
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 245–269. DOI:10.46586/tches.v2022.i1.245-269

Efficient Implementations of Rainbow and UOV
using AVX2

Kyung-Ah Shim1†, Sangyub Lee1, Namhun Koo2

1 National Institute for Mathematical Sciences, Daejeon, Republic of Korea,
{kashim,sylee}@nims.re.kr

2 Ewha Womans University, Seoul, Republic of Korea,
nhkoo@ewha.ac.kr

Abstract. A signature scheme based on multivariate quadratic equations, Rainbow,
was selected as one of digital signature finalists for NIST Post-Quantum Cryptography
Standardization Round 3. In this paper, we provide efficient implementations of
Rainbow and UOV using the AVX2 instruction set. These efficient implementations
include several optimizations for signing to accelerate solving linear systems and
the Vinegar value substitution. We propose a new block matrix inversion (BMI)
method using the Lower-Diagonal-Upper decomposition of blocks matrices based on
the Schur complement that accelerates solving linear systems. Compared to UOV
implemented with Gaussian elimination, our implementations with the BMI result
in speedups of 12.36%, 24.3%, and 34% for signing at security categories I, III, and
V, respectively. Compared to Rainbow implemented with Gaussian elimination, our
implementations with the BMI result in speedups of 16.13% and 20.73% at the security
categories III and V, respectively. We show that precomputation for the Vinegar
value substitution and solving linear systems dramatically improve their signing.
UOV with precomputation is 16.9 times, 35.5 times, and 62.8 times faster than UOV
without precomputation at the three security categories, respectively. Rainbow with
precomputation is 2.1 times, 2.2 times, and 2.8 times faster than Rainbow without
precomputation at the three security categories, respectively. We then investigate
resilience against leakage or reuse of the precomputed values in UOV and Rainbow
to use the precomputation securely: leakage or reuse of the precomputed values leads
to their full secret key recoveries in polynomial-time.
Keywords: Block Matrix Inversion · Digital Signature · Gaussian Elimination ·
Multivariate-Quadratic Problem · Post-Quantum Cryptography · Precomputation ·
Schur Complement

1 Introduction
Developments of a quantum computer have inspired great interest in post-quantum
cryptographic primitives that are believed to remain secure against a quantum computer.
Cryptographic primitives based on multivariate quadratic (MQ) equations are one of
promising post-quantum replacements for current public-key cryptographic algorithms
based on the discrete logarithm problem and the integer factorization problem. In 2020,
NIST selected seven finalists for Post-Quantum Cryptography (PQC) Standardization
Round 3 [ABC+20, SAB+20, CDH+20, DKR+20, LDK+20, PFH+20, DCP+20b]. The
third-round finalists for digital signatures are two lattice-based schemes, Dilithium and

†Corresponding Author. This research was supported by the National Institute for Mathematical
Sciences funded by Ministry of Science and ICT of Korea (B21720000).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.245-269
mailto:kashim@nims.re.kr, sylee@nims.re.kr
mailto:nhkoo@ewha.ac.kr
http://creativecommons.org/licenses/by/4.0/

246 Efficient Implementations of Rainbow and UOV using AVX2

Falcon, and an MQ-scheme, Rainbow. These finalists will be considered for standardization
at the end of the third round.

MQ-schemes mainly rely on the hardness of solving large systems of multivariate
quadratic equations, called the MQ-problem. To hide a trapdoor, they require an Affine-
Substitution-Affine (ASA) structure related to the Extended Isomorphism of Polynomials
(EIP) problem [Pat96]. Since Imai and Matsumoto [MI88] introduced the first MQ-
encryption scheme, most of the MQ-schemes have been broken except few signature
schemes including Unbalanced Oil-and-Vinegar (UOV) variants [KPG99, DS05] and HFEv-
variants [PCG01, PCY+15]. MQ-schemes require only modest computational resources and
are suitable for resource constrained devices [BERW08, CCC+09]: it is easy to implement
requiring simple operations such as matrix-vector products and solving linear systems
over small finite fields without multi-precision arithmetic. Thus, they can be efficiently
implemented on low cost devices, without the need of a cryptographic coprocessor. Their
signature length and performance are the shortest and fastest among known post-quantum
signature schemes, respectively. In spite of fast performance and short signatures, they
suffer from relatively large key sizes. However, in medium devices with sufficient memory
capabilities such as smartphones, large key size is not a major problem.

UOV and Rainbow are based on two hard problems, the MQ-problem and the EIP-
problem, while Rainbow additionally requires the hardness of the MinRank problem due
to its multi-layered structure. New methods to improve the MinRank attack are still being
developed [PS20, VBC+19, BBB+20, BBC+20]. Rainbow team [DCP+20a] modified their
parameters based on these new security analyses by increasing the number of equations
and variables. Ward Beullens [Beu20] gave new intersection attacks on UOV and Rainbow,
and MinRank attacks on Rainbow. He claimed that the attacks reduced the cost of a key
recovery by a factor of 216, 230, and 246 for the parameter sets of Rainbow submitted to
NIST PQC at three security categories, respectively. Subsequently, Rainbow team showed
that the Rainbow parameters submitted to Round 3 still meet the NIST level I, III, and
V security requirements in their updated security model and analysis without detracting
from Ward’s work [DCP+20c].

Main Results. A main idea to invert a system of quadratic equations in UOV and
Rainbow is to convert the quadratic system to a linear system by substituting random
Vinegar values into the Vinegar variables of the central quadratic equations. Signing of
UOV and Rainbow is dominated by these two operations: the Vinegar value substitution
and solving linear systems. In this paper, we present optimizations to accelerate the two
major operations via a block matrix inversion method and precomputation.

• Implementations of UOV/Rainbow. We select new parameters of UOV secure
against the recent attacks including known algebraic attacks at the three security
categories. We then implement UOV with the new parameters and Rainbow with
the modified parameters submitted to NIST PQC at the three security categories I,
III, and V [DCP+20a]. After profiling their implementations, we determine target
optimizations.

• Efficient Implementations of UOV/Rainbow. We propose two optimizations
to improve signing of UOV and Rainbow, and present their efficient implementations
in C program language on an Intel 64-bit processor using the AVX2 instruction set.

– Block Matrix Inversion (BMI) Method. We propose a BMI method using
the Lower-Diagonal-Upper decomposition of block matrices based on the Schur
complement. We use the BMI method to reduce the size of the matrix being
inverted by half for accelerating solving linear systems. Compared to UOV
implemented with Gaussian elimination, we speed up the signing by 12.36%,
24.3%, and 34% at the security categories I, III, and V, respectively. Compared

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 247

to Rainbow implemented with Gaussian elimination, we speed up the signing
by 16.13% and 20.73% at the security categories III and V, respectively.

– Precomputation. We present implementations of UOV and Rainbow with
precomputation for message independent operations that dramatically improve
signing. UOV with precomputation is 16.9 times, 35.5 times, and 62.8 times
faster than UOV without precomputation at the three security categories, re-
spectively, while Rainbow with precomputation is 2.1 times, 2.2 times, and
2.8 times faster than Rainbow without precomputation at the three security
categories, respectively. Rainbow is faster than UOV, while UOV with precom-
putation is about 2.7 times, 7.3 times, and 12.2 times faster than Rainbow with
precomputation at the three security categories, respectively.

– Resilience against Leakage or Reuse of the Precomputed Values. We
investigate resilience of leakage or reuse of the precomputed values in UOV and
Rainbow to use the precomputation values securely. We show that if (n+ 1)
signatures generated by the revealed precomputed values are given then the
secret keys of UOV and Rainbow are completely recovered in polynomial-time.
If (m+ 1) and (o2 + 1) signatures generated by reusing the precomputed values
are given then the secret keys of UOV and Rainbow are entirely recovered in
polynomial-time, respectively.

Organization. Section 2 describes Rainbow and UOV specifications. In Section 3, we
select new parameters of UOV secure against the recent attacks and we determine target
optimizations after profiling their implementations. In Section 3, we present the BMI
method for solving linear systems and investigate the actual improvements in terms of
matrix sizes and the security levels. In Section 4, we propose UOV and Rainbow with
precomputation and then investigate resilience against leakage or reuse of the precomputed
values. In each section, we present efficient UOV/Rainbow implementations with our
optimizations using the AVX2 instruction set and investigate their speedups compared to
the original schemes. We conclude this paper in Section 5.

2 Preliminaries
We describe key generation, signing and verification algorithms of Rainbow and UOV.

2.1 Rainbow and UOV

Main Parameters.

• Fq: the finite field of q elements

• m: the number of polynomials in the public key

• v: the number of Vinegar variables

• o: the number of Oil variables in UOV, m = o

• oi: the number of Oil variables in the i-th layer of Rainbow, m = o1 + o2

• n: the number of variables in the public key, n = m+ v.

We describe Rainbow with two layers. Let v, o1, and o2 be positive integers such that
m = o1 + o2 and n = v +m. Define sets of integers

V = {1, · · · , v}, O1 = {v + 1, · · · , v + o1}, O2 = {v + o1 + 1, · · · , v + o1 + o2}.

248 Efficient Implementations of Rainbow and UOV using AVX2

A central map F(x) = (F (1)(x), · · · ,F (m)(x)) is a system of m multivariate quadratic
polynomials in n variables x1, · · · , xn defined by

F (i)(x) =
∑

s∈O1,t∈V
α

(i)
st xsxt +

∑
s,t∈V,s≤t

β
(i)
st xsxt +

∑
s∈V ∪O1

γ(i)
s xt + η(i), 1 ≤ i ≤ o1

F (i)(x) =
∑

s∈O2,t∈V ∪O1

α
(i)
st xsxt+

∑
s,t∈V ∪O1,s≤t

β
(i)
st xsxt+

∑
s∈V ∪O1∪O2

γ(i)
s xt+η(i), o1+1 ≤ i ≤ m

Two invertible affine maps S : Fmq → Fmq and T : Fnq → Fnq are needed to destroy the
special structure of F . A public key is given by P = S ◦F ◦T and a secret key is (S,F , T).

Rainbow

• KeyGen(1λ). For a security parameter λ, output a public key as PK = P = S◦F◦T
and a secret key as SK = (S,F , T).

• Sign(SK, λ, m). Given a message m and a collision-resistant hash function H :
{0, 1}∗ → Fmq ,

– Choose a λ-bit random salt r, compute h = H(m, r) ∈ Fmq and a = S−1(h).
– Compute b = F−1(a), i.e. F(b) = a as follows:
∗ In the first layer, select Vinegar values (s1, · · · , sv) ∈ Fvq at random and
obtain a linear system of o1 equations with o1 unknowns xv+1, · · · , xv+o1

by substituting (s1, · · · , sv) into o1 central polynomials F (k) for 1 ≤ k ≤ o1.
After that, find a solution (sv+1, · · · , sv+o1) of the linear system using
Gaussian elimination.

∗ In the second layer, obtain a linear system of o2 equations with o2 unknowns
xv+o1+1, · · · , xn by substituting (s1, · · · , sv+o1) into o2 central polynomials
F (i) for o1 + 1 ≤ i ≤ m. After that, find a solution (sv+o1+1, · · · , sn) of
the linear system using Gaussian elimination. Then b = (s1, · · · , sn).

∗ If one of the linear systems is not solvable, choose another random number
r′ and try again.

– Compute σ = T −1(b) and output τ = (σ, r) as a signature on m.

• Verify(PK, m, τ). Given a signature (τ, m) and the public key P, check the equality
P(σ) = H(m, r). If the equality holds, output valid.

UOV

• KeyGen(1λ). For a security parameter λ, a public key is PK = P = F ◦ T and
a secret key is SK = (F , T). UOV does not require an affine map S since all the
central polynomials have the same form.

• Sign(SK, m). It is the same as that of Rainbow’s first layer.
• Verify(PK, m, σ). It is the same as that of Rainbow.

Algorithm 1, Algorithm 2, and Algorithm 3 specify key generation, signing, and
verification of Rainbow submitted to NIST PQC Standardization Round 3 [DCP+20b].
The description of UOV is consistent with a single layer version of Rainbow. Algorithm 4,
Algorithm 5, and Algorithm 6 specify key generation, signing, and verification of UOV.
Their signing and verification algorithms use the hash value H(H(m)||r) instead of H(m, r)
for efficiency.

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 249

Algorithm 1 Rainbow Key Generation
Require: Rainbow parameters (q, v1, o1, o2), length of salt l.
Ensure: Rainbow key pair (sk, pk).

1: m← o1 + o2
2: n← m+ v1
3: repeat
4: MS ← Matrix(q,m,m)
5: until IsInvertible(MS) == TRUE
6: S ←MS

7: InvS ←M−1
S

8: repeat
9: MT ← Matrix(q, n, n)

10: until IsInvertible(MT) == TRUE
11: T ←MT

12: InvT ←M−1
T

13: F ← Rainbowmap(q, v1, o1, o2)
14: P ← S ◦ F ◦ T
15: sk ← (InvS,F , InvT , l)
16: pk ← (P, l)
17: Return (sk, pk)

Algorithm 2 Rainbow Signature Generation
Require: document d, Rainbow private key (InvS, F , InvT), length of the salt l.
Ensure: signature σ = (z, r) ∈ Fnq × {0, 1}l such that P(z) = H(H(d)||r).

1: repeat
2: y1, ..., yv1 ←R Fq
3: f̂ (v1+1), ..., ˆf (n) ← f (v1+1)(y1, ..., yv1), ..., f (n)(y1, ..., yv1)
4: (F̂ , CF)← Aff−1(f̂ (v1+1), ..., f̂ (n))
5: until IsInvertible(F̂) == TRUE
6: InvF = F̂−1

7: repeat
8: r ← {0, 1}l
9: h← H(H(d)||r)

10: x← InvS · h
11: (yv1+1, ..., yv2)← InvF · ((xv1+1, ..., xv2)− CF)
12: f̂ (v2+1), ..., f̂ (n) ← f̂v2+1(yv1+1, ..., yv2), ..., f̂ (n)(yv1+1, ..., yv2)
13: t, (yv2+1, ..., yn)← Gauss(f̂ (v2+1) = xv2+1, ..., f̂

(n) = xn)
14: until t == TRUE
15: z = InvT · y
16: σ ← (z, r)
17: Return σ

Algorithm 3 Rainbow Signature Verification
Require: document d, signature σ = (z, r) ∈ Fnq × {0, 1}l.
Ensure: boolean value TRUE or FALSE.

1: h← H(H(d)||r)
2: h’← P(z)
3: if h’ == h then
4: return TRUE
5: else
6: return FALSE
7: end if

250 Efficient Implementations of Rainbow and UOV using AVX2

Algorithm 4 UOV Key Generation
Require: UOV parameters (q, v, o), length of salt l.
Ensure: Rainbow key pair (sk, pk).

1: m← o
2: n← m+ v
3: repeat
4: MT ← Matrix(q, n, n)
5: until IsInvertible(MT) == TRUE
6: T ←MT

7: InvT ←M−1
T

8: F ← UOVmap(q, v, o)
9: P ← F ◦ T

10: sk ← (F , InvT , l)
11: pk ← (P, l)
12: Return (sk, pk)

Algorithm 5 UOV Signature Generation
Require: document d, UOV private key (F , InvT), length of the salt l.
Ensure: signature σ = (z, r) ∈ Fnq × {0, 1}l such that P(z) = H(H(d)||r).

1: repeat
2: y1, ..., yv ←R Fq
3: f̂ (v1+1), ..., ˆf (n) ← f (v+1)(y1, ..., yv), ..., f (n)(y, ..., yv)
4: (F̂ , CF)← Aff−1(f̂ (v+1), ..., f̂ (n))
5: until IsInvertible(F̂) == TRUE
6: InvF = F̂−1

7: r ← {0, 1}l
8: x← H(H(d)||r)
9: (yv+1, ..., yn)← InvF · ((xv+1, ..., xn)− CF)

10: z = InvT · y
11: σ ← (z, r)
12: Return σ

Algorithm 6 UOV Signature Verification
Require: document d, signature σ = (z, r) ∈ Fnq × {0, 1}l.
Ensure: boolean value TRUE or FALSE.

1: h← H(H(d)||r)
2: h’← P(z)
3: if h’ == h then
4: return TRUE
5: else
6: return FALSE
7: end if

3 Implementations of UOV and Rainbow
We first consider major computations in UOV/Rainbow to improve their signing. We then
select new secure parameters of UOV against the recent attacks including known algebraic
attacks and implement them using the AVX2 instruction set. To identify how much
improvement needs to be made in their implementations, we profile the implementations
and determine optimization strategies.

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 251

3.1 Major Computations of UOV and Rainbow
We consider major computations in UOV and Rainbow.

Major Computations in UOV and Rainbow. A main idea to invert a system of
quadratic equations in UOV and Rainbow is to convert the quadratic system to a linear
system by substituting random Vinegar values into the Vinegar variables of the central
quadratic polynomials. There are two types of computations in signing:

• Substitution of Vinegar Values into the Central Polynomials. Calculations
for substituting random Vinegar values into the central polynomials are required.
Since there are a large number of quadratic terms with Vinegar×Vinegar indexes
and Vinegar×Oil indexes being substituted by the Vinegar values, the computations
are heavy.

• Solving Linear System. Solving the linear systems after the Vinegar value sub-
stitution are required. Gaussian elimination is used to find a solution of the linear
system, whose complexity is O(k3) for a k × k random matrix.

Thus, signing requires O(k3) complexity, where k is the number of equations in the linear
system. These computations are the main bottlenecks for signing cost.

Parameters of UOV and Rainbow are given by (Fq, v, o), where m = o and n = v +m,
and (Fq, v, o1, o2), where m = o1 + o2 and n = v+m, respectively. The parameters related
to the computational burden are as follows:

• Large Numbers of Variables (n). UOV and Rainbow require the large numbers
of variables which cause heavy computational cost for the Vinegar value substitution.

• Large Sizes of Matrices being Inverted (m, o2). The numbers of equations (m)
in UOV and Rainbow are determined by the complexities against direct attacks. To
solve the linear systems,

– UOV with a single layer requires one inversion of an m × m matrix, where
m(= o) is at most twice oi (i = 1, 2), where o1 and o2 are the numbers of
equations in the first and second layers of Rainbow, respectively.

– Rainbow with two layers requires two inversions of an o1 × o1 matrix and
an o2 × o2 matrix, where m = o1 + o2, and oi is smaller than o in UOV. In
particular, according to the security analysis of Rainbow [BBC+20, DCP+20a],
a key formula for complexity includes the number k, which corresponds to o2.
The modified Rainbow parameters submitted to NIST PQC were chosen o2 > o1
[DCP+20a]. Since the increase of k will increase the attack complexity, o2 is
getting bigger.

3.2 Parameter Selection and Implementations of UOV and Rainbow
Our implementations are based on the open source codes of Rainbow submitted to NIST
PQC Standardization Round 3 [DCP+20b]. After implementing the schemes, we profile
their implementations.

Target Platform. The computer we have used is equipped with an Intel(R) Core(TM)
i9-10900X CPU running at the constant clock frequency of 3.70GHz.

Random Number Generation and Hashing. We use AES_CTR_DRBG as the
random number generator. We use SHA-2 as the underlying hash function. In the SHA-2

252 Efficient Implementations of Rainbow and UOV using AVX2

Table 1: Suggested parameters of UOV/Rainbow at three security categories.

Scheme Security Category I III V

UOV

λ (Gates) 2146 2212 2274

(Fq, o, v) (F28 , 46, 70) (F28 , 72, 109) (F28 , 96, 144)
Direct Attack 2146.05 2212.05 2274.847

Intersection Attack 2166.87 2236.36 2291.501

Rainbow

λ (Gates) 2147 2217 2281

(Fq, v, o1, o2) (F24 , 36, 32, 32) (F28 , 68, 32, 48) (F28 , 96, 36, 64)
Direct Attack 2164 2234 2285

MinRank Attack 2162 2228 2296

RBS Attack 2147 2217 2281

hash function family, we use SHA256, SHA384, and SHA512 with output lengths of 256,
384, and 512 bits, respectively.

Selection of Finite Fields. We choose Fq = F28 for UOV and Fq = F28 or F24 for
Rainbow as the underlying finite fields.

The Use of Random Salts. We use a random salts r ∈ {0, 1}l to achieve provable
security as in [SSH11] which should be used only once.

Use of Equivalent Key and Linear Maps. UOV implementation uses a secret key T

as an equivalent key of UOV of the form T =
(
I T ′

0 I

)
and a linear map. Rainbow

implementation uses a secret key (S, T) as an equivalent key of Rainbow of the form

S−1 =
(
I S′

0 I

)
, T =

 I T (1) T (2)

0 I T (3)

0 0 I

 and linear maps.

Selection of Secure Parameters. For implementations of UOV and Rainbow, we need
to select their secure parameters.

• For UOV, we need to select new secure parameters of UOV against the attacks in
[Beu20] including known algebraic attacks. In [CHT12], UOV(Fq, o, v) = (F28 , 44, 59)
was suggested as a secure parameter at a 128-bit security level. The intersection
attack on UOV(F28 , 44, 59) [Beu20] requires only 295 multiplications to recover the
secret key, which is much less than the claimed security 2128. We suggest new secure
parameters of UOV at the three security categories summarized in Table 1, where λ
is the required number of gates for each security category [DCP+20b].

• For Rainbow, we use the modified parameters submitted to NIST at the three
security categories [DCP+20a]. The parameters at the three security categories are
summarized in Table 1. Complexities in Table 1 are the lowest complexities that
determine the corresponding security levels. RBS attack stands for the Rainbow
Band Separation attack.

UOV/Rainbow Implementation Results. We provide implementations of UOV and
Rainbow based on codes submitted to NIST PQC Standardization Round 3 [DCP+20b]
using the AVX2 instruction set on the target platform.

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 253

Table 2: UOV/Rainbow implementation results using AVX2 at three security categories
in CPU cycles.

Scheme Security Category I III V

UOV
KeyGen. 29 077 126 98 870 925 161 016 435
Sign 201 834 707 959 1 486 775
Verify 125 312 222 012 485 344

Rainbow
KeyGen. 11 575 144 65 099 975 214 977 689
Sign 68 203 322 799 807 309
Verify 46 857 151 466 395 259

• The results presented in Table 2 include the numbers of CPU cycles required by the
key generation, signing, and verification.

• Each result is an average of 10,000 measurements for each function using the C
programming language with GNU GCC version 10.1.0 compiler on Centos 7.9.2009.
Hyperthreading and Turbo Boost are switched off.

Profiling UOV/Rainbow Implementation. To identify how much improvement needs
to be made in the implementations, we profile their signing given in Table 3.

• In Table 3, Vinegar value substitution represents the process of substituting Vinegar
values into the central polynomials, F (i) for i = 1, · · · ,m in UOV (i = 1, · · · , o1
and i = o1 + 1, · · · ,m in the first and second layers of Rainbow, respectively)
after choosing random Vinegar values sV = (s1, · · · , sV) ∈ Fvq . An m×m matrix,
LSV , is the coefficient matrix of the linear system obtained from the Vinegar value
substitution in UOV. Two o1 × o1 and o2 × o2 matrices, LSV,1 and LSV,2, are the
coefficient matrices of the linear systems obtained from the Vinegar value substitution
in the first and second layers of Rainbow, respectively. Etc. represents the rest of
operations except the above two operations.

• Run-time of signing in UOV and Rainbow is mostly dominated by the two operations.
In UOV, the proportions of cycles spent in the Vinegar values substitution and in
finding an inverse matrix are up to 58% and 48%, respectively. In Rainbow, the
proportions of cycles spent in the two major operations are up to 63% and 42%,
respectively.

• Thus, optimizing these two operations are going to provide a large speedup.

– To accelerate solving linear systems, we will reduce the sizes of matrices being
inverted by half based on a block matrix inversion method.

– We will use precomputation to handle both of the Vinegar value substitution
and solving linear systems.

Timing Attack Protection. As in the implementation of Rainbow [DCP+19], all
key dependent operations of our implementations of UOV/Rainbow are performed in a
time-constant manner.

4 Efficient Implementations of UOV and Rainbow
In this section, we propose a block matrix inversion method and precomputation for
solving linear systems and the Vinegar value substitution to accelerate signing of UOV

254 Efficient Implementations of Rainbow and UOV using AVX2

Table 3: Profiling UOV/Rainbow implementations at three security categories.

Scheme Layer Operations I III V

UOV 1
Vinegar value substitution 58.09% 48.37% 56.60%
Computation of LS−1

V 36.38% 47.98% 41.71%
Etc. 5.53% 3.65% 1.69%

Rainbow

1
Vinegar value substitution 19.15% 18.58% 34.37%
Computation of LS−1

V,1 27.04% 11.37% 8.03%
Etc. 3.49% 1.26% 0.68%

2
Vinegar value substitution 24.08% 39.54% 29.07%
Computation of LS−1

V,2 15.00% 25.38% 25.34%
Etc. 11.24% 3.87% 2.51%

and Rainbow. For our implementations, we utilize Rainbow team’s AVX2-specialized basic
functions for GF arithmetic, basic linear algebra, and matrix operations, and constant-
time basic functions in its source code submitted to NIST PQC Round 3. For the BMI
implementation, we use its AVX2 specialized functions for matrix operations and (constant-
time) Gaussian elimination. Implementations for precomputation are constructed with
rearranging the computational operations and adjusting the memory operations.

4.1 A Fast Method for Solving Linear Systems: Block Matrix
Inversion

Signing of UOV and Rainbow uses Gaussian elimination to get LS−1
V . The size of a

matrix being inverted is one of the reasons for heavy computation which requires O(m3)
complexity for inverting an m × m matrix. Now, we propose a new method, block
matrix inversion method, to reduce the size of a matrix being inverted for accelerating
UOV/Rainbow signing. We then investigate the actual improvements of our method in
their implementations at various security levels.

Reduce the Size of a Matrix being Inverted. We first consider a nonsingular square
matrix R and its inverse R−1 that can be partitioned into 2 × 2 blocks as

R =
(
A B
C D

)
and R−1 =

(
E F
G H

)
.

The matrices R and R−1 must have even dimension in the all-square partitions. We
consider the square diagonal partition of R and R−1. In this case, A,D,E,H are square
matrices, A and E have the same size, and so do D and H. We use the following well-known
theorem [ND+77].

Theorem 1. Let R be a matrix partitioned into 2 × 2 blocks.

(i) Assume A is nonsingular: then the matrix R is invertible if and only if the Schur
complement (D − CA−1B) of A is invertible and

R−1 =
(
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

(ii) Assume D is nonsingular: then the matrix R is invertible if and only if the Schur
complement (A−BD−1C) is invertible and

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 255

R−1 =
(

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
.

The inversion method in Theorem 1 requires two inversions for A−1 and [D−CA−1B]−1,
six matrix multiplications of the half-sized block matrices and three additive operations. To
reduce the required operations, we use the Lower-Diagonal-Upper (LDU) decomposition of
block matrices based on the Schur complement. We give an efficient block matrix inversion
method for computing R−1 · α to reduce the operations by more than half in Theorem 2.

Theorem 2. For a nonsingular k×k matrix R in the above, R−1 ·α requires two inversions,
two matrix multiplications of the half-sized block matrices and four block matrix-vector
products, where k is even and α = (α1, · · · , αk/2)T.
Proof. A nonsingular square matrix R of 2 × 2 blocks is represented by the LDU
decomposition of block matrices based on the Schur complement as

R =
(
A B
C D

)
=
(

I O
CA−1 I

)(
A O
0 D − CA−1B

)(
I A−1B
0 I

)
= L·DSc·U.

Thus, R−1 can be expressed by A−1 and the inverse of the Schur complement of A,
[D − CA−1B]−1, if they exist,

R−1 = U−1 ·D−1
Sc · L

−1

=
(
I −A−1B
0 I

)(
A−1 O

0 [D − CA−1B]−1

)(
I 0

−CA−1 I

)
.

For computing R−1 ·α = R−1 ·

 α1
· · ·
αk/2

, we reduce the matrix multiplications of the

method in Theorem 1 as follows: After computing A−1B and C(A−1B), calculate A−1

and [D − CA−1B]−1, where two matrix multiplications and two inversions of the block
matrices. All remaining computations are made by four block matrix-vector products. We
get

R−1·

 α1
· · ·
αk/2

 =
(
I −A−1B
0 I

)(
A−1 O

0 [D − CA−1B]−1

)(
I 0

−CA−1 I

) α1
· · ·
αk/2

 .

We obtain (CA−1) ·

 α1
· · ·
αk/2

 by computing C

A−1 ·

 α1
· · ·
αk/2

 as two block

matrix-vector products. Let CA−1 ·

 α1
· · ·
αk/2

 =

 β1
·

βk/2

. Next, we compute

[D − CA−1B]−1 ·

 β1
· · ·
βk/2

 =

 γ1
· · ·
γk/2

 , (A−1B) ·

 γ1
· · ·
γk/2


since [D−CA−1B]−1 and A−1B are already calculated. Thus, computing R−1 ·α requires
two block matrix multiplications for computing A−1B and C(A−1B), two inversions for

256 Efficient Implementations of Rainbow and UOV using AVX2

Table 4: Gaussian elimination (GE) vs. Block matrix inversion (BMI) method in CPU
cycles.

Matrix Size GE BMI (Depth 1) BMI (Depth 2)
46 94 033 72 302 —
48 101 498 75 136 72 479
50 142 243 82 768 —
56 175 195 103 357 99 445
64 225 081 87 150 70 091
68 322 315 187 947 170 788
72 355 173 208 355 190 480
96 713 462 252 538 226 627

100 923 489 453 441 391 747

A−1 and [D−CA−1B]−1, and four block matrix-vector products. Its complexity is reduced
to O((k/2)3). Consequently, we reduce from six block matrix multiplications to two block
matrix multiplications and four block matrix-vector products. �

It is known that the naive way to perform a matrix multiplication requires O(k3)
operations and Strassen’s algorithm for matrix multiplications requires O(klog27) = O(k2.81)
operations [Str69]. We do not use Strassen’s algorithm for matrix multiplications to
compute R−1 · α since Strassen’s algorithm based on 2 × 2 block matrices makes the
implementations very slow for larger matrices due to its recursive nature, and our method
requires only two block matrix multiplications.

Repeated BMI: Determine the Minimum Size of a Matrix being Inverted. We
want to determine the minimum size of a matrix being inverted.

• After performing the BMI, we reduced the size of a matrix being inverted by half,
while the number of inversions for the half-sized matrices increased to two. We can
apply the BMI again to these two half-sized matrices which results in four inversions
of k/4× k/4 matrices and extra operations.

• Like this, for m = 2l ·m′, we can apply the BMI l times. We define the number
of these iterations of the BMI as a depth. We cannot expect that l iterations will
always be effective, because 2l inversions of k/2l × k/2l matrices are required.

Compatibility of the BMI Method with UOV and Rainbow. Unlike defined in the
Rainbow specification [DCP+20b], our BMI method computes LS−1

V · a directly without
finding LS−1

V . When using the BMI method for Rainbow (resp. UOV), if the block
matrices of LS−1

V (resp., LS−1
V,1 or LS−1

V,2) are not invertible then new Vinegar values need
to be chosen. Thus, to apply our BMI method to the signing algorithms of UOV and
Rainbow, the specification of Rainbow and UOV would need to be changed from Algorithm
2 and 5 to Algorithm 7 and 8, respectively. In Algorithm 7 and 8, BMI(·) takes LSV and
a vector as inputs then outputs a solution and a flag indicating LSV is solvable similar
to Gauss(·) in Algorithm 2. Since the loop structure for each UOV/Rainbow signature
generation algorithm is changed and random number generations for Vinegar and salt are
involved within the loop, resulting signatures deploying the BMI method can be different
from the specification although they are valid signatures) even if the seeds for random
number generators as well as documents and secret keys are identical at the initial point
of the algorithms.

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 257

Algorithm 7 Rainbow Signature Generation Using the BMI Method
Require: document d, Rainbow private key (InvS, F , InvT), length of the salt l.
Ensure: signature σ = (z, r) ∈ Fnq × {0, 1}l such that P(z) = H(H(d)||r).

1: repeat
2: y1, ..., yv1 ←R Fq
3: f̂ (v1+1), ..., ˆf (n) ← f (v1+1)(y1, ..., yv1), ..., f (n)(y1, ..., yv1)
4: (F̂ , CF)← Aff−1(f̂ (v+1), ..., f̂ (n))
5: r ← {0, 1}l
6: h← H(H(d)||r)
7: x← InvS · h
8: t1, (yv1+1, ..., yv2)← BMI(F̂ , (xv1+1, ..., xv2)− CF)
9: f̂ (v2+1), ..., f̂ (n) ← f̂v2+1(yv1+1, ..., yv2), ..., f̂ (n)(yv1+1, ..., yv2)

10: t2, (yv2+1, ..., yn)← BMI((f̂ ((v2+1), ..., f̂ (n)), (xv2+1, ..., xn))
11: until (t1 == TRUE) & (t2 == TRUE)
12: z = InvT · y
13: σ ← (z, r)
14: Return σ

Algorithm 8 UOV Signature Generation Using the BMI Method
Require: document d, UOV private key (F , InvT), length of the salt l.
Ensure: signature σ = (z, r) ∈ Fnq × {0, 1}l such that P(z) = H(H(d)||r).

1: repeat
2: y1, ..., yv ←R Fq
3: f̂ (v1+1), ..., ˆf (n) ← f (v+1)(y1, ..., yv), ..., f (n)(y, ..., yv)
4: (F̂ , CF)← Aff−1(f̂ (v+1), ..., f̂ (n))
5: r ← {0, 1}l
6: x← H(H(d)||r)
7: t, (yv+1, ..., yn)← BMI(F̂ , (xv+1, ..., xn)− CF)
8: until t == TRUE
9: z = InvT · y

10: σ ← (z, r)
11: Return σ

Implementation Results. We investigate improvements of UOV/Rainbow signing with
the BMI method. For our implementations, we utilized Rainbow team’s AVX2-specialized
basic functions for GF arithmetic, basic linear algebra, and matrix operations in its source
code submitted to NIST PQC Round 3. We used Rainbow team’s AVX2 specialized
functions for matrix operations and Gaussian elimination for the BMI implementation.
The implementations of precomputation are constructed with rearranging computational
operations and adjusting memory operations. We summarize their implementation results
in terms of the size of matrices being inverted in Table 4 and in terms of the security
categories in Table 5.

• To use the BMI with the depth 1 and the depth 2, matrix sizes should be multiples
of 2 and multiples of 4, respectively. In the case of m = 46, we cannot use the BMI
with the depth 2 since it is not a multiple of 4. We implement the BMI on the
finite field F28 . After obtaining LSV from the Vinegar value substitution, we set

LSV =
(
A B
C D

)
, if A or [D − CA−1B] is not invertible then we choose another

Vinegar values. The probability that the matrices are invertible is 99.223%.

258 Efficient Implementations of Rainbow and UOV using AVX2

Table 5: UOV/Rainbow implementation results with the BMI method at three security
categories in CPU cycles.

Scheme Security Category I III V

UOV
Gaussian elimination 201 834 707 959 1 486 775
BMI (Depth 1) 176 884 563 519 1 004 704
BMI (Depth 2) — 535 660 981 351

Rainbow
Gaussian elimination 68 203 322 799 807 309
BMI (Depth 1) — 270 731 650 400
BMI (Depth 2) — 271 986 639 965

• As seen in Table 4 and Table 5, compared to Gaussian elimination, the larger the
size, the greater the performance improvement and the higher the security category,
the greater the effect.

– By using BMI with the depth 1, we get speedups of 23.1%, 41%, 64.6%, and
50.9% at the sizes, 46, 72, 96, and 100, respectively. Especially excellent
improvements of 61.3% and 64.6% in the case of 64 and 96, respectively, are due
to the fact that the multiples of 32 are optimal parameters which are suitable
for the AVX2 vectorization.

– In the BMI with the depth 2, their speedups are 46.54%, 68.23%, and 57.58%
at the sizes, 72, 96, and 100, respectively.

• Compared to UOV implemented with Gaussian elimination, by using the BMI with
the depth 1, we obtain speedups of 12.36%, 20.41%, and 32.42% at the three security
categories, respectively. For the BMI with the depth 2, the corresponding speedups
are 24.3% and 34% at the security categories III and V, respectively. Compared to
the BMI with the depth 1, the effect of the BMI with the depth 2 is insignificant.

• Compared to Rainbow implemented with Gaussian elimination, by using BMI with
the depth 1, we obtain speedups 16.13% and 19.44% at the security categories
III and V, respectively. For the BMI with depth 2, the corresponding speedup is
15.74% and 20.72 % at the security categories III and V, respectively. Our results
show that the BMI with larger depths are not always more efficient. Our BMI
method in Rainbow implementation at the security category I is not effective. Since
its parameter (F24 , 36, 32, 32) is very optimal, the implementation with Gaussian
elimination is faster than that with the BMI method.

4.2 Splitting Signing into Offline and Online Phase
To speed up the signing process even more, we can choose to split the signature generation
in an offline and online phase, where the offline phase can already be performed before the
message to be signed is known. In 1989, Even, Goldreich, and Micali [EGM90] introduced
the general idea of using an offline/online phase. Most costly message independent
computations are completed in the offline phase and the device is idle. Such precomputation
enables the online phase to quickly sign the messages with only light computation. Now, we
describe the precomputation parts of UOV/Rainbow signing and evaluate the performance
of offline/online computations using the AVX2 instruction set.

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 259

4.2.1 UOV with Precomputation

Unlike Rainbow, UOV has significantly large message independent operations in signing.
This offline precomputation can dramatically improve signing in UOV.

Signing. Signing can be divided into two parts: one is independent of messages being
signed, the other depends on the messages.

• After substituting sV = (s1, · · · , sv) into o equations F (k) (1 ≤ k ≤ o), one gets
a linear system of o equations and o variables xv+1, · · · , xv+o and computes LS−1

V .
Thus, < sV = (s1, · · · , sV), cV = (c1, · · · , cm), LS−1

V > can be precomputed, where
cV is a vector of constant terms of (F (1)(sV), · · · ,F (m)(sV)).

• This precomputation speedups the signing performance. However, it requires an
additional computational overhead and one has to decide when to calculate and
where to keep precomputed values. We will discuss how to use the precomputed
values securely in the next subsection.

Offline Signing of UOV.

• After choosing random Vinegar values sV = (s1, · · · , sv) ∈ Fvq , substitute sV into
o equations F (k) (1 ≤ k ≤ o) to get the linear system LSV of o equations and o
unknowns and a constant vector cV = (c1, · · · , cm).

• Compute LS−1
V . If LSV is not invertible then go back to the first step.

• Store < sV , cV , LS
−1
V > as the precomputed values.

Online Signing of UOV.

• Choose a random salt r and compute h = H(H(m)||r) for a message m.

• From < sV = (s1, · · · , sV), cV = (c1, · · · , cm), LS−1
V >, compute LS−1

V · hT
V = α,

where hV = (h1 − c1, · · · , hm − cm) and h = (h1, · · · , hm).

• Compute T−1 · (SV , α)T = σ and output τ = (σ, r) as a signature on m.

4.2.2 Rainbow with Precomputation

In the first layer of Rainbow, the same precomputation is possible, but in the second layer,
precomputation is limited since the vector consisting of the random Vinegar values and
the solution of the linear system related to the message is supposed to be substituted into
the central polynomials of the second layer. Hence, with the precomputed values for the
first layer and some possible part of the second layer, computing a solution of the linear
system from the first layer and then substituting the solution to the central polynomials
and solving the linear system in the second layer are required for the online phase.

Offline Signing of Rainbow.

• After choosing random Vinegar values sV = (s1, · · · , sv) ∈ Fvq , substitute sV into o1

equations F (k) (1 ≤ k ≤ o1) to get the linear system LSV,1 of o1 equations and o1 un-
knowns and a vector cV,1 = (c1, · · · , co1) of constant terms (F (1)(sV), · · · ,F (o1)(sV)).

• Compute LS−1
V,1. If LSV,1 is not invertible then go back to the first step.

• Substitute sV into the Vinegar variables in o2 equations F (k) (o1 + 1 ≤ k ≤ o1 + o2)
by getting a linear system of o2 equations and unknowns, {F (o1+i)(sV)}o2

i=1.

260 Efficient Implementations of Rainbow and UOV using AVX2

• Store < sV,1, cV,1, LS
−1
V,1, {F (o1+i)(sV)}o2

i=1 >.

Online Signing of Rainbow.

• Compute S−1 · hT = α for h = H(H(m)||r) with a message m and a random salt r.

• From < sV,1, cV,1, LS
−1
V,1, {F (o1+i)(sV)}o2

i=1 >, compute LS−1
V,1 · αT = δ, where α =

(α1 − c1, · · · , αo1 − co1) and α = (α1, · · · , αo1+o2).

• Compute LS−1
V,2, where LSV,2 is the coefficient matrix of the linear system obtained by

substituting α into o1-oil variables in {F (o1+i)(sV , δ)}o2
i=1. If LSV,2 is not invertible

then select another salt and go back to the first step.

• Compute LS−1
V,2 · (αo1+1, · · · , αo1+o2)T = ζ and T−1 · (SV , δ, ζ)T = σ, and output

τ = (σ, r) as a signature on m.

Implementation Results. Table 6 lists the benchmarking results of our UOV/Rainbow
implementations with and without precomputation in cycle counts and required additional
memory cost per signature.

• In Table 6, Sign w/ Precomp. and Sign w/o Precomp. represent signing with pre-
computation and signing without precomputation, respectively. Precomp. Memory
Cost per Sig. represents the memory cost required for precomputation per signature.

• Compared to UOV without precomputation, UOV with precomputation obtains
speedups of 94%, 97%, and 98.43% at the three security categories, respectively.

• In Rainbow, the large portion of the second layer operations have to be done in
the online phase. Compared to Rainbow without precomputation, Rainbow with
precomputation obtains speedups of 52.89%, 55.16%, and 64.32% at the three security
categories, respectively.

• UOV with precomputation is about 2.7 times, 7.3 times and 12.2 times faster than
Rainbow with precomputation at the three security categories, respectively.

• The results of Table 6 are without using the BMI method. The BMI method
and precomputation can not be used together. The goal of the BMI method is to
compute LS−1

V · α, not LS−1
V . A message is needed to compute LS−1

V · α, where
LSV is determined by the Vinegar values and a vector α is determined by a message
being signed. Thus, to use the BMI method, the message is required, in that case,
precomputation for message-independent operations is not possible.

Signing of Rainbow is very fast, but the higher the security level, the slower the
performance. Thus, precomputation is suitable for all applications where maintaining
fast performance is required even at the high security levels. Also, precomputation-based
schemes fit into applications deploying the nodes with cost-effective energy harvesting
technologies. The cost-effective energy harvesting technologies in WSNs are devised to
supplement the battery power with energy gathered from the environment (e.g. solar,
wind) and energy peaks are occasionally available. In some cases, the available energy
can be even excessive, i.e. greater than the amount that can fit into the sensor node’s
supercapacitor, and thus it would be wasted unless used immediately [WWCJ10]. In this
case, precomputation can be done for efficient use of energy.

Compared to recent precomputation results of Dilithium (lattice-based post-quantum
signature scheme) in [RGCB19], Dilithium 3 with precomputation speedups upto 35%
and requires an additional 260 KiB of space for the precomputed values per signature.
Furthermore, in Dilithium’s precomputation, there was a 95% probability that at least
one of the y values results in a good signature.

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 261

Table 6: UOV/Rainbow implementations with and without precomputation at three
security categories, in CPU cycles and bytes.

Scheme Security Category Unit I III V

UOV

Sign w/o Precomp. cycle 201 834 707 959 1 486 775
Precomp. (offline)

cycle
189 224 690 586 1 460 168

Sign w/ Precomp. (online) 11 788 19 439 23 133
Total (offline + online) 201 012 710 025 1 483 301
Precomp. Memory Cost per Sig. byte 2 256 5 402 9 504

Rainbow

Sign w/o Precomp. cycle 68 203 322 799 807 309
Precomp. (offline)

cycle
37 212 173 204 508 890

Sign w/ Precomp. (online) 31 973 142 179 278 511
Total (offline + online) 69 185 315 383 787 401
Precomp. Memory Cost per Sig. byte 2 152 4 792 5 648

4.3 Resilience against Leakage or Reuse of Precomputed Values

We have shown that precomputation dramatically improved UOV/Rainbow signing with
the additional memory cost. To use the precomputed values securely, we investigate the
resilience against leakage or reuse of the precomputed values in UOV and Rainbow. We
show that a sufficient number of signatures generated by the precomputed values lead the
full secret key recoveries of UOV and Rainbow in polynomial-time.

4.3.1 Leakage of Precomputed Values

Store < sV , cV , LS
−1
V > Securely. The precomputed values < sV , cV , LS

−1
V > should be

stored securely. If some precomputed values together with signatures generated by them
are exposed then the secret key of UOV is completely recovered.

Wolf and Preneel [WP05] introduced the notion of equivalent keys as a fundamental
tool to analyze the security of the MQ-schemes. They showed that there exist a large
number of different secret keys (called equivalent keys) for a given public key in UOV
and Rainbow [WP05, Tho13]. If an attacker finds any equivalent keys then it can forge
any signatures on any messages without acquiring the original secret key. Key recovery
attacks (KRAs) exploit the special structure of the central map, i.e. quadratic terms
with zero coefficients at certain known places. Goal of the KRAs is to find an equivalent
key associated to the public key. In the following theorems, we show that the leakage of
precomputed values and (n+ 1) signatures generated by the precomputed values leads to
the recovery of the equivalent keys of UOV and Rainbow in polynomial-time. They can be
applied to both cases of random affine secret keys and equivalent keys.

Theorem 3. If (n + 1) tuples < m(i), τ (i), s
(i)
V , c

(i)
V , LS

(i)−1
V > are given such that the

n× n matrix (σ(1)T σ(2)T · · · σ(n)T) is invertible then the secret key of UOV is completely
recovered in polynomial-time.

Proof. Let T be the linear part of T and TV = πv ◦T : Fnq 7→ Fvq and Tv = πv ◦T : Fnq 7→ Fvq ,
where πv(x1, · · · , xv, · · · , xn) = (x1, · · · , xv). By assumption, we get TV (σ(i) − σ(j)) =
TV (σ(i)) − TV (σ(j)) = s

(i)
V − s

(j)
V . For each 1 ≤ i ≤ n, let σi = σ(i) − σ(n+1) and

262 Efficient Implementations of Rainbow and UOV using AVX2

ŝV
(i) = s

(i)
V − s

(n+1)
V . Then we get TV (σi) = ŝV

(i) and

TV ·
(
σT

1 σT
2 · · · σT

n

)
=
(
ŝV

(1)T ŝV
(2)T · · · ŝV (n)T

)
Since an n-dimensional diagonal matrix (σT

1 σT
2 · · · σT

n) is invertible with high probability(
1− 1

q

)n
, we get

TV =
(
ŝV

(1)T ŝV
(2)T · · · ŝV (n)T

)
·
(
σT

1 σT
2 · · · σT

n

)−1
.

It is known that there is an equivalent key (F ′, T ′) with P = F ′ ◦ T ′ where F ′ has the
same structure with F and linear coefficient matrix T ′ of T ′ has the following simple form

T ′ =
(
Iv×v T ′v×o0
0o×v Io×o

)
.

Note that the first v rows of T ′ can be obtained by a reduced row echelon form TV .
Therefore, an equivalent key of UOV is recovered in polynomial time. �

For Rainbow, we consider its equivalent keys. Let

S−1 =
(
S̃1

o1×o1
S̃2

o1×o2

S̃3
o2×o1

S̃4
o2×o2

)
, T−1 =

 T̃1
v×v

T̃2
v×o1

T̃3
v×o2

T̃4
o1×v

T̃5
o1×o1

T̃6
o1×o2

T̃7
o2×v

T̃8
o2×o1

T̃9
o2×o2

 ,

S and T are linear part of S and T , respectively. For a secret key (F ,S, T) of Rainbow, if
there exists

(F ′,S ′, T ′) = (Σ ◦ F ◦ Ω, S ◦ Σ−1, Ω−1 ◦ T),

and Σ ◦ F ◦ Ω and F ◦ Ω have the same structure for some linear maps Σ ∈ GLm(Fq) and
Ω ∈ GLn(Fq), then (F ′,S ′, T ′) is an equivalent key of (F ,S, T), where Σ and Ω are of the
form

Σ =
(

Σo1×o1
1 0o1×o2

Σo2×o1
2 Σo2×o2

3

)
, Ω =

 Ωv×v1 0v×o1 0v×o2

Ωo1×v
2 Ωo1×o1

3 0o1×o2

Ωo2×v
4 Ωo2×o1

5 Ωo2×o2
6

 . (1)

If we set submatrices of Σ and Ω in (1) as

Σ1 =
(
S̃1

)−1
,
(

Σ2 Σ3
)

=
(

0o2×o1 Io2×o2
)
· S, Ω1

Ω2
Ω4

 = T ·
(

Iv×v

0m×v
)
,

(
Ω3
Ω5

)
=
(
T̃5 T̃6

T̃8 T̃9

)−1(
Io1×o1

0o2×o1

)
, Ω6 =

(
T̃9

)−1
,

one gets

S′−1 = Σ · S−1 =
(
Io1×o1 S̃′1

o1×o2

0o2×o1 Io2×o2

)
,

T ′−1 = T−1 · Ω =

 Iv×v T̃ ′1
v×o1

T̃ ′2
v×o2

0o1×v Io1×o1 T̃ ′3
o1×o2

0o2×v 0o2×o1 Io2×o2

 ,

(2)

where S′ and T ′ are coefficient matrices of linear part of S ′ and T ′, respectively [Tho13].

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 263

Theorem 4. If (n + 1) tuples < m(i), τ (i), s
(i)
V , c

(i)
V , (LS(i)

V)−1 > are given such that the
n × n matrix (σ(1)T σ(2)T · · · σ(n)T) is invertible then an equivalent key of Rainbow is
completely recovered in polynomial-time.
Proof. Let P =

(
P (1), P (2), · · · , P (m)) and F =

(
F (1), F (2), · · · , F (m)) be the quadratic

part of P and F , respectively, and S and T are the linear part of S and T , respectively.
Then we have P = S ◦ F ◦ T . We denote

O0 = {(x1, · · · , xn) ∈ Fnq : x1 = · · · = xv = 0},
O1 = {(x1, · · · , xm) ∈ Fnq : x1 = · · · = xo1 = 0}.

We can see that if x ∈ O0 then F (k)(x) = 0 for 1 ≤ k ≤ o1 and hence F (x) ∈ O1.
Let Tv = πv ◦ T : Fnq 7→ Fvq , where πv(x1, · · · , xv, · · · , xn) = (x1, · · · , xv). Similarly with
the proof of Theorem 1, we can recover TV if we have n+ 1 tuples in assumption. Let Λ
be the orthogonal space of the space generated by row vectors of TV . Then if b ∈ Λ we get
TV (b) = 0 and hence we get T (b) ∈ O0. So, we get S−1 ◦ P (b) = (F ◦ T)(b) ∈ O1. We
choose o2 vectors b1,b2, · · · ,bo2 ∈ Λ and denote ai = P (bi) ∈ S(O1) for each 1 ≤ i ≤ o2.
Then S−1(ai) ∈ O1. If sj be j-th row vector of S−1 for 1 ≤ j ≤ m then we can see that
ai · sj = 0 for every 1 ≤ i ≤ o2 and 1 ≤ j ≤ o1. Let S be an o1-dimensional space generated
by s1, s2, · · · , so1 . For each s = (s1, · · · , sm) ∈ S, we get o2 linear equations of the form

ai · (s1, · · · , sm) = 0

about m variables s1, · · · , sm. We solve these linear equations, and express so1+1, · · · , sm
by linear combinations of s1, · · · , so1 such as

s1
s2
...

so1

 =


s̃1,o1+1
s̃2,o1+1

...
s̃o1,o1+1

 so1+1 +


s̃1,o1+2
s̃2,o1+2

...
s̃o1,o1+2

 so1+2 + · · ·+


s̃1,m
s̃2,m
...

s̃o1,m

 sm

=


s̃1,o1+1 s̃1,o1+2 · · · s̃1,m
s̃2,o1+1 s̃2,o1+2 · · · s̃2,m

...
...

. . .
...

s̃o1,o1+1 s̃o1,o1+2 · · · s̃o1,m




so1+1
so1+2

...
sm

 = S̃


so1+1
so1+2

...
sm

 .

Thus, S is generated by row vectors of(
Io1×o1 S̃

)
.

Since the reduced row echelon form is unique, we can see that(
Io1×o1 S̃
0o2×o1 Io2×o2

)
= S′−1,

where S′−1 is in (2). Hence, we can find S′−1 in (2) in polynomial-time. The remaining
part of the attack is to recover T ′−1 in (2). We show that we can recover T ′−1 by solving
several linear systems. For the last o2 columns of T ′−1, we can apply good key finding
attack in [Tho13]. More precisely, one can find a good key (F ′ ◦ Ω′,S ′, T ′′) corresponding
to (F ′,S ′, T ′), where T ′′, the coefficient matrix of T ′′, satisfies

T ′′−1 = T ′−1 · Ω′ =


Iv×v 0v×o1 0v×(o2−1) T̃ ′′2

v×1

0o1×v Io1×o1 0o1×(o2−1) T̃ ′′3
o1×1

0(o2−1)×v 0(o2−1)×o1 I(o2−1)×(o2−1) 0(o2−1)×1

01×v 01×o1 01×(o2−1) 1

 ,

264 Efficient Implementations of Rainbow and UOV using AVX2

if we set
Ω′ =

(
T ′n,n−1 0(n−1)×1

1

)
,

where T ′n,n−1 is the n× (n− 1) submatrix of T ′ removing the last column from T ′. Note

that
(
T̃ ′′2
T̃ ′′3

)
is identical to the (v + o1)× 1 submatrix of

(
T̃ ′2
T̃ ′3

)
consisting of the last

column. Then we get a multivariate system to find this equivalent key that consists of the
following form of equations

F
′′(k)
i,j =

m∑
a=1

n∑
b=1

n∑
c=b

P
(a)
b,c s̃

′′
k,at̃
′′
b,it̃
′′
c,j ,

where F ′′(k) =
(
F
′′(k)
i,j

)
i,j

is the symmetric coefficient matrix of quadratic part of F ′′(k)

for 1 ≤ k ≤ m and S′′−1 =
(
s̃′′i,j

)
i,j
, T ′′−1 =

(
t̃′′i,j

)
i,j
. We get F ′′(k)

i,n = 0 for 1 ≤ i ≤ n− 1
and 1 ≤ k ≤ o1. More precisely, we get o1(n− 1) equations of the following form

F
′′(k)
i,n =

m∑
a=o1+1

v+o1∑
b=1

P
(a)
b,n s̃

′
k,at̃
′
b,n +

m∑
a=o1+1

P (a)
n,ns̃

′
k,a +

v+o1∑
b=1

P
(k)
b,n t̃

′
b,n + P (k)

n,n.

Since we have already recovered all entries of S′−1, all obtained equations are linear about
t̃′b,n. So, we have a linear system of o1(n− 1) equations with v + o1 variables which can be
solvable in polynomial time. Now, we need to recover T̃ ′1 in (2). We consider equations of
the form

F
′(k)
i,j =

m∑
a=1

n∑
b=1

n∑
c=b

P
(a)
b,c s̃

′
k,at̃
′
b,it̃
′
c,j

which can be obtained from F = S′−1 ◦P ◦T ′−1, where v+ o1 + 1 ≤ j ≤ n and 1 ≤ k ≤ o1.
Since we already recover all entries of S′−1 and t̃′c,j , we get o1o2 linear equations with v
variables. For suggested parameters, we get enough equations to recover these variables.
Therefore, we can totally recover an equivalent key by solving several linear systems. �

4.3.2 Reuse of Precomputed Values

Do not Reuse < sV , cV , LS
−1
V >. The precomputed value < sV , cV , LS

−1
V > should not

be reused in signing.

Recently, Shim and Koo [SK20] showed that the equivalent key of UOV is completely
recovered in polynomial-time from (m+ 1) signatures generated by the reused Vinegar
values. However, they did not show a polynomial-time recovery of Rainbow’s equivalent
key. Their results are given the following Theorem 5.

Theorem 5. [SK20] If (m+ 1) signatures generated by the reused Vinegar values are
given then

• the equivalent key of UOV is completely recovered in polynomial time,

• the complexity of the KRAs using good keys on Rainbow is determined by solving a
multivariate system of m quadratic equations with o1 variables.

Now, we provide a more improved analysis: (o2 + 1) signatures generated by the fixed
Vinegar values lead to the full secret key recovery of Rainbow in polynomial-time.

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 265

Theorem 6. If (o2 + 1) signatures generated by reusing the precomputed values then an
equivalent key of Rainbow is recovered in polynomial-time with high probability.
Proof. As in Theorem 2, we define P =

(
P (1), P (2), · · · , P (m)), F =

(
F (1), F (2), · · · , F (m)),

S, T , O0, and O1. We can see that if x ∈ O0 then F (k)(x) = 0 for 1 ≤ k ≤ o1 and thus
F (x) ∈ O1. Suppose that (o2 + 1) signatures (σ(1), · · · , σ(o2+1)) are generated by the
precomputed values. The probability of getting (o2 + 1) signatures generated by the fixed
Vinegar vector sV is about (

1− 1
q

)o2

.

Define Tv = πv ◦ T : Fnq 7→ Fvq , where πv(x1, · · · , xv, · · · , xn) = (x1, · · · , xv). Then, we
get Tv(σ(i)) = Tv(σ(j)) for 1 ≤ i < j ≤ o2 + 1 with high probability. Since Tv is a linear
transformation, we get

Tv(σ(i) − σ(j)) = Tv(σ(i))− Tv(σ(j)) = 0,

for 1 ≤ i < j ≤ o2 + 1. Define bi = σ(1) − σ(i+1) for 1 ≤ i ≤ o2. Then Tv(bi) = 0
for 1 ≤ i ≤ m, and T (bi) ∈ O0. Thus, (F ◦ T)(bi) ∈ O1 and S−1 ◦ P (bi) ∈ O1 for all
1 ≤ i ≤ o2. Let ai = P (bi) ∈ S(O1) for each 1 ≤ i ≤ o2, then S−1(ai) ∈ O1. If sj be the
j-th row vector of S−1 for 1 ≤ j ≤ m then we can see that ai · sj = 0 for every 1 ≤ i ≤ o2
and 1 ≤ j ≤ o1. Let S be an o1-dimensional space generated by s1, s2, · · · , so1 . For each
s = (s1, · · · , sm) ∈ S, we get o2 linear equations of the form

ai · (s1, · · · , sm) = 0

about m variables s1, · · · , sm. The rest of this proof is the same as that of Theorem 2.
Therefore, an equivalent key of Rainbow is completely recovered in polynomial-time. �

Note that the results presented in the above theorems are determined by leakage or
reused Vinegar values together with signatures generated by the Vinegar values. Other
values in the precomputed values except the Vinegar values do not affect the attacks in
the theorems.

Zambonin et al.’s Variants of Rainbow. At Africacrypt 2019, Zambonin et al. [ZBC19]
proposed three variants of Rainbow to shorten the secret key size by using fixed Vinegar
values and central polynomials substituted by the fixed Vinegar values in key generations.
In other words, the secret key includes the fixed Vinegar values and all the signatures are
generated by the same Vinegar values in their scheme. Theorem 6 shows that their three
variants are entirely broken by the key recovery attacks using good keys.

Applicability of Our Optimization to Cyclic/Compressed Versions of UOV and
Rainbow. The signing processes of Cyclic versions of UOV and Rainbow are identical
to those of the original versions. The signing processes of their Compressed versions are
identical to those of the original versions except that the Compressed versions require
additional secret key recoveries before generating a signature. Thus, our BMI method
and precomputation can be applied to signing in Cyclic/Compressed versions of UOV and
Rainbow.
Comparison. We summarize the overall overview of UOV/Rainbow including our opti-
mizations in Table 7. In the Table, Comp., Precomp., Mem., M-V prod., subst., Inv., and
PV are abbreviations of computation precomputation, memory, matrix-vector product,
substitution, inversion, and precomputed values, respectively. Online Comp. and Mem.
Cost represents the computation required to generate a signature with the precomputed
values in online phase and the memory cost required for precomputation per signature,
respectively.

266 Efficient Implementations of Rainbow and UOV using AVX2

Table 7: Comparison of UOV/Rainbow with our optimizations.

Scheme UOV Rainbow
Structure ASA, Single Layer ASA, Two Layers
Public Key P = F ◦ T P = S ◦ F ◦ T
Hard Problems MQ, EIP MQ, EIP, MinRank
Invert Oil-Vinegar Method Oil-Vinegar Method

Solving
Linear
Systems

Sign
(GE)

I 201 834 cycles 68 203 cycles
III 707 959 cycles 322 799 cycles
V 1 486 775 cycles 807 309 cycles

Sign
(BMI)

I 176 884 cycles —
III 563 519 cycles 270 731 cycles
V 981 351 cycles 650 400 cycles

Precomp.

PV (sV , cV , LS−1
V) (sV,1, cV,1, LS−1

V,1,

{F (o1+i)(sV)}o2
i=1)

Online
Comp. Two M-V prod.

Subst. of o1-values,
One Inv.,
Three M-V prod.

Mem.
Cost 2v +m2 bytes 2v + o2

1 + (o2 + 1)o2 bytes

Sign w/
Precomp.

I 11 968 cycles 32 129 cycles
III 19 968 cycles 144 735 cycles
V 23 667 cycles 288 008 cycles

Resistant PV Leakage Insecure (n+ 1) Insecure (n+ 1)
PV Reuse Insecure (m+ 1) Insecure (o2 + 1)

5 Conclusion
We present efficient implementations of UOV and Rainbow by using new optimizations
for signing to accelerate solving linear systems and the Vinegar value substitution. In our
optimizations, the larger the size of a matrix being inverted, the greater the performance
improvement and the higher the security level, the greater the effect of the optimizations.
Precomputations of UOV and Rainbow improve their signing performance. The secure
use of the precomputation methods requires careful implementations that do not reuse
the Vinegar values and do not expose the precomputed values. The potential risks can be
prevented by deleting the Vinegar values and the precomputed values immediately after
using them.

References
[ABC+20] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,

Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben
Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters,
Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin
Tomlinson, and Wen Wang. Classic McEliece. Technical report, National
Institute of Standards and Technology, 2020. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 267

[BBB+20] Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent Neiger,
Olivier Ruatta, and Jean-Pierre Tillich. An algebraic attack on rank metric
code-based cryptosystems. In Anne Canteaut and Yuval Ishai, editors, EU-
ROCRYPT 2020, Part III, volume 12107 of LNCS, pages 64–93. Springer,
Heidelberg, May 2020.

[BBC+20] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray A.
Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier A. Verbel. Im-
provements of algebraic attacks for solving the rank decoding and MinRank
problems. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020,
Part I, volume 12491 of LNCS, pages 507–536. Springer, Heidelberg, December
2020.

[BERW08] Andrey Bogdanov, Thomas Eisenbarth, Andy Rupp, and Christopher Wolf.
Time-area optimized public-key engines: Cryptosystems as replacement for
elliptic curves? In Elisabeth Oswald and Pankaj Rohatgi, editors, CHES 2008,
volume 5154 of LNCS, pages 45–61. Springer, Heidelberg, August 2008.

[Beu20] Ward Beullens. Improved cryptanalysis of UOV and rainbow. Cryptology
ePrint Archive, Report 2020/1343, 2020. https://eprint.iacr.org/2020/
1343.

[CCC+09] Anna Inn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng,
Jintai Ding, Eric Li-Hsiang Kuo, Frost Yu-Shuang Lee, and Bo-Yin Yang. SSE
implementation of multivariate PKCs on modern x86 CPUs. In Christophe
Clavier and Kris Gaj, editors, CHES 2009, volume 5747 of LNCS, pages 33–48.
Springer, Heidelberg, September 2009.

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Ri-
jneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU. Tech-
nical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

[CHT12] Peter Czypek, Stefan Heyse, and Enrico Thomae. Efficient implementations
of MQPKS on constrained devices. In Emmanuel Prouff and Patrick Schau-
mont, editors, CHES 2012, volume 7428 of LNCS, pages 374–389. Springer,
Heidelberg, September 2012.

[DCP+19] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, and Bo-
Yin Yang. Rainbow. Technical report, National Institute of Standards
and Technology, 2019. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-2-submissions.

[DCP+20a] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, Bo-Yin
Yang, Matthias Kannwischer, and Jacques Patarin. Modified parameters of
Rainbow in response to a refined analysis of the Rainbow band separation
attack by the NIST team and the recent new MinRank attacks. Technical
report, Rainbow Team, 2020. available at https://troll.iis.sinica.edu.
tw/by-publ/recent/rainbow-pars.pdf.

[DCP+20b] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, Bo-Yin
Yang, Matthias Kannwischer, and Jacques Patarin. Rainbow. Techni-
cal report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

https://eprint.iacr.org/2020/1343
https://eprint.iacr.org/2020/1343
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://troll.iis.sinica.edu.tw/by-publ/recent/rainbow-pars.pdf
https://troll.iis.sinica.edu.tw/by-publ/recent/rainbow-pars.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

268 Efficient Implementations of Rainbow and UOV using AVX2

[DCP+20c] Jintai Ding, Ming-Shing Chen, Albrecht Petzoldt, Dieter Schmidt, Bo-Yin
Yang, Matthias Kannwischer, and Jacques Patarin. Response to recent paper
by Ward Beullens. Technical report, Rainbow Team, 2020. available at https:
//troll.iis.sinica.edu.tw/by-publ/recent/response-ward.pdf.

[DKR+20] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik Ver-
cauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and An-
drea Basso. SABER. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions.

[DS05] Jintai Ding and Dieter Schmidt. Rainbow, a new multivariable polynomial
signature scheme. In John Ioannidis, Angelos Keromytis, and Moti Yung,
editors, ACNS 05, volume 3531 of LNCS, pages 164–175. Springer, Heidelberg,
June 2005.

[EGM90] Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital
schemes. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages
263–275. Springer, Heidelberg, August 1990.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar
signature schemes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592
of LNCS, pages 206–222. Springer, Heidelberg, May 1999.

[LDK+20] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-DILITHIUM. Tech-
nical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions.

[MI88] Tsutomu Matsumoto and Hideki Imai. Public quadratic polynominal-tuples
for efficient signature-verification and message-encryption. In C. G. Günther,
editor, EUROCRYPT’88, volume 330 of LNCS, pages 419–453. Springer,
Heidelberg, May 1988.

[ND+77] Ben Noble, James W Daniel, et al. Applied linear algebra, volume 3. Prentice-
Hall Englewood Cliffs, NJ, 1977.

[Pat96] Jacques Patarin. Hidden fields equations (HFE) and isomorphisms of polynomi-
als (IP): Two new families of asymmetric algorithms. In Ueli M. Maurer, editor,
EUROCRYPT’96, volume 1070 of LNCS, pages 33–48. Springer, Heidelberg,
May 1996.

[PCG01] Jacques Patarin, Nicolas Courtois, and Louis Goubin. QUARTZ, 128–bit long
digital signatures. In David Naccache, editor, CT-RSA 2001, volume 2020 of
LNCS, pages 282–297. Springer, Heidelberg, April 2001.

[PCY+15] Albrecht Petzoldt, Ming-Shing Chen, Bo-Yin Yang, Chengdong Tao, and Jintai
Ding. Design principles for HFEv-based multivariate signature schemes. In
Tetsu Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume
9452 of LNCS, pages 311–334. Springer, Heidelberg, November / December
2015.

[PFH+20] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim
Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. FALCON. Technical report, National Institute
of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

https://troll.iis.sinica.edu.tw/by-publ/recent/response-ward.pdf
https://troll.iis.sinica.edu.tw/by-publ/recent/response-ward.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

Kyung-Ah Shim, Sangyub Lee, Namhun Koo 269

[PS20] Ray Perlner and Daniel Smith-Tone. Rainbow band separation is better
than we thought. Cryptology ePrint Archive, Report 2020/702, 2020. https:
//eprint.iacr.org/2020/702.

[RGCB19] Prasanna Ravi, Sourav Sen Gupta, Anupam Chattopadhyay, and Shivam
Bhasin. Improving speed of Dilithium’s signing procedure. Cryptology ePrint
Archive, Report 2019/420, 2019. https://eprint.iacr.org/2019/420.

[SAB+20] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tan-
crède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and
Damien Stehlé. CRYSTALS-KYBER. Technical report, National Institute
of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[SK20] Kyung-Ah Shim and Namhun Koo. Algebraic fault analysis of UOV and Rain-
bow with the leakage of random vinegar values. IEEE Trans. Inf. Forensics
Secur., 15:2429–2439, 2020.

[SSH11] Koichi Sakumoto, Taizo Shirai, and Harunaga Hiwatari. On provable security
of UOV and HFE signature schemes against chosen-message attack. In Bo-
Yin Yang, editor, Post-Quantum Cryptography - 4th International Workshop,
PQCrypto 2011, pages 68–82. Springer, Heidelberg, November / December
2011.

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik,
13(4):354–356, 1969.

[Tho13] Enrico Thomae. About the security of multivariate quadratic public key schemes.
PhD thesis, Ruhr-UniversitÃďt Bochum, 2013.

[VBC+19] Javier A. Verbel, John Baena, Daniel Cabarcas, Ray A. Perlner, and Daniel
Smith-Tone. On the complexity of “superdetermined” minrank instances.
In Jintai Ding and Rainer Steinwandt, editors, Post-Quantum Cryptography
- 10th International Conference, PQCrypto 2019, pages 167–186. Springer,
Heidelberg, 2019.

[WP05] Christopher Wolf and Bart Preneel. Large superfluous keys in multivariate
quadratic asymmetric systems. In Serge Vaudenay, editor, PKC 2005, volume
3386 of LNCS, pages 275–287. Springer, Heidelberg, January 2005.

[WWCJ10] Jason M. Weaver, Kristin L. Wood, Richard H. Crawford, and Dan Jensen.
Design of energy harvesting technology: Feasibility for low-power wireless
sensor networks. In International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, volume 44144,
pages 463–472, 2010.

[ZBC19] Gustavo Zambonin, Matheus S. P. Bittencourt, and Ricardo Felipe Custó-
dio. Handling vinegar variables to shorten Rainbow key pairs. In Jo-
hannes Buchmann, Abderrahmane Nitaj, and Tajje eddine Rachidi, editors,
AFRICACRYPT 19, volume 11627 of LNCS, pages 391–408. Springer, Heidel-
berg, July 2019.

https://eprint.iacr.org/2020/702
https://eprint.iacr.org/2020/702
https://eprint.iacr.org/2019/420
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

	Introduction
	Preliminaries
	Rainbow and UOV

	Implementations of UOV and Rainbow
	Major Computations of UOV and Rainbow
	Parameter Selection and Implementations of UOV and Rainbow

	Efficient Implementations of UOV and Rainbow
	A Fast Method for Solving Linear Systems: Block Matrix Inversion
	Splitting Signing into Offline and Online Phase
	Resilience against Leakage or Reuse of Precomputed Values

	Conclusion

