i ∧ y0
i )⊕ (x0

i ∧ ri)⊕ (y0
i ∧ ri)⊕ ri . (29)

The remaining stages require f2 and f3 : (g{0:2}
i+j , g

{0:2}
i ,p

{0:2}
i+j )→ g

{0:2}
i+j with j = 2stage−1

and
g0
i+j = (g1

i ∧ p1
i+j)⊕ (g1

i ∧ p2
i+j)⊕ (g2

i ∧ p1
i+j)⊕ g1

i+j , (30)

g1
i+j = (g2

i ∧ p2
i+j)⊕ (g0

i ∧ p2
i+j)⊕ (g2

i ∧ p0
i+j)⊕ g2

i+j , (31)

g2
i+j = (g0

i ∧ p0
i+j)⊕ (g0

i ∧ p1
i+j)⊕ (g1

i ∧ p0
i+j)⊕ g0

i+j . (32)

While the first stage requires further randomness for recovering the uniformity property
after f2, the remaining stages can use the independent bit values of g0

i instead of ri to
keep uniformity.

4.4 Results - Non-Linear Accelerators
Table 4 summarizes the resource utilization and performance of our HW accelerators
presented in this section evaluated for the Artix 7 FPGA XC7A100T. Critical signals and
components that involve non-linear operations were defined with the Verilog dont_touch
attribute, preventing the synthesis tool from optimizations. Without this attribute, a lower
resource utilization and better performance can be expected. Nevertheless, we chose the
safe option and accept these drawbacks.

The cycle counts in Table 4 are the latencies within the accelerator. Cycles for loading,
storing, and clearing the input/output operands are excluded. From a system perspective,
the accelerator latencies are partially hidden by the loading operations. As an example,
consider the masked adder trees for the binomial sampling accelerator shown in Figure 10.
If the shares associated with x4 are the last operands to be loaded, all previous stages can



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 441

(a) Adder tree for binomial sampling accelerator

(b) Masked adder tree for binomial sampling accelerator (TI)

(c) Masked adder tree for binomial sampling accelerator (DOM)

Figure 10: Adder tree for binomial sampling (Binom Tree) with ηmax = 5.



442Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Figure 11: Secure Kogge-Stone adder (SecAdd) for 4-bit additions.

Table 4: Resource and performance overview for the non-linear accelerators (measurements
of this work evaluated for Artix 7 FPGA XC7A100T).

Design LUTs FFs Slices DSP BRAM Max. Freq. Cycles
Keccak (f-1600) [FSS20] 3, 847 0 – 0 0 – 1/round
Keccak (f-1600) 3, 100 0 920 0 0 303MHz 1/round
Masked Chi 1, 488 971 632 0 0 370MHz 2
Bit-slice 277 320 123 0 0 357MHz 0
Binom Tree (DOM) 5, 352 2, 570 1, 706 0 0 112MHz 9
Binom Tree (TI) 9, 232 4, 166 2, 839 0 0 140MHz 9
Secure Adder (TI) [SMG15] 937a) 1, 330a) – 0 0 62MHz 6
Secure Adder (TI) 2, 464 1, 323 1, 054 0 0 454MHz 6 (7)
a) Does not contain resources for secure address decoder and no support for an input carry.

already compute their results and only the last adder stage would account for an effective
latency of 4 clock cycles.

To the best of our knowledge, no HW/SW codesign of Keccak that supports masked and
non-masked operations was published so far. The fully masked HW designs [BDPVA10,
GSM17, ABP+18] report only ASIC results in gate equivalents making it difficult to
compare with our FPGA results. The tightly-coupled f-1600 accelerator in [FSS20] only
supports non-masked computations. Our f-1600 accelerator supports complete round
computations for non-masked and incomplete round computations (only Theta, Rho, Pi)
for masked operations. The Chi accelerator is used to securely accelerate the non-linear
operation of Keccak.

The results show that the DOM variant of the binomial sampling accelerator (Binom
Tree) does not only decrease the amount of randomness that is required but also leads to
a significant area reduction when compared to the TI variant. Therefore, in the remainder
of this article, only the DOM variant is considered for further measurements.

Compared to [SMG15], our secure adder is very similar. Both are designed for 32-
bit operations. The higher resource consumption can be explained by the dont_touch
attributes, an additional secure address decoder and an additional feature that allows to
compute 32-bit additions with and without input carry. While Saber requires only 16-bit
and Kyber 24-bit additions (in the compression, see Section 2.2), the computations with
input carry can become important for schemes with a larger parameter set or higher-order
masking. Note that if the input carry is enabled, our adder takes one additional clock
cycle.



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 443

Figure 12: RISC-V system with masked post-quantum accelerators.

5 System Integration

RISC-V is an open ISA based on the Reduced Instruction Set Computer (RISC) principles.
Due to its open-source character, RISC-V has meanwhile achieved a wide distribution
in academia but also in industry. Several open-sourced RISC-V processor designs were
proposed in the last years. One of the most popular processors is the 32-bit solution
CV32E40P (formerly RI5CY) from the Parallel Ultra Low Power (PULP) project8. The
CV32E40P core, originally developed by ETH Zürich and the University of Bologna,
is an in-order execution core with four pipeline stages. It supports the complete base
integer instruction set (I) and the extensions for compressed instructions (C) as well as
multiplication instructions (M). Optionally, the extension for single-precision floating-point
instructions (F) can be used. Additionally, the core features some custom ISA extensions
such as hardware loops, post-incrementing load and store operations, and bit-manipulation
operations in order to optimize the core for low-power signal processing applications.

Without further optimization for post-quantum applications, the processor’s perfor-
mance is significantly lower compared to the performance of the popular ARM Cortex-
M4 [FSS20], which is probably the most used embedded evaluation platform for cryptogra-
phy in academia. Nevertheless, the core is completely written in SystemVerilog and highly
suitable for custom extensions and core modifications. This makes the core well suited for
the evaluation of our accelerators developed in this project.

Figure 12 shows the architecture of our system. Its main components are a RISC-
V processor including our tightly coupled accelerators (Keccak, Chi, Bit-slice, Binom
Tree, Secure Adder), a loosely coupled NTT accelerator, an instruction memory, one data
memory (optional second data memory), and a set of peripherals (UART, SPI, I2C, GPIO).

In addition to our custom accelerators, the RISC-V core includes the following com-
ponents: prefetch buffer, instruction decoder, General Purpose Register (GPR), Floating
Point Register (FPR), ALU, Control Status Register (CSR), multiplication unit, Load
Store Unit (LSU).

As we make use of the optional FPR for the Keccak f-1600 accelerator, the instruction
decoder also has to support the corresponding load and store instructions. Apart from
that, we do not make use of any floating-point extensions and thus, we did not include the
dedicated Floating Point Unit (FPU) or support of any other floating-point instructions.

8https://pulp-platform.org, https://github.com/pulp-platform

https://pulp-platform.org
https://github.com/pulp-platform


444Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

5.1 Architectural Leakage Reduction
Storing two shares in the same register file can lead to exploitable leakages, even if both
shares are not accessed simultaneously [SR15]. The reason is that the registers can be
connected to the same internal bus and combinatorial circuit. Although influencing the
performance, in this work, only one share is located within the registers at one time step.
Before processing the second share, the first share is cleared.

At the non-linear accelerators in the EX stage, the shares are stored always in different
register files. Optimizations are turned off by dont_touch attributes. Register values are
only accessed via a secure address decoder, which first computes a select signal before
accessing one of the register banks. Moreover, addresses are one-hot encoded to avoid
problems during address switches.

The pipeline registers between the ID and EX stage are another typical source of
leakage at the transition of operations with another share. This affects three operand
registers for the ALU, multiplier unit, and post-quantum accelerators, respectively. These
pipeline registers must be cleared after critical operations. Moreover, the serial divider,
which is capable of performing divisions and remainder computations, contains pipeline
registers that have to be cleared to avoid leakages.

In an FPGA design, the instruction and data memories are constructed using BRAM
resources. The main elements of a BRAM are an input register, memory array, output
latch, and an optional output register to improve the critical path. Overwriting one of
the registers/latches with another share can lead to exploitable leakages [BDGH15]. The
routing nets in the memory array have buffers to improve the signal quality. Charging and
discharging the nets can thus lead to amplified leakages. To avoid such effects a separated
second data memory is placed in the design. It can be optionally used to clearly separate
the shares for critical operations. Variables can be relocated using the section attribute
of the compiler.

5.2 Accelerator Integration
In the presented architecture, two different accelerator types are used. While the NTT
accelerator is loosely coupled to the processor and connected to an AXI bus, the Keccak,
Chi, Bit-slice, Binom Tree, and Secure Adder accelerators are tightly coupled and directly
integrated into the RISC-V processor.

The authors in [FSS20] and [AEL+20] have shown that the NTT is also well suited
for tightly coupled accelerators. However, these previous works focused on schemes with
16-bit coefficients. In this work, bit sizes up to 39-bit are supported to cover all main
lattice-based schemes. The 39-bit NTT operations are not very suitable for ISA extensions
because two registers or memory lines would be required in a 32-bit architecture for a
single operand. This doubles load/store latencies and complicates instruction encodings.
Computing the convolution using the Chinese Remainder Theorem (CRT) turned out to
be less efficient [FSS20]. A loosely coupled approach is therefore the preferred solution to
clearly separate the 39-bit operations within the NTT and the 32-bit operations of the
processor.

The accelerator configuration registers and NTT memory are memory-mapped. Table 9
of Appendix A summarizes the memory map of the platform. The addresses starting
at 0x1B10 8000 include: i) the parameters offset_1, offset_2, offset_3, n−1, q, and q̂,
ii) a configuration register containing the polynomial length n and the configuration
signals mont, negacyclic, early_abort, ntt, invntt, pointwise, basemul, wrapping,
mul_ninv (see Section 3.3).

Similar to [FSS20], the Keccak accelerator for the f-1600 round function is placed in
the ID stage because this accelerator requires parallel access of 50 registers, which are in
the same processor stage. To be more precise, the temporary registers t0–t6, the saved



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 445

registers s1–s11, and the floating point registers f0–f31 are connected in parallel to the
f-1600 accelerator. All remaining accelerators require at most three input and one output
operand and are placed similar as the ALU in the EX stage.

Table 9 also provides an overview about the ISA extensions developed in this work. All
instructions are mapped to the opcode 0x77. The instructions are all single-cycled except
of pq.mbinc, pq.mbincinv, pq.mchic, pq.maddc, and pq.maddcc (see Section 4.4).

The Keccak instruction can be configured to perform complete and incomplete rounds.
The register of rs1 controls this configuration together with the reset functionality. Reg-
ister rs2 is used for the Keccak round selection. The remaining accelerators have write
instructions (input in rs1/rs2, address in rd) and read instructions (output and address
in rd) to securely copy the shares between register file and accelerator. In addition to
the compute operation, the Binom Tree accelerator has instructions for resetting z{0:2}

and copying the sum s{0:2} to the input z{0:2}. The instruction pq.mbincinv is used for
computing the subtraction.

5.3 Results - System Integration

Table 5 states the resource consumption and performance of the whole RISC-V system as
shown in Figure 12 for three different configurations and provides a comparison to related
works.

The first configuration is the standalone architecture consisting only of the basic RISC-
V system without any accelerators, FPU or FPR. This serves as baseline for comparison
with our accelerator extensions.

The second configuration consists of the accelerated architecture that includes the
loosely coupled NTT and the tightly coupled Keccak accelerator. The FPR is enabled as
it is specifically used to store the Keccak state and thus, can be considered being part of
the accelerator. This accounts for roughly 400 LUTs and 1026 FFs (125 Slices). Compared
to the standalone version, the LUT consumption increases by a factor of 1.59, the FF and
Slice consumption by a factor of 1.42 and 1.42, respectively. As the longest path in the
design lies not within the accelerators, the maximum frequency remains at 62MHz.

The third configuration further enables the masked accelerators, i.e. the Secure Adder,
Binom Tree, Chi, and Bit-slice accelerators. In addition to that, the optional second data
memory is instantiated to allow domain separation of the data shares and thus, accounts
for the increase of BRAM usage. Compared to the accelerated version, the LUT/FF/Slice
consumption increases by a factor of 1.44/1.45/1.41. Although the accelerators still do
not contain the longest path in the design, the maximum frequency slightly decreases.
This is most likely caused by the reduced routing capabilities due to increased resource
consumption.

When comparing our accelerated version with [FSS20], it can be observed that the
amount of LUTs is lower and the amount of FFs slightly higher. Although our NTT
multiplier supports a wider input range, we require fewer DSP slices. This can be explained
by the manually optimized DSP mapping and because only a single multiplier instead
of two multipliers in parallel are used. Due to the loose NTT accelerator coupling, the
BRAM utilization increased. A direct resource comparison to [AEL+20] is barely possible
as a completely different platform was used. However, the resource overhead in [AEL+20]
is expected to be smaller as only a single Barrett multiplier is added to the original core.



446Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Table 5: Resource overview and estimated max. frequency for the system with and without
accelerators (measurements of this work evaluated for Artix 7 FPGA XC7A100T).

Design Platform LUTs FFs Slices DSP BRAM Max. Freq.
Standalone (this work) PULPino 13, 010 8, 318 4, 821 6 32 62MHz
Accel. Flex 35T [AEL+20] a) VexRiscv 1, 907 1, 658 – 7 34 59MHz
Accel. RISQ-V [FSS20] PULPino 24, 306 10, 837 – 18 32 NAb)

Accel. (this work) PULPino 20, 697 11, 833 6, 852 13 36.5 62MHz
Accel. masked (this work) PULPino 29, 889 17, 152 9, 641 13 52.5 58MHz
a) VexRiscv is a completely different RISC-V platform. As the presented resources of this work and [FSS20]
include the whole PULPino platform (with UART, SPI, I2C, . . . ) a direct comparison is not possible.

b) Frequency was only evaluated for ASIC (see Table 6).

Table 6: Resource overview and estimated max. frequency ASIC synthesis (UMC 65 nm)
Cell Count Cell Area Cell Area Cell Area Max. Freq.

Combinatorial [µm2] Sequential [µm2] Memory [µm2]
Standalone [FSS20] 36, 173 78, 676 (55 kGE) 92, 304 (64 kGE) 669, 346 (465 kGE) 79.66MHz
Accel. RISQ-V [FSS20] 57, 413 143, 198 (99 kGE) 102, 273 (71 kGE) 669, 346 (465 kGE) 45.47MHz
Accel. (this work) 63, 119 148, 838 (103k GE) 130, 779 (91 kGE) 992, 336 (689 kGE) 79.74MHz
Accel. masked (this work) 82, 681 192, 726 (134 kGE) 180, 046 (125 kGE) 1, 327, 008 (922 kGE) 78.33MHz

ASIC Exploration Results. Table 6 summarizes the resource overview of an ASIC
UMC 65 nm synthesis. The same technology and low leakage library with high threshold
voltage were chosen as in [FSS20]. This choice trades performance in favor of a low power
and energy consumption and is thus well suited for embedded devices. The overhead for
our accelerated and masked design behaves similarly as for the FPGA synthesis.

Compared to [FSS20], our accelerated design requires a similar amount of combinatorial
cells and about 28 % more sequential cells. The memory size is due to the loosely coupled
NTT about 33 % larger as in [FSS20]. While FPGAs offer a high amount of BRAMs with
dual port capabilities, for ASIC designs, memory is usually very costly. However, one
advantage of an ASIC design is the higher flexibility as also the unusual word length of
39-bit can be directly supported. Our NTT design uses one dual port RAM (207, 178µm2)
for the coefficients and one single port RAM (115, 812µm2) for the Twiddle factors (each
of size 4k × 39-bit). When only Kyber and Saber are targeted also smaller memory sizes
would be sufficient. For example, for a 1k × 39-bit single port RAM the area reduces to
37, 526µm2.

In addition to the memory blocks, a further challenge for converting our FPGA to an
ASIC design is the DSP optimized dual multiplier of the NTT discussed in Section 3.2.
The asymmetric structure of the DSP multipliers is also efficiently realizable with the
Cadence ChipWare multiplier. To verify this, we compared an asymmetric 26× 18 with a
symmetric 22× 22 multiplier. The critical path is for both 8.3ns and the cell count is only
slightly different 902 (symmetric) and 934 (asymmetric). For this reason, we decided to
replace the DSP slices directly with the asymmetric ChipWare multipliers. Finally, some
manually FPGA optimized carry chain instances were modified to generic primitives.

6 Experimental Results
This section provides an overview of the performance results for the optimized non-masked
and masked implementations of Kyber and Saber, and the leakage assessment of our
routines and accelerators.

6.1 Performance Unmasked Implementations
We evaluated the cycle count for Kyber and Saber with different parameter sets (NIST
Levels I, III, V). Our source code for the accelerated implementations was compiled



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 447

with optimization flag -O3. Table 7 summarizes our benchmark results and provides a
comparison to related works. For the non-masked accelerated version, only the loosely
coupled generic NTT unit and the Keccak f-1600 accelerator are used.

The cycle count comparison between our work and the pure software RISC-V implemen-
tations in [FSS20] and [Gre20] show that the integration of hardware accelerators and ISA
extensions can lead to clear improvements. Also, the assembly-optimized implementations
with the superior ARM Cortex-M4 instruction set cannot compete with our codesign. We
achieve cycle count improvement factors of 3.47 for Kyber-768 and 2.63 for Saber (whole
algorithm execution).

The proposed ISA extension for finite field operations in [AEL+20] already achieves
a good cycle count reduction. However, the stronger accelerators of our work and the
additional integration of a Keccak accelerator show a further major reduction, e.g, improve-
ment factor of 7.06 for Kyber-1024 compared to [AEL+20] (whole algorithm execution).
Clearly, it has to be noted that more powerful accelerators are larger, which, however, is
justified by the achieved performance gain.

When compared to the RISC-V design in [FSS20], we achieved a performance improve-
ment factor of 1.14 for Kyber-768 and 3.30 for Saber (whole algorithm execution). Due to
the genericity of our NTT unit, a clear performance advantage for the non-NTT based
scheme Saber gets visible. While the tightly coupled NTT design in [FSS20] can be used
for Saber only with a costly CRT decomposition and is thus not faster as accelerated
Karatsuba/Toom-Cook approaches, our work is directly suitable for a variety of lattice
schemes without any hardware changes. Although [FSS20] tailored their design for the
small coefficient size of Kyber and two butterfly operations are computed in parallel, we
still achieved slightly better performance results. This is mainly achieved due to the flexible
and efficient basecase multiplication for incomplete NTTs that is directly integrated within
the accelerator. If optimizing for a single NTT-based scheme, like Kyber, the tightly
coupled approach has also some advantages including the reduced communication overhead
between core and accelerator and the better access to the system memory.

Further cycle count improvements can be achieved with co-processor solutions where
the main processor is mostly used for configuration purposes as in Sapphire [BUC19] and
VPQC [XHY+20]. These almost standalone solutions compute large parts of the complete
scheme within the accelerator. However, we focus on a solution that uses the RISC-V
processor as the main computing element to keep the flexibility high. This facilitates
spontaneous algorithmic changes and the integration of SCA countermeasures.

It has to be noted that the matrix-vector multiplications in MLWE/MLWR schemes
require to multiply different ring elements from the matrix with always the same vector.
To optimize the AXI communication overhead and the NTT computation costs, we leave
the transformed vector within the NTT memory. Moreover, we only load the result from
the NTT memory when subsequent operations like polynomial additions/subtractions are
completed. For Saber, the number of NTT calls could be further reduced when deviating
from the specifications and test vectors. For example, the public matrix A in Kyber is after
the sampling already assumed to be in the NTT domain and ring elements are transferred
in the NTT domain.

Only small deviations of the code size are visible when compared to the ISA extensions
in [FSS20]. When compared to a baseline implementation on RISC-V, the code size is still
significantly smaller as more complex operations are performed with fewer instructions.

6.2 Performance Masked Implementations
This section provides an overview of our results for the masked Kyber and Saber implemen-
tations and compares to prior and concurrent works [OSPG18, BDK+21, BGR+21]. The
masked RLWE implementation presented in [OSPG18] is based on the NewHope algorithm,
which has many similarities to Kyber. Both are NTT-based and use a prime modulus,



448Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Table 7: Cycle count and code size in bytes non-masked and optimized (-O3, GCC
PULPino RISC-V compiler 7.1.1 20170509).

Algorithm Device Key gen. Encaps. Decaps. Code size
Kyber-512 [KRSS18] ARM M4 514, 291 (×4.42) 652, 769 (×3.71) 621, 245 (×3.33) 11, 000
Kyber-512 [AABCG20] ARM M4 455, 191 (×3.91) 586, 334 (×3.33) 543, 500 (×2.92) –
Kyber-512 [Gre20] RISC-V (VexRiscv) 1, 218, 557 (×10.46) 1, 592, 689 (×9.05) 1, 515, 876 (×8.13) –
Kyber-512 opt. [AEL+20] RISC-V (VexRiscv) 710, 000 (×6.10) 971, 000 (×5.52) 870, 000 (×4.67) –
Kyber-512 baseline [FSS20] RISC-V (PULPino) 1, 137, 052 (×9.76) 1, 547, 789 (×8.79) 1, 525, 621 (×8.19) 16, 928
Kyber-512 opt. [FSS20] RISC-V (PULPino) 150, 106 (×1.29) 193, 076 (×1.10) 204, 843 (×1.10) 12, 532
Kyber-512 opt. (this work) RISC-V (PULPino) 116, 454 (×1.00) 176, 034 (×1.00) 186, 341 (×1.00) 14, 208
Kyber-768 [KRSS18] ARM M4 976, 757 (×4.57) 1, 146, 556 (×3.85) 1, 094, 849 (×3.50) 11, 400
Kyber-768 [AABCG20] ARM M4 864, 008 (×4.04) 1, 032, 540 (×3.46) 969, 867 (×3.10) –
Kyber-768 [Gre20] RISC-V (VexRiscv) 2, 288, 109 (×10.70) 2, 771, 517 (×9.30) 2, 653, 584 (×8.48) –
Kyber-768 baseline [FSS20] RISC-V (PULPino) 2, 102, 505 (×9.83) 2, 625, 824 (×8.81) 2, 573, 963 (×8.22) 17, 266
Kyber-768 opt. [FSS20] RISC-V (PULPino) 273, 370 (×1.28) 325, 888 (×1.09) 340, 418 (×1.09) 11, 658
Kyber-768 opt. (this work) RISC-V (PULPino) 213, 862 (×1.00) 298, 048 (×1.00) 313, 034 (×1.00) 13, 028
Kyber-1024 [KRSS18] ARM M4 1, 575, 052 (×5.92) 1, 779, 848 (×4.83) 1, 709, 348 (×4.35) 12, 424
Kyber-1024 opt. [AABCG20] ARM M4 1, 404, 695 (×5.28) 1, 605, 707 (×4.36) 1, 525, 805 (×3.88) –
Kyber-1024 [Gre20] RISC-V (VexRiscv) 3, 686, 344 (×13.85) 4, 280, 420 (×11.62) 4, 123, 722 (×10.50) –
Kyber-1024 [AEL+20] RISC-V (VexRiscv) 2, 203, 000 (×8.28) 2, 619, 000 (×7.11) 2, 429, 000 (×6.18) –
Kyber-1024 baseline [FSS20] RISC-V (PULPino) 3, 378, 603 (×12.69) 4, 024, 887 (×10.93) 3, 949, 039 (×10.05) 17, 670
Kyber-1024 opt. [FSS20] RISC-V (PULPino) 349, 673 (×1.31) 405, 477 (×1.10) 424, 682 (×1.08) 12, 874
Kyber-1024 opt. (this work) RISC-V (PULPino) 266, 209 (×1.00) 368, 409 (×1.00) 392, 873 (×1.00) 14, 442
Lightsaber [KRSS18] ARM M4 459, 965 (×3.12) 651, 273 (×3.23) 678, 810 (×3.00) 44, 916
Lightsaber [MKV20] ARM M4 466, 000 (×3.16) 653, 000 (×3.24) 678, 000 (×2.99) –
Lightsaber [CHK+21] ARM M4 360, 000 (×2.44) 513, 000 (×2.55) 498, 000 (×2.20) –
Lightsaber baseline [FSS20] RISC-V (PULPino) 1, 071, 836 (×7.27) 1, 503, 594 (×7.46) 1, 537, 939 (×6.79) 18, 772
Lightsaber opt. [FSS20] RISC-V (PULPino) 366, 837 (×2.49) 526, 496 (×2.61) 657, 583 (×2.90) 12, 544
Lightsaber opt. (this work) a) RISC-V (PULPino) 147, 472 (×1.00) 201, 457 (×1.00) 226, 528 (×1.00) 11, 442
Saber [KRSS18] ARM M4 896, 035 (×3.84) 1, 161, 849 (×3.72) 1, 204, 633 (×3.43) 44, 468
Saber [MKV20] ARM M4 853, 000 (×3.65) 1, 103, 000 (×3.52) 1, 127, 000 (×3.21) –
Saber [CHK+21] ARM M4 658, 000 (×2.82) 864, 000 (×2.77) 835, 000 (×2.38) –
Saber baseline [FSS20] RISC-V (PULPino) 2, 110, 283 (×9.04) 2, 737, 181 (×8.76) 2, 797, 400 (×7.96) 17, 912
Saber opt. [FSS20] RISC-V (PULPino) 760, 893 (×3.26) 1, 000, 043 (×3.20) 1, 201, 524 (×3.42) 11, 802
Saber opt. (this work) a) RISC-V (PULPino) 233, 452 (×1.00) 312, 477 (×1.00) 351, 370 (×1.00) 10, 988
Firesaber [KRSS18] ARM M4 1, 448, 776 (×4.13) 1, 786, 930 (×3.94) 1, 853, 339 (×3.63) 44, 184
Firesaber [MKV20] ARM M4 1, 340, 000 (×3.82) 1, 642, 000 (×3.62) 1, 679, 000 (×3.29) –
Firesaber [CHK+21] ARM M4 1, 008, 000 (×2.88) 1, 255, 000 (×2.77) 1, 227, 000 (×2.40) –
Firesaber baseline [FSS20] RISC-V (PULPino) 3, 427, 099 (×9.78) 4, 215, 630 (×9.29) 4, 328, 885 (×8.47) 17, 794
Firesaber opt. [FSS20] RISC-V (PULPino) 1, 300, 272 (×3.71) 1, 622, 818 (×3.58) 1, 898, 051 (×3.71) 11, 680
Firesaber opt. (this work) RISC-V (PULPino) 350, 524 (×1.00) 453, 564 (×1.00) 511, 088 (×1.00) 11, 070

a) Parameter sets with large error distributions (Lightsaber and Saber) can slightly benefit from a binomial sampling accelerator
as proposed in [FSS20]. Saber, e.g, with such an accelerator requires K:229,405, E:308,430, D:347,323 cycles. Although such an
accelerator is small (124 LUTs in [FSS20]), for simplicity and as it is not usable for the masked setting, we leave this accelerator out
in the remaining analysis.



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 449

Table 8: Cycle count and code size in bytes masked (-O3, GCC PULPino RISC-V compiler
7.1.1 20170509).

Algorithm Device Decapsulation Generate Code size
unmasked masked randomness masked

Masked RLWE [OSPG18] ARM M4 4, 416, 918 25, 334, 493 (×5.74) +0 (×5.74)a) –
Kyber-512 (this work) RISC-V 186, 341 929, 072 (×4.99) +125, 770 (×5.66) 30, 518
Kyber-768 [BGR+21] ARM M0 5, 530, 000 12, 208, 000 (×2.21) – –
Kyber-768 (this work) RISC-V 313, 034 1, 235, 460 (×3.95) +167, 190 (×4.48) 28, 554
Kyber-1024 (this work) RISC-V 392, 873 1, 628, 467 (×4.15) +200, 697 (×4.66) 30, 314
Lightsaber (this work) RISC-V 226, 528 604, 457 (×2.67) +7, 154 (×2.70) 21, 778
Saber [BDK+21] ARM M4 1, 123, 280 2, 833, 348 (×2.52) +0 (×2.52)a) –
Saber (this work) RISC-V 351, 370 905, 395 (×2.58) +9, 530 (×2.60) 21, 042
Firesaber (this work) RISC-V 511, 088 1, 156, 406 (×2.26) +11, 745 (×2.29) 20, 768
a) Randomness generation included in decapsulation measurement as onboard TRNG available.

leading to similar masking requirements and approaches. The masked RLWE scheme
in [OSPG18] can be categorized to NIST Level V. Although the comparison between ARM
Cortex-M4 and the deployed RISC-V platform is difficult, the measurements in Table 8
indicate that our accelerators and masking methods lead to a significantly lower cycle
count.

When comparing to the masked Saber implementation in [BDK+21], we achieve a cycle
count improvement of factor 3.10 (including randomness generation) for the masked Saber
implementation when using our proposed accelerators. It is also important to mention
that our accelerators are designed for flexibility and the non-linear algorithms are easier to
extend to higher-order masking schemes than in [BDK+21]. More specialized accelerators
might lead to further speed improvements. However, in this work, we focus on controlled
executions of non-linear operations in hardware and a high flexibility. A more detailed
analysis of the masked decapsulation operation can be found in Appendix B.

We also compare to the masked Kyber implementation of Bos et al. [BGR+21] targeting
the ARM Cortex-M0, which was published concurrently with our work. The M0 is an
exceedingly energy-efficient and resource-constrained platform, and a direct comparison
with RISC-V is again difficult. In absolute cycle counts, our implementation is a factor
9.9 faster. In contrast, the authors achieve a smaller overhead factor of 2.21 for masking
Kyber, but also start from an unoptimized plain C implementation as the reference. The
work also includes higher-order measurements, where the overhead factor increases greatly.
From an algorithmic viewpoint, an important difference between our work and [BGR+21]
is in the ciphertext compression and subsequent equality test. We proposed a novel
MaskedCompressq routine followed by the masked equality test, whereas Bos et al. opt to
compute a masked DecompressedComparison. One of the motivations for the latter was
that no masked compression algorithm existed. As such, it remains interesting future work
to consolidate and compare these approaches.

For our target RISC-V platform and implementation, Kyber proves more costly to mask
than Saber. As explained in Section 2.4, this is partly due to the more complicated prime-
moduli masking algorithms and additional masked error sampling of Kyber. However,
our efficient masking accelerators compute these algorithms in minimal cycles (Table 4),
thereby greatly reducing this algorithmic overhead. These non-linear algorithms can be
expected to be significantly slower in a pure software implementation, and accordingly the
overhead of masking schemes with prime moduli is expected to be higher. Another large
contributing factor is the generation of the randomness required for the masking, for which
we use a 32-byte seed and expand it with SHAKE-128 using our Keccak accelerator. While
Saber can directly use the Keccak squeeze, Kyber requires partly an additional rejection
sampling to obtain uniform randomness modulo q. As a result, e.g., Kyber-768 requires
roughly 17.5 times more cycles to generate the initial randomness compared to Saber.



450Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

6.3 Side-Channel Leakage Evaluation
In this section, we perform a side-channel leakage evaluation of all non-linear operations
discussed in this article. These operations are critical as they need to process both shares
at the same time. We describe the applied leakage evaluation method, namely the Test
Vector Leakage Assessment (TVLA), give details about our measurement setup, and
finally provide evaluation results for each operation given a total of 100, 000 side-channel
measurements each.

Test Vector Leakage Assessment (TVLA). The Test Vector Leakage Assessment
(TVLA) [GJJR11, SM15] methodology has been established to statistically evaluate the
presence of side-channel leakage without prior knowledge about the investigated imple-
mentation. Given two sets of data Q0 and Q1, Welch’s t-test is used to evaluate if the
respective means µ0 and µ1 significantly differ from each other. The resulting metric of
the TVLA, called t-value, is calculated as

t = µ0 − µ1√
s2

0
n0

+ s2
1
n1

, (33)

with variances s2
0, s2

1 and n0, n1 denoting the cardinalities of the two sets. A high t-value
indicates that the null hypothesis (both sets were drawn from the same distribution) is
rejected, which implies that it is possible for an attacker to statistically distinguish both
sets. This is taken as an indicator for side-channel leakage. In literature, a threshold of
|t| > 4.5 is usually defined to reject the null hypothesis with a confidence greater than
99.999%.

In order to perform leakage evaluations, the ‘non-specific’ or ‘fixed-vs.-random’ t-test
can be applied: The evaluator measures the power consumption of multiple algorithm
executions with a Boolean or arithmetic masked fixed input xfixed = x0 + x1 and with a
randomly masked input xrand = x′0 + x′1. Measurements are then split into a set Q0 with
fixed input data and a set Q1 with random input data. Finally, given these two sets, the
t-value according to Equation 33 is calculated for each point in time. A resulting t-value
outside the confidence interval (|t| > 4.5) indicates that both sets can be distinguished
and therefore the implementation exhibits side-channel leakage, which can potentially be
used to mount an attack. Otherwise, the implementation can be considered to withstand
first-order univariate attacks with the evaluated amount of measurements.

Measurement setup. We implemented our RISC-V design (cf. Section 5) on a NewAE
CW305 target board that features an Artix-7 FPGA (XC7A100T). The RISC-V core
clock frequency was set to 10MHz for all side-channel measurements. The SPI interface of
the RISC-V platform is used to load the different test programs into the instruction and
data memory. The SPI stimuli were created using the GCC PULPino RISC-V compiler
(version 7.1.12017050). For all side-channel and performance measurements, the non-linear
routines and the accesses of the HW accelerators were manually optimized in assembly.
This allows full control of the execution order of instructions and can ensure that the shares
are correctly cleaned in order to have only one share at a time within the processor pipeline
and register files. The input data according to the TVLA methodology is transferred from
the measurement PC to the RISC-V platform through the UART interface.

We acquire side-channel measurements through the SMA connector of the CW305
board with a Picoscope 6402D USB oscilloscope at a sampling frequency of 156.25MHz9.
These power measurements correspond to the FPGA’s internal supply voltage measured
over the integrated 100mΩ shunt resistor amplified by a 20dB low-noise amplifier. A

9As we clock our target FPGA with 10MHz, this sampling frequency (~15x) includes a sufficient margin
to capture the relevant leakage information. This is verified by the TVLA results with the deactivated
RNG (c.f. Figure 13).



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 451

dedicated trigger mapped to the RISC-V GPIO port is used to indicate the correct time
frame for the measurements. For all TVLA evaluations, a total amount of 100, 000 traces
were recorded10.

Evaluation Results. To practically validate the first-order SCA resistance of our hard-
ware architectures and the non-linear operations, we applied the TVLA method as described
earlier in this section. In order to verify the measurement setup, each leakage test is
performed twice: once with activated Random Number Generator (RNG) and once with
deactivated RNG. The results are shown in Figure 13. It can be clearly seen that the
resulting t-values contain high peaks far above the confidence boundary of |t| > 4.5 for the
tested operations when turning the RNG off. This validates the setup and shows that all
considered operations are leaking information in an unmasked setting or with deactivated
RNG.

To cover all accelerators and non-linear operations, which require to process two shares
at the same time, we performed the following tests: i) masked Keccak SHAKE-128 (includes
f-1600 and Chi accelerator), ii) masked binomial sampling Ψ4 (includes Bit-slicing and
Binom Tree accelerators), iii) masked B2A (includes Secure Adder accelerator), iv) masked
B2Aq (includes Secure Adder accelerator), v) MaskedCompressq (includes Secure Adder
accelerator). Note that the experiment for the compression (Algorithm 13) includes the
A2B conversion. Thus, all non-linear operations discussed in Section 2 for masking Kyber
and Saber are covered by our experiments. Except for the masked Keccak, all experiments
with non-linear operations were performed with 32 polynomial coefficients, which is one
function call of the bit-sliced binomial sampler. The masked binomial sampling was
measured with Saber parameters η = 4. To cover the less critical linear polynomial
arithmetic and our loosely coupled NTT accelerator, we provide TVLA results (Figure 14,
Appendix C) for the polynomial multiplication s · uT using NTT and Kyber parameters.

The evaluation results with the RNG turned on show that all implementations stay
within the confidence boundary of |t| < 4.5. This validates the univariate first-order SCA
resistance of the non-linear functions, and therefore all corresponding accelerators, for the
given amount of measurement traces. We want to emphasize that these results are valid
given our used measurement setup. It is still possible that there is exploitable leakage
detectable with an increased amount of measurements. In addition, an attacker could use
a different setup, e.g., (localized) EM measurements in combination with an increased
sampling frequency to spatially increase the SNR. Therefore, additional experiments could
be needed if protection against a stronger adversary is required. We leave this evaluation
as future work.

7 Conclusion
Attacks on the implementation of a cryptographic algorithm are a major concern in
cryptography as these attacks allow to break mathematically secure algorithms using side-
channel information. Masking methods can be a powerful countermeasure against SCA,
even if the attacker has access to the physical device. In the last years, there have been
some first works about masking methods for PQC. However, for most PQC finalists the
design cost for a secure implementation is still missing. In this work, we presented generic
hardware accelerators for the linear and non-linear operations of masked lattice-based
cryptography, with a particular focus on Saber and Kyber. Although NTT designs have
been a research target in the last years, so far, no generic HW solutions were proposed.
Our novel NTT architecture supports positive/negative wraparounds, incomplete NTTs,

10In comparison to masked block ciphers, e.g., AES, the task of evaluating masked PQC implementations
is more challenging and time consuming due to the increased algorithmic complexity. We therefore adapt
the established amount of 100, 000 traces from related work [OSPG18, BDK+21, BGR+21].



452Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

0 500 1000 1500 2000 2500
time [us]

0

2

4

6

8

10

12

14

ab
so

lu
te

t-
va

lu
e

(a) Masked Keccak – SHAKE-128 (RNG
on)

0 500 1000 1500 2000 2500
time [us]

0

100

200

300

400

500

ab
so

lu
te

t-
va

lu
e

(b) Masked Keccak – SHAKE-128 (RNG
off)

0 20 40 60
time [us]

0

2

4

6

8

10

12

14

ab
so

lu
te

t-
va

lu
e

(c) Masked sampling – Ψ4 (RNG on)

0 20 40 60
time [us]

0

100

200

300

400

500

ab
so

lu
te

t-
va

lu
e

(d) Masked sampling – Ψ4 (RNG off)

0 50 100 150
time [us]

0

2

4

6

8

10

12

14

ab
so

lu
te

t-
va

lu
e

(e) Masked B2A(RNG on)

0 50 100 150
time [us]

0

50

100

150

200

250

300

350

ab
so

lu
te

t-
va

lu
e

(f) Masked B2A(RNG off)

0 100 200 300 400
time [us]

0

2

4

6

8

10

12

14

ab
so

lu
te

t-
va

lu
e

(g) Masked B2Aq(RNG on)

0 100 200 300 400
time [us]

0

50

100

150

200

250

300

350

ab
so

lu
te

t-
va

lu
e

(h) Masked B2Aq(RNG off)

0 50 100 150 200 250 300
time [us]

0

2

4

6

8

10

12

14

ab
so

lu
te

t-
va

lu
e

(i) MaskedCompressq (RNG on)

0 50 100 150 200 250 300
time [us]

0

50

100

150

200

250

300

350

ab
so

lu
te

t-
va

lu
e

(j) MaskedCompressq (RNG off)

Figure 13: TVLA results for all non-linear operations with their accelerators given a total
amount of 100, 000 traces. The confidence interval (t = 4.5) is shown as dotted red line,
while the trigger interval is given in orange.



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 453

and prime lifts for non-NTT based schemes, achieving fast polynomial arithmetic for a
variety of lattice schemes. Non-linear operations, which involve the processing of two shares
at the same time, were accelerated with tightly coupled design solutions for a controlled
and efficient execution. These accelerators include the Keccak Chi, the binomial sampling
with bit-slicing, and secure addition operations. All accelerators were integrated into a
RISC-V platform and ISA extensions were developed to access the accelerators. Due to a
novel masked ciphertext compression algorithm and the flexibility of our design, schemes
with a power-of-two as well as a non-power-of-two modulus with quite different masking
operations can be supported. As a proof of concept, we propose masked implementations
of Kyber and Saber. Our generic architecture supports masking for both schemes with
the same hardware accelerators. Future work could identify where these accelerators can
be optimized in case only one scheme needs to be supported. For example, dedicated
accelerators could take advantage of the power-of-two modulus of Saber to speed-up
masked decapsulation. Additionally, most of the implemented algorithms extend readily
to higher-order side-channel security. Expanding the implementation to use more shares is
therefore a clear next step for future research.

Acknowledgements
This work was partly funded by the German Ministry of Education, Research and Technol-
ogy in the context of the project Aquorypt (reference number 16KIS1017K). Moreover, this
work was supported in part by CyberSecurity Research Flanders with reference number
VR20192203, the Research Council KU Leuven (C16/15/058), and the Horizon 2020 ERC
Advanced Grant (695305 Cathedral). Michiel Van Beirendonck is funded by an FWO PhD
fellowship strategic basic research.

References
[AABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-

M4 optimizations for {R,M}LWE schemes. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2020(3):336–357, Jun. 2020.

[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the second round of the NIST post-quantum cryptography
standardization process. US Department of Commerce, NIST, 2020.

[ABP+18] Victor Arribas, Begül Bilgin, George Petrides, Svetla Nikova, and Vincent
Rijmen. Rhythmic Keccak: SCA security and low latency in HW. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 269–
290, 2018.

[AEL+20] Erdem Alkim, Hülya Evkan, Norman Lahr, Ruben Niederhagen, and Richard
Petri. ISA extensions for finite field arithmetic: Accelerating Kyber and
NewHope on RISC-V. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(3):219–242, Jun. 2020.

[BBE+18] Gilles Barthe, Sonia Belaïd, Thomas Espitau, Pierre-Alain Fouque, Benjamin
Grégoire, Mélissa Rossi, and Mehdi Tibouchi. Masking the GLP lattice-
based signature scheme at any order. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 354–384.
Springer, 2018.



454Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

[BCZ18] Luk Bettale, Jean-Sébastien Coron, and Rina Zeitoun. Improved high-order
conversion from Boolean to arithmetic masking. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2018(2):22–45, May 2018.

[BDGH15] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Wei He. Exploiting
FPGA block memories for protected cryptographic implementations. ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 8(3):1–16,
2015.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann,
and Michiel Van Beirendonck. Attacking and defending masked polynomial
comparison for lattice-based cryptography. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 2021(3):334–359, Jul. 2021.

[BDK+21] Michiel Van Beirendonck, Jan-Pieter D’anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel-resistant implementation
of saber. J. Emerg. Technol. Comput. Syst., 17(2), April 2021.

[BDPVA10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Build-
ing power analysis resistant implementations of Keccak. In Second SHA-3
candidate conference, volume 142. Citeseer, 2010.

[BGG+15] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked
software implementations. In Marc Joye and Amir Moradi, editors, Smart
Card Research and Advanced Applications, pages 64–81, Cham, 2015. Springer
International Publishing.

[BGR+21] Joppe W Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine
van Vredendaal. Masking Kyber: First-and higher-order implementations.
IACR Cryptol. ePrint Arch., 2021:483, 2021.

[BNN+12] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg
Stütz. Threshold implementations of all 3 × 3 and 4 × 4 S-boxes. In
International workshop on cryptographic hardware and embedded systems,
pages 76–91. Springer, 2012.

[BPO+20] Florian Bache, Clara Paglialonga, Tobias Oder, Tobias Schneider, and Tim
Güneysu. High-speed masking for polynomial comparison in lattice-based
KEMs. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2020(3):483–507, Jun. 2020.

[BR20] Andrea Basso and Sujoy Sinha Roy. Optimized Polynomial Multiplier Archi-
tectures for Post-Quantum KEM Saber. Cryptology ePrint Archive, Report
2020/1482, 2020.

[BUC19] Utsav Banerjee, Tenzin Ukyab, and Anantha Chandrakasan. Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2019(4):17–
61, Aug. 2019.

[CGV14] Jean-Sébastien Coron, Johann Großschädl, and Praveen Kumar Vadnala.
Secure conversion between Boolean and arithmetic masking of any order. In
International Workshop on Cryptographic Hardware and Embedded Systems,
pages 188–205. Springer, 2014.



Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 455

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J Kannwischer, Gre-
gor Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for
NTT-unfriendly rings. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 159–188, 2021.

[CJRR99] Suresh Chari, Charanjit S Jutla, Josyula R Rao, and Pankaj Rohatgi. To-
wards sound approaches to counteract power-analysis attacks. In Annual
International Cryptology Conference, pages 398–412. Springer, 1999.

[CT65] James W Cooley and John W Tukey. An algorithm for the machine calculation
of complex Fourier series. Mathematics of computation, 19(90):297–301, 1965.

[CT03] Jean-Sébastien Coron and Alexei Tchulkine. A new algorithm for switch-
ing from arithmetic to Boolean masking. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 89–97. Springer, 2003.

[Deb12] Blandine Debraize. Efficient and provably secure methods for switching from
arithmetic to Boolean masking. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 107–121. Springer, 2012.

[DKR+20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik
Vercauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and
Andrea Basso. SABER. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[FDNG19] Farnoud Farahmand, Viet B. Dang, Duc Tri Nguyen, and Kris Gaj. Evaluating
the potential for hardware acceleration of four NTRU-based key encapsulation
mechanisms using software/hardware codesign. In PQCrypto, volume 11505
of Lecture Notes in Computer Science, pages 23–43. Springer, 2019.

[FS19] Tim Fritzmann and Johanna Sepúlveda. Efficient and flexible low-power
NTT for lattice-based cryptography. In 2019 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 141–150. IEEE,
2019.

[FSF+19] Tim Fritzmann, Thomas Schamberger, Christoph Frisch, Konstantin Braun,
Georg Maringer, and Johanna Sepúlveda. Efficient hardware/software co-
design for NTRU. In Nicola Bombieri, Graziano Pravadelli, Masahiro Fujita,
Todd Austin, and Ricardo Reis, editors, VLSI-SoC: Design and Engineering
of Electronics Systems Based on New Computing Paradigms, pages 257–280,
Cham, 2019. Springer International Publishing.

[FSM+19] Tim Fritzmann, Uzair Sharif, Daniel Müller-Gritschneder, Cezar Reinbrecht,
Ulf Schlichtmann, and Johanna Sepúlveda. Towards reliable and secure
post-quantum co-processors based on RISC-V. In 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1148–1153. IEEE, 2019.

[FSS20] Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. RISQ-V: Tightly coupled
RISC-V accelerators for post-quantum cryptography. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2020(4):239–280, Aug. 2020.

[GJJR11] Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. A testing
methodology for side-channel resistance validation. In NIST non-invasive
attack testing workshop, volume 7, pages 115–136, 2011.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


456Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-Oriented Mask-
ing: Compact masked hardware implementations with arbitrary protection
order. In Proceedings of the 2016 ACM Workshop on Theory of Implementa-
tion Security, TIS ’16, page 3, New York, NY, USA, 2016. Association for
Computing Machinery.

[Gou01] Louis Goubin. A sound method for switching between Boolean and arith-
metic masking. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 3–15. Springer, 2001.

[GR19] François Gérard and Mélissa Rossi. An efficient and provable masked imple-
mentation of qTESLA. In International Conference on Smart Card Research
and Advanced Applications, pages 74–91. Springer, 2019.

[Gre20] Denisa Greconici. KYBER on RISC-V, 2020. https://www.ru.nl/publish/
pages/769526/denisa_greconici.pdf.

[GS66] W Morven Gentleman and Gordon Sande. Fast Fourier transforms: for fun
and profit. In Proceedings of the November 7-10, 1966, fall joint computer
conference, pages 563–578, 1966.

[GSM17] Hannes Groß, David Schaffenrath, and Stefan Mangard. Higher-order side-
channel protected implementations of Keccak. In 2017 Euromicro Conference
on Digital System Design (DSD), pages 205–212. IEEE, 2017.

[HP21] Daniel Heinz and Thomas Pöppelmann. Combined fault and DPA protection
for lattice-based cryptography. Cryptology ePrint Archive, Report 2021/101,
2021.

[KG16] Petter Källström and Oscar Gustafsson. Fast and area efficient adder for
wide data in recent Xilinx FPGAs. In 2016 26th International Conference on
Field Programmable Logic and Applications (FPL), pages 1–4. IEEE, 2016.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In
Annual international cryptology conference, pages 388–397. Springer, 1999.

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace attacks
on Keccak. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):243–268,
2020.

[KRSS18] Matthias J Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4, 2018.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Advances in Cryptology - EUROCRYPT
2010, 29th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 1–23, 2010.

[LS19] Vadim Lyubashevsky and Gregor Seiler. NTTRU: Truly fast NTRU using
NTT. IACR Transactions on Cryptographic Hardware and Embedded Systems,
pages 180–201, 2019.

[MGTF19] Vincent Migliore, Benoît Gérard, Mehdi Tibouchi, and Pierre-Alain Fouque.
Masking Dilithium: Efficient implementation and side-channel evaluation. In
Robert H. Deng, Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung,
editors, Applied Cryptography and Network Security, pages 344–362, Cham,
2019. Springer International Publishing.

https://www.ru.nl/publish/pages/769526/denisa_greconici.pdf
https://www.ru.nl/publish/pages/769526/denisa_greconici.pdf


Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 457

[MKÖ+20] Ahmet Can Mert, Emre Karabulut, Erdinç Öztürk, Erkay Savaş, Michela
Becchi, and Aydin Aysu. A flexible and scalable NTT hardware: applications
from homomorphically encrypted deep learning to post-quantum cryptogra-
phy. In 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pages 346–351. IEEE, 2020.

[MKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
Time-memory trade-off in Toom-Cook multiplication: an application to
module-lattice based cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 222–244, 2020.

[MTK+20] Jose Maria Bermudo Mera, Furkan Turan, Angshuman Karmakar, Su-
joy Sinha Roy, and Ingrid Verbauwhede. Compact domain-specific co-
processor for accelerating module lattice-based KEM. In 2020 57th
ACM/IEEE Design Automation Conference (DAC). IEEE, jul 2020.

[Nat16] National Institute of Standards and Technology. Announcing
request for nominations for public-key post-quantum crypto-
graphic algorithms, 2016. https://csrc.nist.gov/news/2016/
public-key-post-quantum-cryptographic-algorithms.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-channel
attack on a masked IND-CCA secure Saber KEM. Cryptology ePrint Archive,
Report 2021/079, 2021.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In International confer-
ence on information and communications security, pages 529–545. Springer,
2006.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware
implementation of nonlinear functions in the presence of glitches. Journal of
Cryptology, 24(2):292–321, 2011.

[OSPG18] Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu.
Practical CCA2-secure and masked ring-LWE implementation. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, pages 142–174,
2018.

[PNPM15] Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrian Macias.
Accelerating homomorphic evaluation on reconfigurable hardware (extended
version). In International Workshop on Cryptographic Hardware and Embed-
ded Systems, pages 143–163. Springer, 2015.

[POG15] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance
ideal lattice-based cryptography on 8-bit ATxmega microcontrollers. In
International Conference on Cryptology and Information Security in Latin
America, pages 346–365. Springer, 2015.

[PP19] Peter Pessl and Robert Primas. More practical single-trace attacks on the
number theoretic transform. In Progress in Cryptology - LATINCRYPT 2019
- 6th International Conference on Cryptology and Information Security in
Latin America, Santiago de Chile, Chile, October 2-4, 2019, Proceedings,
volume 11774 of Lecture Notes in Computer Science, pages 130–149. Springer,
2019.

https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms


458Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. In Cryptographic Hardware
and Embedded Systems – CHES 2017, pages 513–533, Cham, 2017. Springer
International Publishing.

[RB20] Sujoy Sinha Roy and Andrea Basso. High-speed instruction-set coprocessor
for lattice-based key encapsulation mechanism: Saber in hardware. IACR
Transactions on Cryptographic Hardware and Embedded Systems, pages 443–
466, aug 2020.

[RdCR+16] Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren,
and Ingrid Verbauwhede. Additively homomorphic ring-LWE masking. In
Tsuyoshi Takagi, editor, Post-Quantum Cryptography, pages 233–244, Cham,
2016. Springer International Publishing.

[RPBC20] Prasanna Ravi, Romain Poussier, Shivam Bhasin, and Anupam Chattopad-
hyay. On configurable SCA countermeasures against single trace attacks for
the NTT. In Lejla Batina, Stjepan Picek, and Mainack Mondal, editors,
Security, Privacy, and Applied Cryptography Engineering, pages 123–146,
Cham, 2020. Springer International Publishing.

[RRVV15] Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, and Ingrid Ver-
bauwhede. A masked ring-LWE implementation. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 683–702. Springer,
2015.

[Saa18] Markku-Juhani O. Saarinen. Arithmetic coding and blinding countermeasures
for lattice signatures. Journal of Cryptographic Engineering, 8(1):71–84, 2018.

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tan-
crède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and
Damien Stehlé. CRYSTALS-KYBER. Technical report, National Institute
of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[SM15] Tobias Schneider and Amir Moradi. Leakage assessment methodology. In
Lecture Notes in Computer Science, pages 495–513. Springer Berlin Heidelberg,
2015.

[SMG15] Tobias Schneider, Amir Moradi, and Tim Güneysu. Arithmetic addition over
Boolean masking. In International Conference on Applied Cryptography and
Network Security, pages 559–578. Springer, 2015.

[SPOG19] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Effi-
ciently masking binomial sampling at arbitrary orders for lattice-based crypto.
In IACR International Workshop on Public Key Cryptography, pages 534–564.
Springer, 2019.

[SR15] Hermann Seuschek and Stefan Rass. Side-channel leakage models for RISC in-
struction set architectures from empirical data. In 2015 Euromicro Conference
on Digital System Design, pages 423–430. IEEE, 2015.

[VBDV21] Michiel Van Beirendonck, Jan-Pieter D’Anvers, and Ingrid Verbauwhede.
Analysis and comparison of table-based arithmetic to boolean masking. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(3):275–
297, Jul. 2021.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


Fritzmann, Van Beirendonck, Roy, Karl, Schamberger, Verbauwhede, Sigl 459

[VCGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert.
Soft analytical side-channel attacks. In Palash Sarkar and Tetsu Iwata,
editors, Advances in Cryptology – ASIACRYPT 2014, pages 282–296, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[XHY+20] Guozhu Xin, Jun Han, Tianyu Yin, Yuchao Zhou, Jianwei Yang, Xu Cheng,
and Xiaoyang Zeng. VPQC: A domain-specific vector processor for post-
quantum cryptography based on RISC-V architecture. IEEE Transactions
on Circuits and Systems I: Regular Papers, 2020.

[ZBT19] Timo Zijlstra, Karim Bigou, and Arnaud Tisserand. FPGA implementa-
tion and comparison of protections against SCAs for RLWE. In Feng Hao,
Sushmita Ruj, and Sourav Sen Gupta, editors, Progress in Cryptology –
INDOCRYPT 2019, pages 535–555, Cham, 2019. Springer International
Publishing.

[ZZY+20] Yihong Zhu, Min Zhu, Bohan Yang, Wenping Zhu, Chenchen Deng, Chen
Chen, Shaojun Wei, and Leibo Liu. A high-performance hardware implemen-
tation of Saber based on Karatsuba algorithm. Cryptology ePrint Archive,
Report 2020/1037, April 2020.

A Memory Map and Instruction Set Extensions

Table 9: Memory map RISC-V platform (left) and instruction set extensions with R-type
encoding (right).

Address space Interface
0x0000 0000 Instruction memory
0x0008 0000
0x0010 0000 Data memory
0x0018 0000
0x1A10 0000 Peripherals (UART,
0x1A11 0000 GPIO, I2C, . . . )
0x1B10 0000 NTT memory
0x1B10 7FFF
0x1B10 8000 NTT configuration
0x1B10 800A and status
0x1C10 0000 Data memory for
0x1C18 0000 2nd share

Func7 Func3 Operation Name Description
0x08 0 keccak.f1600 Keccak round with options: complete/

incomplete round, reset

0x14

0 pq.mbinw

Masked binomial sampler operations
for BinomTree (write, compute,
compute inverse, read, copy, reset)

1 pq.mbinc
2 pq.mbincinv
3 pq.mbinr
4 pq.mbincpy
5 pq.mbinrst

0x15 0 pq.slicew Bit-slice operations (write, read)1 pq.slicer

0x16
0 pq.mchiw Masked Chi operations (write,

compute, read)1 pq.mchic
2 pq.mchir

0x17

0 pq.maddw
Masked secure adder operations (write,
compute, compute with carry in, read)

1 pq.maddc
2 pq.maddcc
3 pq.maddr

B Further Details Masked Implementations
Table 10 presents the detailed cycle count for the decapsulation of Kyber-768 and Saber.
We present our masked SW reference for comparison, but note that most of the masking
algorithms are ill-suited for a plain SW implementation. For example, B2A/A2B based
on SecAdd require many operations because they process single bits, and more efficient
plain SW implementations exist.

The CPA.Dec operation mainly consists of polynomial arithmetic, therefore, the NTT
Unit leads to a significant improvement. The CPA.Enc operation benefits even more
from the proposed accelerators, due to the accelerators for sampling and the B2A/A2B
conversions. The remaining operations of the decapsulation strongly benefit from the
Keccak f-1600 accelerator.



460Masked Accelerators and Instruction Set Extensions for Post-Quantum Cryptography

Table 10: Detailed cycle count masked CCAKEM.Decaps (-O3, GCC PULPino RISC-V
compiler 7.1.1 20170509).

Operation SW Reference Accelerated
Kyber768.CCAKEM.Decaps 17, 254, 612 (×13.97) 1, 235, 460

Kyber768.CPA.Dec 1, 004, 586 (×10.49) 95, 751
Hash.G (with SHA3-512) 102, 654 (×3.78) 27, 182
Kyber768.CPA.Enc+Compare 15, 848, 962 (×14.70) 1, 078, 015
Hash.H (with SHA3-256) 266, 168 (×9.27) 28, 709
KDF 32, 113 (×5.44) 5, 900

Saber.CCAKEM.Decaps 9, 953, 638 (×10.99) 905, 395
Saber.CPA.Dec 1, 240, 876 (×10.58) 117, 261
Hash.G (with SHA3-512) 102, 572 (×3.78) 27, 147
Saber.CPA.Enc+Compare 8, 312, 678 (×11.44) 726, 432
Hash.H (with SHA3-256) 265, 520 (×9.25) 28, 708
KDF 31, 958 (×5.49) 5, 826

C TVLA Linear Operations

0 500 1000 1500 2000 2500 3000
time [us]

0

2

4

6

8

10

12

14

ab
so

lu
te

t-
va

lu
e

(a) Polynomial mult. s · uT (RNG on)

0 500 1000 1500 2000 2500 3000
time [us]

0

50

100

150

200

250

300

350

ab
so

lu
te

t-
va

lu
e

(b) Polynomial mult. s · uT (RNG off)

Figure 14: TVLA results for the linear polynomial multiplication s · uT given a total
amount of 100k traces. The confidence interval (t = 4.5) is shown as dotted red line, while
the is trigger interval is given in orange.


	Preliminaries
	Module Learning With Errors and Module Learning with Rounding
	Accelerator Types
	Masking
	Horizontal Attacks on Masked Implementations
	Kyber and Saber Decapsulation

	Masking Kyber and Saber
	B2A and A2B Conversions
	Masked Compression
	Masked Equality Test
	Comparing Masking for Kyber vs Saber

	HW Accelerators for Linear Operations
	Number Theoretic Transform (NTT)
	Design Rationale - NTT
	Architecture - NTT
	Results - NTT

	HW Accelerators for Non-Linear Operations
	Masking Keccak
	Masking Binomial Sampling
	Secure Adder
	Results - Non-Linear Accelerators

	System Integration
	Architectural Leakage Reduction
	Accelerator Integration
	Results - System Integration

	Experimental Results
	Performance Unmasked Implementations
	Performance Masked Implementations
	Side-Channel Leakage Evaluation

	Conclusion
	Memory Map and Instruction Set Extensions
	Further Details Masked Implementations
	TVLA Linear Operations

