
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 270–295. DOI:10.46586/tches.v2022.i1.270-295

A Compact and High-Performance Hardware
Architecture for CRYSTALS-Dilithium

Cankun Zhao1,+, Neng Zhang1,+, Hanning Wang1, Bohan Yang1, Wenping
Zhu1, Zhengdong Li1, Min Zhu2, Shouyi Yin1, Shaojun Wei1 and Leibo Liu1,*

1 School of Integrated Circuits, Tsinghua University, Beijing, China.
2 Wuxi Micro Innovation Integrated Circuit Design Co., Ltd., Wuxi, China.

{zck19,zhangn16}@mails.tsinghua.edu.cn;{wanghn,bohanyang,zhuwp,lizd}@tsinghua.edu.
cn;zhumin@mucse.com;{yinsy,wsj,liulb}@tsinghua.edu.cn

+ These authors contributed equally to this work.
* Corresponding author.

Abstract. The lattice-based CRYSTALS-Dilithium scheme is one of the three third-
round digital signature finalists in the National Institute of Standards and Technology
Post-Quantum Cryptography Standardization Process. Due to the complex calcula-
tions and highly individualized functions in Dilithium, its hardware implementations
face the problems of large area requirements and low efficiency. This paper proposes
several optimization methods to achieve a compact and high-performance hardware
architecture for round 3 Dilithium. Specifically, a segmented pipelined processing
method is proposed to reduce both the storage requirements and the processing
time. Moreover, several optimized modules are designed to improve the efficiency of
the proposed architecture, including a pipelined number theoretic transform mod-
ule, a SampleInBall module, a Decompose module, and three modular reduction
modules. Compared with state-of-the-art designs for Dilithium on similar platforms,
our implementation requires 1.4×/1.4×/3.0×/4.5× fewer LUTs/FFs/BRAMs/DSPs,
respectively, and 4.4 × /1.7 × /1.4× less time for key generation, signature generation,
and signature verification, respectively, for NIST security level 5.
Keywords: CRYSTALS-Dilithium · FPGA · post-quantum cryptography · digital
signature · module learning with errors

1 Introduction
Post-quantum cryptography (PQC) refers to cryptographic algorithms that are secure
against both quantum and classical computers. Since conventional public-key cryptographic
algorithms, which are based on the mathematical hardness of computing integer factoriza-
tions and discrete logarithms, can be broken by Shor’s algorithm [Sho94] with a large-scale
quantum computer, the confidentiality and integrity of digital communications on the
Internet and elsewhere are under threat. To ensure the security of information systems in
the upcoming quantum era, researchers have begun to study quantum-resistant public-key
cryptographic algorithms. The National Institute of Standards and Technology (NIST)
initiated the PQC Standardization Process in 2016, and 69 algorithms were submitted
for the first round in 2017. After two rounds of evaluation and review, seven finalists and
eight alternate candidates were selected as the round 3 candidates in July 2020. There
are three digital signature algorithms among the seven finalists, CRYSTALS-Dilithium
[LDK+20a], FALCON [PFH+20], and Rainbow [DCP+20]. The security of Rainbow has
been affected by recent cryptanalysis [Beu20, Din20], which increases the probability that
Dilithium will eventually be standardized.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.270-295
mailto:{zck19, zhangn16}@mails.tsinghua.edu.cn; {wanghn, bohanyang, zhuwp, lizd}@tsinghua.edu.cn; zhumin@mucse.com; {yinsy, wsj, liulb}@tsinghua.edu.cn
mailto:{zck19, zhangn16}@mails.tsinghua.edu.cn; {wanghn, bohanyang, zhuwp, lizd}@tsinghua.edu.cn; zhumin@mucse.com; {yinsy, wsj, liulb}@tsinghua.edu.cn
http://creativecommons.org/licenses/by/4.0/

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu271

There are a large number of polynomial multiplications in Dilithium, leading to both a
long processing time and considerable storage requirements. In addition, compared with
conventional signature schemes, the operations in Dilithium are more complicated and
contain several unusual functions, which cause great difficulty in efficiently implementing
Dilithium in hardware. Most existing works on implementing and evaluating Dilithium
have used pure software methods [GKOS18, RGCB19, GKS21] or hardware-software
codesign methods [BUC19a]. Full hardware implementations of Dilithium are still very
rare. [SBNK19] implemented high-level synthesis (HLS)-based hardware designs for round
2 Dilithium and used optimizations such as loop unrolling and loop pipelining to speed up
the algorithm. [RMJ+21] proposed the first manually designed hardware implementation
of round 2 Dilithium, using a parallelization-based method to achieve high frequency and
high speed. [LSG21] explored implementing round 3 Dilithium with fewer resources by
efficiently using digital signal processors (DSPs).

However, these works did not sufficiently optimize their implementations for Dilithium,
resulting in high resource consumption and low efficiency. [SBNK19] could not optimize its
hardware structure specifically for Dilithium due to its HLS-based implementation method.
[RMJ+21] used many resources to straightforwardly map the algorithm to hardware, which
led to low efficiency. [LSG21] somewhat reduced its resource usage by reusing modules
and using DSPs, but the architecture has a low degree of parallelism, which results in low
utilization of its modules. Overall, an efficient Dilithium hardware architecture that is
fully optimized for Dilithium is still unavailable.

In this paper, several optimization methods are proposed to achieve a compact, efficient
hardware architecture for round 3 Dilithium. Our contributions are summarized as follows:

• A segmented pipelined processing method is proposed, in which operations in the
algorithms are divided into multiple segments and the hardware processes one
segment at a time in a pipelined manner. This method considerably reduces the
storage requirements for intermediate results and hides the execution time of many
operations. Meanwhile, the core modules are reused for different segments, endowing
our design with high efficiency.

• Several optimized modules are designed for Dilithium, including a high-speed
pipelined number theoretic transform (NTT) module, a BRAM-based SampleInBall
module, a compact Decompose module, and three customized modular reduction mod-
ules. These optimized modules accelerate the processing of corresponding functions
with limited resources.

• To accelerate algorithms on resource-constrained hardware, several design trade-
offs are proposed and adopted. As a result, our design uses 30k LUTs, 10k FFs,
11 BRAMs, and 10 DSPs, 1.4×, 1.4×, 3.0×, and 4.5× fewer, respectively, than
state-of-the-art designs for Dilithium on similar devices for NIST security level 5.
Moreover, our design computes key generation, signature generation, and signature
verification at speeds of 11,051, 1,977, and 10,716 operations per second (OP/s) for
security level 5, which is approximately 4.4×, 1.7×, and 1.4× faster, respectively,
than state-of-the-art designs.

The rest of this paper is structured as follows: Section 2 first introduces the notation
used in this paper and then gives a brief introduction to Dilithium and some individualized
functions in this scheme. Section 3 first describes the system architecture of our design,
then introduces the segmented pipelined processing method, and finally presents the details
of our storage scheme. Section 4 introduces the design of several optimized modules.
Section 5 gives performance results on FPGA and presents comparisons with related works.
Finally, Section 6 is our conclusion.

272A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

2 Preliminaries

2.1 Notation

We use Zq to denote the ring of integers modulo prime q, Zq[X] to denote the ring of integer
polynomials modulo prime q, R = Z[X]/(Xn+ 1) to denote the ring of integer polynomials
modulo Xn + 1, and Rq = Zq[X]/(Xn + 1) to denote the ring of integer polynomials
modulo both q and Xn+1. The values of q and n are always 8380417 and 256, respectively,
in Dilithium. We use letters in regular font to denote elements in R or Rq, bold lower-case
letters to denote column vectors with coefficients in R or Rq, and bold upper-case letters to
denote matrices. For a positive integer α, we define r′ = r mod+ α to be the unique integer
r′ in the range 0 ≤ r′ ≤ α such that r′ ≡ r mod α, and we define r′ = r mod± α to be the
unique integer r′ in the range −α2 < r′ ≤ α

2 such that r′ ≡ r mod α. For an element w ∈ Zq,
we define ||w||∞ = |w mod± q|. For w = w0 + w1X + · · · + wn−1X

n−1 ∈ R, we define
||w||∞ = maxi ||wi||∞. For w = (w1, . . . , wk) ∈ Rk, we define ||w||∞ = maxi ||w[i]||∞. In
addition, we use Sη to denote all elements w ∈ R such that ||w||∞ ≤ η, and we use S̃η to
denote all elements w ∈ R whose coefficients are all in the range −η < wi ≤ η. Bτ is used
to denote the set of elements of R that have τ coefficients that are either -1 or 1, while the
rest are 0. The Boolean operator [[statement]] evaluates to 1 if the statement is true and
to 0 otherwise.

Algorithm 1 KeyGen()
1: ζ ⇐ {0, 1}256

2: (ρ, ρ′,K) ∈ {0, 1}256 × {0, 1}512 × {0, 1}256 ⇐ H(ζ)
3: (s1, s2) ∈ Slη × Skη ⇐ ExpandS(ρ′)
4: A ∈ Rk×lq ⇐ ExpandA(ρ)
5: t⇐ As1 + s2
6: (t1, t0)⇐ Power2Roundq(t, d)
7: tr ∈ {0, 1}256 ⇐ H(ρ||t1)
8: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))

Algorithm 2 Sign(sk,M)
1: A ∈ Rk×lq ⇐ ExpandA(ρ)
2: µ ∈ {0, 1}512 ⇐ H(tr||M)
3: ρ′ ∈ {0, 1}512 ⇐ H(K||µ) (or ρ′ ⇐ {0, 1}512)
4: κ⇐ 0, rej ⇐ 1
5: while rej = 1 do
6: y ∈ S̃lγ1

⇐ ExpandMask(ρ′, κ)
7: κ⇐ κ+ l
8: w ⇐ Ay
9: (w1,w0)⇐ Decomposeq(w)

10: c̃ ∈ {0, 1}256 ⇐ H(µ||w1)
11: c ∈ Bτ ⇐ SampleInBall(c̃)
12: z ⇐ y + cs1
13: r0 ⇐ w0 − cs2
14: if ||z||∞ < γ1 − β and ||r0||∞ < γ2 − β then
15: h⇐ MakeHint′q(r0 + ct0,w1)
16: if ||ct0||∞ < γ2 and [[# of 1s in h is ≤ ω]] then
17: rej ⇐ 0
18: return σ = (c̃, z,h)

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu273

Algorithm 3 Verify(pk,M, σ = (c̃, z,h))
1: A ∈ Rk×lq ⇐ ExpandA(ρ)
2: µ ∈ {0, 1}512 ⇐ H(H(ρ||t1)||M)
3: c ∈ Bτ ⇐ SampleInBall(c̃)
4: w′1 ⇐ UseHintq(h,Az − ct1 · 2d, 2γ2)
5: return [[||z||∞ < γ1 − β]] and [[c̃ = H(µ||w′1)]] and [[# of 1s in h is ≤ ω]]

Table 1: Parameters of the three Dilithium security levels in round 3.

NIST Security Level q d τ γ1 γ2 (k, l) η β ω

2 8380417 13 39 217 (q − 1)/88 (4,4) 2 78 80
3 8380417 13 49 219 (q − 1)/32 (6,5) 4 196 55
5 8380417 13 60 219 (q − 1)/32 (8,7) 2 120 75

2.2 CRYSTALS-Dilithium
CRYSTALS-Dilithium is a post-quantum signature scheme based on the hardness of
the module learning with errors (MLWE) problem. The scheme is based on the “Fiat-
Shamir with Aborts” approach [Lyu09, Lyu12], and is similar to the scheme proposed
in [GLP12, BG14]. A distinctive feature of Dilithium that makes it different from the
previous schemes (e.g., [BG14] and qTESLA [ABB+19]) is that the public key size is
reduced by a factor of approximately two at the cost of increasing the signature size by
less than 100 bytes.

The pseudocode for Dilithium’s key generation, signature generation and signature
verification algorithms are presented in Algorithms 1, 2, and 3, respectively. A brief
introduction to these algorithms from a computational perspective is given below. For
complete information and details of the different functions, readers are referred to the
original paper [LDK+21].

Main operations. From the perspective of computational complexity, a main operation
in the entire scheme is polynomial multiplication over the ring Rq via the NTT. To be
more precise, the multiplication operands in this scheme are vectors or matrices whose
coefficients are polynomials in Rq, so there are many continuous polynomial multiplications
in the scheme. Therefore, one focus of this work is to perform continuous NTT operations
efficiently.

The other major time-consuming operation in Dilithium is hashing. Two hashing
functions are used in Dilithium, i.e., SHAKE-256 and SHAKE-128. Specifically, the H,
ExpandS, ExpandMask, and SampleInBall functions use SHAKE-256, and the ExpandA
function uses SHAKE-128. The ExpandA function is used to generate the matrix A from a
seed ρ so that the public key can contain only a 256-bit seed ρ instead of a matrix of k · l
polynomials. As a tradeoff, in all three phases, the ExpandA function will require a long
time to run.

In addition, several individualized functions are used in Dilithium to reduce the length
of the public key or sample elements of Bτ ; these functions are introduced in the next
section.

Signature generation. The Sign algorithm first generates a seed ρ′ and then performs a
loop to generate a signature until it meets a series of security conditions. In the loop, the
main operations are hashing and four multiplications, i.e., Ay, cs1, cs2, and ct0.

Notably, the pseudocode for Sign in Algorithm 2 is not completely the same as in the
original paper [LDK+21]. We use an alternative method of decomposing and computing the

274A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

hints, further details of which can be found in Section 5.1 of the original paper [LDK+21].

Parameter sets. Dilithium’s NIST PQC submission for round 3 includes three parameter
sets that correspond to NIST security levels 2, 3, and 5, as shown in Table 1. Compared
to the round 2 version, a new parameter set corresponding to security level 5 was added,
which has larger matrix and vector sizes and, thus, requires a larger storage space and
longer processing time. In addition, a new modulus (q − 1)/88 was added, whose modular
reduction calculation is more complicated than that of the moduli in round 2.

2.3 Individualized Functions in Dilithium
This section introduces several individualized functions in Dilithium that are rarely used
in other cryptographic algorithms. Straightforwardly implementing these functions will
result in an unnecessary waste of resources and time; therefore, the functions introduced in
this section are implemented using optimized methods or customized modules in this work.
These functions include four functions for reducing the size of the public key (introduced
in Section 2.3.1, 2.3.2) and a function for creating a random element in Bτ (introduced in
Section 2.3.3).

2.3.1 Power2Round and Decompose

Power2Roundq and Decomposeq are used to break up elements in Zq into their “high-order”
bits and “low-order” bits. The former function is the straightforward bitwise way to break
up an element r = r1 · 2d + r0, where r0 = r mod± 2d and r1 = (r − r0)/2d. Since the
Power2Roundq function is rather simple and is used only in KeyGen, below, we introduce
the Decomposeq function.

Roughly speaking, for a finite field element r in Zq, Decomposeq computes high and low
bits r1 and r0 such that r = r1 · 2γ2 + r0, where −γ2 < r0 ≤ γ2, except for the border case.
2γ2 is chosen to be a divisor of q − 1. For the border case, when r minus r0 is equal to
q− 1, the high bits r1 are set to zero, and the low bits r0 are reduced by one. Algorithm 4
shows the definition of the function Decomposeq.

There are two methods to realize Decomposeq. The first method is to perform modular
reduction to obtain the centralized remainders r0 and then calculate r1. The second
method is to find r1 directly from the input r and then calculate r0 according to r1. The
submissions of Dilithium to NIST for round 2 [LDK+19] and round 3 [LDK+20b] provide
two reference software implementations of Decomposeq, which use the first and second
methods, respectively. However, the round 2 reference implementation of Decomposeq
cannot work effeciently with the new modulus in round 3. The round 3 reference implemen-
tation of Decomposeq uses multiple multiplications and, thus, is too costly for hardware
implementation.

Algorithm 4 Decomposeq(r)
1: r ⇐ r mod+ q
2: r0 ⇐ r mod± (2γ2)
3: if r − r0 = q − 1 then
4: r1 ⇐ 0
5: r0 ⇐ r0 − 1
6: else
7: r1 ⇐ (r − r0)/(2γ2)
8: return (r1, r0)

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu275

Algorithm 5 SampleInBall(c̃)
1: Initialize c ∈ R⇐ 0 + 0 ·X + · · ·+ 0 ·Xn−1

2: for i = n− τ to n− 1 do
3: r ⇐ {0, 1, . . . , i}
4: s⇐ {0, 1}
5: ci ⇐ cr
6: cr ⇐ (−1)s
7: return c

Figure 1: Block graph of a 256-point R2MDC FFT.

2.3.2 MakeHint and UseHint

The function called “MakeHint” records the carry to the “high-order” bits in the addition
of an arbitrary element r ∈ Zq and another small element z ∈ Zq, and UseHintq uses the
hint generated in this way to recover the “high-order” bits of the sum. The straightforward
way to perform the former function, denoted by MakeHintq, is to calculate the high part
of r and the high part of r + z individually and compare them to determine whether
they are the same. As mentioned above, we use an alternative method proposed in the
original paper to calculate the hints, using four simple operations instead of two complex
Decomposeq operations, denoted by MakeHint’q.

2.3.3 SampleInBall

SampleInBall is used to generate an element in Bτ , i.e. a polynomial in R that has only
τ nonzero coefficients, whose values are either −1 or 1. This algorithm is an “inside-out”
version of the Fisher-Yates shuffle algorithm [FY38], and its pseudocode is shown in
Algorithm 5.

This algorithm is suitable for software implementation but is not friendly to hardware
implementation because it needs frequent data movements, and every step exhibits data
dependence on all previous steps. Specifically, in every loop of the algorithm, the coefficient
of a random position r needs to be moved to a new position i, as shown in Line 5 of
Algorithm 5. Meanwhile, the value of the polynomial before this movement depends on
the operations in all previous loops. In addition, all operations after SampleInBall depend
on the output c of this function, so its speed will directly affect the speed of the entire
signature algorithm.

2.4 Radix-2 Multipath Delay Commutator
The Radix-2 Multipath Delay Commutator (R2MDC) architecture is a popular pipeline
architecture for the fast Fourier transform (FFT) [HT96]. Compared with the popular
in-place FFT architecture, R2MDC has fewer memory accesses, a more regular ordering of
the input and output data, and simpler control logic, and it is better at processing multiple
FFTs continuously. Figure 1 shows the architecture for a 256-point R2MDC FFT, which
needs two input coefficients per cycle to achieve a 100% utilization rate of the butterfly
units. This architecture can process both radix-2 decimation-in-time (DIT) FFTs and
radix-2 decimation-in-frequency (DIF) FFTs by using different butterfly units and twiddle
factors. In addition, it can process both the FFT and the inverse FFT (IFFT), with the

276A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

Figure 2: System architecture.

difference being that the IFFT requires additional postprocessing and different twiddle
factors.

3 Design Decisions
This section will introduce the overall architecture design, while the next section will
introduce the optimized modules. Our goals are to use limited resources to achieve a
fast speed and use the same hardware architecture to support all phases and all available
security levels.

3.1 System Architecture
Figure 2 shows the system architecture of our hardware design; for clarity, the control
module and the packing/unpacking module are not shown. Our design has six main
components, namely, a BRAM array, an NTT module, a HEAD module, a TAIL module, a
KECCAK module, and a SAMPLE module. A brief introduction to these modules follows.

The BRAM array contains nine dual-port 36k BRAMs arranged in groups of three. This
array is mainly used to store polynomials for the secret key, signature, and intermediate
results. In addition, some areas of the BRAM array are used in place of the shift registers in
the NTT module, which are introduced in Section 4.1. The consumption of BRAMs in our
design is extremely low compared to that in related works due to our segmented pipelined
processing method (introduced in Section 3.2), the on-the-fly matrix A calculation strategy,
and the efficient use of the BRAM array. The details of the arrangement of the BRAM
array are introduced in Section 3.3.

The high-speed pipelined NTT module is designed to accelerate polynomial multiplica-
tion. It contains four butterfly units and can be used to calculate pipelined NTTs, pipelined
INTTs, or 4-way parallel pointwise multiplications. When calculating NTTs/INTTs, it
takes only one coefficient as input and outputs one per cycle. It can perform continuous
NTTs/INTTs on multiple polynomials, and the execution time is 256×k+ 296 clock cycles,
where k is the number of processed polynomials. When calculating multiplications, the
four butterfly units are reused to perform four modular multiplications and four modular
additions per cycle. The details of this module are introduced in Section 4.1.

The HEAD module and TAIL module are designed for our segmented pipelined

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu277

processing. They are placed before and after the NTT module in the pipeline, respectively.
The HEAD module contains a modular multiplier and a modular adder, which are used to
calculate ŷ+ ĉŝ1, ĉŝ2, and ĉt̂0 in Sign. The TAIL module contains a comparator, a modular
adder, a counter, the Decompose module, the Power2Round module, the MakeHint module,
and the UseHint module. These submodules are used to compute operations such as
||z||∞ < γ1 − β, some additions after an INTT, counting the number of 1s in h, and
other corresponding functions. The HEAD and TAIL modules can reduce the storage
requirements and speed up processing, the details of which are introduced in the next
subsection.

The KECCAK module is designed for SHAKE-128 and SHAKE-256, which use the
same Keccak-f[1600] permutation with different rates (1344 and 1088, respectively). Thus
we implement one permutation core for both functions. The permutation core contains two
cascaded straightforward implementations of the round function, i.e., the core can compute
two rounds per cycle. Therefore, the 24 rounds of the whole Keccak permutation are
performed in 12 cycles. In addition, the KECCAK module contains three large registers,
i.e., a 1600-bit state register, a 1088-bit input register, and a 1344-bit output register. The
state register stores the state array which is repeatedly updated within a computational
procedure. The input register concatenates and stores the input bit strings temporarily
until they are ready to be copied or added (exclusive-or) to the state register. The
permutation results are squeezed out and stored in the output register waiting for sampling
so that the permutation core can continue running without pause.

The SAMPLE module contains a rejection sampling module and a BRAM-based
SampleInBall module. The former can perform rejection sampling based on several
parameters. The latter is designed to execute the Fisher-Yates shuffle algorithm used
in Dilithium. The SampleInBall module, which is introduced in Section 4.2, uses fewer
resources and has a faster speed than similar works.

3.2 Segmented Pipelined Processing
A segmented pipelined processing method is proposed for Dilithium, in which operations in
the algorithms are divided into several segments. Different segments are processed serially,
and the operations within a segment are processed in a pipelined manner. Pipelining
can reduce the storage requirements for intermediate results and reduce memory access.
Meanwhile, segmentation can reduce the hardware resources required by the algorithm
and allow full use to be made of our modules. This section first uses Sign as an example
to introduce the segmented pipelined processing method, which is similar for KeyGen and
Verify, and then briefly introduces the HEAD and TAIL modules designed for pipelined
processing. Figure 3, 4, and 5 briefly show how this method is applied to Sign, KeyGen,
and Verify, respectively. For clarity, the horizontal lengths of the different operations in

Figure 3: Segmented pipelined processing of Sign loop.

278A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

Figure 3, 4, and 5 are not proportional to the actual processing times.

Segmented pipelined processing of Sign. We take the core loop of the Sign algorithm
(Lines 5-17 in Algorithm 2) as an example to introduce our segmented pipelined processing
method. The operations in the loop are approximately divided into four segments, as
shown in Figure 3.

The first segment corresponds to Line 6 of Algorithm 2. In this segment, the KECCAK
module and the rejection sampling module are used to produce y, and the result is sent
to the NTT module for NTT transformation. The generation of every polynomial of y
requires five rounds of Keccak permutation and thus needs 60 clock cycles. The NTT
module needs 256 cycles to process one polynomial, so the generation speed of y can meet
this demand.

The second segment corresponds to Line 8 of Algorithm 2. Every element of the matrix
A is generated sequentially using the KECCAK module and the rejection sampling module.
Then, the coefficients of A and y are sent to the NTT module to perform the 4-way parallel
pointwise multiplication Â · ŷ in the NTT domain. For each element of A, the random
number generation process via the KECCAK module requires 60 cycles, the rejection
sampling process via the SAMPLE module requires 70 cycles, and the multiplication
process via the NTT module requires 64 cycles. The speeds of these three modules are
approximately the same, which means that our modules have high utilization.

The third segment corresponds to Lines 8-10. First, the NTT module performs INTTs
on ŵ and outputs w. Then, the TAIL module performs the Decompose function on w.
Finally, the output w1 of Decompose is absorbed by the KECCAK module to prepare for
calculating c̃.

The fourth segment corresponds to Lines 12-16. First, the HEAD module performs
the pointwise multiplication of ĉ and ŝ1, ŝ2, and t̂0 in sequence. The results are sent to
the NTT module for INTT transformation. Finally, the output of the NTT module is

Figure 4: Segmented pipelined processing of KeyGen.

Figure 5: Segmented pipelined processing of Verify.

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu279

sent to the TAIL module to determine whether the generated signature meets the security
conditions and to calculate the hints h.

The HEAD and TAIL modules. The HEAD module is used to calculate the pointwise
multiplication of ĉ and ŝ1, ŝ2, t̂0. The intermediate results generated by HEAD are
processed by NTT immediately in a pipelined manner without being stored. Without this
module, we would need to use the NTT module to perform pointwise multiplications, store
the intermediate results, and use the NTT module to perform INTT transformation. For
the highest security level, 7 + 8 + 8 polynomials would need to be stored, and 6 BRAMs
would need to be added. Meanwhile, these intermediate results have a very short life span,
which would result in low utilization of the BRAMs. In addition, the NTT module would
use 64 cycles to perform pointwise multiplications for one pair of polynomials. Thus, by
using this module, we reduce the loop time by 23× 64 clock cycles, as the multiplication
time for 23 pairs of polynomials is hidden.

The TAIL module is composed of several submodules, as mentioned in Section 3.1.
All corresponding functions of those submodules are performed on every element of the
polynomials. By means of the TAIL module, every coefficient is processed immediately
after INTT transformation. Thus, the execution time of those functions is hidden, and
the storage requirements for intermediate results are reduced. Specifically, the Decompose
operation on Line 9, the addition operations on Lines 13 and 15, the condition judgments
on Lines 14 and 16, and the MakeHint’ operation on Line 15 in the Sign algorithm are all
hidden. If these operations were to be accomplished via the straightforward implementation
method, for security level 5, they would require more than 3,000 cycles even with four
copies of the corresponding submodules for acceleration. By contrast, with one TAIL
module, our method needs a latency of only one cycle.

Overall, the proposed segmented pipelined processing method and the HEAD and
TAIL modules reduce both the storage requirements and the number of processing cycles.

3.3 BRAM Array
To achieve low BRAM consumption, two design considerations are applied in this design,
and the usage of the BRAM array is carefully managed to achieve a high utilization rate.
This implementation is designed to support all three phases and all three security levels.
The largest and most complex storage requirements arise for the Sign algorithm for security

Figure 6: Structural arrangement of the BRAM array.

280A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

level 5, so this case determines the minimum number of BRAMs in our design. This section
first introduces the two design considerations and then presents the storage scheme for the
Sign algorithm for security level 5.

The first design consideration is that four coefficients should be stored in one address
of three BRAMs. Since the bit width of the modulus q in Dilithium is 23 bits, the bit
width of each coefficient that needs to be stored is also 23 bits. Meanwhile, the bit width
of a BRAM is 36 bits. If each coefficient is straightforwardly stored in one address of one
BRAM, 13 of the 36 bits will be wasted. Therefore, we use three BRAMs collectively
as a group, and each address of the three BRAMs is used to store four coefficients of a
polynomial so that only 16 of the corresponding 108 bits will be wasted. In this way,
only 3 BRAMs are needed to store 16 polynomials, rather than 4 BRAMs in similar work
[LSG21]. In addition, the NTT module can perform four pointwise multiplications per
cycle, and this storage scheme exactly matches the corresponding reading and writing
requirements.

The second design consideration is that the matrix A should be calculated on the
fly instead of being precalculated. The reason is that the matrix A contains 7× 8 = 56
polynomials for the highest security level. If A is precalculated and stored in BRAMs,
10.5 more BRAMs will be needed even with our improved storage method. Therefore, the
matrix A is calculated on the fly, which reduces the overall storage requirements by half.

Finally, the specific storage scheme for the Sign algorithm for security level 5 is
introduced as follows. The structural arrangement of our BRAM array is shown in
Figure 6. One address of three adjacent BRAMs is used to store four coefficients. Every 64
addresses of the three BRAMs can store a complete polynomial. Thus, each group of three
BRAMs can store 16 polynomials. Due to our segmented pipelined processing method, a
large number of intermediate results do not need to be stored. Only the secret key and
those intermediate results that will be used in later segments need to be stored. Specifically,
ŝ1, ŝ2, and t̂0 in the secret key need to be stored at all times, while the intermediate
results ŷ, ŵ, w0, ĉ, z, and r0 need to be stored for a certain period of time. In addition,
the partial product polynomials produced during the matrix-vector multiplication Â · ŷ
need to be temporarily stored. Some areas of the BRAMs also need to be used as shift
registers for NTT/INTT processing, which is introduced in Section 4.1.

To make full use of the space and the ports of the BRAMs, the BRAM array is logically
divided into several areas according to different uses, as shown in Figure 6. The arrangement
of the storage location of each variable is mainly based on two considerations: the life
spans and the port requirements. Areas 1, 2, 4, 5, and 7 are used to store polynomials
with four coefficients in one address of three BRAMs. Area 8 is used in the SampleInBall
module to generate and store c. Areas 3, 6, and 9 are used as shift registers in the NTT
module.

4 Optimized Modules

This section introduces several optimized modules to achieve the goals of low resource
consumption and high speed. These modules include the high-speed pipelined NTT
module, which is used to accelerate the main operations in Dilithium; the BRAM-based
SampleInBall module, which is used to run the Fisher-Yates shuffle algorithm efficiently;
the compact Decompose module, which is used to perform the individualized function
Decompose introduced in Section 2.3.1; the rejection sampling module, which is designed
for high-speed on-the-fly generation of matrix A; and three customized modular reduction
modules, which are designed for the three moduli used in Dilithium.

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu281

4.1 NTT Module
The typical method used for hardware implementation of the NTT algorithm is to use
butterfly units to perform layer-by-layer calculations in accordance with the butterfly
diagram, as in [FS19, JGCS19, FSM+19, WTJ+20]. To accelerate the calculation of the
NTT, some implementations use multiple butterfly units in parallel and calculate multiple
butterfly operations in the same layer each time, as in [MOS19, ZYC+20, FSS20, XL20].
The disadvantage of this approach is that each butterfly unit needs to read two coefficients
and write back two coefficients in each cycle, which means that k butterfly units need
k times the number of memory ports. In addition, the memory access order is complex,
necessitating a complex control module.

To accelerate the NTT algorithm without a large number of complex memory accesses,
an optimized pipelined NTT structure is proposed in this paper, inspired by the R2MDC
FFT structure introduced in Section 2.4. The R2MDC FFT architecture requires fewer
and simpler memory accesses but is not suitable for direct use in Dilithium. First, the
shift registers used to implement the delay units occupy up to (64 + 32 + 16 + 8 + 4 +
2 + 1) × 2 × 23 = 5, 842 bits of FF resources. Although some modern FPGAs allow
shift register implementation by certain LUTs (e.g., SRL in Xilinx FPGAs) to reduce
FF consumption, FF-based SRs or SRL-based SRs update their entire states every cycle,
leading to potentially high power consumption. Second, the utilization rate of eight
butterfly units is only 50% when calculating pointwise multiplications, as our storage
scheme cannot support reading sixteen coefficients and writing back eight coefficients per
cycle. Third, the original R2MDC architecture allows data only to be input in normal
order and output in bit-reversed order, which means that additional circuits and time are
required for bit-reversal computation. Finally, eight layers require eight different twiddle

Figure 7: Block graph of the proposed NTT module.

282A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

factors per cycle, which causes the original architecture to use eight memories for twiddle
factors as shown in Figure 1.

The structure of the proposed NTT module, in which several improvements are made
to mitigate the above shortcomings, is shown in Figure 7. The proposed module supports
256-point radix-2 DIT NTTs, 256-point radix-2 DIF INTTs, and 4-way parallel pointwise
multiplications. This module uses four carefully designed butterfly units, a BRAM used to
store precomputed twiddle factors, and some areas of the BRAM array in place of large
shift registers. When calculating an NTT/INTT, the proposed module takes one coefficient
as input and outputs one coefficient per cycle, and the delay from the beginning of the
input to the beginning of the output is 296 cycles. The improvements are introduced in
detail as follows.

Replacing shift registers with BRAMs. The straightforward way to implement the
delay units in R2MDC is to use shift registers, as shown in Figure 8(a). The proposed
NTT module replaces the large shift registers with BRAMs and avoids additional BRAM
consumption by using idle areas and ports of the BRAM array. A shift register with an
n-cycle delay will store every input for n cycles and then output it, as shown in Figure 8(c).
The proposed BRAM scheme uses a single-port BRAM and a counter to implement such a
delay unit, as shown in Figure 8(b). The BRAMs used to replace the shift registers are
embedded memory elements in an FPGA and are set to the read-first mode. In this mode,
the input data on the write port will be stored at the input address in the next cycle, and
the data previously stored at the input address will be output on the read port in the next
cycle, as shown in the red and blue boxes in Figure 8(d). In addition, a counter with a
period of n-1 cycles is used to provide addresses for the BRAM. For example, the input a0
is stored at address 0 in the BRAM and is output after n cycles, as shown in Figure 8(d),
the same behavior as the shift register scheme.

Folding transformation. The second improvement uses four butterfly units instead of
eight by means of a method called folding transformation [PWB92]. In the folded structure,
each butterfly unit calculates two adjacent NTT layers in a time-sliced fashion. For example,
the first butterfly unit calculates the first layer in odd cycles and the second layer in
even cycles. This improvement reduces the number of coefficients required in pointwise
multiplications per cycle by half, and thus, the utilization rate of the butterfly units reaches
100% during parallel pointwise multiplications.

In addition, after folding transformation, the shift registers shift every two cycles

(a) Structure of the shift register scheme (b) Structure of the BRAM scheme

(c) Timing diagram of the shift register scheme (d) Timing diagram of the BRAM scheme

Figure 8: Two implementation schemes for an n-cycle delay unit.

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu283

Figure 9: Timing diagram of the BRAM scheme for a 64D/32D unit. ai denotes data
passing through 64D, where i denotes the storage address of ai in the BRAM. bj denotes
data passing through 32D, where j denotes the storage address of bj in the BRAM.

and input/output data every two cycles. For example, the shift register delay, which is
originally 64 cycles, changes to 128 cycles after folding transformation. However, it can
store only 64 coefficients simultaneously, and each coefficient shifts only 64 times from
being input to output, so it is still denoted by 64D in this paper. Because the reading and
writing frequency is halved, a single-port BRAM can be used in place of two shift registers.
For example, two shift registers 64D and 32D are replaced by one BRAM in Figure 7. The
values of two counters are alternately used as the address input for the BRAM, with one
counter for odd cycles and the other for even cycles. Both counters have 64 + 32− 1 = 95
possible values, i.e., the count range is 0 to 94. Their values increase by one every two
cycles and always satisfy the condition Cnt2 − Cnt1 ≡ 32 (mod 95). The behavior of this
scheme is illustrated in Figure 9 as an example. Accordingly, some unused storage space
and four idle ports of the BRAM array are reused to replace 240× 23 = 5, 520 registers in
the proposed module.

Supporting bit-reversed input. In addition to the naturally supported DIT NTT with
input in normal order and output in bit-reversed order (NTTDITno→br), the proposed NTT
module is also designed to support a DIF INTT with input in bit-reversed order and
output in normal order (INTTDIFbr→no) through the addition of a new data flow path and the
modification of the connection relationship of various processing blocks. For the naturally
supported NTTDITno→br, the data flow passes through wires 1-3-4-3-5-7-8-7-9-11-12-11-13-15-
16-17 in Figure 7, the same processing order as in the original R2MDC method. For the
newly supported INTTDIFbr→no, new wires are added, as indicated in blue in Figure 7, and
the corresponding data flow path is 2-15-16-14-12-11-12-10-8-7-8-6-4-3-4-18. With support
for both NTTDITno→br and INTTDIFbr→no, no additional bit-reversal computation is needed.

Reducing memory usage for twiddle factors. As mentioned above, the original R2MDC
architecture uses eight memories for eight layers to provide eight different twiddle factors
per cycle. In the proposed module, only one memory and three 23-bit registers are used to
provide twiddle factors for eight layers. The twiddle factors used by the first butterfly unit,
which calculates the first two layers of the NTT, have only 1 + 2 values, so three 23-bit
registers are used to store them. In addition, the other three butterfly units need three
23-bit twiddle factors per cycle. One dual-port 36k BRAM is used to store all the twiddle
factors needed by the last three butterfly units, i.e., all twiddle factors used in the last six
layers of the NTT. The two ports of this BRAM can provide 2× 36 = 72 bits per cycle, in
excess of the required 3× 23 = 69 bits. Furthermore, the precomputed twiddle factors for
INTTDIFbr→no are simply the opposites of the values needed for NTTDITno→br, in reverse order.
Thus, only the twiddle factors for NTTDITno→br need to be stored. Their addresses in the
BRAM are carefully arranged in accordance with their order of use so that no additional
address calculation is required.

In addition, the proposed NTT module adopts the method in [ZYC+20] to merge the

284A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

preprocessing and postprocessing required for negative wrapped convolution (NWC) into
the twiddle factors and to merge the postprocessing step of division by N in the INTT into
the butterfly operations in each layer. Furthermore, modular reduction is performed after
each multiplication in the butterfly units by using a modular reduction module designed
specifically for the q in Dilithium, which is introduced in Section 4.5.

Overall, the proposed NTT module uses four butterfly units to accelerate NTT/INTT
processing but needs to read only one coefficient and write only one coefficient per cycle.
It involves much fewer and simpler memory accesses than the typical NTT accelerator.
Compared to the original R2MDC architecture, our NTT module consumes considerably
fewer register resources and uses only one dual-port 36k BRAM to store all of the involved
twiddle factors.

4.2 SampleInBall Module
As mentioned in Section 2.3.3, the function SampleInBall is not friendly to implement in
hardware due to data movements and data dependence. The work presented in [LSG21]
used shift registers to generate and record the offsets of nonzero elements in c. However,
this method needs more than five hundred registers for security level 5 and requires

Figure 10: Structure of the SampleInBall module. The black, blue, and red components
are used for processing in the basic case, the first special case, and the second special case,
respectively.

Table 2: Timing diagram of the SampleInBall module in various cases.

Basic Case 1a Case 1b Case 2a Case 2b

Cycle 0 1 2 0 1 2 0 1 2 0 1 0 1 2
Counter i i+1 - i - - i - - i i+1 i i+1 i+2

r r - - i - - i - - r’ i r’ i -
WEnA 1 - - 1 - - 1 - - 1 1 1 1 -
AddrA r - - i - - i - - r’ i r’ i -
DinA c1 - - c1 - - c1 - - c1 c2 c1 c2 -

DoutA - c0 - - 0 - - 0 - - c0 - c0 0
WEnB - 1 - - 1 - - 0 - - 1 - 1 0
AddrB - i - - i - - i - - i - i+1 i+1
DinB - c0 - - 0 - - 0 - - c0 - c0 0

BRAM[r] c0 c1 - BRAM[i+1] 0 0 c0
BRAM[i] 0 0 c0 0 c1 0 0 c1 c1 0 0 c2
BRAM[r’] c0 c1 c0 c1 c1
a Error cases without special handling.
b Error cases with correct processing.

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu285

additional cycles to convert c into the standard format. This paper proposes a BRAM-
based SampleInBall module which uses the BRAM to record the coefficients instead of
using registers to record offsets. Therefore, it avoids the use of hundreds of registers and
the need for additional format conversion.

The basic design idea of this module is shown by the black components in Figure 10. The
module’s input is a pseudorandom number generated by the KECCAK module, including
a 1-bit sign bit s and an 8-bit random number r for rejection sampling. This module
contains an 8-bit counter, whose value corresponds to the loop variable i in Algorithm 5.
The input r is converted into its negative value and added to i (i.e., i minus r), and the
sign bit of the addition result represents the rejection sampling result. If sampling is
successful, the following operations will be performed. The value 1 or q − 1, determined
by s, will be written into the BRAM at address r through port A. The original value at
address r will be read out through port A in the next cycle and then written to address i
through port B. The counter will be incremented by one.

The BRAM used in this module is set to the read-first mode and can store the input
data at the input address and read out the data previously stored at the input address in
the next cycle. In addition to the basic case, two error cases may arise without special
handling. The timing diagram for processing in the basic case and these two error cases
is shown in Table 2. The first error case occurs when r is equal to i. In this case, the
original value 0 at address i will be written back and will overwrite the correct data in the
third cycle. The second error case occurs when r is equal to the counter’s value minus
one and sampling succeeded in the previous cycle. In this case, both ports will attempt to
write to the same address in the second cycle. The hardware structures for handling these
two error cases are marked in blue and red, respectively, in Figure 10. These structures
will detect the occurrence of these two error cases and change the enable signal and the
address of port B accordingly, as marked in green in Table 2.

In conclusion, the proposed SampleInBall module has the following advantages. First,
it consumes negligible resources, because it reuses the free area in the BRAM array as
its core part, and the logic of the remaining part is very simple. Second, the output c
of this module is in standard polynomial format and can be directly subjected to NTT
processing without additional format conversion. Third, straightforward serial processing
would require one reading operation and two writing operations for each valid sample,
corresponding to three clock cycles, whereas the proposed module needs only one cycle
per sample on average.

4.3 Decompose Module
As mentioned in Section 2.3.1, the methods used in the reference software implementations
of Decomposeq are too expensive for hardware implementation. The work presented in

Figure 11: Structure of the proposed Decompose module.

286A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

Figure 12: Data correspondence for Decompose. Pink shading represents the border case.

[LSG21] used two large LUTs to obtain the high bits and 2γ2 times the high bits, respectively,
followed by a subtraction to obtain the low bits, which is also costly. An efficient Decompose
module is proposed in this paper to take full advantage of the capabilities of a hardware
implementation, as shown in Figure 11.

The part of the structure inside the dashed box in Figure 11 is used to calculate
r0p = r mod± 2γ2 and r1p = (r−r0p)/2γ2. First, a specifically designed modular reduction
module, which is introduced in Section 4.5, calculates rm = r mod+ 2γ2. Then, the
remainder rm is converted into a centralized remainder r0p in Zq. To balance the delay
on different paths, r1p is obtained by calculating (r − rm)/2γ2, followed by a simple
postprocessing step, instead of directly calculating r1p = (r − r0p)/2γ2.

The part of the structure outside the dashed box in Figure 11 is used to handle border
cases. The border case is expressed as r−r0 = q−1 in the specification of this function and
occurs when the input r is in the range q − γ2 ≤ r ≤ q − 1, as shown in pink in Figure 12.
It can be seen from Figure 12 that the border case occurs when r1p = m = (q − 1)/2γ2,
which is used as the judgment condition for the border case in the proposed module. In
addition, the calculation results according to the definition of Decompose show that r0 is
equal to r − q in the border case, i.e., r0 ≡ r mod+ q. Therefore, the proposed module
processes the border case by setting r1 to zero and setting r0 to r.

In summary, the proposed Decompose module is the first manually designed hard-
ware architecture for this function, which achieves both low latency and low resource
consumption.

4.4 Rejection Sampling Module
The rejection sampling module is designed to rapidly sample coefficients of matrix A on
the fly. The preceding stage is the KECCAK module performing SHAKE-128 to generate
pseudorandom numbers for sampling. The sampled coefficients are sent to the NTT module
for pointwise multiplications. As these three modules run in a pipelined manner, the speed
of the rejection sampling module is designed to approximately match the speed of the
other two modules.

When generating matrix A on the fly, the KECCAK module can generate 1344-bit

Figure 13: Block graph of the rejection sampling module.

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu287

pseudorandom numbers per 12 cycles. Every 24 bits are used for rejection sampling
one coefficient. Therefore, the pseudorandom numbers generated every 12 cycles by the
KECCAK module are used for 56 rejection samples. Thus, if the speed of the rejection
sampling module is sampling 56/12 = 4.67 times per cycle, it will ideally match the speed
of the KECCAK module. The NTT module can perform pointwise multiplications for
four successfully sampled coefficients of A per cycle, which means the ideal speed of the
rejection sampling module is successfully sampling four coefficients per cycle.

To approximately match the speed without making the control logic too complicated,
the rejection sampling module is designed to perform rejection sampling four times per
cycle as a trade-off. As a result, the pseudorandom numbers generated by the KECCAK
module in 12 cycles are processed by this module in 56/4 = 14 cycles, i.e., the KECCAK
module works for 12 cycles and waits for 2 cycles. On the output side, as the rejection
sampling might fail, the NTT module waits until four successfully sampled coefficients are
ready.

The block graph of the rejection sampling module is shown in Figure 13. The input
24× 4 = 96 bits are processed by four parallel rejection sampling blocks. The successfully
sampled coefficients are temporarily stored in the FIFO. When there are four or more
coefficients in the FIFO, four coefficients are output and the valid signal is set to one.
Additionally, this module is reusable for sampling s1 and s2 in KeyGen with some slight
modifications.

4.5 Modular Reduction Modules

Three optimized modular reduction modules are proposed for the three moduli used
in Dilithium. The optimization method is introduced as follows. First, the modulus
is transformed into a canonical signed digit (CSD) representation [Har96]. This CSD
representation is utilized to compress the bit width of the number to be reduced, and
the compression process is repeated until the result is less than twice the modulus. A
conditional subtraction is then performed after compression to obtain the final result.

The three moduli used in Dilithium are q = 8380417, α1 = 2γ2,1 = (q − 1)/44,
and α2 = 2γ2,2 = (q − 1)/16. Their corresponding properties to be utilized for bit
width compression are 223 = 213 − 1 (mod q), 218 = 216 + 213 − 211 (mod α1), and
219 = 29 (mod α2), respectively. For example, a 23-bit number r[22 : 0] can be compressed
to r[22 : 19] · 29 + r[18 : 0] for modulus q. The overall structure of the reduction module for
α1 is shown in Figure 14 as an example, whose CSD representation is the most complicated.

5 Results and Comparison
The proposed design was simulated, synthesized, and implemented on a Xilinx Artix-7
FPGA (XC7Z020). All phases and all security levels of round 3 Dilithium are supported
by the same hardware architecture.

Figure 14: Block graph of the modular reduction module for modulus (q − 1)/44.

288A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

5.1 Resources Usage and Performance Results
The resource consumption of the whole design and major modules is shown in Table 3. It
can be seen that the KECCAK module occupies approximately 53% of the total LUTs
and 44% of the total FFs. This is because the high-speed KECCAK module is used
to calculate the matrix A on the fly and should match the speed of the 4-way parallel
multiplication. The NTT module occupies approximately 6% of the LUTs, 13% of the
FFs, and 8 DSPs. This consumption is relatively small for an NTT module that uses four
butterfly units because our NTT module does not require complicated memory access and
the large number of shift registers required by the original R2MDC structure is reduced
by reusing BRAMs. In addition, because the BRAMs in the BRAM array are used in
multiple modules, they are not included in the BRAM consumption of any single module
in Table 3. Details of the BRAM usage are introduced in Section 3.3.

The key performance results of our implementation are presented in Table 4, with a
maximum frequency of 96.9 MHz. All results in Table 4 were obtained based on 10,000
simulations. In the results for Verify, only simulations for valid signatures are included, as
an invalid signature is processed much faster. Due to the nature of Dilithium, the number
of cycles for Sign varies widely. Thus, multiple performance results are reported for Sign,
including the minimum number of cycles without changing the key, the average number
of cycles without changing the key, and the average number of cycles with new keys. In
addition, because the message to be signed can be of any length, the clock cycle values
listed in Table 4 do not include the time for message input.

To compare the different performance improvements brought by several proposed
optimizations, we analyze the case of performing Sign without new keys for security level
5. Only the reduction in the number of cycles in the core loop is counted, which can be
multiplied by the theoretical number of iterations 3.85 [LDK+21] to obtain the average
improvements on the whole algorithm Sign. Without segmented pipelined processing, the
loop takes approximately 24.5k cycles instead of 15.8k cycles, i.e., this strategy reduces
about 8.7k cycles per loop. If the NTT module uses only one butterfly unit, each NTT
takes 1024 cycles and the loop takes 47.3k cycles, i.e., the proposed NTT module reduces
approximately 31.5k cycles. Compared to the method of reading or writing BRAM only
once per cycle, the proposed SampleInBall module reduces 136 cycles per loop. The
Decompose module reduces resource usage but has almost no impact on performance.
Overall, the NTT module has the greatest impact on performance and the segmented
pipelined processing method has the second greatest impact.

5.2 Comparison with Related Works
There are several existing FPGA implementations for Dilithium, including an HLS-based
implementation [SBNK19], a high-performance implementation [RMJ+21], and a DSP-
oriented implementation [LSG21]. In addition, [BUC19b] proposed an implementation for

Table 3: Resource consumption.

Module LUTs FFs BRAMs DSPs
KECCAK 15,784 4,557 0 0
SAMPLE 1,921 472 0 0

NTT 1,919 1,301 2 8
HEAD 293 187 0 2
TAIL 600 260 0 0

BRAM Array 274 0 9 0
Total 29,998 10,366 11 10

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu289

Table 4: Performance results.

Security Level 2 3 5
Operation Cycles OP/s Cycles OP/s Cycles OP/s
KeyGenavg 4,172 23,217 5,851 16,555 8,765 11,051

Signmin
a 8,361 11,585 11,399 8,497 15,790 6,134

Signavg
a 28,091 3,448 44,706 2,167 48,996 1,977

Signavg
b 31,600 3,065 49,496 1,957 55,321 1,751

Verifyavg 4,422 21,904 6,181 15,671 9,039 10,716
a Signing without changing the secret key.
b Signing with new secret keys.

several post-quantum lattice-based protocols including Dilithium based on a hardware-
software codesign method. Compared to existing architectures, the proposed architecture
in this work is mainly different in the following aspects. First, it is a dedicated pipelined
architecture that minimizes the idle cycles of single modules by the proposed segmented
pipelined processing method. Second, several modules are carefully designed and optimized
for Dilithium in this work. Third, the use of BRAM space and ports is fully optimized,
which reduces the BRAM consumption significantly.

A comparison of performances and resources with the related works is shown in Table 5.
This work and [LSG21] implemented the round 3 version of Dilithium. The last three
works [RMJ+21, SBNK19, BUC19b] were designed for the round 2 version of Dilithium,
which changed substantially in round 3. Because the two lower security levels in round 2
did not exist in round 3, the corresponding data are not listed in Table 5. In addition, the
numbers of cycles listed in Table 5 are average values and do not include the execution time
for precalculation. When performing Sign with new keys (or Verify), our core unpacks the
input keys (or signatures, respectively) and performs subsequent operations in a pipelined
manner. The final results are stored in BRAMs, i.e., our core does not pack and send results
as [LSG21]. Thus for a fair comparison, the execution time for packing and unpacking of
[LSG21] is not considered in Table 5. Among pure hardware designs, the proposed design
is the first to use an identical architecture to support all phases and all security levels
of Dilithium. Compared with other implementations of round 3 Dilithium on the same
device, this work uses the least resources to achieve the fastest speed.

[LSG21] proposed architectures for round 3 Dilithium on the same XC7Z020 FPGA
device as ours; however, each architecture of [LSG21] supports only one security level. For
all security levels, our design is at least 3.1×/1.6×/1.3× faster for KeyGen/Sign/Verify
than the implementations in [LSG21]. There are two main reasons for our faster speed.
First, the proposed segmented pipelined processing method reduces the execution time
for a large number of operations. Second, our NTT module uses four butterfly units,
twice the number in [LSG21], to accelerate the NTT/INTT and pointwise multiplication
operations. Although our design supports all security levels, our LUT/FF consumption is
only comparable to theirs for the two lower security levels and is only 70%/73% of their
consumption for security level 5. In addition, our BRAM consumption is 73%/48%/33% of
theirs for security level 2/3/5 because the segmented pipelined processing method reduces
the number of intermediate results to be stored and our carefully designed storage scheme
leads to higher utilization of the BRAMs. Since our NTT module is reused for multiply-
accumulate operations instead of another dedicated module being used for this purpose,
as in [LSG21], and the modular reduction calculations are performed by customized tiny
modules in our design instead of by DSPs as in [LSG21], our DSP consumption is only
22% of theirs.

[RMJ+21] proposed high-speed hardware architectures for round 2 Dilithium on a
Virtex-7 UltraScale+ FPGA. Different architectures are used for different phases, and the

290A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

Table 5: Comparison with related works. For each security level, the three rows of speed
and resource results correspond to three phases: KeyGen, Sign and Verify.

Work
(Device)

NIST Speed Resources
Security Cycles OP/s f LUTs FFs BRAMs DSPs
Level MHz

4,172 23,217
2 28,091 3,448

4,422 21,904

This work
(Artix-7)

5,851 16,555
3 44,706 2,167 96.9 29,998 10,366 11 10

6,181 15,671
8,765 11,051

5 48,996 1,977
9,039 10,716
18,761 7,462

2 66,966 2,091 140 24,320 9,668 15 45
8,770 15,963

[LSG21]
(Artix-7)

33,102 4,290
3 105,129 1,351 142 29,987 11,274 23 45

12,084 11,751
50,982 2,491

5 112,145 1,132 127 42,860 14,136 33 45
16,462 7,715
18,193 19,238 350 54,183 25,236 15 182

[RMJ+21]
(Virtex-7

UltraScale+)

2 a 21,033 15,547 333 68,461 86,295 145 965
15,032 10,524 158 61,738 34,963 18 316
22,981 15,230 350 - - - -

3 a 22,362 14,265 319 - - - -
20,221 7,800 158 - - - -
233,420 512 119 86,646 17,674 - -

2 a 1,618,319 71 114 90,567 21,160 - -
[SBNK19] 285,100 401 114 65,274 15,169 - -
(Artix-7) 305,794 379 116 87,538 17,872 - -

3 a 1,106,053 103 114 91,605 21,322 - -
369,787 309 114 65,360 15,187 - -
167,433 149

25 14,975 2,539 14 11

2 a 634,763 39
[BUC19b] 229,481 109
(Artix-7) 223,272 112

3 a 815,636 31
276,221 91

a Round 2 parameters. In round 2, NIST security levels 2 and 3 correspond to Dilithium security levels
3 and 4, respectively.

resource consumption for NIST security level 2 only is reported in [RMJ+21]. Due to their
straightforward implementation method, their implementations for KeyGen and Verify do
not achieve good results. Even on higher-end devices, their speed is 1.2×/2.1× slower
than ours for KeyGen/Verify for security level 2. Additionally, their resource consumption
for only KeyGen or Verify is 1.8×/2.4×/1.4×/18× or 2.1×/3.4×/1.6×/32× greater than
ours, respectively, when measured in terms of LUTs/FFs/BRAMs/DSPs. However, the
implementation of [RMJ+21] can perform the Sign algorithm at a high speed, for two
main reasons. First, Virtex-7 UltraScale+ is a high-performance and large-capacity FPGA
series. Second, [RMJ+21] uses a straightforward method to implement every function in
the loop of Sign and pipeline processes the whole loop. This method leads to high resource

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu291

consumption, especially in terms of BRAMs and DSPs. Their architecture for Sign at
security level 2 uses 2.3× as many LUTs, 8.3× as many FFs, 13× as many BRAMs, and
97× as many DSPs as our architecture, which supports all phases and all security levels.

[SBNK19] evaluated round 2 Dilithium by means of an HLS-based method on an Artix-7
FPGA. Its speeds for KeyGen/Sign/Verify are 45×/49×/55× and 44×/21×/51× slower
than ours for security levels 2 and 3, respectively. In addition, it requires 2.9×/3.0×/2.2×
as many LUTs and 1.7×/2.0×/1.5× as many FFs as our architecture for KeyGen/Sign/Verify
for both security levels 2 and 3. This large difference is probably due to our efficient
architecture and the relative inefficiency of the HLS-based method.

[BUC19b] used a hardware-software codesign method to propose a configurable PQC
accelerator that supports round 2 Dilithium. An NTT core, a Keccak core, and a sampler
core were designed to accelerate the corresponding functions, and the accelerator needs to
be coupled to a RISC-V processor to run the whole crypto algorithm. This is the reason
why it requires only 50% of the LUTs and 24% of the FFs required by our implementation.
However, most operations are performed serially and considerable time is wasted on
data movements. Therefore, for KeyGen/Sign/Verify, this method is 156×/88×/201× and
148×/70×/172× slower than ours for security level 2 and 3, respectively. In addition, our
BRAM/DSP consumption is 79%/91% as that of theirs for only the accelerator as a result
of our careful arrangement and efficient storage scheme.

6 Conclusions and Future Work
This work presents a compact and high-performance hardware architecture for round 3
Dilithium that supports all three phases and three security levels. A segmented pipelined
processing method is proposed to reduce the execution time of many operations and the
storage requirements for many intermediate results. Several optimized modules are designed
to use fewer resources while performing the corresponding functions faster, including a high-
speed pipelined NTT module, a BRAM-based SampleInBall module, a compact Decompose
module, and three optimized modular reduction modules. As a result, the proposed
architecture uses 30k LUTs, 10k FFs, 11 BRAMs and 10 DSPs with fmax = 96.9 MHz. For
key generation, signature generation, and signature verification, our implementation can
respectively perform 23,217, 3,448, and 21,904 OP/s for NIST security level 2; 16,555, 2,167,
and 15,671 OP/s for NIST security level 3; and 11,051, 1,977, and 10,716 OP/s for NIST
security level 5. Compared with state-of-the-art implementations of round 3 Dilithium, the
proposed design uses 1.4×/1.4×/3.0×/4.5× fewer LUTs/FFs/BRAMs/DSPs to achieve
4.4×, 1.7×, and 1.4× faster calculation for key generation, signature generation, and
signature verification, respectively, for security level 5. Our compact architecture makes it
possible to accelerate Dilithium on resource-constrained devices while serving as a reference
for algorithm evaluation.

From an application viewpoint, unprotected implementations of Dilithium face a
potential threat of side-channel attacks [RJH+18, KLH+20, FDK20] and fault attacks
[BP18, RRB+19]. In our future work, we will focus on investigating how to integrate coun-
termeasures against side-channel attacks and fault attacks into the hardware architecture
of Dilithium while prioritizing compact and high-performance.

Acknowledgments
This work is supported in part by the National Key R&D Program of China (Grant No.
2018YFB2202101), and in part by the National Science and Technology Major Project of
the Ministry of Science and Technology of China (Grant No. 2018ZX01027101-002), and
in part by the National Natural Science Foundation of China (Grant No. 61804088).

292A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

References
[ABB+19] Erdem Alkim, Paulo S. L. M. Barreto, Nina Bindel, Juliane Kramer, Patrick

Longa, and Jefferson E. Ricardini. The lattice-based digital signature scheme
qTESLA. Cryptology ePrint Archive, Report 2019/085, 2019. https://
eprint.iacr.org/2019/085.

[Beu20] Ward Beullens. Improved cryptanalysis of UOV and rainbow. Cryptology
ePrint Archive, Report 2020/1343, 2020. https://eprint.iacr.org/2020/
1343.

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for
signatures based on learning with errors. In Josh Benaloh, editor, CT-
RSA 2014, volume 8366 of LNCS, pages 28–47. Springer, Heidelberg, February
2014.

[BP18] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on de-
terministic lattice signatures. IACR TCHES, 2018(3):21–43, 2018. https:
//tches.iacr.org/index.php/TCHES/article/view/7267.

[BUC19a] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols. IACR
TCHES, 2019(4):17–61, 2019. https://tches.iacr.org/index.php/TCHES/
article/view/8344.

[BUC19b] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. Sapphire:
A configurable crypto-processor for post-quantum lattice-based protocols
(extended version). Cryptology ePrint Archive, Report 2019/1140, 2019.
https://eprint.iacr.org/2019/1140.

[DCP+20] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, Bo-Yin
Yang, Matthias Kannwischer, and Jacques Patarin. Rainbow. Techni-
cal report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

[Din20] Chengdong Tao Albrecht Petzoldt Jintai Ding. Improved key recovery of the
HFEv- signature scheme. Cryptology ePrint Archive, Report 2020/1424, 2020.
https://eprint.iacr.org/2020/1424.

[FDK20] Apostolos P. Fournaris, Charis Dimopoulos, and Odysseas G. Koufopavlou.
Profiling dilithium digital signature traces for correlation differential side
channel attacks. In Alex Orailoglu, Matthias Jung, and Marc Reichenbach,
editors, Embedded Computer Systems: Architectures, Modeling, and Simulation
- 20th International Conference, SAMOS 2020, Samos, Greece, July 5-9, 2020,
Proceedings, volume 12471 of Lecture Notes in Computer Science, pages 281–
294. Springer, 2020.

[FS19] Tim Fritzmann and Johanna Sepúlveda. Efficient and flexible low-power
NTT for lattice-based cryptography. In IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2019, McLean, VA, USA, May
5-10, 2019, pages 141–150. IEEE, 2019.

[FSM+19] Tim Fritzmann, Uzair Sharif, Daniel Müller-Gritschneder, Cezar Reinbrecht,
Ulf Schlichtmann, and Johanna Sepúlveda. Towards reliable and secure post-
quantum co-processors based on RISC-V. In Jürgen Teich and Franco Fummi,

https://eprint.iacr.org/2019/085
https://eprint.iacr.org/2019/085
https://eprint.iacr.org/2020/1343
https://eprint.iacr.org/2020/1343
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/7267
https://tches.iacr.org/index.php/TCHES/article/view/8344
https://tches.iacr.org/index.php/TCHES/article/view/8344
https://eprint.iacr.org/2019/1140
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2020/1424

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu293

editors, Design, Automation & Test in Europe Conference & Exhibition, DATE
2019, Florence, Italy, March 25-29, 2019, pages 1148–1153. IEEE, 2019.

[FSS20] Tim Fritzmann, Georg Sigl, and Johanna Sepúlveda. RISQ-V: Tightly coupled
accelerators for post-quantum cryptography. IACR TCHES, 2020(4):239–280,
2020. https://tches.iacr.org/index.php/TCHES/article/view/8683.

[FY38] R. A. Fisher and F. Yates. Statistical tables for biological, agricultural and
medical research. 1938.

[GKOS18] Tim Güneysu, Markus Krausz, Tobias Oder, and Julian Speith. Evaluation
of lattice-based signature schemes in embedded systems. In 25th IEEE
International Conference on Electronics, Circuits and Systems, ICECS 2018,
Bordeaux, France, December 9-12, 2018, pages 385–388. IEEE, 2018.

[GKS21] Denisa O. C. Greconici, Matthias J. Kannwischer, and Daan Sprenkels. Com-
pact dilithium implementations on cortex-M3 and cortex-M4. IACR TCHES,
2021(1):1–24, 2021. https://tches.iacr.org/index.php/TCHES/article/
view/8725.

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical
lattice-based cryptography: A signature scheme for embedded systems. In
Emmanuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 530–547. Springer, Heidelberg, September 2012.

[Har96] R.I. Hartley. Subexpression sharing in filters using canonic signed digit
multipliers. IEEE Transactions on Circuits and Systems II: Analog and
Digital Signal Processing, 43(10):677–688, 1996.

[HT96] Shousheng He and Mats Torkelson. A new approach to pipeline FFT proces-
sor. In Proceedings of IPPS ’96, The 10th International Parallel Processing
Symposium, April 15-19, 1996, Honolulu, Hawaii, USA, pages 766–770. IEEE
Computer Society, 1996.

[JGCS19] Arpan Jati, Naina Gupta, Anupam Chattopadhyay, and Somitra Kumar
Sanadhya. SPQCop: Side-channel protected post-quantum cryptoprocessor.
Cryptology ePrint Archive, Report 2019/765, 2019. https://eprint.iacr.
org/2019/765.

[KLH+20] Il-Ju Kim, Tae-Ho Lee, Jaeseung Han, Bo-Yeon Sim, and Dong-Guk Han.
Novel single-trace ML profiling attacks on NIST 3 round candidate dilithium.
Cryptology ePrint Archive, Report 2020/1383, 2020. https://eprint.iacr.
org/2020/1383.

[LDK+19] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-Dilithium submission
package to nist for round 2, 2019. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions.

[LDK+20a] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech-
nical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

https://tches.iacr.org/index.php/TCHES/article/view/8683
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://tches.iacr.org/index.php/TCHES/article/view/8725
https://eprint.iacr.org/2019/765
https://eprint.iacr.org/2019/765
https://eprint.iacr.org/2020/1383
https://eprint.iacr.org/2020/1383
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

294A Compact and High-Performance Hardware Architecture for CRYSTALS-Dilithium

[LDK+20b] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-Dilithium submission
package to nist for round 3, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[LDK+21] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-Dilithium – algo-
rithm specifications and supporting documentation (version 3.1). Techni-
cal report, 2021. available at https://pq-crystals.org/dilithium/data/
dilithium-specification-round3-20210208.pdf.

[LSG21] Georg Land, Pascal Sasdrich, and Tim Güneysu. A hard crystal - implementing
dilithium on reconfigurable hardware. Cryptology ePrint Archive, Report
2021/355, 2021. https://eprint.iacr.org/2021/355.

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and
factoring-based signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 598–616. Springer, Heidelberg, December 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 738–755. Springer, Heidelberg, April 2012.

[MOS19] Ahmet Can Mert, Erdinc Ozturk, and Erkay Savas. Design and im-
plementation of a fast and scalable NTT-based polynomial multiplier ar-
chitecture. Cryptology ePrint Archive, Report 2019/109, 2019. https:
//eprint.iacr.org/2019/109.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute
of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[PWB92] K.K. Parhi, C.-Y. Wang, and A.P. Brown. Synthesis of control circuits in
folded pipelined dsp architectures. IEEE Journal of Solid-State Circuits,
27(1):29–43, 1992.

[RGCB19] Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, and Shivam
Bhasin. Improving speed of dilithium’s signing procedure. In Sonia Belaïd
and Tim Güneysu, editors, Smart Card Research and Advanced Applications
- 18th International Conference, CARDIS 2019, Prague, Czech Republic,
November 11-13, 2019, Revised Selected Papers, volume 11833 of Lecture
Notes in Computer Science, pages 57–73. Springer, 2019.

[RJH+18] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopad-
hyay, and Shivam Bhasin. Side-channel assisted existential forgery attack
on Dilithium - A NIST PQC candidate. Cryptology ePrint Archive, Report
2018/821, 2018. https://eprint.iacr.org/2018/821.

[RMJ+21] Sara Ricci, Lukas Malina, Petr Jedlicka, David Smekal, Jan Hajny, Petr Cibik,
and Patrik Dobias. Implementing crystals-dilithium signature scheme on fpgas.
Cryptology ePrint Archive, Report 2021/108, 2021. https://eprint.iacr.
org/2021/108.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://eprint.iacr.org/2021/355
https://eprint.iacr.org/2019/109
https://eprint.iacr.org/2019/109
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2018/821
https://eprint.iacr.org/2021/108
https://eprint.iacr.org/2021/108

C. Zhao, N. Zhang, H. Wang, B. Yang, W. Zhu, Z. Li, M. Zhu, S. Yin, S. Wei, L. Liu295

[RRB+19] Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay. Number “not used” once - practical fault attack
on pqm4 implementations of NIST candidates. In Ilia Polian and Marc
Stöttinger, editors, COSADE 2019, volume 11421 of LNCS, pages 232–250.
Springer, Heidelberg, April 2019.

[SBNK19] Deepraj Soni, Kanad Basu, Mohammed Nabeel, and Ramesh Karri. A hard-
ware evaluation study of nist post-quantum cryptographic signature schemes.
In Second PQC Standardization Conference. National Institute of Standards
and Technology, 2019.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994.

[WTJ+20] Wen Wang, Shanquan Tian, Bernhard Jungk, Nina Bindel, Patrick Longa,
and Jakub Szefer. Parameterized hardware accelerators for lattice-based
cryptography. IACR TCHES, 2020(3):269–306, 2020. https://tches.iacr.
org/index.php/TCHES/article/view/8591.

[XL20] Yufei Xing and Shuguo Li. An efficient implementation of the newhope key
exchange on fpgas. IEEE Trans. Circuits Syst. I Regul. Pap., 67-I(3):866–878,
2020.

[ZYC+20] Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei, and
Leibo Liu. Highly efficient architecture of NewHope-NIST. IACR
TCHES, 2020(2):49–72, 2020. https://tches.iacr.org/index.php/TCHES/
article/view/8544.

https://tches.iacr.org/index.php/TCHES/article/view/8591
https://tches.iacr.org/index.php/TCHES/article/view/8591
https://tches.iacr.org/index.php/TCHES/article/view/8544
https://tches.iacr.org/index.php/TCHES/article/view/8544

	Introduction
	Preliminaries
	Notation
	CRYSTALS-Dilithium
	Individualized Functions in Dilithium
	Radix-2 Multipath Delay Commutator

	Design Decisions
	System Architecture
	Segmented Pipelined Processing
	BRAM Array

	Optimized Modules
	NTT Module
	SampleInBall Module
	Decompose Module
	Rejection Sampling Module
	Modular Reduction Modules

	Results and Comparison
	Resources Usage and Performance Results
	Comparison with Related Works

	Conclusions and Future Work

