
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 323–344. DOI:10.46586/tches.v2022.i1.323-344

Generic Hardware Private Circuits
Towards Automated Generation of Composable Secure Gadgets

David Knichel , Pascal Sasdrich and Amir Moradi

Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

Abstract. With an increasing number of mobile devices and their high accessibility,
protecting the implementation of cryptographic functions in the presence of physical
adversaries has become more relevant than ever. Over the last decade, a lion’s share
of research in this area has been dedicated to developing countermeasures at an
algorithmic level. Here, masking has proven to be a promising approach due to
the possibility of formally proving the implementation’s security solely based on its
algorithmic description by elegantly modeling the circuit behavior. Theoretically
verifying the security of masked circuits becomes more and more challenging with
increasing circuit complexity. This motivated the introduction of security notions
that enable masking of single gates while still guaranteeing the security when the
masked gates are composed. Systematic approaches to generate these masked gates –
commonly referred to as gadgets – were restricted to very simple gates like 2-input
AND gates. Simply substituting such small gates by a secure gadget usually leads to
a large overhead in terms of fresh randomness and additional latency (register stages)
being introduced to the design.
In this work, we address these problems by presenting a generic framework to
construct trivially composable and secure hardware gadgets for arbitrary vectorial
Boolean functions, enabling the transformation of much larger sub-circuits into
gadgets. In particular, we present a design methodology to generate first-order secure
masked gadgets which is well-suited for integration into existing Electronic Design
Automation (EDA) tools for automated hardware masking as only the Boolean
function expression is required. Furthermore, we practically verify our findings by
conducting several case studies and show that our methodology outperforms various
other masking schemes in terms of introduced latency or fresh randomness – especially
for large circuits.
Keywords: Masking, Generic and Composable Hardware Gadgets, Automated Mask-
ing, Side-Channel Analysis

1 Introduction
Even though Side-Channel Analysis (SCA) has been studied extensively by academic and
industrial researchers, secure implementation of strong cryptographic implementations
remains a challenging task. In the wake of the seminal description by Paul Kocher [Koc96],
different approaches for countermeasures against SCA adversaries have been proposed.
Among all candidates, masking, inspired by secret sharing concepts, is fascinating by its
theoretical and sound security foundation [CJRR99] and has been applied manifold until
today [ISW03, Tri03, NRS11, RBN+15, GMK17, GM18]. Unfortunately, not many of
the proposed schemes have survived due to design flaws, inaccurate models, or invalid
assumptions [MMSS19]. As a consequence, this trend of schemes whose assumptions have
been proven invalid only confirms that, to the present day, design and implementation

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.323-344
https://orcid.org/0000-0002-2510-8881
https://orcid.org/0000-0002-5443-626X
https://orcid.org/0000-0002-4032-7433
mailto:david.knichel@rub.de, pascal.sasdrich@rub.de, amir.moradi@rub.de
http://creativecommons.org/licenses/by/4.0/

324 Generic Hardware Private Circuits

of masking schemes is still a mostly manual, complex, and error-prone process, even for
experienced security experts and hardware designers.

Facing such challenges, researchers recently started to focus on development of formal
and accurate models of physical adversaries, hardware platforms, and execution environ-
ments as a mandatory foundation for formal verification and provably-secure schemes. In
this light, formal verification of masked circuits is frequently conducted in the simple and
abstract Ishai-Sahai-Wagner (ISW) d-probing security model [ISW03], given some basic
assumptions on input and noise distribution, and its extension for more accuracy in the
presence of physical defaults, e.g., glitches, transitions, and couplings [FGP+18].

Even though the introduction of a simple, yet practical, formal model accelerated
verification, most security proofs are still limited to small circuits and masked gadgets only,
mostly due to constraints in computational complexity. Naturally, modern approaches
endeavor to extend formal verification to larger circuits through composition of formally
verified gadgets, however, experience has shown that composition of secure gadgets is
non-trivial and security proofs do not extend immediately.

Accordingly, several security notions for secure and trivial composition of masked
gadgets have been proposed recently [BBD+15, BBD+16, CS20]. Although the security
notions aim to assist in design and verification of larger circuits, creation of gadgets
according to these rules in order to meet the requirements is still a challenge. More
specifically, design of efficient gadgets under several optimization metrics, e.g., compu-
tational complexity, area demands, randomness requirements, performance in terms of
latency and throughput, or higher-order protection still requires manual interaction and
long-standing experience. To this end, the list of existing secure gadgets is limited, as most
of them are hand-crafted, mainly focusing on protection of small gates, e.g., a 2-input
AND [Tri03, BDF+17, FGP+18, CGLS20]. More importantly, these approaches usually
are limited to atomic Boolean functions, e.g., AND and XOR, but do not provide a generic
or automated approach to design secure, efficient, and trivially composable gadgets for
different or arbitrary Boolean functions.

Contributions. In this work, we present a novel and generic framework that allows to
easily construct trivially composable gadgets for arbitrary vectorial Boolean functions.
In particular, relying on the glitch-extended probing adversary model and the secure
composability notion of Probe-Isolating Non-Interference (PINI), our framework enables
simple and generic construction of hardware private circuits and opens the possibility
to transform any unprotected Boolean function into a first-order secure and composable
gadget. In addition, backed by a thorough and sound theoretical security analysis and
formal security arguments, our constructions enable efficient formal verification of entire
cryptographic circuits and systems with respect to the PINI security notion. Eventually,
we show practical relevance of our construction through experimental verification using
different case studies and compare implementation results with respect to area, latency,
and fresh randomness for various gadget constructions and related work.

Outline. Before we present our fundamental design principles based on Shannon’s Decom-
position and provide a dedicated security analysis for our first-order secure construction
schemes in Section 3, we first briefly present underlying assumptions and concepts in
Section 2, including circuit representation, adversary model, security notions, and Boolean
masking. In Section 4, we discuss and compare our proposed constructions to related works
from literature, focusing on the metrics of area, latency, randomness, and composability.
We further present different case studies to emphasize practical application of our concepts
in Section 5 and experimentally confirm our theoretical security analyses based on leakage
assessment for different PRESENT and AES designs. Eventually, we give a conclusion of
the research conducted in this work in Section 6.

D. Knichel, P. Sasdrich and A. Moradi 325

2 Background
2.1 Notation
Let us denote functions using sans-serif fonts, e.g., F. Next, we denote random variables
with uppercase letters, e.g., X, while sets of random variables are given in bold, such as
X. Further, we use subscripts to indicate elements within a set while superscripts are used
to denote (randomized) shares of random variables. Moreover, lowercase letters are used
for the value of a random variable and bold lowercase letters indicate values for sets of
variables accordingly. As a special case, the set of all shares of each random variable in
X is denoted as Sh(X) and P [X = x] = P [X] denotes the joint probability that every
Xi ∈ X takes the value xi ∈ x. Moreover, Xj , j ≥ 0, denotes the set containing all shares
with index j. If S is a set over arbitrary shares Xj

i , i.e., S ⊂ Sh(X), then |S|i denotes the
number of shares in S that correspond to Xi.

2.2 Circuit Model
Throughout this work, any deterministic logic circuit C will be considered and modeled as
a Directed Acyclic Graph (DAG) GC = {V, E}, where V gives the list of vertices and E the
list of edges of the DAG. Further, each vertex v ∈ V represents a single combinational
or sequential gate in the netlist while each edge e ∈ E represents a single wire carrying
an element from the finite field F2. In its entirety, a circuit realizes a vectorial Boolean
function F : Fn

2 → Fm
2 given its coordinate functions F0, . . . , Fm−1, where F is defined over

its input X ∈ Fn
2 .

Encoded Circuit Model As formalized by Ananth et al. [AIS18], a circuit compiler is a
set of algorithms {Compile, Encode, Decode}, such that Compile is a deterministic algorithm
that takes as input a circuit C and generates a randomized and encoded circuit C̄. Further,
Encode is a probabilistic algorithm that takes as input a set of (secret) random variables
X and generates a shared representation Sh(X) with respect to some masking scheme
(e.g., Boolean masking). Lastly, Decode is a deterministic algorithm that takes as input a
shared representation Sh(Y) and reconstructs the according set of random variables Y.
Moreover, the circuit compiler has to satisfy correctness such that:

Decode(C̄(Encode(X))) = C(X),∀X.

2.3 Adversary Model
Before discussing common security notions and Boolean masking as theoretically sound
countermeasure against SCA, we introduce the foundational d-probing adversary model
which is used in modern literature to model side-channel adversaries and verify security of
hardware circuits in presence of such adversaries.

Traditional d-Probing Model. In the traditional ISW d-probing model [ISW03], the
adversarial strength is solely defined and limited by the number of probes that are granted
to an adversary. Each probe can be used to observe and extract information carried
on a single circuit1 wire at a time. Assuming an ideal circuit, all gates and wires are
updated simultaneously and each wire only carries the result of the driving gate under the
current assignment of primary inputs. Then, depending on the number of granted probes,
an adversary can combine information of up to d wires in the circuit to infer sensitive
information. Further, a circuit is assumed to be secure under the d-probing adversary

1In the remainder of this work, we assume that the adversary is only able to observe an encoded circuit
C̄ while the Encode and Decode algorithms are unavailable for the adversary.

326 Generic Hardware Private Circuits

Algorithm 1 glitch-extend
Input: Probe P ∈ F2
Output: Glitch-extended probe Pext ∈ Fe

2, e > 0

if P is placed on an output of a combinational gate then
Pext ←

⋃
0≤i<n

glitch-extend(Pi) . where Pi, 0 ≤ i < n are
all inputs to the combina-
tional gate

else
if P is placed on an output of a register or on a primary input then

Pext ← {P}
end if

end if

model if for any combination of up to d probes, the adversary is not able to learn about
sensitive information (more details are given in Section 2.5).

Probing in the Presence of Glitches. Research has shown that physical circuits do
not have an ideal behavior but physical defaults, e.g., glitches, transitions, and cou-
pling [FGP+18], may cause unintentional leakages. In particular glitches, causing unin-
tentional transitions on circuit wires due to non-ideal gates and different path delays,
have been shown to introduce design vulnerabilities even for circuits that are secure under
the standard d-probing adversary model [MPG05]. As a consequence, a robust d-probing
model has been proposed [FGP+18] assuming a worst-case scenario under glitch-occurrence
in physical circuits. More precisely, in contrast to the standard model, probes in the robust
model are considered as glitch-extended and grant an adversary not only access to the
signal on the probed wire but also any combination of stable driving signals (primary or
registered inputs).

If P ∈ F2 is a probe in the standard probing model, the corresponding glitch-extended
probe can be derived by performing glitch-extend(P), where glitch-extend(·) can be defined
recursively by returning either all extended probes on the input to the combinational
gate, if P is placed on the output of such gate, or is defined by the identity function, if
P is placed on an output of a register or a primary input. This is formally defined in
Algorithm 1. A set of probes can be extended by union of the glitch extension of each
probe.

2.4 Probe Simulatability
The concept of probe simulation helps to formally argue about dependencies between the
probability distribution over probe observations and inputs to a masked (i.e., encoded)
circuit.

Definition 2.1 (Perfect Probe Simulation). Given a set P = {P0, P1, . . . , Pl−1} of l
(glitch-extended) probes on a masked circuit C with input Sh(X), P can be perfectly
simulated with a set over arbitrary shares S iff there exists a simulator Sim such that for
any shared input Sh(X) to C, the probability distribution over P and Sim(S) are equal,
where Sim : F|S|2 7→ Fl

2 with input S ⊆ Sh(X) is a probalistic polynomial time (p.p.t.)
simulator.

Probe Propagation in Composed Circuits. Experience has shown that composition of
secure circuits, in the presence of d adversarial probes, may not result in secure composed
circuits, given the same adversarial strength. More specifically, even though each circuit

D. Knichel, P. Sasdrich and A. Moradi 327

separately can be proven to resist up to d adversarial probes, the effect of probe propagation
may provide the adversary with more information than initially assumed. In particular,
as downstream sub-circuits in a composed circuit usually process and combine results of
upstream sub-circuits, placing up to d adversarial probes in those sub-circuits can provide
information that, for isolated circuits, might only be obtainable by placing more than d
probes, hence, virtually extending the adversarial strength beyond the limit of d probes.
With the help of Definition 2.1, we can formally define probe propagation as:

Definition 2.2 (Probe Propagation). A probe P ∈ Fl
2 is said to propagate into an input

wire I ∈ F2 iff I is required to perfectly simulate P , i.e., I has to be in the simulation set
S as defined in Definition 2.1.

2.5 Security Notions
Since the seminal introduction of the ISW d-probing adversary model [ISW03], many
different security notions to analyze and verify the security of physical circuits have been
proposed, in particular to ensure composition of secure circuits from provably secure sub-
circuits. Below, we introduce the most common security notions, based on the consolidated
definitions in [DBR19] and their generalization, unification, and extension as recently
presented in [KSM20].

Probing Security. Granted access to internal values of a circuit through adversarial probes,
an adversary may learn (partial) information on the processed secrets. Hence, in order to
achieve probing security in the presence of up to d adversarial probes, any combination
of up to d probes on internal values carried on wires must be statistically independent
of the processed secrets. More specifically, this will limit the partial information any
d-probing adversary can learn on the secrets, such that correct guessing and recovering of
the sensitive information is impossible. More formally, probing security can be defined
through Definition 2.3.

Definition 2.3 (d-Probing Security). An encoded circuit C̄, with secret input Encode(X), X ∈
Fn

2 , is d-probing secure, if and only if for any observation Q of t ≤ d wires, X is statistically
independent of the observation, i.e., P [Q|X] = P [Q].

Non-Interference. While d-probing security purely focuses on the security of circuits in
the presence of adversarial probes, the security notion of Non-Interference (NI) additionally
targets the composition of masked circuits, usually considered as gadgets, such that security
spans across the composed circuit instead of isolated gadgets only.

Through the concept of NI, flow of sensitive information is limited, although a d-probing
adversary is still allowed to gain partial information on internal values and wires through
adversarial probes. However, the original circuit, and in particular the original distribution
of probed values, must not be distinguishable from a simulated distribution generated only
based on the available partial information. As a consequence, each adversarial probe must
be perfectly simulatable on partial information comprising a subset of all primary input
shares limited by the security order d. More formally, the security notion of NI can be
expressed through Definition 2.4.

Definition 2.4 (d-Non-Interference). An encoded circuit C̄, with secret input Encode(X), X ∈
Fn

2 , is d-non-interfering if and only if for any observation Q of t ≤ d wires, there exists a
set S of input shares, with |S|i ≤ t,∀i, such that P [Q|S] = P [Q|Sh(X)].

Strong Non-Interference. Unfortunately, the security notion of NI could not ensure
composability of d-probing secure gadgets, due to the problem of probe propagation in

328 Generic Hardware Private Circuits

composed circuits. More precisely, composing gadgets may result in combination of partial
information such that the placing of adversarial probes on downstream gadgets may
propagate into upstream gadgets and grant the adversary access to partial information
that otherwise could only be observed by placing more than d adversarial probes.

Hence, to correct deficiencies in the NI notion, once it comes to composition of secure
gadgets, the stronger notion of Strong Non-Interference (SNI) was introduced. In particular,
the concept of SNI intercepts probe propagation at the primary output of gadgets which
again limits the partial information accessible through adversarial probes. As a consequence,
each primary output of an SNI-secure gadget must be perfectly simulatable even without
any partial information gained through adversarial probes. More formally, the security
notion of SNI can be expressed through Definition 2.5.

Definition 2.5 (d-Strong Non-Interference). An encoded circuit C̄, with secret input
Encode(X), X ∈ Fn

2 , is d-strong-non-interfering if and only if for any observation Q of
t = t1 + t2 ≤ d wires, with t1 being internal wires and t2 being output wires, there exists a
set S of input shares, with |S|i ≤ t1,∀i, such that P [Q|S] = P [Q|Sh(X)].

Probe-Isolating Non-Interference. Although the security notion of SNI resolves short-
comings in NI and allows secure composition of gadgets, this security notion, however, is
rather conservative and inefficient in practice with respect to fresh entropy and circuit area.
Moreover, Cassiers and Standaert [CS20] have shown that the concept of SNI is limited to
single-output gadgets only, but does not scale for multi-output gadgets, again due to probe
propagation. Although the concept of Multiple-Input-Multiple-Output SNI (MIMO-SNI)
could fix the deficiencies, PINI was introduced as a more elegant and efficient solution.

In particular, the approach of PINI is inspired by trivial composition of linear func-
tions (assuming Boolean masking) and the concept of domain separation as introduced
in [GMK17]. More precisely, PINI-secure gadgets limit the propagation of adversarial
probes with respect to share domains (also referred to as circuit shares), i.e., each share
domain is separated and any adversarial probe will only propagate into its associated
share domain. Given this, PINI-gadgets are trivially composable, similar to linear gadgets,
regardless of the number of primary outputs. More formally, the security notion of PINI
can be expressed through Definition 2.6.

Definition 2.6 (d-Probe-Isolating Non-Interference). An encoded circuit C̄ with secret
input Encode(X), X ∈ Fn

2 , is probe-isolating non-interfering if and only if for any observa-
tion Q of t = t1 + t2 ≤ d wires, with t1 being internal wires and t2 being output wires, there
exists a set of Ipi primary input indices, with |Ipi| ≤ t1, and Ipo primary output indices,
with |Ipo| ≤ t2, such that Q can be perfectly simulated by S = Sh(X)Ipi∪Ipo .

2.6 Boolean Masking
Due to its sound theoretical foundation, Boolean masking has been established as the
most predominant approach to mitigate side-channel leakage in digital logic. In general,
Encode for Boolean masking relies on concepts of secret sharing to split sensitive variables
X into Boolean shares Xi, such that X =

⊕d
i=0 Xi, which allows simple masking of linear

functions, but requires special considerations for non-linear operations.
Assuming that each Boolean share Xi is independent of the secret X and all other

shares, a circuit implementing Boolean masking with d+1 shares can be evaluated securely
even in the presence of d adversarial probes. However, as already mentioned, transient
computations, i.e., glitches in hardware circuits, may recombine independent shares
resulting in secret-dependent evaluations that may leak sensitive information. Hence,
careful construction and layout of the masking scheme is imperative and a variety of
different schemes has been proposed to ensure resistance even in the presence of glitches.

D. Knichel, P. Sasdrich and A. Moradi 329

As a consequence, different hardware masking schemes have been proposed over the last
years [ISW03, Tri03, NRS11, RBN+15, GMK17, GM18], most of them being extendable
to higher-order protection and providing different trade-offs for computational and area
complexity, memory requirement, latency, and randomness demand.

3 Generic Hardware Private Circuits (GHPC)
3.1 Shannon Decomposition
In general, our construction for the design of generic and composable hardware private
circuits for arbitrary Boolean functions utilizes the so-called Shannon Decomposition which
was initially presented by Boole in [Boo48].

Theorem 1 (Shannon Decomposition). Any Boolean function F : Fn
2 7→ F2 can be written

as

F(X0, X1, . . . , Xi, . . . , Xn−1) =Xi · F(X0, X1, . . . , 0, . . . , Xn−1) ⊕
Xi · F(X0, X1, . . . , 1, . . . , Xn−1),

or in short: F = Xi ·F|Xi=0⊕Xi ·F|Xi=1, where F|Xi=0 and F|Xi=1 are called the Shannon
cofactors.

Note that in the original definition, the Shannon cofactors were connected by a simple
OR operation instead of an XOR. Correctness of both versions is nonetheless obvious,
as by assigning a value to Xi, the corresponding Shannon cofactor is selected as output
function, such that:

F =
{

F|Xi=0, if Xi = 0
F|Xi=1, if Xi = 1

(1)

Since F|Xi=0 and F|Xi=1 are again Boolean functions, this decomposition can be applied
recursively, depending on arbitrary input variables. For example, F can be decomposed
choosing Xi and Xj , i 6= j, then leading to:

F = Xi Xj · F|Xi=0,Xj=0 ⊕
Xi Xj · F|Xi=0,Xj=1 ⊕
Xi Xj · F|Xi=1,Xj=0 ⊕
Xi Xj · F|Xi=1,Xj=1.

(2)

In essence, translating a Shannon Decomposition of F into a logic circuit can be repre-
sented as a multiplexer (cascade) selecting the cofactors depending on the decomposition
variables. For this, Equation 1 results in a 2-input multiplexer selecting depending on Xi,
while Equation 2 results in a 4-input multiplexer selecting depending on Xi and Xj .

3.2 Design
A high-level overview of our methodology for generating composable private circuits from
unprotected circuits is depicted in Figure 1. Given an unprotected circuit C realizing a
Boolean function F : Fn

2 7→ Fm
2 and knowing the function expression of F, our masking

approach enables the construction of a first-order protected and composable hardware
private circuit GHPC with two input and output shares under the PINI security notion
(even in the presence of glitches). Further, the number of refreshing random bits of
our approach is limited to only a single fresh random bit per coordinate function (i.e.,
R ∈R Fm

2). In fact, the result of the GHPC is a textbook sharing of each original coordinate

330 Generic Hardware Private Circuits

C

X0
X1

...

Xn−1

F0

GHPC

X0
0

X0
1

X1
0

X0
n−1

...

X1
1

X1
n−1

F0 ⊕R0

R1

R0 R1 Rm−1

masking

F1

Fm−1

...

F1 ⊕R1

Fm−1 ⊕Rm−1

Rm−1

R0

...

. . .

...

...X0

X1

X F

R

F⊕R

R

Figure 1: An overview of first-order masking

function Fi, i.e., each coordinate function is blinded by a different fresh mask Ri ∈ R,
while the second share is simply assigned the chosen random value Ri drawn from R,
hence, immediately ensuring uniformity and correctness of the sharing.

Construction Principle. Given the circuit C, our construction principle for translation
into a GHPC allows to process and transform each coordinate function Fi with 0 ≤ i < m
independently. For this, we will restrict the discussion of the construction principle to
arbitrary single-output Boolean functions F : Fn

2 7→ F2, as extension to vectorial Boolean
functions is given trivially through application on each coordinate function separately.

In general, given a shared function expression obtained through direct sharing of the
original function F, i.e., F′ = F(X0

0 ⊕X1
0 , X0

1 ⊕X1
1 , . . . , X0

n−1 ⊕X1
n−1), our construction

can be seen as Shannon Decomposition of F′, where each Shannon cofactor is blinded
by R and F′ is evaluated and decomposed based on shares from a single share domain.
However, it is important to note that F′ itself is never constructed explicitly, as a Shannon
Decomposition based on one share allows to construct F′ implicitly, as this, given simple
Boolean masking, results in substituting any variable in the original function F with the
corresponding (possibly negated) other share. For instance, it holds that if X1

0 = 0, X1
1 = 1,

. . ., and X1
n−1 = 1, then F′|X1=(0,1,...,1) = F(X0

0 , X0
1 , . . . , X1

n−1). Interestingly, in this case,
the Shannon cofactors only depend on a single share domain, while selection of the correct
computation, i.e., the selection of the correct cofactor, only depends on the other share
domain.

Hence, the foundation of our construction is a multiplexer design that selects function
evaluations restricted to one share, each evaluation blinded by the same random value
R ∈R F2, as shown in Figure 2 and algorithmically described in Algorithm 2. Then, the
selection of the correct evaluation only depends on the second share, e.g., shares from
domain 1 for the given design. Note, however, that naming of share domains is not fixed
but may be chosen arbitrarily, as long as the share domain naming is applied consistently
throughout the entire design and the naming of the output domains is adopted accordingly
(to ensure security under the PINI notion). Then, each blinded Shannon cofactor is stored
in a register, and selected according to the other share subsequently. For this, the registers
depicted in dashed lines (and denoted as Regpipe[] in Algorithm 2) ensure synchronization
and enable a pipelined architecture, but do not have any effect on the security in the
glitch-extended robust probing model in general. Eventually, as only the correct Shannon
cofactor is enabled through an AND gate but all other factors are gated, summing up the
values in the final register stage results in the correct but blinded output, hence, assigning
R to the second share of the GHPC ensures correctness.

D. Knichel, P. Sasdrich and A. Moradi 331

F′|X1=(0,0,...,0)(X0)
R

F′|X1=(0,0,...,1)(X0)
R

F′|X1=(1,1,...,1)(X0)
R

X1
0 ·X1

1 · ... ·X1
n−1

X1
0 ·X1

1 · ... ·X1
n−1

X1
0 ·X1

1 · ... ·X1
n−1

O1 = F⊕R

......
O0 = RR

...
X1

0 X1
1 X1

n−1

Figure 2: General GHPC design.

Security Analysis. In this section, we briefly prove the correctness and security of our
construction under the notion of PINI, as stated in Theorem 2, assuming the d-probing
model with glitch-extended probes.

Theorem 2. For an arbitrary circuit C, realizing a Boolean function F : Fn
2 7→ F2, the

transformation into a GHPC results in a correct and first-order PINI-secure circuit under
the glitch-extended d-probing model.

Proof.
Correctness: The correctness of the Shannon Decomposition directly implies that O1 =
F′⊕R. As [X0, X1] is a valid sharing of X, it follows that O1 = F⊕R, hence O = O0⊕O1 = F.

PINI: Considering Figure 2 and Algorithm 2, any extended probe on an input to the
non-optional elements of the first register stage reveals all variables contributing to
Ti ← Reg[F′|X1=bin(i) ⊕ R] for a fixed 0 ≤ i < 2n − 1, i.e., the joint distribution over
[R, X0], which can be perfectly simulated with shares restricted to share domain 0 and
drawing R ∈R F2. Further, any extended probe on the input of the second register stage
reveals every stable variable contributing to Mi ← Reg[Si ·Ti], which translates to a leakage
of the joint distribution over [Ti, X1]. Due to the blinding with R, Ti can be simulated
by drawing Ti ∈R F2. Hence, every observation can be simulated with shares restricted
to domain 1. Eventually, placing an extended probe on the output O1 reveals the joint
distribution over [M0, M1, . . . , M2n−1]. Here, depending on which input Ti is selected as
the output, each observation will be of the form [0, . . . , 0, Mi, 0, . . . , 0], i.e., a vector where
all coordinates are zero except the one that shows a function perfectly blinded by R. This
is due to the fact that by construction of the multiplexer design, only one second-stage
register contains the selected input — all others contain zero. The resulting vector can be

332 Generic Hardware Private Circuits

Algorithm 2 GHPC
Input: input shares X0,X1 ∈ Fn

2 , fresh randomness R ∈ F2
Output: F ∈ F2

2, F = [F0, F1] = [R, F⊕R]

O1 ∈ F2, O1 ← 0
O0 ← Regpipe[Regpipe[R]] . Computation of O0

for ∀i ∈ {0, . . . , 2n − 1} do . Computation of O1

Si ← Regpipe[product(i, X1)]
Ti ← Reg[F′|X1=bin(i) ⊕R] . bin(i) is the binary representation

of i
Mi ← Reg[Si · Ti]
O1 ← O1 ⊕Mi

end for

function product(V ∈ Fn
2 , X ∈ Fn

2)
P ∈ F2, P ← 1
for ∀i ∈ {0, . . . , n− 1} do

if [bin(V)]i = 1 then . [bin(V)]i is the i-th bit of the binary repre-
sentation of V

P ← P ·Xi

else
P ← P ·Xi

end if
end for

return P
end function

perfectly simulated by drawing a fresh random bit and placing it at the right position i of
the vector. However, note that in this example, the position i depends on the shares from
share domain 1, hence, in order to provide PINI-security, exchanging the indices of the
circuit output shares is not allowed. Eventually, every extended probe on the output O0

will only reveal a fresh random bit R, i.e., no information about the original input and/or
output.

Examples. In Figure 3, the designs resulting from masking a 2-input AND (Figure 3a) and
a 3-input AND (Figure 3b) are given as examples. For this, we would like to highlight the
clocked multiplexer symbol used in these figures, which refer to the same module identified
by a blue border in Figure 2. As previously explained, the inputs to the multiplexer can
be simply derived by inserting every combination of negated/non-negated shares from
domain 0 into F = A B. This results in 2n=2 input functions for the multiplexer design
realizing a 2-input AND and in 2n=3 = 8 input functions for the 3-input AND. As an
extra verification, we checked these designs with SILVER [KSM20] – a software tool for
formal verification of masked circuits – which confirmed our theory by reporting first-order
security under the PINI notion in the robust probing model.

3.3 Reducing the Latency
If desired, in order to reduce the overall latency, the number of register stages in the design
can be reduced to a single stage.

Construction Principle. For this, every input to the multiplexer must be blinded by a
different freshly drawn random mask, as only this way, the second register stage in the first

D. Knichel, P. Sasdrich and A. Moradi 333

O1

A0B0 ⊕R

A0B0 ⊕R

A0B0 ⊕R

A0 B0 ⊕R

A1 B1

R O0

(a) 2-input AND

A1B1C1

O1

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

R O0

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

A0 B0 C0 ⊕R

(b) 3-input AND

Figure 3: Examples for first-order PINI-secure GHPC constructions.

Algorithm 3 GHPCLL

Input: input shares X0,X1 ∈ Fn
2 , fresh randomness R ∈ F2n

2
Output: F ∈ F2

2, F = [F0, F1] = [R, F⊕R], with R ∈ R

R ∈ F2, R← 0
O1 ∈ F2, O1 ← 0
for ∀i ∈ {0, . . . , 2n − 1} do

Si ← Regpipe[product(i, X1)] . product(.) as defined in Algorithm 2
Ti ← Reg[F′|X1=bin(i) ⊕Ri]
Mi ← Si · Ti

R← R⊕ Si ·Ri

O1 ← O1 ⊕Mi

end for
O0 ← Reg[R]

circuit share can be entirely omitted. For the output of circuit share 0, i.e., for O0, the
corresponding randomness has to be selected by a standard multiplexer before it is stored
in a register. The resulting design with one register stage – referred to as GHPCLL in the
following – can be seen in Figure 4 and in Algorithm 3. The architecture of circuit share
1 uses the same multiplexer architecture as presented in Figure 2, but with the second
register stage omitted. Hence, this design has a reduced latency of 1 clock cycle, while
expanding the demand for fresh randomness to 2n bits.

Security Analysis. Again, we briefly prove the correctness and security under the notion
of PINI, as stated in Theorem 3, assuming the glitch-extended d-probing model.

Theorem 3. For an arbitrary circuit C, realizing a Boolean function F : Fn
2 7→ F2, the

transformation into a GHPCLL results in a correct and first-order PINI-secure circuit under
the glitch-extended probing model.

Proof.
Correctness: Following the same argumentation as for Theorem 2, O1 outputs F⊕Ri with
i ∈ {0, . . . , 2n − 1} and for any valid input sharing. As by construction, O0 equals Ri,
correctness of this masking is fulfilled.

334 Generic Hardware Private Circuits

F′|X1=(0,0,...,0)(X0)
R0

F′|X1=(0,0,...,1)(X0)
R1

F′|X1=(1,1,...,1)(X0)
R2n−1

X1
0 ·X1

1 · ... ·X1
n−1

X1
0 ·X1

1 · ... ·X1
n−1

X1
0 ·X1

1 · ... ·X1
n−1

O1

...... ...

...
X1

0 X1
1 X1

n−1

R0

R1

R2n−1

O0

...

X1

Figure 4: General GHPCLL design with reduced latency.

PINI: Considering Figure 4 and Algorithm 3, the joint distribution [X0, Ri] using a probe
on the input of Ti ← Reg[F′|X1=bin(i)⊕Ri] can be simulated using only shares from domain
0 and drawing Ri ∈R F2. An extended output probe on O1 will observe a joint distribution
of the form [X1, T0, T1, . . . , T2n−1], which can be simulated with X1 and drawing 2n fresh
random bits as Ti ∈R F2, ∀0 ≤ i < 2n − 1. Due to the output register, a probe on O0 can
be perfectly simulated using one fresh random bit, while each internal probe (on R) is
perfectly simulatable by fresh randomness and shares drawn only from share domain 1, as
the whole circuit share does not involve computation on shares from share domain 0.

4 Comparisons
In this section, we briefly discuss and compare our proposed constructions to state-of-the-
art masking schemes with respect to common metrics, such as latency, demand for fresh
randomness, area consumption, and composability of gadgets. To this end, Table 1 lists
recent approaches from literature and their application to hardware circuits. In particular,
we align our discussion and comparison by focusing on basic non-linear gates, i.e., 2-input
AND gates, which are commonly used to create secure and composable gadgets required
for construction of larger circuits. Further, we extend our discussion by comparing different
techniques with respect to larger circuits, particularly using the PRESENT, PRINCE, Skinny,
Prøst, Rectangle, Class-13, and AES S-boxes as illustrating examples. For the 4-bit S-boxes,
we realized the corresponding descriptions given in [CGLS20] which are optimized with
respect to the number of cascaded 2-input AND gates, i.e., favoring HPC1 and HPC2 as
instantiated gadget. For the AES S-box, we considered the design given in [BP12], where
– based on a tower field representation – a low-depth circuit has been constructed. It
contains two isomorphisms at the start and end of the GF(28) inversion, and excluding
the XOR gates, has at most 4 cascaded 2-input AND gates, which also is in favor of HPC1
and HPC2. In addition, we also include results reported in [GIB18], proposing a generic
approach for low-latency masking which has been applied to the AES S-box considering
different low-latency constructions.

Further, note that the descriptions given in [CGLS20] are without considering pipeline

D. Knichel, P. Sasdrich and A. Moradi 335

Table 1: Comparison of different first-order masking schemes.
(using Synopsis Design Compiler and UMC180 standard cell library)

Target Scheme Func. Latency Rand. Area Compos. Ref.
n m [cycle] [bit] [GE] notion

AND2

DOM

2 1

2 1 56 SNI [FGP+18]
HPC1 2 2 94 PINI [CGLS20]
HPC2 2 1 66 PINI [CGLS20]
GHPC 2 1 82 PINI new
GHPCLL 1 4 59 PINI new

PRESENT
S-box

HPC1

4 4

3 8 403 PINI [CGLS20]
HPC2 3 4 320 PINI [CGLS20]
GHPCLL-AND 2 16 310 PINI new
GHPC 2 4 1308 PINI new
GHPCLL 1 64 959 PINI new

PRINCE
S-box

HPC1

4 4

4 12 645 PINI [CGLS20]
HPC2 4 6 467 PINI [CGLS20]
GHPCLL-AND 2 24 445 PINI new
GHPC 2 4 1384 PINI new
GHPCLL 1 64 987 PINI new

Skinny
S-box

HPC1

4 4

4 8 467 PINI [CGLS20]
HPC2 4 4 301 PINI [CGLS20]
GHPCLL-AND 2 16 288 PINI new
GHPC 2 4 1232 PINI new
GHPCLL 1 64 951 PINI new

Prøst
S-box

HPC1

4 4

3 8 432 PINI [CGLS20]
HPC2 3 4 309 PINI [CGLS20]
GHPCLL-AND 2 16 302 PINI new
GHPC 2 4 1225 PINI new
GHPCLL 1 64 952 PINI new

Rectangle
S-box

HPC1

4 4

3 8 439 PINI [CGLS20]
HPC2 3 4 319 PINI [CGLS20]
GHPCLL-AND 2 16 311 PINI new
GHPC 2 4 1229 PINI new
GHPCLL 1 64 962 PINI new

Class-13
S-box

HPC1

4 4

3 8 432 PINI [CGLS20]
HPC2 3 4 304 PINI [CGLS20]
GHPCLL-AND 2 16 303 PINI new
GHPC 2 4 951 PINI new
GHPCLL 1 64 933 PINI new

AES
S-box

CMS

8 8

5 54 2530 - [CRB+16]
DOM 8 18 2851 - [GMK17]
GLLM 1 2048 607302 - [GIB18]
GLLM 2 416 67402 - [GIB18]
HPC1 5 68 3504 PINI [BP12]
HPC2 5 34 2452 PINI [BP12]
GHPCLL-AND 4 136 2376 PINI new
GHPC 2 8 77145 PINI new
GHPCLL 1 2048 64111 PINI new

2These designs were synthesized using a different UMC 90 nm process technology.

registers to synchronize the inputs of each gate. Therefore, in order to provide a fair
comparison, all performance figures reported in Table 1 are for non-pipeline designs.
Besides, similar to the state of the art, we did not include the area required for generation
of fresh masks in the reported area footprints. All area results have been obtained by
synthesizing the Hardware Description Language (HDL) code of the design using Synopsis

336 Generic Hardware Private Circuits

Design Compiler and UMC180 nm standard cell library, unless indicated otherwise.

Latency. Since the final latency of our constructions does not depend on the underlying
Boolean function and its algebraic degree, its application on larger functions leads to a
higher efficiency with respect to latency compared to other approaches. Certainly, for
small circuits and simple Boolean functions, e.g., a 2-input AND gate, hand-crafted and
optimized gadgets might be more efficient in terms of latency. However, as our approach
easily scales for larger functions, even with high algebraic degree, e.g., for an entire AES
S-box, construction of masked circuits with low latency becomes feasible. More specifically,
focusing on our low-latency approach GHPCLL (at cost of additional randomness), our
secure constructions outperform all other schemes listed in Table 1 in terms of latency.
More precisely, to the best of our knowledge, the GHPCLL is the only first-order composable
construction with one clock cycle latency.

Although GroÃ§ et al. proposed a generic low-latency masking approach in [GIB18],
the resulting AES S-box constructions certainly have a comparable latency (along with
demand for fresh randomness and area), but do not result in a composable design but only
focus on proving a probing-secure construction.

Randomness. In contrast to latency, the demand for fresh randomness of our constructions
is mainly governed by the underlying Boolean function. The number of required fresh
random bits r per circuit evaluation is given as

rGHPC = m, rGHPCLL = m · 2n.

More precisely, for GHPC this number is independent of the number of inputs n but only
depends on the number of outputs m of the underlying Boolean function F : Fn

2 → Fm
2 .

Hence, for large functions, such as 4-bit or 8-bit S-boxes, this results in randomness-efficient
designs. This view for sure changes when lower latency is favorable, i.e., GHPCLL whose
required fresh randomness depends on both m and n.

Then again, efficiency of our approach, in terms of required fresh randomness, does
not change with the optimizations done on the implementation of the Boolean function.
Taking the HPC1 and HPC2 of the S-boxes covered by Table 1, the foundational S-box
implementations have been optimized through application of SAT solvers in order to
reduce the latency and number of 2-input AND gates [CGLS20, BP12]. However, for
our approach, the number of random bits is independent of how the Boolean function is
realized. Instead, it only depends on its number of input and output bits. For this, our
approach is particularly suitable for integration into EDA tools and automated integration
of masking countermeasures into logic circuits.

Area. Besides latency and demand for fresh randomness during execution, the footprint
in terms of area of the resulting design is an often considered metric in evaluation of
efficiency and expense of a final design. In this regard, reduction in area usually can be
traded for increasing latency and demand for fresh randomness.

In turn, this implies that our proposals optimized for low-latency (GHPCLL) and
low-randomness (GHPC) naturally are outperformed by hand-crafted and sophisticatedly
optimized gadgets and constructions. However, observing that our GHPCLL construction
for a 2-input AND not only provides best results in latency but also is smaller than all
related (PINI-secure) hand-crafted gadgets, we opted to instantiated all S-box constructions
provided in Table 1 with our GHPCLL gadget instead of HPC1 or HPC2. Given this, we
can observe that all our GHPCLL-AND S-box constructions outperform related designs in
terms of area (and even latency to some extent), but at cost of additional randomness
that is required for secure execution. Construction of larger GHPCLL-AND gadgets (3- or
4-bit input) to be used in the implementation of the S-boxes is also possible, but since the

D. Knichel, P. Sasdrich and A. Moradi 337

S-box descriptions we have in hand are not optimized to efficiently use such large-input
gates, we have not included such cases in the presented results.

Composability. Eventually, our construction allows to build secure and composable
hardware gadgets from arbitrary Boolean functions. As a consequence, even entire S-
boxes, as shown in Table 1 can be transformed into securely-composable gadgets under
the PINI notion. However, in contrast to the existing designs focusing on construction
of secure circuits through composition of secure AND and XOR gates, our approach
efficiently scales for arbitrary Boolean functions. For instance, AES S-box designs presented
in [GMK17, CRB+16] rely on a careful instantiation of secure 2-input (and larger) AND
gates. However, as these gadgets are not trivially composable, the resulting S-box circuit
is indeed probing secure, but does not necessarily provide composability.

In contrast to this, our approach always results in PINI-secure gadgets, independent of
the underlying function, allowing to construct gadgets even for larger circuits such as the
AES S-box. As a result, we can conclude that due to its flexibility, our approach provides
a clear road map for automatization of masking arbitrary circuits through generation of
composable secure gadgets. It is true that a secure variant of any circuit can be constructed
by HPC1 and HPC2 2-input AND (and XOR) gadgets, but there is a lower bound for
the latency of the resulting circuit – which is of crucial importance in hardware designs –
defined by the algebraic degree of the components of the underlying cryptographic function.
However, our scheme uncouples this dependency while maintaining the same generality.

5 Case Studies
Below, we present the experimental results obtained when applying our construction
principle to different block cipher implementations.

5.1 Target Device and Measurement Setup
The analyses have been conducted on a SAKURA-G board [SAK], where a Spartan-6
Field-Programmable Gate Array (FPGA) is embedded to host cryptographic cores. For
all case studies given in the remainder of this section, the power consumption traces of
the target FPGA have been collected by monitoring the voltage drop over a 1Ω resistor
placed in the Vdd path amplified by an on-board AC amplifier. During the measurements
performed by a digital oscilloscope at the sampling rate of 500MS/s, the implemented
cryptographic core was supplied by a stable and jitter-free clock source at the frequency of
6MHz.

PRNG. For the generation of each fresh random bit, we constructed a 31-bit Linear-
Feedback Shift Register (LFSR) with the feedback polynomial x31 + x28 + 1, which has a
maximum cycle of 231 − 1 with only two taps [WM12]. Each LFSR is initialized by an
arbitrary value right after the FPGA power-up, making sure that no LFSR is entirely
filled by zero, and there is no common initialization value for two LFSRs.

5.2 Byte-Serial AES
For our first case study, we opted to implement a first-order secure AES encryption based
on the byte-serial architecture of Moradi et al. [MPL+11] with only minor modifications
in the control logic due to the increased S-box latency. It is worth to highlight that all our
HDL designs of the case studies are provided in the GitHub: https://github.com/Chair-
for-Security-Engineering/GHPC.

https://github.com/Chair-for-Security-Engineering/GHPC
https://github.com/Chair-for-Security-Engineering/GHPC

338 Generic Hardware Private Circuits

Design. For this, a single GHPC AES S-box is instantiated and shared between data path
and key expansion circuits, requiring both, data and key to be shared using d+1 = 2 shares.
Further, due to the two-cycle latency of the GHPC S-box design, and this component being
the bottleneck of the architecture, we opted to include all pipelining registers to enable
processing of all byte substitutions within 22 cycles, i.e., 2 cycles initial latency, 16 cycles
for the round function S-box computations, and 4 cycles for the key expansion. Further,
shifting of rows and mixing of columns is done in one respectively four cycles, while the
key is updated simultaneously. In total, a single first-order secure AES round function
(including key expansion) requires 23 cycles, resulting in a total of 230 cycles for an AES-128
encryption. Note that, although mixing of columns is omitted in the last round, expansion
of the final post-whitening key is stalling the final round computation. We also provide a
generic HDL description of our architecture in the GitHub: https://github.com/Chair-for-
Security-Engineering/GHPC which allows to select GHPC or GHPCLL as the underlying
design while adjusting the S-box, control logic, and randomness automatically (see more
details in Appendix A). However, we considered only the GHPC design in our experimental
analyses due to the similarity of the results.

Then, as given in Table 2, our entire first-order AES encryption architecture has a size
of 86.3 kGE, using an 180 nm cell library while it requires only 8-bit fresh randomness per

0 10 20 30 40 50
Time [s]

P
ow

er

(a) A mean trace over 1000 measurements indicating the cipher rounds

0 10 20 30 40 50
Time [s]

-5

0

5

t-
st

at
is

tic
s

(b) First-order leakage assessment

0 10 20 30 40 50
Time [s]

-300

-200

-100

0

100

t-
st

at
is

tic
s

(c) Second-order leakage assessment

Figure 5: Experimental analysis of our first-order AES byte-serial encryption design
(covering the entire encryption); fixed vs. random t-test results using 100 million traces.

https://github.com/Chair-for-Security-Engineering/GHPC
https://github.com/Chair-for-Security-Engineering/GHPC

D. Knichel, P. Sasdrich and A. Moradi 339

Table 2: Performance figures of our case studies.
(using Synopsis Design Compiler and UMC180 standard cell library)

Design Scheme Order Random. Area Delay Latency
d [bit] [GE] [ns] [cycle]

AES
Serial

unprotected 0 0 3646 8.13 195
GHPC 1 8 86 326 21.34 215
GHPCLL 1 2048 76 339 23.48 205

PRESENT
Serial

unprotected 0 0 2139 5.12 545
GHPC 1 4 5604 5.76 607
GHPCLL 1 64 5253 5.92 576

PRESENT
Round-
based

unprotected 0 0 2798 4.39 31
GHPC 1 72 31 559 5.22 62
GHPCLL 1 1152 25 264 5.28 31

clock cycle to maintain the first-order security.

Leakage Assessment. Using a fix-versus-random Test Vector Leakage Assessment (TVLA)
methodology according to [SM15], Figure 5b and Figure 5c show evaluation results for first-
order and second-order statistical moments using 100 million power traces. As expected,
our design does not exhibit any observable leakage for the first-order statistical moment
while expectedly we could observe significant differences in the second-order statistical
moment. These results indeed confirm our theoretical security evaluations for the GHPC
construction, showing its applicability to arbitrary Boolean functions in order to construct
generic and composable PINI-secure gadgets.

5.3 Nibble-Serial PRESENT
For our second case study, we implemented the nibble-serial design of Poschmann et
al. [PMK+11], realizing the PRESENT encryption where a single S-box instance is shared
for the entire data and key processing. Per clock cycle, both state and key registers are
shifted nibble-wise to conduct key addition and S-box look-up at the same time, while
the permutation layer is done in parallel (in a single clock cycle). Again, we constructed
a general design, in which the user can set the desired GHPC or GHPCLL scheme. The
number of required fresh masks as well as the latency of the S-box, required for the control
logic, is automatically adjusted accordingly. For more detail on the design architecture,
we refer to the HDL code given in the GitHub: https://github.com/Chair-for-Security-
Engineering/GHPC. Table 2 also lists the performance figures of our designs including the
area overhead, required fresh randomness, latency, and delay.

Focusing on our GHPC design, we collected 100 million traces and performed fix-versus-
random TVLA at different orders. The results shown in Figure 6 confirm our claims and
expectations on the security level of our construction.

5.4 Round-Based PRESENT
We also implemented the PRESENT encryption function in a round-based fashion. The
unprotected design performs each cipher round in a single clock cycle, resulting in 31
cycles for the entire encryption. The first-order GHPC design needs 2 clock cycles per
round while forming a pipeline design, i.e., encrypting two plaintexts in consecutive clock
cycles, resulting in 62 clock cycles for two encryptions. Note that we made use of the
internal registers of the S-box as the state register. This allowed us to keep 31 clock cycle

https://github.com/Chair-for-Security-Engineering/GHPC
https://github.com/Chair-for-Security-Engineering/GHPC

340 Generic Hardware Private Circuits

0 5 10 15 20
Time [s]

P
ow

er
(a) A mean trace over 1000 measurements

0 5 10 15 20
Time [s]

-5

0

5

t-
st

at
is

tic
s

(b) First-order

0 5 10 15 20
Time [s]

-400

-200

0

200

400

t-
st

at
is

tic
s

(c) Second-order

Figure 6: Experimental analysis of our first-order PRESENT nibble-serial encryption
design (covering the first five rounds); fixed vs. random t-test results using 100 million
traces.

0 3 6 9 12
Time [s]

P
ow

er

(a) A mean trace over 1000 measurement

0 3 6 9 12
Time [s]

-5

0

5

t-
st

at
is

tic
s

(b) First-order

0 3 6 9 12
Time [s]

-50
0

50
100
150

t-
st

at
is

tic
s

(c) Second-order

Figure 7: Experimental analysis of our first-order PRESENT round-based encryption
design (covering the entire encryption); fixed vs. random t-test results using 100 million
traces.

latency in GHPCLL design (see Table 2). Similar to all other case studies, we practically
examined this construction by performing the same leakage assessment at different orders.
The results, which are along the same line as the formerly presented ones, are shown in

D. Knichel, P. Sasdrich and A. Moradi 341

Figure 7. Nevertheless, Table 2 covers the performance figures of this design as well.
As a remark, the evaluation results of the GHPCLL circuits of all case studies are very

similar to the figures presented above. Therefore, we omit showing the identical results.

6 Discussions and Conclusions
In this work, we developed and presented a generic framework to construct trivially
composable hardware private circuits with a compact latency from arbitrary vectorial
Boolean functions. Following the concept of Shannon’s decomposition, we derived generic
circuit constructions which offer both, first-order probing security in the presence of glitches
and trivial composability, by fulfilling the notion of PINI in the robust probing model.
More specifically, we presented the fundamental design principles, security analyses, and
simple examples to illustrate our contribution.

After establishing the concept, we compared our constructions to state-of-the-art
masking schemes. Based on this comparison, we conclude that our approach can be
used to achieve optimized designs for different metrics, in particular focusing on latency,
randomness, and area.

In terms of latency, our proposed GHPCLL gadgets outperform all handcrafted and
carefully optimized constructions, independent of the complexity and appearance of the
underlying Boolean function. In fact, all our presented results constructed according to the
GHPCLL approach have the smallest latency of a single cycle, while still being PINI-secure,
however, introducing higher demands on area and fresh randomness.

Then, considering low-randomness optimizations, our GHPC provides the best results
in comparison to related works due to its independence on the targeted Boolean function
and its appearance, while the number of random bits only depends on the number of
outputs the underlying function has. Focusing on the designs with low fresh randomness,
our GHPC approach scales well particularly for larger functions, e.g., an AES S-box, with
only modest increase of latency in comparison to the GHPCLL approach while requiring
only 8 bit fresh randomness as it is a function with 8-bit output.

Eventually, low-area constructions for all S-boxes can be achieved by replacing the
HPC1 or HPC2 2-input AND gadget with our proposed GHPCLL-AND construction. In-
terestingly, such constructions provide the smallest area footprint along with competitive
latency. This however comes at cost of increased demand for fresh randomness.

Furthermore, our methodology was verified by (i) testing small examples with the state-
of-the-art formal verification tool SILVER [KSM20], and by (ii) experimentally evaluating
several case studies. As a first case study for our first-order approach, we decided to analyze
a byte-serialized version of AES where the entire S-box was translated into a single first-
order secure and composable gadget based on our presented design principle. For a second
case study, we constructed a secure nibble-serialized and round-based PRESENT encryption,
again translating the entire S-box into a single gadget following the corresponding first-order
design concepts. All case studies evidently support our theoretical findings by showing
no leakage in the first-order statistical moment when performing a non-specific leakage
assessment.

To conclude, our generic methodology for constructing masked gadgets for arbitrary
vectorial Boolean functions pioneers automatic generation of masked circuits in hardware
solely based on the function expression and with a constant latency of 2 clock cycles for
GHPC and 1 clock cycle for GHPCLL (at cost of higher fresh randomness). A fundamental
question, which is not yet answered and still needs proper attention, is how expensive it is
to generate a certain number of fresh masks per clock cycle. For this, choosing area, energy,
power, or delay as the metric and cost function are certainly possible choices. However,
without any detailed insight on the cost factors, we cannot easily prefer one design over
another even though they have, for example, the same latency.

342 Generic Hardware Private Circuits

Since the presented solution is restricted to the first order with 2 shares, extension of
the technique to cover higher-order security is naturally among our future works. As our
approach pioneers the automated construction of masked hardware circuits, development
of a proper tool is an interesting exercise to pursue. In this context, exploration of
trade-offs between randomness and latency for functions larger than 4 bits through clever
construction of atomic gadgets is an interesting question also left open for future work.

Acknowledgments
The work described in this paper has been supported in part by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972 and through the project 393207943 GreenSec.

References
[AIS18] Prabhanjan Ananth, Yuval Ishai, and Amit Sahai. Private Circuits: A Modular

Approach. In CRYPTO 2018, volume 10993 of Lecture Notes in Computer
Science, pages 427–455. Springer, 2018.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, and Pierre-Yves Strub. Verified Proofs of Higher-Order Masking.
In EUROCRYPT 2015, volume 9056 of Lecture Notes in Computer Science,
pages 457–485. Springer, 2015.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-
jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-
Interference and Type-Directed Higher-Order Masking. In CCS 2016, pages
116–129. ACM, 2016.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel Implementations of
Masking Schemes and the Bounded Moment Leakage Model. In EUROCRYPT
2017, volume 10210 of Lecture Notes in Computer Science, pages 535–566,
2017.

[Boo48] George Boole. The calculus of logic. 1848.

[BP12] Joan Boyar and René Peralta. A Small Depth-16 Circuit for the AES S-Box.
In Information Security and Privacy Conference, SEC 2012, volume 376 of
IFIP, pages 287–298. Springer, 2012.

[CGLS20] Gaëtan Cassiers, Benjamin Grégoire, Itamar Levi, and François-Xavier Stan-
daert. Hardware Private Circuits: From Trivial Composition to Full Verification.
IEEE Transactions on Computers, 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In CRYPTO ’99,
volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer,
1999.

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 Shares in Hardware. In
CHES 2016, volume 9813 of Lecture Notes in Computer Science, pages 194–212.
Springer, 2016.

D. Knichel, P. Sasdrich and A. Moradi 343

[CS20] Gaëtan Cassiers and François-Xavier Standaert. Trivially and Efficiently
Composing Masked Gadgets With Probe Isolating Non-Interference. IEEE
Trans. Information Forensics and Security, 15:2542–2555, 2020.

[DBR19] Lauren De Meyer, Begül Bilgin, and Oscar Reparaz. Consolidating Security
Notions in Hardware Masking. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(3):119–147, 2019.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[GIB18] Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic Low-Latency
Masking in Hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):1–
21, 2018.

[GM18] Hannes Groß and Stefan Mangard. A unified masking approach. J. Cryptogr.
Eng., 8(2):109–124, 2018.

[GMK17] Hannes Groß, Stefan Mangard, and Thomas Korak. An Efficient Side-Channel
Protected AES Implementation with Arbitrary Protection Order. In CT-RSA
2017, volume 10159 of LNCS, pages 95–112. Springer, 2017.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO 2003, volume 2729 of LNCS,
pages 463–481. Springer, 2003.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In CRYPTO ’96, volume 1109 of Lecture Notes in
Computer Science, pages 104–113. Springer, 1996.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - Statistical
Independence and Leakage Verification. In ASIACRYPT 2020, volume 12491
of Lecture Notes in Computer Science, pages 787–816. Springer, 2020.

[MMSS19] Thorben Moos, Amir Moradi, Tobias Schneider, and François-Xavier Standaert.
Glitch-Resistant Masking Revisited or Why Proofs in the Robust Probing Model
are Needed. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(2):256–292,
2019.

[MPG05] Stefan Mangard, Thomas Popp, and Berndt M. Gammel. Side-Channel Leakage
of Masked CMOS Gates. In CT-RSA 2005, volume 3376 of Lecture Notes in
Computer Science, pages 351–365. Springer, 2005.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the Limits: A Very Compact and a Threshold Implementation of AES.
In EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science,
pages 69–88. Springer, 2011.

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Im-
plementation of Nonlinear Functions in the Presence of Glitches. J. Cryptol.,
24(2):292–321, 2011.

[PMK+11] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-Channel Resistant Crypto for Less than 2, 300 GE.
J. Cryptology, 24(2):322–345, 2011.

344 Generic Hardware Private Circuits

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating Masking Schemes. In CRYPTO 2015, volume
9215 of Lecture Notes in Computer Science, pages 764–783. Springer, 2015.

[SAK] SAKURA. Side-channel Attack User Reference Architecture. http://satoh.
cs.uec.ac.jp/SAKURA/index.html.

[SM15] Tobias Schneider and Amir Moradi. Leakage Assessment Methodology - A
Clear Roadmap for Side-Channel Evaluations. In CHES 2015, volume 9293 of
Lecture Notes in Computer Science, pages 495–513. Springer, 2015.

[Tri03] Elena Trichina. Combinational Logic Design for AES SubByte Transformation
on Masked Data. IACR Cryptol. ePrint Arch., 2003:236, 2003.

[WM12] Roy Ward and Timothy C.A. Molteno. Table of Linear Feedback Shift Registers.
Technical Report 2012-1, University of Otago, 2012. http://www.physics.
otago.ac.nz/reports/electronics/ETR2012-1.pdf.

A Appendix
We have provided the HDL code of our case studies of Section 5 in the GitHub:
https://github.com/Chair-for-Security-Engineering/GHPC. A “PINI_pkg.vhd” file is given
for each design, where the settings of the desired implementation can be adjusted. This
includes parameters like “low_latency” with which the gadget type (GHPC/ GHPCLL) can
be selected, and “pipeline” which sets if pipeline registers should be instantiated into the
designs.

We further constructed the designs in such a way that it can easily realize different
Boolean functions (i.e., different S-boxes). In the “PINI_pkg.vhd” file, the number of input
bits and the output bits (via parameters “in_size” and “out_size”) can be adjusted, and
the target Boolean function can be set as a case statement of the “PINI_Step1.vhd” file
as a look-up table. This eases the process of automatic generation of GHPC and GHPCLL
gadgets of arbitrary Boolean functions.

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://www.physics.otago.ac.nz/reports/electronics/ETR2012-1.pdf
http://www.physics.otago.ac.nz/reports/electronics/ETR2012-1.pdf
https://github.com/Chair-for-Security-Engineering/GHPC

	Introduction
	Background
	Notation
	Circuit Model
	Adversary Model
	Probe Simulatability
	Security Notions
	Boolean Masking

	GHPC
	Shannon Decomposition
	Design
	Reducing the Latency

	Comparisons
	Case Studies
	Target Device and Measurement Setup
	Byte-Serial AES
	Nibble-Serial PRESENT
	Round-Based PRESENT

	Discussions and Conclusions
	Appendix

