
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 175–220. DOI:10.46586/tches.v2022.i1.175-220

MIRACLE: MIcRo-ArChitectural Leakage Evaluation
A study of micro-architectural power leakage across many devices

Ben Marshall1,2, Dan Page1 and James Webb1

1 Department of Computer Science, University of Bristol,
Merchant Venturers Building, Woodland Road,

Bristol, BS8 1UB, UK.
{ben.marshall,daniel.page,james.webb}@bristol.ac.uk

2 PQShield Ltd, Oxford, UK.
ben.marshall@pqshield.com

Abstract. In this paper, we describe an extensible experimental infrastructure for
evaluating the micro-architectural leakage, based on power consumption, that stems
from a physical device. Building on existing literature, we use it to systematically study
14 different devices, which span 4 different instruction set architectures and 4 different
vendors. The study allows a characterisation of each device with respect to any
leakage effects stemming from sources within the micro-architectural implementation.
We use it, for example, to identify and document several novel leakage effects (e.g.,
due to speculative instruction execution), and scenarios where an assumption about
leakage is non-portable between different yet compatible devices.
Ours is the widest study of its kind we are aware of, and highlights a range of
challenges with respect to 1) the design, implementation, and evaluation of, e.g.,
masking schemes, 2) construction of accurate leakage models, and 3) selection of
suitable devices for experimental research. For example, in relation to 1), we cast
further doubt on whether a given device upholds the assumptions required by a
given masking scheme; in relation to 2), we conclude that (statistical or formal)
device leakage models must include information about the micro-architecture being
modelled; in relation to 3), we claim the near mono-culture of devices that dominates
existing literature is insufficient to support general claims regarding leakage. This is
particularly important in the context of the FIPS 140-3 standard for non-invasive
side-channel evaluation.

Keywords: side-channel attack, micro-architectural leakage, device leakage modelling

1 Introduction
(Micro-)architecture as a concept. In the context of processor design, the term archi-
tecture1 describes the interface between hardware and software. It defines how hardware
and software interact, i.e., what is “visible” to the programmer, and typically includes a
definition of 1) state, 2) instructions that act on said state, and 3) an execution model for
said instructions. The term Instruction Set Architecture (ISA) is often used synonymously,
with micro-architecture2 describing an implementation of the associated ISA, i.e., as a

1The term architecture seems to stem from the IBM System/360 design, which considered it as capturing
“the attributes of a system as seen by the programmer” [ABB64, Page 84]; before this, the more nebulous
term organisation was typical.

2It seems likely the term micro-architecture stems from use of micro-coded implementations, where it
can be read as the architecture controlled by a micro-program (cf. architecture controlled by a program
written using the ISA).

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.175-220
mailto:{ben.marshall,daniel.page,james.webb}@bristol.ac.uk
mailto:ben.marshall@pqshield.com
http://creativecommons.org/licenses/by/4.0/

176 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

specific processor core. As such, the ISA represents a logical abstraction of an underlying,
physical micro-architectural implementation.

Beyond definitional precision, this abstraction enables behavioural diversity while
ensuring functional compatibility. Or, put another way, maximising flexibility with
respect to implementation while retaining consistency with respect to usage: a by-design
disconnection between behavioural and functional semantics of instruction execution means
different micro-architectures can realise the same ISA, but employ different techniques or
optimisations in their design and/or implementation. By harnessing this fact, specific3
micro-architectures can optimise instruction execution to suit a given market or use-case,
without placing a burden on the programmer. Doing so often acts within a broader strategy
to address limitations on scaling (e.g., clock frequency) that stem from Moore’s Law.

(Micro-)architecture as an attack vector. From a different perspective, however, the
same property can be problematic. For example, development of high-assurance software
typically requires detailed knowledge of and control over both functional and behavioural
semantics of instruction execution. When met, such requirements permit 1) formal
reasoning and guarantees about functional correctness, and 2) management of the associated
(implementation) attack surface, e.g., by instrumenting suitable countermeasures. The
abstraction of a micro-architecture by an ISA limits the degree to which this is true,
meaning the requirements are often not met (or at least not sufficiently so).

The way micro-architectural side-channel attack techniques (see, e.g., [Sze19, Section
4] and [GYCH18, Section 4]) are enabled and/or exacerbated is a good example of
this problem. At a high level, such techniques exploit leakage coming from sources in a
particular micro-architecture: one can classify leakage as either
1. discrete (or digital), meaning it relates to logical, or functional characteristics, e.g.,

data-dependent instruction execution latency (i.e., number of cycles) caused by micro-
architectural state and execution model, or

2. analogue, meaning it relates to physical, or behavioural characteristics, e.g., data-
dependant power consumption [KJJ99, MOP07] or EM [GMO01, AARR02] emission
caused by the behaviour of CMOS transistors which constitute the micro-architecture.

In a sense, the latter acts as a superset of the former: because analogue leakage can
capture fine-grained, potentially sub-cycle features, discrete forms of leakage will typically
be captured by it indirectly. Either way, micro-architectural abstraction implies 1) the
security properties of software are difficult to reason about, and may even differ depending
on the micro-architecture it is executed on, and therefore 2) development of robust
software-based countermeasures is a significant challenge. Such implications have led
to arguments (see, e.g., [GYH18]) for migration of traditionally opaque ISAs toward
more (semi-)transparent alternatives in which (selected) micro-architectural features are
visible. Likewise, they have motivated hardened micro-architectural designs (see, e.g.,
[KGBR19, MGH19]) which mitigate the lack of such transparency.

Problem statement. Focusing on analogue forms of leakage, Rivain and Prouff [RP10,
Section 1] consider that, in their design and implementation, existing countermeasures
against relevant side-channel attacks “start from the assumption that a cryptographic
device can keep at least some secrets and that only computation leaks”. In practice,
such countermeasures, plus associated proofs of their security, are only as robust as the
assumptions they are based on; this is evidenced by attacks, such as those of Balasch

3For example, modulo trifurcation into mobile, application, and real-time profiles, the same ISA has been
harnessed across a wide range of low(er)-end (e.g., ARMv7-M ISA, ARM Cortex-M3 micro-architecture),
mid-range (e.g., ARMv7-A ISA, ARM Cortex-A17 micro-architecture), and high(er)-end (e.g., ARMv7-A
ISA, Qualcomm Krait micro-architecture) micro-architectural implementations.

Ben Marshall, Dan Page and James Webb 177

et al. [BGG+14], which highlight instances where they are invalid. Having an accurate
device leakage model4, i.e., a model of how and why a device leaks, is therefore imperative.
Although some aspects of a device leakage model can be reasoned about in an analytical
manner, others, particularly if the underlying design is unknown, demand experimental
analysis using a physical instance of the device (which is akin to reverse engineering,
cf. [GOP21]). Set within this context, we addresses a 2-part problem statement. First,
there is a limit on the current state-of-the-art, with respect to both 1) which devices
have associated leakage models, and 2) how accurate those leakage models are. Second,
expansion or improvement with respect to either limit demands both hardware and software
infrastructure which is flexible while also allowing accurate, reproducible, and therefore
robust conclusions; such infrastructure does not currently exist.

Remit. Concretely, this paper addresses the problem statement above by first introducing
and then using experimental infrastructure we dub MIRACLE (a backronym for MIcRo-
ArChitectural Leakage Evaluation). On one hand, we position the paper as contributing
in the following ways. First, versus the Rosita framework of Shelton et al. [SSB+20], for
example, we deliberately attempt to broaden the scope by increasing the diversity and
complexity of devices and hence micro-architectural features considered. Second, we place
explicit value on increasing the extent to which “folk-law” observations are explainable.
To a greater degree than previously, doing so provides a formal basis for the topic. Third,
we place explicit value on the reusability of associated artefacts. We posit, for example,
that the infrastructure and data sets stemming from our work can support forms of
leakage-aware verification, such as that of Barthe et al. [BGG+20], which demand accurate,
fine-grained device leakage models. On the other hand, however, we carefully limit the
remit in the following ways. First, we focus exclusively on analogue micro-architectural
leakage related to power consumption. We use the acronym Micro-architectural Power
Leakage (MPL) to fix this detail from here on, although stress that most results are more
general, e.g., apply to EM as a replacement for power consumption. Second, we focus
exclusively on evaluating (i.e., identifying, characterising, and documenting) MPL; this
means we deem exploitation of, and countermeasures addressing MPL out of scope.

Organisation. The paper is organised as follows:
• Section 2 surveys existing literature related to MPL. Based on this, Section 3 then

attempts to define a precise, unified terminology. This allows development of a structured
classification for leakage sources and effects, and clearer discussion of associated work.

• Section 4 describes MIRACLE, our experimental infrastructure for evaluating the MPL
which stems from a given device.

• Section 5 analyses specific data sets produced by the infrastructure, in order to document
several novel, low-level leakage effects, and to explore some overarching high-level
hypotheses. These include 1) to what extent implicit or explicit assumptions, such
as Only Computation Leaks (OCL) [MR04] and Independent Leakage Assumption
(ILA) [RSVC+11, Section 2.2], made during design or implementation, actually hold
in practice, and 2) whether and how identical implementations leak on different but
compatible devices, and thus how “portable” the countermeasures they use are.

• Section 6 then, finally, attempts to summarise the implications for situations when con-
sideration of MPL is important; we pitch this as a limited set of design or implementation
guidelines for digital design and cryptographic engineers.
4We stress that a device leakage model is related to but distinct from the (e.g., Hamming weight or

Hamming distance) leakage model utilised in an attack. The former will ideally capture all leakage sources
and resulting behaviour, for example in order to support accurate leakage simulation [BBYS21]; the latter
is an abstraction, focused, e.g., on behaviour pertinent to the attack.

178 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

2 Background
In this section, we survey existing literature related to MPL. The goal is to 1) organise and
summarise relevant work, which spans different research fields and focuses, and 2) clarify
the relationship between this paper, and relevant work which we either build on or produce
implications for. Due to space constraints we focus on a minimal survey of the most recent
and/or relevant work only. A more detailed survey can be found in [MPW21][Appendix
A].

(Micro-)architectural power leakage effects. There have been many efforts to study
particular sources of MPL, and how they can undermine masking based countermeasures.
In [BGG+14], the authors discuss how physical effects in a hardware device (“glitches
and transition-based leakages”) can halve the security order of a masked implementation.
This was followed by [PV17], which details several specific leakage effects which can be
repeatedly demonstrated as undermining a masked software implementation. This includes
the “overwrite” effect where registers are overwritten with sensitive values, the “memory
remnant” effect where values written or read from memory are buffered unexpectedly, and
the “neighbour-leakage” effect where explicit accesses to one register can cause implicit
accesses to an adjacent register. Subsequent works such as [CGD18] and [SSB+20]
replicate some or all of these effects in different devices, and introduce either new variants
or more specific cases of known variants. In [MMT20], the authors survey four devices and
explicitly build on the work of [PV17]. We consider [MMT20] the work most similar to
ours, in that it also surveys a range of devices and effects, confirming (as discussed later)
that leakage effects vary widely between devices.

Other works have examined particular processor cores in great detail from a micro-
architectural perspective [CGMA+15, BP18, DAK19], but have not looked more widely
at families of cores, such as all ARM Cortex-M devices.

(Micro-)architectural power leakage modelling and tooling. In [MWO16], the authors
build a statistical device leakage model of ARM Cortex-M0 and Cortex-M4 cores by
examining tuples of adjacent instructions, and using statistical regression to model the
resulting information leakage. This successfully captures even very esoteric kinds of leakage
in instructions which are executed adjacently. However, as explored in [SSB+20], it can
fail to capture cases where instructions which are executed far apart yet still interact
and hence induce leakage. Load and store instructions are a good example, as discussed
in [SSB+20, Section IV(C)] and examined in detail in Section 5.1. Another limitation of
statistical modelling techniques is ensuring that a representative sample of instruction
executions and sequences are used to build the model. The authors of [MWO16] were able
to to group instructions with similar leakage and so reduce the problem space, but the
problem of generating large amounts of initial stimulus remains.

Complementing statistical approaches to device leakage modelling are formal modelling
approaches. These have mostly been applied to masked hardware implementations, as
with the maskVerif [BBC+19] and REBECCA [BGI+18] tools, or more recently, SIL-
VER [KSM20]. Such techniques have also been applied to software masking. In [BGG+20],
the authors use a Domain Specific Language (DSL) to describe the individual instructions of
a processor core, and the state elements they update. This model of the micro-architecture
is supplied by the user, and may need to be reverse engineered from an existing device.
Assuming the accuracy of the micro-architecture model, this is a compelling approach.
The TORNADO tool [BDM+20] is another similar approach, which combines the Usuba
bit-slicing compiler [MDLG18] and the tightProve [BGR18] tools to generate C programs
with formal side-channel security assurance in the register probing model.

Gigerl et al. [GHP+20] describe techniques for co-design and formal verification of

Ben Marshall, Dan Page and James Webb 179

hardware and side-channel resistant software using the REBECCA tool [BGI+18]. They
give a worked example of their tool using the Ibex RISC-V core, highlighting design
elements which give rise to various sources of MPL. Their work is an excellent guide to
explaining why certain leakage effects are evident in the grey-box approach used in this
work.

3 Terminology
Per Section 2, study of MPL exists at the intersection of several research fields. This has
led to terminology which is sometimes inconsistent or imprecise, making it difficult to
clearly discuss associated work. Before any technical contributions we attempt to address
this issue, by first addressing architectural then micro-architectural concepts. In each
such step, we use a model for instruction execution to classify associated leakage sources.
Doing so allows one to reason about how and why leakage occurs, and thus how it may be
avoided (or not).

It is important to note that none of this will be deemed innovative to digital design
engineer. As well as supporting the remainder of this paper, however, we posit that shared
terminology and understanding is a necessary starting point to enable 1) digital design
engineers (cf. [BMT16]) to reason about the impact of MPL from their (hardware) designs
and implementations, and 2) cryptographic engineers to develop useful device leakage
models, and thus leakage-free (software) designs and implementations.

3.1 Notation
Let MEM[i] denote the i-th element of memory: MEM[i]j is used to specify an access
granularity of j bytes where appropriate, with j = 1 (implying memory is byte addressed)
assumed if/when omitted. Let GPR[i] denote the i-th General Purpose Register (GPR);
we refer to a given Special Purpose Register (SPR) by name, including an optional field
where appropriate. Within the specific context of ARMv7-M, for example, PC ≡ GPR[15]
might denote the Program Counter (PC), whereas CPSR[C] ≡ CPSR29 might be used to
denote the carry flag within the Current Program Status Register (CPSR).

Let Ei and Ci denote some i-th execution and clock cycle respectively. We describe Ei

and Ej (resp. Ci and Cj) as being separated by a distance of n if |i− j| = n, noting that
the specific case where n = 1 implies they are consecutive.

3.2 Architectural leakage
3.2.1 Model

We assume an ISA will include a definition of (at least)
• a set of architectural state, namely storage elements such as GPRs, SPRs, and memory,
• a set of architectural instruction semantics: any given instruction may read values from

state elements, performs computation, and write values to state elements, and
• an instruction execution model.
An ISA will usually adopt a in-order execution model, wherein each execution cycle
will atomically and independently fetch, decode, then execute a single instruction; only
architectural state is guaranteed to be preserved between execution cycles.

3.2.2 Leakage

Concept 1. Architectural Power Leakage (APL) can be inferred from the archi-
tectural definition of instruction execution, meaning it stems purely from architecturally

180 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

visible detail (and is thus micro-architecture agnostic).

Concept 2. Intra-instruction leakage can be reasoned about with within the context of
1 execution cycle (i.e., execution of 1 instruction). This contrasts with inter-instruction
leakage, which cannot: it occurs, and thus must be reasoned about over n > 1 execution
cycles (i.e., execution of n instructions).

Note that inter-instruction leakage is not limited to adjacent instructions (as executed in
Ei and Ei±1). As we explore later, interaction between and thus leakage from non-adjacent
instructions (as executed in Ei and Ei±j for j > 1) is also plausible.

Given an instruction sequence, the concepts outlined above imply associated APL can
be inferred abstractly, i.e., without using a concrete implementation of the ISA: viable
approaches include the use of an instruction set simulator, or even static analysis. For
example, consider the following 3-instruction sequence:

1 add a0, a1, a2 // HW(a1) + HW(a2) + HW(a1+a2) + HD(a0, a1+a2)
2 add t0, t0, t2 // HW(t0) + HW(t2) + HW(t0+t2) + HD(t0, t0+t2)
3 lsl t0, t0, #4 // HW(t0) + HW(t0 << 4) + HD(t0, t0 << 4)

Based on an assumed power leakage model for register access and bus activity, the
annotation captures inferred architectural power leakage, i.e., 1) Hamming weight leakage
for each operand related to each read from the GPRs, 2) Hamming weight leakage related
to each result computed, and 3) Hamming distance leakage related to each write to the
GPRs. It is trivial to identify instances of inter- and intra-instruction leakage: the former
occurs when an instruction reads operands from the GPRs or performs computation,
whereas the latter occurs when an instruction writes results to the GPRs and thereby
overwrites a value already there (as written by a previous instruction, so implying the
required interaction).

As an aside, certain sources of APL are closely related to features in the ISA design.
Compressed instruction formats, such as the RISC-V standard C extension [RV:19, Section
16] or ARMv7-M Thumb [ARM18, Chapter A5], often employ destructive, e.g.,

add r1, r2 7→ GPR[1]← GPR[1] + GPR[2],

versus non-destructive, e.g.,

add r0, r1, r2 7→ GPR[0]← GPR[1] + GPR[2],

semantics with respect to the destination register: use of the former forces Hamming
distance leakage between GPR[1] and GPR[1]+GPR[2] which can be avoided in (careful) use
of the latter. There is an increasingly accepted argument (see, e.g., [RKL+04, RRKH04])
that security should be considered as a first-class metric at design-time, and, as such, one
could argue this and similar examples should be considered within the ISA design process.

3.3 Micro-architectural leakage
3.3.1 Model

Existing literature (see, e.g., [PV17, CGD18, SSB+20, MMT20]) has demonstrated that
APL cannot accurately capture every pertinent leakage source or, therefore, effect: to do
so, one must also consider leakage which stems from the micro-architecture. We address
this fact by extending the model in Section 3.2: specifically, we
• extend the architectural state with a set of micro-architectural state plus a mapping

function between architectural and micro-architectural state elements, and
• extend the architectural instruction semantics with a set of micro-architectural instruction

semantics.

Ben Marshall, Dan Page and James Webb 181

Q

D Q

Q

D Q

Q

D Q r

y

x

clk

t0

t1

t2 t3

(a) Non-glitching combinatorial leakage.

Q

D Q

Q

D Q

Q

D Q r

y

x

clk
sel

(b) Glitching combinatorial leakage.

Figure 1: Two example designs, illustrating the difference between non-glitching combina-
torial leakage and glitching combinatorial leakage. In the left design, only combinatorial
leakage is evident, based on how the signals t0 and t1 change on each clock cycle; subsequent
signals, e.g., t2 and t3, change only once per clock cycle. Note this ignores the effect of
wire delay on t0 and t1. In the right design (a multiplexer), if the sel, x, and y signals all
change, then the delayed sel signal will cause Hamming distance leakage on r: this causes
it to glitch, i.e., change multiple times per clock cycle.

One could define micro-architectural state elements as being those implicitly supporting
execution of instructions (by maintaining any associated values while execution occurs); this
contrasts with architectural state elements, which are those explicitly used by instructions.
Likewise, micro-architectural semantics describe execution of an instruction in terms of
micro-architectural state elements; this contrasts with architectural semantics, which do
so in terms of architectural state elements.

In contrast with architectural state, micro-architectural state may or may not be
preserved across either execution or clock cycles. As such, the micro-architectural state
mapping function and the instruction semantics must be considered, to some extent, with
respect to an execution context which includes 1) the current micro-architectural state, 2)
the “current” instruction (i.e., that executed in Ei), and 3) the “surrounding” instructions
(i.e., those executed in Ei±j for 1 ≤ j < m given some m). For example: where pipelining
is employed, instructions following a branch may or may not be (completely) executed
depending whether the branch is taken or not; where pipelining is employed, the (concrete)
state element corresponding to an (abstract, architectural) register may be part of the
forwarding logic versus the register file; where register renaming is employed, the (concrete)
state element corresponding to an (abstract, architectural) register may differ for each
write to that register.

3.3.2 Leakage

Concept 3. Micro-architectural Power Leakage (MPL) cannot be inferred from the
architectural definition of instruction execution, meaning it stems purely from architecturally
invisible detail (and is thus micro-architecture specific).

Concept 4. Intra-cycle leakage can be reasoned about with within the context of 1
clock cycle. This contrasts with inter-cycle leakage, which cannot: it occurs, and thus
must be reasoned about over n > 1 clock cycles.

Concept 5. Sequential MPL occurs when the value of a state element changes.

We specifically use the term “sequential”, because it stems from the sequential logic
elements, flip-flops and registers constructed from them, used within a design. A specific
instance of sequential MPL is necessarily classified as inter-cycle, because it occurs at the
boundaries of clock cycles. However, it may be classified as either intra-instruction, because
it can stem from isolated execution of 1 instruction (e.g., during iterative computation of a
multiplication), or inter-instruction, because it can stem from interaction between execution

182 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

of n > 1 instructions (e.g., a specific state element updated by different instructions
executed in Ei and Ei±j for j 6= 0).

Concept 6. Non-glitching combinatorial MPL occurs when the output of a combi-
natorial logic element toggles; glitching combinatorial MPL occurs when the output
of a combinatorial logic element toggles more than once per clock cycle.

In existing literature, it is common for the catch-all term “glitching” to be used for either
case. We carefully distinguish between the cases, observing that all leakage caused by
glitching is combinatorial leakage but not all combinatorial leakage is caused by glitching.
The designs in Figure 1 represent (simple) instances of the non-glitching and glitching
cases respectively. Various other instances are arguably more subtle, in the sense they
relate more to the physical properties of an implementation than logical properties of a
design. For example, it is common to observe combinatorial leakage stemming from an
inverter chain: these structures are used, for example, to mitigate issues due to 1) the
standard cell library (e.g., to allow a high degree of fan-out), and/or 2) place-and-route
(e.g., to drive signals over long wires).

Beyond some niche exceptions (e.g., multi-cycle paths) we deem out of scope, a specific
instance of combinatorial MPL is necessarily classified as intra-cycle and therefore intra-
instruction. This is because, within the context of a sequential logic design, the value
produced by a combinatorial logic element must settle before the next clock cycle (otherwise
a violation of the critical path occurs).

3.4 Summary
Concept 7. A given power leakage source can be classified as being either

1) architectural
2) sequential micro-architectural
3) non-glitching combinatorial micro-architectural
4) glitching combinatorial micro-architectural

and further qualified as manifesting on an a) intra-instruction, b) inter-instruction, c)
intra-cycle, or d) inter-cycle, basis. A leakage source is therefore defined as the design
or implementation feature that enables leakage to occur.

We stress that, due to our focus on the architectural and micro-architectural levels within
what is a larger stack of abstractions, this classification should be viewed as necessary
but not sufficient: it cannot capture every leakage source. A pertinent example is that of
capacitive coupling between wires (see, e.g., [CBG+17, CEM18, LBS19]), which, although
important to model, we regard as a separate problem. Our justification is that there is no
architecture or micro-architecture at that level of abstraction, only standard cells or wires:
capacitive coupling leakage can therefore be regarded as at best indirectly related to any
particular instruction sequence and execution of it, versus architectural or MPL where the
same relationship is more direct.

Concept 8. A power leakage effect is the form of information observable whenever
a leakage source causes leakage due to execution of an instruction sequence we term a
leakage trigger.

The term micro-benchmark5 refers to a well established concept: it is a short, self-contained
instruction sequence specifically designed to analyse some feature in the processor core that
executes it. For example, the performance counter based nanoBench framework of Abel

5Different, context-specific terms are sometimes used for what is essentially the same concept. For
example, the term litmus test is common within the context of concurrent hardware or software.

Ben Marshall, Dan Page and James Webb 183

and Reineke [AR19] was used to determine (or reverse engineer) the latency, throughput,
and port usage of x86 instructions, and cache architecture of x86 processor cores. We
adapt the term as follows:

Concept 9. A leakage micro-benchmark is a specific instruction sequence constructed
to prove or disprove a hypothesis about, e.g., the existence of a leakage source and any
associated leakage effect.

4 Infrastructure
Fundamentally, we are interested in evaluating the MPL stemming from a given processor
core. In this section we describe MIRACLE, our experimental infrastructure and methodol-
ogy for doing so. We start by introducing high-level terminology related to the components
and processes involved, then, in subsequent subsections, offer more, lower-level detail.

We refer to the physical integrated circuit containing some System on Chip (SoC) as a
device; such a device will contain one or more cores6. Most devices cannot be used in
a stand-alone manner, because, for example, they require surrounding infrastructure for
power delivery. We refer to this infrastructure as the host platform, noting that both
general-purpose (i.e., support multiple devices), and special-purpose (i.e., specific to, and
even integrated within a device) instances are possible. As a result, the target of evaluation
is defined by a 3-tuple of core, device, and platform. An evaluation, which we refer to as
an experiment, is coordinated by a controller (i.e., a workstation) in two steps: it 1)
acquires a set of power consumption traces during execution of some micro-benchmark
by the target, then 2) subjects the traces to some form(s) of analysis, attempting to prove
or disprove an associated hypothesis. We refer to the power consumption traces as the
trace data set and results of analysis as the analysis data set.

Note that we avoid direct comparison of data sets stemming from different targets and
therefore devices. For example, a conclusion such as “leakage is stronger in target X than
target Y” is not possible. However, we do compare targets with respect to the associated
hypothesis with a particular micro-benchmark. For example, a conclusion such as “target
X and Y both exhibit leakage effect Z” is possible.

4.1 Devices
Let fd

i denote a device where f is the family identifier (e.g., ARM), d is the core identifier
(i.e., the specific processor core), and i is the instance number (where more than one exits).
Where necessary, we permit further annotation such that

fd
i =⇒ an ASIC-based (or “hard”) device

f̃d
i =⇒ an FPGA-based (or “soft”) device

fd
i [xMHz] =⇒ a device operating at a specific clock frequency (of xMHz)

Table 1 describes the set of 14 different devices (currently) supported by MIRACLE. Note
that each FPGA-based device is synthesised using Xilinx Vivado 2019.1; default synthesis
settings are used, with no effort invested in synthesis or post-implementation optimisation.

4.2 Platforms
Each device is supported by and so situated within a specific platform. MIRACLE (currently)
supports 3 different platforms, described in detail by the following:

6 In our case these are processor cores, but note that the terminology could be extended to accommodate,
e.g., hardware accelerators.

184 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Identifier
Instances

P
latform

V
endor

D
evice

P
ackage

C
ore

M
icro-architecture

ISA
F
lash

SR
A
M

R
eferences

A
RM

N
0

1
SCA

LE
N
X
P

L
P
C
812M

101JD
H
16

T
SSO

P
-16

A
R
M

C
ortex-M

0+
32-bit

2-stage
pipeline

1-cycle
m
ultiplier

A
R
M
6-M

16
kB

4
kB

[A
R
M
a,

N
X
P
a]

A
RM

N
1

1
SCA

LE
N
X
P

L
P
C
1114F

N
28/102

D
IP

-28
A
R
M

C
ortex-M

0
32-bit

3-stage
pipeline

A
R
M
6-M

32
kB

4
kB

[A
R
M
b,

N
X
P
b]

A
RM

N
2

1
SCA

LE
N
X
P

L
P
C
1313F

B
D
48/151

L
Q
F
P
-48

A
R
M

C
ortex-M

3
32-bit

3-stage
pipeline

1-cycle
m
ultiplier

A
R
M
v7-M

32
kB

8
kB

[A
R
M
c,

N
X
P
c]

A
RM

N
3

3
CW

308
N
X
P

L
P
C
1115F

B
D
48/303

L
Q
F
P
-48

A
R
M

C
ortex-M

0
32-bit

3-stage
pipeline

A
R
M
6-M

64
kB

8
kB

[A
R
M
b,

N
X
P
b]

A
RM

S0
1

CW
308

ST
M

ST
M
32F

071R
B
T
6

T
Q
F
P
-64

A
R
M

C
ortex-M

0
32-bit

3-stage
pipeline

A
R
M
6-M

128
kB

16
kB

[A
R
M
b,

M
ea,

N
ew

]

A
RM

S1
1

CW
308

ST
M

ST
M
32F

100R
B
T
6B

T
Q
F
P
-64

A
R
M

C
ortex-M

3
32-bit

3-stage
pipeline

1-cycle
m
ultiplier

A
R
M
v7-M

128
kB

8
kB

[A
R
M
c,

M
eb,

N
ew

]

A
RM

S2
1

CW
308

ST
M

ST
M
32F

215R
E
T
6

T
Q
F
P
-64

A
R
M

C
ortex-M

3
32-bit

3-stage
pipeline

1-cycle
m
ultiplier

A
R
M
v7-M

512
kB

128
kB

[A
R
M
c,

M
ec,

N
ew

]

A
RM

S3
1

CW
308

ST
M

ST
M
32F

303R
C
T
7

T
Q
F
P
-64

A
R
M

C
ortex-M

4
32-bit

3-stage
pipeline

1-cycle
m
ultiplier

A
R
M
v7-M

256
kB

40
kB

[A
R
M
d,

M
ed,

N
ew

]

A
RM

S4
1

CW
308

ST
M

ST
M
32F

405R
G
T
6

T
Q
F
P
-64

A
R
M

C
ortex-M

4
32-bit

3-stage
pipeline

1-cycle
m
ultiplier

A
R
M
v7E

-M
1

M
B

192
kB

[A
R
M
d,

M
ee,

N
ew

]

A
RM

S5
3

CW
308

ST
M

ST
M
32F

051C
8T

6
L
Q
F
P
-48

A
R
M

C
ortex-M

0
32-bit

3-stage
pipeline

A
R
M
6-M

64
kB

8
kB

[A
R
M
b,

M
ef]

M̃
B

X
0

1
SA

SEB
O

-G
III

X
L
N
X

M
icroB

laze
v10.0

32-bit
3-stage

pipeline
M
icroB

laze
0

kB
32

kB
[X

il]

M̃
B

X
1

1
SA

SEB
O

-G
III

X
L
N
X

M
icroB

laze
v10.0

32-bit
5-stage

pipeline
M
icroB

laze
0

kB
32

kB
[X

il]

M̃
B

X
2

1
SA

SEB
O

-G
III

X
L
N
X

M
icroB

laze
v10.0

32-bit
8-stage

pipeline
M
icroB

laze
0

kB
32

kB
[X

il]

R̃V
PRV

1
SA

SEB
O

-G
III

P
icoR

V
32

32-bit
m
ulti-cycle

R
V
32IM

C
[W

ol]

Table
1:

Pertinent
technicaldetailfor

each
device

(currently)
included

in
the

M
IRACLE

study.
N
ote

that
w
e
use

a
short-hand

for
vendors:

N
X
P

denotes
N
X
P,ST

M
denotes

ST
M
icroelectronics,and

X
LN

X
denotes

X
ilinx.

Ben Marshall, Dan Page and James Webb 185

1 extern volatile void payload (word_t * inputs);
2

3 void driver (ctx_t* ctx) {
4 word_t * inputs = ctx -> receive_inputs ();
5 ctx -> device_set_trigger ();
6 payload (inputs);
7 ctx -> device_clear_trigger ();
8 }

(a) The goal-agnostic, high-level driver (implemented in C).

1 .global payload
2

3 payload : push { r4, r5, r6, r7, lr } // Preserve callee save GPRs
4 <clear callee save registers >
5 <load inputs >
6 kernel : <execute kernel >
7 <clear used registers >
8 pop { r4, r5, r6, r7, pc } // Restore callee save GPRs

(b) The goal-specific, low-level payload (implemented in assembly language).

Figure 2: The 2-part structure of each micro-benchmark.

• SCALE describes a platform based on the SCALE7 host board; it supports a range of
interchangeable target boards, and thus devices. The trace acquisition pipeline includes
an on-board NXP BGA2801 amplifier (with 22 dB gain), and an on-board 2.6 MHz
low-pass filter.

• CW308 describes a platform based on the ChipWhisperer CW308 (or UFO)8 host board;
it supports a range of interchangeable target boards, and thus devices. The trace
acquisition pipeline includes an off-board Agilent 8447D amplifier (with 25 dB gain),
and an off-board MiniCircuits SLP-30+ 32 MHz low-pass filter.

• SASEBO-GIII describes a platform based on the SASEBO-GIII [HKSS12] side-channel
analysis platform; it houses two FPGAs, a Xilinx Kintex-7 (model xc7k160tfbg676)
target FPGA, and a Xilinx Spartan-6 (model xc6slx45) support FPGA, and thus can
be reconfigured to support a range of devices. The trace acquisition pipeline includes
an off-board MiniCircuits BLK+89 D/C blocker, an off-board Agilent 8447D amplifier
(with 25 dB gain), and an off-board MiniCircuits SLP-30+ 32 MHz low-pass filter.

The trace acquisition process is coordinated by a controller, which communicates with the
platform and a PicoScope 5000 series oscilloscope, which terminates the trace acquisition
pipeline. Although a platform- and/or device-specific approach to configuration and
programming is required (e.g., via a Xilinx Platform Cable USB II for the SASEBO-GIII
platform, or a Segger J-Link and OpenOCD for ARM-based devices), communication
between controller and platform is more uniform: each platform uses an FTDI-based FT232
USB-to-UART bridge then exposed to the device (on-board for the SCALE platform, off-
board for the CW308 and SASEBO-GIII platforms).

186 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

4.3 Micro-benchmarks

Notation. MIRACLE (currently) supports 23 different micro-benchmarks, which we refer
to using major/minor as a short-hand: major is the major identifier (or class), and
minor is the minor identifier (i.e., instance within said class). Where clear from the
context, we use the minor identifier alone.

Each micro-benchmark must be implemented for each device, or, rather, for each
unique ISA. The 7 different cores (currently) supported by MIRACLE span 4 different ISAs,
however, which presents a challenge with respect to how to describe them. We use one
of two approaches, depending on who or what the user of such a description is. First,
our human-readable description uses the combination of 1) a written explanation of the
underlying goal, plus 2) an illustrative, pseudo-code example implementation modelled on
the use of ARMv7-M; in some instances, we employ stylistic alterations9 to improve their
readability. On one hand, we use ARMv7-M because we expect this to be the most familiar
of those ISAs support (and so add most value with respect to illustrating the underlying
goal). On the other hand, although concrete ARMv7-M assembly language syntax and
instruction mnemonics are used, for example, we opt for abstract, symbolic notation for
values, register identifiers, etc. More specifically, we use the following notation:
• A through H represent variables; note these are not hexadecimal literals, which would be

prefixed by #. Unless otherwise noted or self-evident, any two variables, say A and B,
are always allocated different architectural registers.

• rA, for example, denotes a register which contains some variable A which is relevant to
the associated experiment.

• rX and rY denote registers which contain an address or variable which is irrelevant to
the associated experiment.

• rZ denotes a register which contains zero.
Second, our machine-readable description is then a functionally equivalent but ISA-specific
realisation of the pseudo-code; in doing so we must manage differences between ISAs (e.g.,
the availability of a specific instruction type, or addressing mode), but, in all cases, we
carefully avoid impact on the underlying hypothesis. Beyond formulation of the micro-
benchmark goal, we found this to be the most fragile and therefore challenging aspect of
the development process.

Structure. Each micro-benchmark is implemented using the 2-part structure described by
Figure 2: the goal-agnostic, high-level micro-benchmark driver (Figure 2a) is implemented
using C, whereas the goal-specific, low-level micro-benchmark payload (Figure 2b) is
implemented using assembly language for the appropriate ISA. The driver part is identical
for all devices, but specific to a given micro-benchmark: it is responsible, e.g., for 1)
receiving a set of inputs, which are generated uniformly at random then communicated
by the controller, 2) managing aspects of trace acquisition (e.g., the trigger signal),
and 3) invoking the associated payload. Note that word_t is typedef’ed to reflect the
word size, e.g., to uint32_t or uint64_t. The payload part is responsible for realising
the micro-benchmark itself; the micro-benchmark kernel is surrounded by additional
instructions, which, for example, 1) clear callee-save registers before execution to ensure a
fixed architectural state and prevent interaction with the input, and 2) clear all registers
used by the kernel after one execution to prevent interaction with subsequent executions.

7https://github.com/danpage/scale-hw
8https://wiki.newae.com/CW308_UFO_Target
9Examples include additional space or indentation, or labels which are either shorter or more meaningful

given the associated description.

https://github.com/danpage/scale-hw
https://wiki.newae.com/CW308_UFO_Target

Ben Marshall, Dan Page and James Webb 187

Acquisition. For a given device, we execute each micro-benchmark n times and so acquire
n associated traces of power consumption. Without loss of generality we fix n = 20, 000
for ASIC-based devices and n = 30, 000 for FPGA-based devices, and assume that each
trace is comprised of m samples (the larger n used for FPGA-based devices stems from
their lower signal-to-noise ratio). Let T j

i denote the j-th sample in the i-th trace, and
V k

i ∈ {A, B, . . . , H} denote the k-th input variable manipulated by the micro-benchmark
during acquisition of the i-th trace: T and V constitute the trace data set for a given
experiment. MIRACLE (currently) supports 14 devices and 23 micro-benchmarks: these
lead to acquisition of 322 such trace data sets in total, one per experiment.

Analysis. Having acquired the trace data set for a given experiment, we then apply an
analysis step in order address the associated hypothesis. In concrete terms, we apply
Correlation Power Analysis (CPA) [BCO04] with a Hamming weight or Hamming distance
leakage model. We opt for this approach, versus techniques such as Test Vector Leakage
Assessment (TVLA) [GJJR11] or Welch’s t-test [Wel47], because it allows more confidence
in a qualitative assessment of 1) whether or not inputs variables were manipulated or
interacted, and 2) exactly which variables were involved if so; our choice aligns with Arora
et al. [ABPP21], for example, who warn that use of TVLA (alone) “should be treated with
caution as it is sensitive to both false positives and negatives”.

Per our remit of evaluating MPL, the “attack” component10 of CPA is irrelevant:
we simply use CPA in order to “detect” if and when input variables are manipulated
or interact. In concrete terms, doing so is captured by two cases: if H(x) denotes the
Hamming weight of x, then
1. to perform Hamming weight analysis of variable V x, i.e., test for unexpectedly access or

manipulation of one input variable, let Hi = H(V x
i) for 0 ≤ i < n, whereas

2. to perform Hamming distance analyses of variables V x and V y where x 6= y, i.e., test for
unexpected interactions between two input variables, let Hi = H(V x

i ⊕V y
i) for 0 ≤ i < n.

Then, if T j denotes the mean of all traces at sample j and H denotes the mean of all
values in H, we compute an analysis data set represented by the correlation coefficient

Rj =
∑n−1

i=0 (Hi −H) · (T j
i − T j)√∑n−1

i=0 (Hi −H)2 ·
∑n−1

i=0 (T j
i − T j)2

for 0 ≤ j < m (per, e.g., [MOP07, Chapter 6]). Note that not all experiments require
use of both Hamming weight and Hamming distance analysis, meaning some experiments
in Section 5 may omit one or other analysis. For example, in an experiment designed to
test for unexpected interactions between two input variables, Hamming weight analysis is
omitted; in an experiment designed to test for unexpectedly access or manipulation of one
input variable, Hamming distance analysis is omitted.

After MIRACLE has automatically acquired the trace data sets and applied the analysis
required for a given experiment, we then manually interpret the resulting analysis data
set: in either case, a significant peak (or spike) in R is suggestive of the hypothesised
manipulation or interaction having occurred.

4.4 Artifacts
A concrete goal of MIRACLE is to make access to artifacts and the reproduction or improve-
ment of our results easy. Hence, all of our benchmarks and experiment infrastructure is

10All input variables are known: the concept of their being key hypotheses to rank and select from, for
example, does not make sense.

188 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Table 2: A summary of results stemming from the micro-benchmarks in Figure 3, i.e., cases
which explore Hamming distance leakage from combinations of ldr and str instructions.
Note that AC, for example, indicates that the Hamming distance between A and C was
leaked.

Device ld-ld ld-st st-ld st-st-1 st-st-2 st-st-3
ARMN0 AB AB
ARMN1 AB AB
ARMN2 AB AB AB AB
ARMN3 AB AB AB
ARMS0 AB AB AB AB
ARMS1 AB AB AB AB
ARMS2 AB
ARMS3 AB AB AB AB
ARMS4 AB AB
ARMS5 AB AB AB AB
MBX0 AB AB AB AB
MBX1

MBX2 AB
RVPRV

available online11. We also developed a web-based interface12 which offers a straightforward
way to 1) inspect the binary or disassembled form of each micro-benchmark, and 2) view
and compare the associated analysis data sets13.

5 Case studies
Note that all devices (currently) supported by MIRACLE, per Table 1, have a 32-bit
data-path and could be described as micro-controller class. Although MIRACLE is general-
purpose, this (initial) selection was intended to facilitate an exploration of MPL stemming
from ostensibly similar (i.e., from the same class, and so designed to satisfy similar use-cases)
devices commonly used in existing literature.

Using the MIRACLE infrastructure outlined in Section 4, this section presents said
exploration via a set of case studies: each has the same structure, in the sense it 1)
describes the set of micro-benchmarks used, 2) summarises the resulting analysis data
sets, then 3) discusses those results, e.g., attempting to explain their occurrence, relevance,
and/or implication. Some case studies replicate and generalise results in existing literature,
while others, to the best of our knowledge, are novel (either in terms of the leakage effect
and/or associated source). Note that in order to support 3), we stress the summarisation
of results in 2): rather than exhaustively present the analysis results for all devices for all
case studies, even though they exist, we select a subset which most easily support points
in the high-level discussion.

5.1 Memory: hidden state
This case study focuses on the so-called memory remnant effect, as observed, for example,
by Papagiannopoulos and Veshchikov [PV17, Section 3.2] who describe it as relating

11 https://github.com/scarv/miracle
12 https://miracle.scarv.org
13Unfortunately, we do not (currently) retain raw trace data sets. These (currently) represent more

than 1 TB, which means the monetary cost and logistics of long-term storage and access are (currently)
problematic. We hope to find a way to resolve this in the future.

https://github.com/scarv/miracle
https://miracle.scarv.org

Ben Marshall, Dan Page and James Webb 189

1 .text
2 kernel : ldr rA, [rC, #0]
3 eor rE, rE, rE
4 ldr rB, [rD, #0]

(a) memory-bus/ld-ld: load-after-load.

1 .text
2 kernel : ldr rA, [rC, #0]
3 eor rE, rE, rE
4 str rB, [rD, #0]

(b) memory-bus/ld-st: store-after-load.

1 .text
2 kernel : str rA, [rC, #0]
3 eor rE, rE, rE
4 ldr rB, [rD, #0]

(c) memory-bus/st-ld: load-after-store.

1 .text
2 kernel : str rZ, [rA, #0]
3 eor rE, rE ,rE
4 str rZ, [rB, #0]

(d) memory-bus/st-st-1: store-after-store,
overwrite with zero value.

1 .text
2 kernel : str rA, [rC, #0]
3 eor rE, rE ,rE
4 str rB, [rD, #0]

(e) memory-bus/st-st-2: store-after-store,
overwrite with security-critical value.

1 .text
2 kernel : str rA, [rD, #0]
3 str rB, [rE, #0]
4 str rC, [rD, #0]

(f) memory-bus/st-st-3: store-after-store,
with intermediate flush.

Figure 3: Pseudo-code for micro-benchmarks described in Section 5.1.1, i.e., those related
to the case study on hidden state in the memory access path.

to “leakage originating from consecutive SRAM accesses”. In short, it captures the
fact consecutive memory accesses may interact even if those accesses involve different
architectural state This can be a challenging effect to identify and resolve, because 1)
intermediate (e.g., ALU) instructions may not prevent leakage, and thus 2) leakage may
occur due to instructions which occur far apart.

5.1.1 Micro-benchmarks

Figure 3 includes pseudo-code for the micro-benchmarks used:
1. memory-bus/ld-ld (Figure 3a): an ldr instruction, followed by an intermediate eor

(i.e., ALU) instruction, followed by an ldr instruction, none of which access the same
architectural state (i.e., general-purpose registers, nor addresses in memory). The aim
is to answer the question is there Hamming distance leakage between the values loaded,
i.e., is there hidden state in the memory access path for ldr instructions (implying a
possibility they interact)?

2. memory-bus/ld-st (Figure 3b): as memory-bus/ld-ld, except with the second ldr
instruction replaced by a str instruction. The aim is to answer the question is there
Hamming distance leakage between the values loaded and stored, i.e., is there hidden
state in the memory access path for ldr and str instructions (implying a possibility they
interact)?

3. memory-bus/st-ld (Figure 3c): as memory-bus/ld-st, but with the order of ldr
and str instructions swapped.

4. memory-bus/st-st-1 (Figure 3d): an str instruction, followed by an intermediate eor
(i.e., ALU) instruction, followed by an str instruction, none of which access the same
architectural state (i.e., general-purpose registers, nor addresses in memory). The aim is
to answer the question if a security-critical value is stored in memory, is the Hamming
weight leaked by overwriting it with zero?

190 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

5. memory-bus/st-st-2 (Figure 3e): as memory-bus/st-st-1, but with the str instruc-
tions storing a non-zero value. The aim is to answer the question is there Hamming
distance leakage between the values stored, i.e., is there hidden state in the memory access
path for str instructions (implying a possibility they interact)?

6. memory-bus/st-st-3 (Figure 3f): as memory-bus/st-st-2, but with 1) the str
instructions accessing the same address, and 2) the intermediate instruction replaced
with another str, which stores a zero value. The aim is to answer the question does the
intermediate str instruction flush hidden state in the memory access path, i.e., is any
Hamming weight leakage due to hidden state, or to the memory access itself.

5.1.2 Results

Each micro-benchmark in this case study is functionally equivalent across the set of devices
used, and, where permitted by the ISA, identical. Despite this fact, we observe markedly
different leakage behaviour across those devices. For example, from Table 2 one can
identify various classes of difference:
1. equivalent instruction sequences executed on different cores that use different ISAs, e.g.,

Xilinx MicroBlaze versus ARM,
2. identical instruction sequences executed on different cores (from the same vendor) that

use the same ISA, e.g., Xilinx MicroBlaze,
3. identical instruction sequences executed on different cores (from different vendors in

different SoCs), that use the same ISA, e.g., NXP- versus ST-based ARM Cortex-M3,
and

4. identical instruction sequences executed on the same core (from the same vendor in
different SoCs), e.g., ST-based ARM Cortex-M3.

Some experiments show very consistent behaviour across architectures. For example, all of
the ARM cores behave identically for the memory-bus/ld-ld experiment. This result is
widely reported in the literature. However, when looking at interactions between load and
store instructions (such as might occur when spilling registers to the stack) separated by
an ALU instruction (memory-bus/ld-st and memory-bus/st-ld) we see very different
results not only between different cores, but even between the same core implemented
by the same manufacturer in different devices. For example, loaded and stored values
interact in the ST-based ARMS1 and ARMS3 devices. However, the ARMS2 and ARMS4

devices, when running exactly the same code, do not leak in the same way despite the
underlying core and ISA being identical. Closer inspection of the data-sheets for these
devices reveals that the ARMS2 and ARMS4 are high performance variants, with higher
maximum operating frequencies. A similar comparison can be made between the Xilinx
MicroBlaze cores, where the 3-stage MBX0 had clear interactions between loaded and
stored values, but in the longer pipelined MBX1 and MBX2, the loaded and stored values
do not interact.

For the store-store experiments, we see no Hamming distance leakage between the
memory-bus/st-st-1 and memory-bus/st-st-3 variants. From this, we conclude that
(for the number of traces we collected), leakage originates exclusively from registers in
either the core or the memory hierarchy, not from inside the SRAM. Indeed, only the
memory-bus/st-st-2 experiment causes Hamming distance leakage between the values
being stored. This suggests that in some cases, so long as there is an intervening store to
another address (thus flushing the store data-path), values with the same mask may be
safely overwritten in memory without causing leakage. This avoids the need for expensive
countermeasures (some of which are well described in [SSB+20]), but we urge developers
to verify that this holds on their own platforms themselves.

Ben Marshall, Dan Page and James Webb 191

5.1.3 Discussion

In explaining some of the differences between devices with the same core but different leak-
age behaviours (ARMS2 and ARMS4), we hypothesise that the need to meet tighter timing
requirements drove various design decisions regarding the core and memory interconnect,
which apparently have led to totally separate load and store data-paths. Regardless of the
actual reason for this difference in behaviour, from a leakage perspective, this is a critical
difference between cores which must be accounted for.

Based on our observations, we extend the notion of adjacent instructions to describe
different types of instruction:

Concept 10. Two distinct instructions can be described as
• program-adjacent if they are executed in consecutive execution cycles (i.e., they

appear consecutively in program order),
• memory-adjacent if they are both load or store instructions, and no intermediate load

or store instructions are executed between them,
• load-adjacent if they are both load instructions, and no intermediate load instructions

are executed between them,
• store-adjacent if they are both store instructions, and no intermediate store instructions

are executed between them.

It should be clear that store-adjacent and load-adjacent instructions are mutually exclusive,
and are both subsets of memory-adjacent instructions. We can now say that for some cores,
memory-adjacent instructions will leak the Hamming distance between values written or
read from memory, e.g., the ARMN2. However, in the case of the ARMS2, only load-adjacent
and store-adjacent instructions will leak as such. We believe that tagging instructions
as such will make formal modelling of memory hierarchy related leakage much easier to
reason about. There are also obvious similarities between memory consistency models and
ordering constraints or fences in various ISAs. We hope that these rules can be easily
added to static program checkers, and be used as extra information when looking for
interactions between variables.

Based on the leakage taxonomy developed in Section 3, we classify these effects as
sequential, inter-instruction MPL. Per device, we can now explain concisely whether, e.g.,
load-adjacent instructions suffer from inter-instruction sequential MPL or not.

For the ARM devices, we believe that the range of observed behaviours are much less
surprising given a thorough reading of the AMBA-AHB bus standard [ARMe]. This bus
standard is used by all of the ARM micro-controllers in the study. It is explicitly described
as a pipelined bus architecture. Hence, the existence of some micro-architectural state
should be expected. Observing [ARMe, Figure 1-1], the AHB block diagram, it is clear
that there are opportunities for registers to be placed in several places, with only a finite
number of sensible design choices for engineers to follow. This is shown in our results,
because although different cores from the same manufacturer do differ, given that they
differ, they differ consistently. This suggests it is possible to separate the MPL modelling
of CPUs from the modelling of the memory interconnect.

5.2 Memory: data bus widths
This case study focuses on the interaction between data-type width (e.g., uint8_t,
uint16_t, and uint32_t) and memory bus width. The central question is how does
the memory sub-system satisfy an n-byte memory access, e.g., are exactly n bytes loaded,
or are m > n bytes loaded and then m− n discarded? The answer is important, because
there are different approaches possible and each (potentially) has a different implication for
associated MPL. Shelton et al. [SSB+20, Section IV.E] note that such leakage is evident

192 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

1 .data
2 .align 4
3 X: .byte 0,0,0,A,0,0,0,0
4

5 .text
6 kernel : ldr rX, =X
7 ldrb rA, [rX, I]

(a) memory-bus/width-ld-byte: load from
byte array.

1 .data
2 .align 4
3 X: .byte 0,0,0,A,0,0,0,0
4

5 .text
6 kernel : ldr rX, =X
7 strb rZ, [rX, I]

(b) memory-bus/width-st-byte: store zero
into byte array.

1 .data
2 .align 4
3 X: .hword 0,A,0,0
4

5 .text
6 kernel : ldr rX, =X
7 ldrh rA, [rX, I]

(c) memory-bus/width-ld-half: load from
half-word array.

1 .data
2 .align 4
3 X: .hword 0,A,0,0
4

5 .text
6 kernel : ldr rX, =X
7 strh rZ, [rX, I]

(d) memory-bus/width-st-half: store zero
into half-word array.

Figure 4: Pseudo-code for micro-benchmarks described in Section 5.2.1, i.e., those related
to the case study on width of the memory access path. Note that for both of these
experiments I is a parameter rather than a variable: the micro-benchmark is executed 8
separate times (i.e., for I ∈ {0, 1, . . . , 7}) for the byte cases, and 4 separate times (i.e., for
I ∈ {0, 1, . . . , 3}) for the half-word cases.

Table 3: A summary of results stemming from the micro-benchmarks in Figure 4a and
Figure 4c i.e., cases which explore Hamming distance leakage from 8-bit, byte load (ldrb)
instructions and 16-bit, half-word load (ldrh) instructions respectively. Note that each
numbered column refers to the offset I into the array X, with a bold number used to
highlight the offset for A; a 4in the i-th column indicates that the Hamming weight of A
was leaked.

Device ldrb ldrh
0 1 2 3 4 5 6 7 0 1 2 3

ARMN0 4 4 4 4 4 4

ARMN1 4 4 4 4 4 4

ARMN2 4 4 4 4 4 4

ARMN3 4 4 4 4 4 4

ARMS0 4 4 4 4 4 4

ARMS1 4 4 4 4 4 4

ARMS2 4 4 4 4 4 4

ARMS3 4 4 4 4 4 4

ARMS4 4 4 4 4 4 4

ARMS5 4 4 4 4 4 4

MBX0 4 4 4 4 4 4

MBX1 4 4 4 4 4

MBX2 4 4 4 4

RVPRV 4 4 4 4 4 4

Ben Marshall, Dan Page and James Webb 193

Table 4: A summary of results stemming from the micro-benchmarks in Figure 4b and
Figure 4d, i.e., cases which explore Hamming distance leakage from 8-bit, byte store (strb)
instructions and 16-bit, half-word store (strh) instructions respectively. Note that each
numbered column refers to the offset I into the array X, with a bold number used to
highlight the offset for A; a 4in the i-th column indicates that the Hamming weight of A
was leaked.

Device strb strh
0 1 2 3 4 5 6 7 0 1 2 3

ARMN0

ARMN1

ARMN2

ARMN3

ARMS0 4 4 4 4

ARMS1 4 4 4 4

ARMS2

ARMS3 4 4 4 4

ARMS4

ARMS5 4 4 4

MBX0 4 4

MBX1

MBX2 4

RVPRV 4

on an ST-based ARM Cortex-M0 and in the ELMO [MWO16] power model: based on
their observations as a starting point, our aim is to then 1) evaluate whether the same
leakage effect is evident on other devices, and 2) explain the underlying leakage source(s).

5.2.1 Micro-benchmarks

Figure 4 includes pseudo-code for the micro-benchmarks used; both cases uses an 8-byte,
word-aligned array X. Each element of X is initialised to zero, bar one which is instead
initialised to a security-critical value A. For the load (Figure 4a) case, the micro-benchmark
loads an 8-bit (ldrb) or 16-bit (ldrh) value from a given offset I within X. If only those
bytes required are accessed, we expect leakage only for an offset which implies access to
the security-critical value; if leakage is observed at other offsets, we infer that bytes other
than those required are also accessed. For the store (Figure 4b) case, the micro-benchmark
stores an 8-bit (strb) or 16-bit (strh) zero value at a given offset I within X. Again, the
presence (resp. absence) of leakage for a given offset allows us to infer which bytes are
accessed.

5.2.2 Results

Table 3 shows consistent sub-word load behaviour for all of the ARM cores in the case
study. Again, this effect has been noted in the literature, and we are unsurprised to
confirm it across multiple devices and manufacturers. We note however the mixed results
for MicroBlaze devices.

For stores, Table 4 shows differing behaviour between different cores, and even the
same core implemented in different devices when adjacent bytes in memory are overwritten
with zeros. We note that results for ARMS1, ARMS3, ARMS2, and ARMS4 appear to mirror
the results observed in Table 2. Comparatively few devices showed any leakage in this case
and it is not immediately clear why Hamming weight leakage should be visible for a byte
in memory when the word is being written too, but that exact byte is not changing value.

194 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

For the store experiments, we also note the clear divide between ST-based ARM
devices which show MPL, and NXP-based ARM devices which show no MPL for the same
experiments. Recall again that where possible, the binary code running on each device is
identical, yet still yields very different MPL behaviour.

5.2.3 Discussion

We investigated the inconsistencies in the Microblaze results by analysing the implemented
designs. We found that in all cases, Vivado had combined four BRAM primitives (RAMB36E1)
to create a single logical 32-bit word memory. The “Enable” signal for each BRAM primitive
was driven by the same LUT, meaning that any sub-word access to the logical memory
would implicitly enable access to all of the constituent BRAM primitives. However, the
write enable bits were all driven independently (which is expected, or sub-word writes
would not work). We believe this explains why for the load-byte case in Table 3, we see
leakage for indices other than where the variable is stored. We cannot confidently explain
the results for the load-halfword case however, but suggest it may be down to glitching
or very low level signal timing issues which cannot be verified simply by inspecting the
implemented design. This might explain why we see leakage in both halfword cases for the
MBX0, but not for the MBX1 and MBX2. We hope that by making our artifacts public, it
will be easier for other researchers to investigate the inconsistencies. Generally, we believe
that the behaviour of the Vivado synthesis and implementation tools as they relate to
leakage is a substantial area of interest unto itself.

For the inconsistencies in the stores case, we hypothesise the behaviour here is heavily
dependant on the behaviour of the RAMs. For example, it is possible that even when only
a single byte is being explicitly accessed, the entire word is implicitly accessed (i.e. it’s
value is read out of the cell array) within the RAM, whether it is for a load or a store. We
note that we never see Hamming weight leakage when the value in memory is explicitly
overwritten with zeros. This might imply forwarding behaviour inside the RAMs, where
the RAM always reads the word being accessed (regardless of whether it is a load or store),
and where the word being read is being written in the same cycle, the written value is
forwarded to the RAMs read data register.

As to the difference in stored value leakage behaviour between manufacturers, again
we hypothesise this is down to differences in manufacturing approach for the RAMs. We
do not believe it is reasonable to conclude that NXP-based devices are on the whole
less leaky, but note that this starkly illustrates how families of devices can behave very
differently under leakage analysis. Again, we classify these effects as load/store-adjacent,
inter-instruction, sequential micro-architectural.

5.3 Memory: sequential accesses
This case study focuses on the behaviour of sequential accesses (i.e., loads or stores) to
memory. Such an access patter can arise, for example, when the nature data-type is
uint8_t, or when accessing regions of (e.g., an array in) memory with unknown alignment.
The central question is if one loads (resp. stores) bytes from (resp. into) different addresses
in memory into (resp. from) different architectural registers, is it possible they interact?
From an architectural perspective the answer should clearly be no, and so any leakage
must stem from (micro-architectural) state within the memory sub-system.

5.3.1 Micro-benchmarks

Figure 5 includes pseudo-code for the micro-benchmarks used; both cases uses an 8-byte,
word-aligned array X. For the load (Figure 5a) case, the micro-benchmark loads a sequence
of bytes from different, consecutive addresses in memory into different architectural

Ben Marshall, Dan Page and James Webb 195

Table 5: A summary of results stemming from the micro-benchmarks in Figure 5a, i.e.,
cases which explore Hamming distance leakage from 8-bit, byte load (ldrb) instructions
using different, consecutive addresses and different architectural registers; the results focus
on ST-based devices only. Note that a 4in the i-th column and j-th row indicates that
the Hamming distance between the i-th and j-th bytes loaded was leaked.

0 1 2 3 4 5 6 7
0 4 4 4 4
1 4
2 4
3 4
4 4
5
6

(a) ARMS0.

0 1 2 3 4 5 6 7
0 4 4 4
1 4 4
2 4 4
3 4
4 4
5 4
6 4

(b) ARMS1.

0 1 2 3 4 5 6 7
0 4 4 4
1 4
2 4 4
3 4
4 4
5 4
6

(c) ARMS2.

0 1 2 3 4 5 6 7
0 4 4 4
1 4 4
2 4 4
3 4
4 4
5 4
6

(d) ARMS3.

0 1 2 3 4 5 6 7
0 4 4 4
1 4 4
2 4 4
3 4 4
4 4
5
6

(e) ARMS4.

0 1 2 3 4 5 6 7
0 4 4 4 4
1 4
2 4
3 4
4 4
5 4
6

(f) ARMS5.

196 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

1 .data
2 .align 4
3 X: .byte A,B,C,D,E,F,G,H
4

5 .text
6 kernel : ldr rX, =X
7 ldrb rA, [rX, #0]
8 ldrb rB, [rX, #1]
9 ldrb rC, [rX, #2]

10 ldrb rD, [rX, #3]
11 ldrb rE, [rX, #4]
12 ldrb rF, [rX, #5]
13 ldrb rG, [rX, #6]
14 ldrb rH, [rX, #7]

(a) memory-bus/seq-ld: sequential load
bytes from array.

1 .data
2 .align 4
3 X: .byte 0,0,0,0,0,0,0,0
4

5 .text
6 kernel : ldr rX, =X
7 strb rA, [rX, #0]
8 strb rB, [rX, #1]
9 strb rC, [rX, #2]

10 strb rD, [rX, #3]
11 strb rE, [rX, #4]
12 strb rF, [rX, #5]
13 strb rG, [rX, #6]
14 strb rH, [rX, #7]

(b) memory-bus/seq-st: sequential store
bytes into array.

Figure 5: Pseudo-code for micro-benchmarks described in Section 5.3.1, i.e., those related
to the case study on sequential use of the memory access path.

registers: note that ldr rA, [rX, #0] should be read as “load the 0-th element of X, i.e.,
the variable A, into register rA”. Any Hamming distance leakage between the bytes loaded
allows us to infer the presence of shared state, e.g., within 1) the memory sub-system,
and/or 2) the pipeline stages used by the core (i.e., between a value being received from
memory by the core, and being written into a GPR). For the load (Figure 5a) case, the
micro-benchmark stores a sequence of bytes from different architectural registers into
different, consecutive addresses in memory: note that str A, [rX, #0] should be read as
“store register rA, i.e., the variable A, into the 0-th element of X”. Any Hamming distance
leakage allows similar inferences to the load case, but could also indicate that additional
pipeline register(s) exist between the register file and the memory write-port.

5.3.2 Results

The results for a representative subset of the memory-bus/seq-ld experiment can be
found in Table 5. We can see two main effects, namely 1) bytes within a word can interact
but may not, and 2) the i-th byte of the array will often interact with the (i + 4)-th byte
of the array.

5.3.3 Discussion

We believe the first effect is due to the necessary multiplexing to select any byte of a loaded
memory word, and to place it in the least significant byte of an architectural register.
Clearly this multiplexing does not always cause visible MPL for the number of traces used
in these experiments.

For the second effect, we believe this is because (as established in prior experiments),
even when a byte of memory is requested, in reality, an entire word is loaded. Hence,
when we load the first four bytes of the array, we are really repeatedly loading the entire
first word. When we load byte 4 of the array, an entire new word is loaded into some
micro-architectural state, and we see Hamming distance leakage between all corresponding
bytes. Again, none of the instructions shared architectural destination registers, meaning
all of the interactions are due to the MPL.

We believe the inconsistency of our results is down to two major factors. First, that if

Ben Marshall, Dan Page and James Webb 197

1 .text
2 kernel : eor rA, rA, rB
3 eor rC, rC, rD

(a) pipeline/eor-eor: eor-eor interaction.

1 .text
2 kernel : eor rA, rA, rB
3 add rC, rC, rD

(b) pipeline/eor-add: eor-add interaction.

1 .text
2 kernel : eor rA, rA, rB
3 lsl rC, rD, #8

(c) pipeline/eor-lsl: eor-lsl interaction.

1 .text
2 kernel : eor rA, rA, rB
3 ror rC, rD, #8

(d) pipeline/eor-ror: eor-ror interaction.

1 .text
2 kernel : eor rA, rA, rB
3 ldr rC, [rD, #0]

(e) pipeline/eor-ldr: eor-ldr interaction.

1 .text
2 kernel : eor rA, rA, rB
3 str rC, [rD, #0]

(f) pipeline/eor-str: eor-str interaction.

1 .text
2 kernel : eor rA, rA, rB
3 nop
4 eor rC, rC, rD

(g) pipeline/nop-eor: eor-eor interaction,
with intermediate nop.

Figure 6: Pseudo-code for micro-benchmarks described in Section 5.4.1, i.e., those related
to the case study on pipeline register use.

we collected more traces we would see more consistent results. Second, that for a given
number of traces, not all intra-cycle MPL (e.g., in multiplexer trees) can manifest, due to
subtle differences in the final post-layout silicon design.

For this particular effect, we note the existence of two distinct sources of MPL according
to our classification. First, we see inter-instruction sequential MPL, as we have with other
memory bus experiments. However, we also see intra-instruction, glitching combinatorial
MPL, where bytes of the loaded word interact with each other through the multiplexers,
which select which byte of the word is written back to a general purpose register.

5.4 Pipeline register overwrites
Shelton et al. [SSB+20] focus on an ST-based ARM Cortex-M0, which has a 3-stage
pipeline and thus 2 sets of pipeline registers. We extend this remit, applying a similar
methodology (i.e., that of using a set of micro-benchmarks) to devices which have more
diverse micro-architectures and hence different, more complex pipeline structures. In doing
so, we demonstrate how to answer an important question, namely in a scalar pipeline, do
consecutive instructions that use different destination registers cause Hamming distance
leakage between instruction results? From an architectural perspective the answer should
clearly be no, and so any leakage must stem from (micro-architectural) state within the
pipeline structure.

The information generated by this methodology is useful, for example, to 1) reverse
engineer details of the (unknown) pipeline structure, and, therefore, 2) model how in-flight
instructions proceed through each stage of execution, e.g., whether and how they, and
associated intermediate values, interact with each other. Of course, with white-box access
to the micro-architectural design, e.g., the HDL, per the MAPS simulator of Le Corre

198 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Table 6: A summary of results stemming from the micro-benchmarks in Figure 6, i.e.,
during execution of a given instruction pair, was there Hamming distance leakage; N/A
indicates the instruction pair (e.g., due to use of ror) is not supported by the ISA associated
with that device.
Device eor-eor eor-add eor-lsl eor-ror eor-ldr eor-str eor-nop
ARMN0 4 4

ARMN1 4 4 4

ARMN2 4 4 4 4

ARMN3 4 4 4

ARMS0 4 4 4 4 4

ARMS1 4 4 4 4

ARMS2 4

ARMS3 4 4 4

ARMS4 4 4

ARMS5 4 4

MBX0 4 N/A 4 4

MBX1 4 4 4 N/A 4 4

MBX2 4 4 4 N/A 4 4

RVPRV N/A

Table 7: A summary of results stemming from the micro-benchmarks in Figure 6, i.e.,
during execution of a given instruction pair, which operands caused Hamming distance
leakage; N/A indicates the instruction pair (e.g., due to use of ror) is not supported by the
ISA associated with that device. Note that AC, for example, indicates that the Hamming
distance between variables A and C was leaked. The Hamming distance between variables
A and B was leaked in all cases, so have been omitted.
Device eor-eor eor-add eor-lsl eor-ror eor-ldr eor-str eor-nop
ARMN0 BD BD AC AB BC
ARMN1 AC, AD, BD AC, BD AD, BD AC BC
ARMN2 AC, BD AC, BD AD, BD AC BC AC, BD
ARMN3 BD BD BC
ARMS0 AC, BD AC, BD AD, BD AC BC
ARMS1 AC, BD AC, BD, CD AD, BD AC BC AC, BD
ARMS2 AC, BD AC, BD AD, BD BC BD
ARMS3 AC, AD AC, AD, BD AD, BD AC, BC BC AC, AD
ARMS4 AC, AD, BD AC, AD, BD AD, BD BC BC
ARMS5 AC, BD AC, BD AD AC BC
MBX0 AC, BD AC, BD AD N/A
MBX1 AC, BD AC, BD AC, AD N/A AD AC
MBX2 AC, BD AC, BD AC, AD N/A AD AC
RVPRV AC, BD AC, BD AD N/A BC

Ben Marshall, Dan Page and James Webb 199

et al. [CGD18] for ARM Cortex-M3, one can obtain similar information more directly.
However, we argue that a grey-box approach is more scalable: it can cater for cases when
said design is unknown and/or inaccessible.

5.4.1 Micro-benchmarks

Figure 6 includes pseudo-code for the micro-benchmarks used:
1. pipeline/eor-eor (Figure 6a): an eor instruction followed by another eor instruction,

neither of which access the same architectural state (i.e., general-purpose registers). The
aim is to answer the questions is there Hamming distance leakage between the operands,
and is there Hamming distance leakage between the results?

2. pipeline/eor-add (Figure 6b): as pipeline/eor-eor, except with the second eor
instruction replaced by an add instruction.

3. pipeline/eor-lsl (Figure 6c): as pipeline/eor-eor, except with the second eor
instruction replaced by an lsl instruction (i.e., a left-shift). The aim is to answer
the additional question which (potential) pipeline register stores the immediate value
involved?

4. pipeline/eor-ror (Figure 6d): as pipeline/eor-lsl, except with the lsl instruction
replaced by a ror instruction (i.e., a right-rotate).

5. pipeline/eor-ldr (Figure 6e): as pipeline/eor-eor, except with the second eor
instruction replaced by an ldr instruction. The aim is to answer the question do results
produced by the ALU interact with values loaded from memory?

6. pipeline/eor-str (Figure 6f): as pipeline/eor-ldr, except with the ldr instruction
replaced by an str instruction. The aim is to answer the question do results produced
by the ALU interact with values stored into memory?

7. pipeline/nop-eor (Figure 6g): as pipeline/eor-eor, except with an intermediate
eor (i.e., ALU) instruction separating the eor instructions. The aim is to answer the
question does the intermediate nop instruction act as an effective barrier?

5.4.2 Results

Table 6 shows which devices leak the Hamming distance between the results of adjacent
instructions. Interactions between certain pairs of instructions consistently leak the
Hamming distance between instruction results across all devices (e.g., the eor-ldr) pair.
We were surprised not to see more clear evidence of Hamming distance leakage between
consecutive ALU type instructions; particularly the add, lsl and ror instructions. We
offer two possible explanations for this. 1) that the interactions are too weak to detect for
the number of traces we use, 2) that the results of the instructions make poor targets for
Hamming distance analysis anyway. It is also possible that some interactions are purely
combinatorial glitching leakage, which we would expect to be much weaker than sequential
leakage, which involves state elements.

Table 7 shows which instruction operands of the experiments in Figure 6 leak their
Hamming distance. We find generally very consistent behaviour for interactions between
the first and second operand registers of consecutive instructions. As has been reported
in the literature we find that two adjacent instructions will usually leak the Hamming
distance between their respective rs1 and rs2 operands. This was a key finding of [PV17]
and [CGD18], and we have replicated their results across many other CPU cores. This is
is visible in Table 7 as AC and BD interactions.

While some very consistent behaviour is easy to see in Table 7, we note two unexpected
effects. First, that for some cores, there are unexpected Hamming distance interactions
between operands which do not obviously interact. For example, the ARM Cortex-M4 base
devices leak the Hamming distance of rs1 of the eor, and rs2 of the add. We were also

200 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

surprised to consistently see Hamming distance leakage between both register operands of
the eor, and the register operand of the right shift by immediate instruction. This occurred
consistently in the ARM Cortex-M3 and Cortex-M4 devices, and the larger MicroBlaze
cores.

5.4.3 Discussion

We were able to discern, in the case of instructions with a register and immediate operand
(like the load / store word instructions) exactly which operands from the previous instruction
interact with the register operand, and which with the immediate operand. For example,
all of the ARM cores consistently leak the Hamming distance between rs2 of an eor
instruction followed by rs1 of a store word instruction. It is also useful to see that in the
larger MicroBlaze cores, it is actually rs1 of the eor instruction which collides with the
store word instruction. Knowing which operand register of the eor instruction interacts
with the store instruction is essential for MPL modelling.

Comparing Table 6 and Table 7, we can see that generally speaking, Hamming distance
leakage between consecutive instruction operands is much more consistently detectable
than Hamming distance leakage between the results of consecutive instructions. Given
that the result of one instruction will almost always become the operand of another, we
believe that operands are inevitably more effective attack targets. That said, we note that
leakage between the results of consecutive instructions, even when the instructions share
no architectural registers between them, is likely to be an unexpected source of MPL for
some implementations. Even in cores with very short pipelines.

In cores with longer pipelines (MBX1, MBX2) we see consistent MPL between the results
of adjacent instructions. This is expected, as there are likely multiple pipeline stages
between the result being calculated and the write-back of the result to the register file. In
general, we note the very different MPL behaviour across all of the devices (even devices
with the same CPU core) mirrors our results for the memory bus related experiments.
This would suggest that MPL models, even when they only look to model intra-core effects,
cannot be transferable between devices; even if the devices are based on the same CPU
core. Indeed, it raises the possibility that a device with multiple identical CPU cores14,
could find that core 0 leaks differently to core 1, despite being implemented in the same
piece of silicon.

We note the differing results for whether nop acts as a barrier between ALU type
instruction operands. Even two ARM Cortex-M4 based devices (ARMS3 and ARMS4)
behave differently. In the former a nop does not alter the pipeline registers which store
instruction operands, causing Hamming distance leakage. In the later, the nop does act as a
MPL barrier. Borrowing the notions introduced in Section 5.1, we can say that even though
the eor instructions are not program-adjacent, they still interact. This behaviour, while
not exactly expected, is certainly understandable given that the ARMv7-M architecture
only guarantees the behaviour of a nop in terms of memory alignment. Researchers who
use nop as a makeshift MPL barrier should beware that this is not portable. This has
implications for some of the experiments in [SSB+20] (e.g., Listings 1 and 2) where nop is
used to separate instructions in time. We do not believe this had an adverse effect on the
experiments in [SSB+20], as our own results confirm nop is a reasonable leakage barrier
in the ARM Cortex-M0 core. However, this cannot be expected on other, e.g., ARM
Cortex-M4 cores. This lends some evidence to the utility of dedicated leakage barrier
instructions, such as FENL [GMPP20], which guarantee some level of leakage barrier like
behaviour.

Again, it is important to note the differences between different devices (even devices
with the same underlying CPU core). That such basic instruction sequences leak visibly

14For example, some Xilinx devices include two or more identical hardened ARM CPU cores.

Ben Marshall, Dan Page and James Webb 201

1 .text
2 kernel : cmp rE, rE
3 eor rA, rB
4 beq branch
5 .rept 10
6 eor rZ, rZ
7 .endr
8 branch : eor rC, rD

(a) pipeline/branch-pre: two eor instruc-
tions operating on security-critical values, sep-
arated by a conditional branch instruction.

1 .text
2 kernel : cmp rE, rE
3 beq branch
4 eor rA, rB
5 .rept 10
6 eor rZ, rZ
7 .endr
8 branch : eor rC, rD

(b) pipeline/branch-post: two eor instruc-
tions operating on security-critical values; only
the second is executed, as the result of a con-
ditional branch instruction.

1 .text
2 kernel : eor rA, rB
3 b branch
4 .rept 10
5 eor rZ, rZ
6 .endr
7 branch : eor rC, rD

(c) pipeline/jump-pre: two eor instructions
operating on security-critical values, separated
by an unconditional branch (i.e., jump) in-
struction.

1 .text
2 kernel : b branch
3 eor rA, rB
4 .rept 10
5 eor rZ, rZ
6 .endr
7 branch : eor rC, rD

(d) pipeline/jump-post: two eor instruc-
tions operating on security-critical values; only
the second is executed, as the result of an un-
conditional branch (i.e., jump) instruction.

Figure 7: Pseudo-code for micro-benchmarks described in Section 5.4.1, i.e., those related
to the case study on conditional and unconditional changes in control-flow.

on some devices and not on others points to a real challenge for formal and statistical
modelling approaches.

In terms of classifying these sources of MPL, we find that program-adjacent, inter-
instruction, sequential MPL is the dominant source. This is expected, since we specifically
went searching for MPL related to pipeline registers.

5.5 Control-flow instructions
This case study focuses on a relatively complex case for pipelined instruction execution,
namely that of conditional and unconditional changes in control-flow. Note that we use
the terms branch and jump to refer to the conditional and unconditional cases respectively,
mirroring similar terminology used, e.g., in RISC-V and MicroBlaze. The central question
is how does a change in control-flow effect micro-architectural state, such as pipeline
registers, and so, e.g., does a change in control-flow prevent interaction between instructions
before and after it?

5.5.1 Micro-benchmarks

Figure 7 includes pseudo-code for the micro-benchmarks used:
1. pipeline/branch-pre (Figure 7a): two eor instructions, separated in terms of their

execution by a beq instruction (i.e., a conditional branch). The aim is to answer the
questions is there Hamming distance leakage between the operands, and is there Hamming
distance leakage between the results?

202 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

Table 8: A summary of results stemming from the micro-benchmarks in Figure 7, i.e.,
cases which explore the impact a change in control-flow has on leakage. Note that AC, for
example, indicates that the Hamming distance between A and C was leaked; R indicates
that the Hamming distance between results produced by the two eor instructions was
leaked. The Hamming distance between variables A and B and variables C and D was leaked
in all cases, so have been omitted.

Device branch-pre branch-post jump-pre jump-post
ARMN0 R, BD
ARMN1 BD
ARMN2 BD
ARMN3 BD
ARMS0 BD
ARMS1 BD
ARMS2 BD
ARMS3 BD BD BD
ARMS4 BD
ARMS5 BD
MBX0 R, AC, BD R, AC, BD
MBX1 R, AC, BD R, AC, BD
MBX2 AC, BD BC BD
RVPRV AD, BD

2. pipeline/branch-post (Figure 7b): as pipeline/branch-pre, except with the first
eor instruction moved immediately after the beq instruction rather than before it. Note
that if the branch is not taken, said eor instruction should not be executed therefore.

3. pipeline/jump-pre (Figure 7c): as pipeline/branch-pre, except with the beq in-
struction replaced with a b instruction (i.e., an unconditional branch, or jump) and the
associated cmp instruction removed.

4. pipeline/jump-post (Figure 7d): as pipeline/branch-post, except with the beq
instruction replaced with a b instruction (i.e., an unconditional branch, or jump). and
the associated cmp instruction removed.

5.5.2 Results

There are three broad outcomes from analysing these sequences:
1. There is no interaction between the ALU instructions, whether they are separated by a

branch/jump or not.
2. The ALU instructions interact if the branch/jump instruction is absent, but do not inter-

act if it is present. This tells us that any state which the ALU instruction interacts with
is somehow cleared or overwritten by the branch/jump instruction. The branch/jump
can then be thought of as a weak MPL barrier which prevents values manipulated in
one loop iteration bleeding through the pipeline into the next iteration.

3. The ALU instructions always interact, regardless of whether a branch/jump is placed
between them. In this case, extra care must be taken with masking schemes employing
loops, as the “loop branch” instruction cannot be relied upon to stop micro-architectural
state from one loop iteration bleeding into the next.

This approach is similar to the dominating instruction approach taken in [SSB+20] to
identify whether instructions share micro-architectural state.

From the results in Table 8, we can see that while no instructions leak in the branch-
pre case, we get scattered Hamming distance leakage in some cases for the other experi-

Ben Marshall, Dan Page and James Webb 203

ments.
For the MicroBlaze based targets (MBX0, MBX1, MBX2) We see MPL between the

operands and results of XOR instructions following the control-flow change, even when
the first XOR instruction is not executed.

On all of the ARM cores, we find MPL between one set of operands in the jump-pre
case. However, we note that the ARMS3 also leaks the Hamming distance of one set
of operands in the same way, even though ARM has no delay-slot mechanism in the
architecture. We investigate this further in Section 5.6.

5.5.3 Discussion

In the case of the MicroBlaze, we believe the leakage is explained by referring to the
MicroBlaze Architecture and its use of branch delay slots. This is a technique where the
instruction immediately following a branch or jump can be executed as a way of hiding
the latency of re-filling the pipeline after a control-flow change. MicroBlaze has variants
of branch and jump instructions with and without delay slots, and our experiments used
the non-delay-slot variants. We believe that on a micro-architectural level, the delay-slot
instruction is always executed, but its result is only thrown away at the last pipeline stage.
This is clearly the case for the MBX0 and MBX1 cores, which leak operands and results.
The MBX2 does not leak its result, suggesting the delay-slot instruction is squashed before
its result is computed.

For the ARM jump-pre case, we suggest this is caused by the jump instruction
only over-writing a single pipeline register, and leaving the other unmodified from the
instruction preceding the jump. The unmodified value will then collide with whatever the
next corresponding instruction operand is.

We note the lack of attention paid to branch and jump instructions with respect to
MPL behaviours in the literature. We believe this sort of analysis is important because
as we have shown, just because control-flow instructions don’t normally read secret or
sensitive variables, doesn’t mean they can’t cause or allow them to interact. Knowing if a
“loop back” instruction sequence clears pipeline registers can reduce the need to explicitly
clear certain micro-architectural state, or show that it is necessary.

We classify this effect as inter-instruction, sequential MPL between program-non-
adjacent instructions. The non-adjacency of instructions is an important distinction, since
it is not the branch or jump instructions which cause the interaction, rather, they fail to
prevent interactions between other instructions.

5.6 Speculative execution in short pipelines
Despite being associated with larger, out-of-order and super-scalar cores with deep pipelines,
speculative execution still takes place even in very shallow pipelines. In an n stage
scalar pipeline, there are in principle n instructions in flight. Depending on the stages
where control-flow changes occur, several instructions which are never executed from an
architectural point of view, still enter the pipeline and interact with architectural and
micro-architectural state elements. Further, different types of control-flow change can
occur at different points in the pipeline. For example, a conditional branch can only occur
after reading and comparing some architectural state, in a decode or execute pipeline
stage. An unconditional jump however can occur at the decode or fetch stage, since the
destination address can be computed from just the program counter and the instruction.
All of this can occur in a scalar, pipelined CPU which may or may not have a branch
predictor.

These scenarios are all micro-architectural reasons for speculative execution to occur.
There is also an architectural reason: branch delay slots. These are a somewhat out-of-
fashion idea, where the instruction immediately following a control-flow change may also

204 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

1 .text
2 kernel : cmp rG, rG
3 eor rA, rB
4 beq target
5 eor rC, rD
6 eor rE, rF
7 target : .rept 10;
8 eor rZ, rZ
9 .endr

10 bx lr

(a) speculation/branch-fwd:

1 .text
2 kernel :
3 eor rA, rB
4 b target
5 eor rC, rD
6 eor rE, rF
7 target : .rept 10
8 eor rZ, rZ
9 .endr

10 bx lr

(b) speculation/jump-fwd:

1 .text
2 kernel : b branch
3 target : .rept 10
4 eor rZ, rZ
5 .endr
6 bx lr
7 branch : .rept 10
8 eor rZ, rZ
9 .endr

10 cmp rZ, rZ
11 eor rA, rB
12 beq target
13 eor rC, rD
14 eor rE, rF

(c) speculation/branch-bwd:

1 .text
2 kernel : b branch
3 target : .rept 10
4 eor rZ, rZ
5 .endr
6 bx lr
7 branch : .rept 10
8 eor rZ, rZ
9 .endr

10

11 eor rA, rB
12 b target
13 eor rC, rD
14 eor rE, rF

(d) speculation/jump-bwd:

1 .text
2 kernel : mov rY, #0
3 loop: eor rY, rF
4 mov rY, #0
5 add rG, #-1
6 cmp rG, #0
7 bne loop
8 done: eor rA, rB
9 eor rC, rD

10 eor rE, rF
11 bx lr

(e) speculation/loop-0:

Figure 8: Pseudo-code for micro-benchmarks described in Section 5.6.1, i.e., those related
to the case study on speculative execution.

Ben Marshall, Dan Page and James Webb 205

Table 9: A summary of results stemming from the micro-benchmarks in Figure 8, i.e.,
cases which explore the impact speculative execution has on leakage.

Device jump-fwd jump-bwd branch-fwd branch-bwd loop-0
ARMN0

ARMN1 AF
ARMN2 BD BD BD AC, AD, AF, DF
ARMN3

ARMS0

ARMS1

ARMS2 AC, AD AD AE, AF
ARMS3 CD CD CD AF, BF
ARMS4 AD, AF, BF
ARMS5

MBX0 BC, CD BC, CD, DF BC, CD, DF BC, CD AB, BF
MBX1 CD, DE, DF CD, DE, DF CD, DE, DF CD, DE, DF AB, AC, BF, DF
MBX2 BC, DE, DF BC, DE, DF AC, BC, DE, DF BC, DE, DF AC, BF, DF
RVPRV

(a) Instances of Hamming distance leakage: AC, for example, indicates that the Hamming distance
between A and C was leaked, noting that only cases that involve speculatively executed instructions
are shown.

Device jump-fwd jump-bwd branch-fwd branch-bwd loop-0
ARMN0

ARMN1

ARMN2 C, D C, D C, D C, D
ARMN3

ARMS0

ARMS1 C, D C, D C, D A, C, D
ARMS2 C C C C A, C, D, E
ARMS3 C, D C, D C, D A, B
ARMS4 D C, D A
ARMS5

MBX0 C, D C, D C, D A, B, D, E
MBX1 C, D C, D C, D C, D A, B
MBX2 C, D, E C, D, E C, D, E C, D
RVPRV

(b) Instances of Hamming weight leakage: A, for example, indicates that the Hamming weight of
A was leaked, noting that only cases that involve speculatively executed instructions are shown.

206 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

be executed, even when the control-flow change is taken. This was a way of mitigating
some of the performance impact of control-flow changes in pipelined CPUs, since one
instruction may be executed for free while the new instruction stream is fetched. The
MIPS architecture made use of branch delay slots, as does the MicroBlaze architecture
analysed in this work. They are absent from most new and modern architectures now, as
they significantly complicate out-of-order and super-scalar core design.

Here, we present (to our knowledge) the first study of how speculative (and from a
software developers point of view, unexecuted) instructions can be identified from power
traces. We show how to very simply identify the depth of any speculative behaviour, which
guides software developers as to how much this issue might affect a side-channel secure
implementation. This is particularly important given the results in Section 5.5, which
shows that control-flow changes do not always act as a barrier between ALU instructions.

5.6.1 Micro-benchmarks

Figure 8 includes pseudo-code for the micro-benchmarks used. Although not obvious, each
one uses the same structure in which 1 initial eor instruction separated from n other
eor instructions by a branch; the branch is always taken, with the resulting change of
control-flow meaning the latter eor instructions are not executed from an architectural
perspective. The underlying question is does the initial eor instruction before the branch
interact with the unexecuted latter eor instructions after the branch, i.e., are the latter eor
instructions speculatively executed, and therefore does speculatively execution cause MPL
in a manner similar to, but more subtle than conventional execution? More specifically:
• speculation/branch-fwd (Figure 8a): an eor instruction (line 3) separated from two

other eor instructions (lines 5 and 6) by a beq instruction (i.e., a conditional branch):
this causes a forward (versus backward) change in control-flow, i.e., using a target which
is at a higher (versus lower) address.

• speculation/jump-fwd (Figure 8b): as branch-fwd, except with the beq instruction
replaced with a b instruction (i.e., an unconditional branch, or jump) and the associated
cmp instruction removed.

• speculation/branch-bwd (Figure 8c): an eor instruction (line 11) separated from
two other eor instructions (lines 13 and 14) by a beq instruction (i.e., a conditional
branch): this causes a backward (versus forward) change in control-flow, i.e., using a
target which is at a lower (versus higher) address.

• speculation/jump-bwd (Figure 8d): as branch-bwd, except with the beq instruction
replaced with a b instruction (i.e., an unconditional branch, or jump) and the associated
cmp instruction removed.

• speculation/loop-0 (Figure 8e): a for loop structure in which an eor instruction
(line 3: at the beginning of the loop body) separated from three other eor instructions
(lines 8, 9, and 10: after the end of the loop terminates) by a beq instruction (i.e., a
conditional branch): this causes a backward (versus forward) change in control-flow, i.e.,
using a target which is at a lower (versus higher) address.

Note that we carefully distinguish between conditional and unconditional, and forward
and backward changes in control-flow. This allows us to deal with different static branch
prediction strategies, e.g., predict taken for a conditional backward branch (which is
indicative of a loop).

5.6.2 Results

Table 9 shows the results of our experiments. Each row represents a single device and shows
which variables leaked, and how, for each speculation experiment listed in Figure 8. We
identify this by using correlation analysis to search for the Hamming weight of operands,

Ben Marshall, Dan Page and James Webb 207

and the Hamming distance between consecutively accessed operands, and consecutive
instruction results.

In terms of the Hamming distance results (Table 9a), there are a number of devices
which exhibit this effect. We believe that the MicroBlaze targets (MBX0, MBX1 and MBX2)
exhibit speculative leakage mainly because of the architectural branch delay slot. This is
explained in the MicroBlaze Processor Reference Manual [Xil, Page 44]:

When executing a taken branch with delay slot, only the fetch pipeline stage in
MicroBlaze is flushed. The instruction in the decode stage (branch delay slot)
is allowed to complete. This technique effectively reduces the branch penalty
from two clock cycles to one.

Looking at this part of the manual, we see clearly that this behaviour is built into the
micro-architecture. It explains why for the MicroBlaze targets, we clearly see Hamming
weight leakage in the XOR instruction operands immediately following all taken control-
flow changes and Hamming distance leakage between the operands, i.e., the result of the
XOR.

We also see this behaviour in the ARMN2, ARMS2, ARMS3, and ARMS4 devices. Here,
we consistently see Hamming weight leakage from the operands of the instruction following
a control-flow change, and the Hamming weight of the instruction result. This is a purely
micro-architectural effect, since the ARM architecture has no notion of a branch delay slot.
This result was not expected, given the shallow pipeline of the ARM cores. We suggest
two possible reasons for seeing these effects in some cores and not others. First, there may
be implementer visible design choices around configuring the core for high performance, or
low power. Some of these choices many affect when and if different registers are cleared,
or how multiplexer trees are implemented, all of which will affect the MPL. Second, it is
possible that EDA tooling plays a part, and that these effects are simply unintentional
side effects of synthesis and place and route tools optimising for various metrics other than
side-channel resilience or energy efficiency. For example EDA tooling quirks might explain
Hamming distance leakage in the ARMN1 device for the jump-bwd experiment, since no
other ARM Cortex-M0 based core leaks this way.

5.6.3 Discussion

Ultimately, one may view the architectural and micro-architectural speculation shown
here as essentially caused by the same thing: pipelined instruction execution. The key
difference for a software developer being that it is only documented (however partially) for
the MicroBlaze architecture. In the ARM cores, that MPL effects are visible for unexecuted
instructions surprised us greatly, and to our knowledge, this is the first study to detail the
effect.

For first-order masking schemes, clearly these effects represent significant dangers
that software developers and MPL model builders need to be aware of. For higher order
schemes, they may naturally be more difficult to exploit owing to the small number of
share re-combinations they result in. That said, there is clearly potential for unexpected
combinations of all of the effects detailed in this and other works. In any case, they must
still be accurately modelled if the absence of leakage must be demonstrated or proved. We
believe simply knowing these effects exist is useful, as they are often unexpected. Who
would guess that unexecuted instructions after the end of a loop body could interact with
the first instruction of the next loop iteration?

We belive this effect significantly complicates how formal and statistical leakage models
for countermeasure development are built. Specifically, we are unaware of any models or
tools which explictly handle partially executed instructions (i.e., those which appear in the
shadow of a control-flow change). Failing to model these effects will lead to false negatives
in terms of leakage detection by the model. This is of most concern to formal models,

208 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

which must explicitly capture such interactions. Statistical models can capture these effects
implicitly, but still require that these interactions are captured during the profiling step of
the model building process. Our results show that the exact MPL behaviour of partially
executed instructions varies substantially between different devices, meaning that accurate
models must necessarily be device specific.

In terms of classification, we see these effects as program-non-adjacent, inter-instruction,
sequential MPL. To help with further classification, we suggest using inter or intra-block
(as in, basic block) as an additional distinguisher. Previous effects have all been intra-block,
whereas this effect shows how leakage can occur across basic blocks. We can also tag this
as speculative MPL, as opposed to non-speculative MPL, which is the case for all prior
experiments.

6 Discussion
This section frames the findings in Section 5 at a higher level, and in a more directly
usable form. We aim to give readers an intuition for MPL in general; we then discuss
the implications of our work for two specific fields: 1) the design, implementation, and
evaluation of masking schemes, and 2) construction of accurate fine-grained power leakage
models.

6.1 A mental model of micro-architectural power leakage
We use a contrived CPU and memory sub-system Figure 9 block diagram, and describe
the journey of instructions through the pipeline. At each stage, we note how instructions
could be implemented in a reasonable micro-architecture, and link to examples of these
options in our case study results.

Intuitively, we can investigate if the micro-architecture will cause share combinations by
looking at convergence and divergence points in the data-flow of the system. Convergence
points are where data from multiple places meet, and the micro-architecture selects one of
the data items to progress. Divergence points are the opposite. Each can be further classified
using the scheme developed in Section 3.4 as ISA, sequential or glitching-combinatorial.

We discuss types of MPL which can occur, some of which we have observed in this
work, some of which are described in other works, and some of which are hypothetical.
Our intention is to provide a starting point for engineers and researchers to identify and
isolate causes of MPL in their own systems.

6.1.1 ALU-type instructions

An XOR (or similar) instruction might have two operand registers, or an operand register
and an immediate. Decoding the immediate or register variant may cause glitches in the
register address decode logic, causing unexpected toggling between registers which are not
explicitly addressed by the instruction. This is described in [GHP+20] and can be mitigated
by structuring register file data ports as AND-OR trees, rather than multiplexer trees.
The same effect can occur in the forwarding network, where results from uncommitted
instructions are routed back to previous stages to prevent stalls. Hence the decode stage is
a convergence point for instruction operands and results, which may be in-flight or at rest
in the GPRs. The most common kind of MPL observed here is the sequential MPL, where
instruction operands are loaded into pipeline registers P0 and P1, as seen in Section 5.4.
Knowing which operands are loaded to which pipeline register for each instruction is
essential for leakage modelling. Convergences can also be glitching-combinatorial, due
to multiplexer switching, though in our experience, this is much harder to detect. One
concrete example of this is the results in Section 5.1. Due to the nature of glitches, their
occurrence can even be data dependant.

Ben Marshall, Dan Page and James Webb 209

M0PC

Instruction memoryData memory

P0 P1

P2

P3

Forwarding
network

Instruction
decode

GPRs

LSU ALU

Select

+4

M2M1

M3

fetch
data

fetch
addr

store
data

load
addr

store
addr

load
data

Figure 9: A contrived 5-stage, pipelined processor micro-architecture with architectural
(blue), micro-architectural (red), and memory sub-system (yellow) components annotated
as appropriate. Note that, we deliberately 1) exclude some components related to the
control path, because they are usually irrelevant with respect to MPL, and 2) include
some components related to the memory sub-system, despite normally being outside the
micro-architectural remit, because they are highly relevant with respect to MPL. LSU:
Load/Store Unit, ALU: Arithmetic Logic Unit.

In the execute stage, we can see combinatorial and glitching-combinatorial leakage
depending on how the ALU is structured. For example, if different functions in the ALU
are not gated, we might see Hamming Weight leakage for the result of an XOR, the result
of and ADD, and the result of a shift. Barrel shifters can also undermine share-slicing
techniques, as described in [GMPO19]. We may even see Hamming Distance leakage
between these results, as they converge through a multiplexer tree to the P2 register.
Loading of the P2 pipeline register will also cause sequential Hamming Distance leakage
between the results of the current instruction, and the previous instruction which loaded
P2. Note this is not always the previous instruction in program order.

Registers P2 and P3 force results of adjacent instructions to interact before being
written to a GPR. This implies that adjacent instructions which share no architectural
registers as operands or destinations will still interact from a leakage perspective. This is

210 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

well documented in Section 5.4, [SSB+20, ZBPF18, BP18, CGD18]. In most CPUs the
results of subsequent ALU instructions do interact, for ARM Cortex-M0+ and PicoRV32
based systems, which have only 2 and 0 pipeline stages respectively, there is no such MPL.

Between P2 and P3, there is a convergence point for ALU instruction results and data
loaded from memory. We observed this interaction between loaded data and ALU results
in the 5 and 8 stage Xilinx MicroBlaze cores in Section 5.4, but not in the shorter pipelined
cores. Finally, there is a divergence point where the result is written to the GPRs, where
there will be Hamming Distance leakage between the old and new GPR values. This is
the only form of architectural leakage which occurs.

6.1.2 Control-flow instructions

When entering the pipeline, jump instructions can change the program counter immediately,
as they aren’t dependant on any architectural state other than the program counter. Hence
in many cases, it need not alter any of the data-carrying pipeline registers P0, P1, P2, and
P3. We found in Section 5.5 that for all of the ARM cores, a jump instruction placed
between two XOR instructions does not prevent Hamming distance leakage between some
of the operands of the XOR instructions. This suggests that one of the pipeline registers
is updated (likely with the branch target), but the other is left unchanged as an energy
efficiency optimisation. We also found this was the case in the MBX2 and RVPRV based
systems.

A programmer must consider if they rely on control-flow changes to act as implicit
barriers between instructions to prevent share combinations, and whether that assumption
holds for their system. This effect is also apparent in the loop speculation experiment in
Section 5.6.

Branch instructions, being conditional on architectural state, tend to act as barriers
between ALU-type instructions in our experiments in Section 5.5. In our hypothetical
system, this would mean loading P0 and P1 with the operands to the comparison. Note
this does not necessarily change the values of P2 and P3, meaning that we could potentially
see Hamming distance leakage between the results of ALU instructions which are separated
by a conditional branch. This is observed the case of the MicroBlaze based MBx0 and
MBx1 systems.

On ARM systems, conditional branches are evaluated over two instructions: one does
the comparison (cmp) and sets a condition flag, another tests a condition flag and performs
the control flow change. Our experiments in Section 5.5 deliberately placed an ALU
instruction between the cmp and branch instructions. It would be reasonable to reorder the
cmp instruction to act as a barrier for the operands of the ALU instructions if the branch
does not already provide this. However, we did not a have access to an ARM core with a
longer pipeline (e.g., Cortex-M7), so we couldn’t check if, as with the MicroBlaze cores,
we also get Hamming distance leakage from pipeline registers which only store instruction
results.

For branch and jump instructions, the actual control flow change may occur further
down the pipeline. In our hypothetical system, branches feed the target address to the
PC from the execute stage. This allows for subsequent instructions in the decode stage to
speculatively read architectural state, either purely combinatorially, or sequentially into the
operand registers P0 and P1. Indeed, we observed exactly this behaviour in Section 5.6,
where the Hamming weight of operands were often detectable in unexecuted instructions.
The potential for this is noted, but not investigated from a leakage perspective, in [CGD18].
In some cases, we even observed the Hamming weight of the instruction result, even in
ARM cores with a short pipeline.

A different approach would be to prevent updates to P0 and P1 whenever a branch
or jump is occurring in the execute stage. This is a recommendation supported by our
results, since it results in fewer register updates (thus saving energy) and make reasoning

Ben Marshall, Dan Page and James Webb 211

about MPL much easier.

6.1.3 Load and store instructions

As in Section 5.1 and other works, memory accesses can have a large and counter-intuitive
effect on MPL. Here, we focus on explanations for differences in behaviour shown in
Table 2.

A load instruction with a base address operand register, an immediate offset and
destination register enters the pipeline in the decode stage. It is subject to the same
sources of MPL described for the ALU type instructions. Note that unless the address
(either base or offset) is dependant on a secret value, a load instruction is unlikely to
explicitly cause leakage in the decode stage of our hypothetical system.

In the execute stage, the load address is sent to the memory, which on the next cycle
will load the M2 register with the requested data. The relevant bytes of M2 are then
selected (load word/half/byte) and converge with ALU results in the P3 register, before
being written back to the GPRs. Memory load data could have been put into P2, and
observations in Table 2 show that this is sometimes the case. Note that the same CPU
core, implemented by the same vendor in different devices, can exhibit different behaviours
here. We believe that some cores have a separate load-data register as part of the memory
bus for performance or timing reasons, while some merge this with a pipeline register to
reduce area. This design choice has implications for leakage behaviour. If the M2 and P2
are separate, then loads which are potentially many instructions apart can interact. If
they are represented by the same physical register, then ALU type instructions can act as
a barrier between load data instructions.

As with ALU instructions, the existence of P3 in our hypothetical system can mean
that load instructions which don’t have the same architectural destination register can
still leak the Hamming Distance between their loaded values, and the result of an adjacent
ALU instruction. This is because the two streams of data converge before reaching the
architectural register file. We see this in many devices even with short pipelines, in Table 6.
For short pipelines, where P3 would not exist, this suggests that loaded data is actually
routed to P2 in our hypothetical system.

The bytes select block, between M2 and P3 is the reason we see the kind of leakage
patterns shown in Figure 5. Here, 1, 2 or 4 contiguous bytes of data are selected from the
loaded 4-byte memory word. This multiplexing can cause potentially all of the bytes to leak
their Hamming distance. This sort of MPL is expected in systems using a word-orientated
memory interconnect, such as AHB-Lite or AXI-Lite. This also explains the effect noted
in past works, where requesting a byte from memory can actually load the entire word
which contains the byte, leading to unexpected MPL. Our results in table Table 3 show
that this effect is common across most of the devices studies here.

For store instructions, the potential for MPL exists in the decode stage, as it must
read an extra architectural register as the data to be stored. Knowing which pipeline
register (P0 or P1 in our system) is overwritten with the data-to-be-stored, rather than the
address, is important to avoid share collisions or the need to add barrier instructions which
reduce performance. This need for barrier instructions to flush shared state is detailed
in [SSB+20]. Our results in Table 2 repeat similar experiments for a range of cores,
showing how diverse the actual behaviour of cores can be in terms of memory hierarchy. A
programmer who implemented all of the [SSB+20] countermeasures on a core which does
not need them would have an unnecessarily inefficient program.

In the execute stage of our hypothetical system, the data to be stored and the address
must progress to the final stage of the pipeline before being sent to memory. Any earlier
than this would cause incorrect program behaviour, as the store could be seen to have
occurred before the instruction retires. In our design, the store data travels down a separate
pipeline (a dedicated store buffer, M1 and M3) rather than the normal ALU pipeline. This

212 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

separation or sharing of load, store and ALU data pipelines is a design trade-off between
performance and area, and we believe explains why in Table 2, adjacently loaded and
stored data interact in some cases but not others.

6.2 Implications for evaluation of masking schemes
Differences in MPL behaviour between devices have a considerable impact on the complexity,
performance and code size of leakage resistant code. For example, the ARMS2 and ARMS4

devices do not cause collisions between consecutively loaded and stored values (see Table 2),
while other similar devices do. Adding “flush” instructions for more leaky devices adds a
significant performance and energy efficiency penalty, which is unnecessary on the non-
leaking devices. Likewise, code which is secure on the less leaky devices may not be secure
on others.

We did not survey the literature to discover which devices were used to derive overhead
claims for different masking schemes and implementations, but suspect our results imply
considerable margin for variance across devices. If such devices are chosen as benchmarking
platforms for standardisation processes, it may be impossible to get a clear picture of
the overhead required to implement certain masking schemes due to the underlying
micro-architecture of the device.

As a single example, in [BDM+20], the authors apply their tool to several NIST
Lightweight Cryptography candidates, using an ARMCortex-M4 based Nucleo STM32F401RE
device. Our experiments clearly show that one ARM Cortex-M4 does not leak like another,
posing the question of how portable the code generated by TORNADO or similar tools is.
This is especially important, given its reliance on GCC to perform register assignment and
low level instruction ordering, which may leave it open to some of the effects described in
this and other works. Indeed, [SSG17] shows how generated bit-sliced code can fail to be
secure on real-world targets despite formal guarantees as design time.

We suggest evaluations of software masked algorithms be evaluated on at least two
devices which have different MPL characteristics. This will enable researchers to separate
the overhead from a masking scheme, and the overhead from a particular micro-architecture.
This has particular relevance for ongoing standardisation processes, such as the NIST
Lightweight Cryptography project. We hope this work can inform the choice of devices.

Our results suggest tools which generate side-channel secure code will benefit con-
siderably from being more micro-architecture-aware. Indeed, we believe they must be
micro-architecture-aware in many cases in order to avoid generating leaking code. However,
knowing which mitigations they must apply, or when they can omit them because a
particular micro-architectural effect is not present in the target device, will likely lead to
considerable performance and security improvements. Adding more shares to a masking
scheme may remove the risk of the interactions seen in this and prior works, but this is
unsatisfactory where performance and code size are an issue. We still want to be able to
use the minimal number of shares possible for a given security requirement.

Finally, while the portability of side-channel resilient code has always been dubious,
our results emphasise just how challenging efficient and portable side-channel resilient
code is to build.

6.3 Implications for power leakage modelling
Capturing types of leakage. Using our classification of MPL variants in Section 3.4 and
based on past work, we know both formal and statistical models cope well with capturing
architectural leakage. Clearly architectural information alone can often be enough for
developing an attack, and micro-architectural modelling or knowledge may add information
to increase the effectiveness or efficiency of an attack.

However, experiments in past works which we replicate and extend here, show that

Ben Marshall, Dan Page and James Webb 213

only considering architectural sources of leakage is woefully insufficient for developing
leakage models with the aim of showing the absence of leakage. That is, leakage models
which only utilise architectural information about devices cannot capture enough detail
for effective countermeasure development or real world proofs of security.

Considering sequential MPL modelling, we believe there’s no inherent difficulty in
capturing this extra information for formal or statistical approaches, but the relative merits
of each approach quickly become apparent. Formal models must have perfect information
about the target device micro-architecture. Based on Section 5.6, we also know a trace of
retired instructions is not enough, one must also model the pipeline of the target device
explicitly. This is considerably more effort to build for a formal model than a statistical
model, since a statistical model like ELMO will capture all of this information as a side
effect of the initial device profiling with comparatively little white-box information about
the micro-architecture. Formal models however must have access to this information,
requiring either an NDA with the device manufacturer, or extensive reverse engineering of
the kind we describe in this work. [BGG+20] is a good example of this, where the quality
of the security guarantee is heavily dependant on the user-supplied micro-architectural
model of the target device. We believe the kinds of leakage-benchmarks developed in this
work can play an important role in validating and building formal models of the kind
described in [BGG+20].

Once we move to combinatorial and glitching combinatorial leakage however, we see
formal modelling approaches to software masking begin to struggle, since the number of
variables and possible interactions explodes, even in the presence of perfect information
about the system.

Separating methodology, models, and devices. Given the wildly different leakage be-
haviours even for devices with the same CPU core, we believe the community must focus
on building replicable methodologies for MPL modelling, rather than very accurate leakage
models for particular devices.

For formal models in particular, a machine readable description of micro-architectural
state elements, and when they are updated by instructions, will be an essential part of
their methods. This allows for manufacturers to re-use the model building tool without
sharing sensitive details about their device. In this respect, we believe the Domain Specific
Language (DSL) based approach to describing device micro-architectures in [BGG+20] is
very promising. Indeed, the authors even demonstrate the necessity of their tool being
micro-architecture aware by showing how a secure implementation in one ARM Cortex-M0+
based device is not secure in a ARM Cortex-M4 based device, which is well supported by
our empirical results.

Temporal locality. In Section 5.1, Section 5.2 and Section 5.3, we saw how loads and
stores in many devices are the only instructions to interact with certain micro-architectural
state elements. As discussed in [SSB+20], this is a problem for statistical models which
only consider N adjacent instructions in a sliding window as contributing to leakage at
any one moment. If a load instruction outside the current window altered a piece of state,
then this will be missed if there are greater than N instructions before the next load.

One solution might be hybrid models. Specifically, ALU style instructions (including
their interactions with memory accesses, as documented in Section 5.4) could be modelled
statistically. This allows the most complex part of the target to be treated as a black-box,
and inevitably captures combinatorial and glitching leakage inherently with the statistical
profiling step.

For temporally distant interactions, which affect pieces of micro-architectural state which
no other instructions interact with (e.g., loads and stores) formal modelling (particularly
as described in [BGG+20]) is a good approach. One would need only to model ISA state,

214 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

architectural data values and a small subset of micro-architectural state elements - perhaps
only two additional registers according to our results. The update rules for these pieces
of micro-architectural state are easier to reverse engineer, as only a small number (of the
order of 6 or 12, depending on the addressing modes supported by the ISA) of instructions
alter them.

Benchmarking for model quality. Anyone building, buying or using a leakage model must
verify its accuracy, which historically has been hard to do outside the results of a paper.
We believe the set of leakage micro-benchmarks in this paper provide an important way for
developers to gain confidence a model which they did not personally develop. By isolating
critical corner case behaviours into individual experiments, we can realise something similar
to unit testing for leakage models. By publishing all of our micro-benchmarks and the
analysis flow, we hope they can be used to augment the development of new models.

We recognise it may always be possible to identify pathological cases of MPL which
are not identified by leakage models, and these tools should focus on cases which make
them the most useful to software engineers.

7 Conclusion
Summary. We have presented and used MIRACLE to explore MPL stemming from 32-bit
micro-controllers spanning a range of different architectures (or ISAs), micro-architectures,
and vendors. Although we expect the infrastructure presented in Section 4 to be more
generally useful in the long term, the case studies in Section 5 already provide evidence
that supports some specific conclusions:
1. Some assumptions made, e.g., to support a proof of security for a given countermeasure

design or implementation, can be invalid:

• The assumption that only computation leaks can be invalid. For example, Section 5.5
demonstrates that even instructions which are not retired, and thus not executed
from an architectural perspective, can cause MPL as a result of speculation: the
attack surface enabled by transient execution, which has been so well explored from
the perspective of discrete side-channels (see, e.g., [CBS+19]), also extends analogue
side-channels.

• The assumption that instructions leak independently can be invalid. For example,
Section 5.4 replicates known leakage effects stemming from adjacent instructions;
Section 5.1 extends this, proposing some more formal notions of adjacency, and
demonstrates that even architecturally independent instructions can interact under
some circumstances.

2. Given the above, claims regarding the portability of security properties between different
devices can be invalid. For example, Section 5.4 demonstrates differences in efficacy of ad
hoc leakage barriers based on nop instructions; this was also noted in [GMPP20, Section
4.1] and [CGD18]. A corollary of this fact is that it is insufficient to make a security
claim based simply on an architecture (e.g., “ARMv7-M”) or even a core (e.g., “ARM
Cortex-M3”): throughout Section 5, we have demonstrated that it one must quote and
evaluate a given instruction sequence on a specific device (e.g., “STM32F100RBT6B”).
This fact is reinforced by Arora et al. [ABPP21], who conclude that MPL can even differ
between instances of the same device.
In our opinion, there are (at least) two resulting implications: 1) authors should
adopt this approach in writing, alongside publication of associated artefacts to support
reproducibility, and 2) care must be taken when selecting standard evaluation platforms,
e.g., to support standardisation.

Ben Marshall, Dan Page and James Webb 215

3. Protecting IP is clearly imperative in commercial contexts, and, as a result, many
proprietary micro-architectures lack definitive, public documentation. MIRACLE is
specifically design to cater for this by employing a grey- versus white-box approach.
However, access to such documentation clearly allows more precise analysis with respect
to MPL; taken to an extreme where the HDL is available, approaches such as that of
Gigerl [GHP+20] become viable.
In our opinion, this trade-off motivates a shift in attitude. If vendors of security-related IP
maximise access to pertinent details of the micro-architectural design while maintaining
appropriate level of IP protection, this will give a higher level of assurance with respect
to security; modulo a limit on precision, MIRACLE demonstrates such details can often
be reverse engineered anyway. This fact is reinforced by Gao et al. [GOP21] who perform
such reverse engineering for an ARM Cortex-M3.

Future work. We believe a more formal and quantitative way of reasoning about the
types of leakage described in Section 3, and how they contribute to leakage models would
be of clear benefit. This includes insights into when certain kinds of leakage may be
safely ignored. We also believe investigation into building hybrid device leakage models,
as described in Section 6, is a pragmatic way to get the best of both worlds from different
modelling approaches. Finally, we have only investigated micro-architecture effects in
terms of documenting their existence: further research into effective countermeasures (as
described in [SSB+20]) and exploitation is needed.

Acknowledgements
We extend our thanks to Si Gao and Elisabeth Oswald for their invaluable insight, feedback,
questions, and encouragement.

This work has been supported in part by EPSRC via grant EP/R012288/1, under the
RISE (http://www.ukrise.org) programme.

References
[AARR02] D. Agrawal, B. Archambeault, J.R. Rao, and P. Rohatgi. The EM side-

channel(s). In Cryptographic Hardware and Embedded Systems (CHES),
LNCS 2523, pages 29–45. Springer-Verlag, 2002. https://doi.org/10.
1007/3-540-36400-5_4.

[ABB64] G.M. Amdahl, G.A. Blaauw, and F.P. Brooks. Architecture of the IBM
System/360. IBM Journal of Research and Development, 8:87–101, 1964.
https://doi.org/10.1147/rd.82.0087.

[ABPP21] V. Arora, I. Buhan, G. Perin, and S. Picek. A tale of two boards: On the
influence of microarchitecture on side-channel leakage. Cryptology ePrint
Archive, Report 2021/905, 2021. https://eprint.iacr.org/2021/905.

[AR19] A. Abel and J. Reineke. nanoBench: A low-overhead tool for running
microbenchmarks on x86 systems. arXiv:1911.03282, 2019. https://arxiv.
org/abs/1911.03282.

[ARMa] ARM. Data-sheet. https://developer.arm.com/ip-products/
processors/cortex-m/cortex-m0-plus.

[ARMb] ARM. Data-sheet. https://developer.arm.com/ip-products/
processors/cortex-m/cortex-m0.

http://www.ukrise.org
https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1007/3-540-36400-5_4
https://doi.org/10.1147/rd.82.0087
https://eprint.iacr.org/2021/905
https://arxiv.org/abs/1911.03282
https://arxiv.org/abs/1911.03282
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0-plus
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0-plus
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0

216 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

[ARMc] ARM. Data-sheet. https://developer.arm.com/ip-products/
processors/cortex-m/cortex-m3.

[ARMd] ARM. Data-sheet. https://developer.arm.com/ip-products/
processors/cortex-m/cortex-m4.

[ARMe] ARM. Data-sheet. https://static.docs.arm.com/ihi0033/bb/
IHI0033B_B_amba_5_ahb_protocol_spec.pdf.

[ARM18] ARM. ARMv7-M Architecture Reference Manual, DDI0403E.d edition, 2018.
https://developer.arm.com/documentation/ddi0403.

[BBC+19] G. Barthe, S. Belaïd, G. Cassiers, P.-A. Fouque, B. Grégoire, and F.-X.
Standaert. maskVerif: Automated verification of higher-order masking in
presence of physical defaults. In European Symposium on Research in Com-
puter Security (ESORICS), LNCS 11735, pages 300–318. Springer-Verlag,
2019. https://doi.org/10.1007/978-3-030-29959-0_15.

[BBYS21] I. Buhan, L. Batina, Y. Yarom, and P. Schaumont. SoK: Design tools for
side-channel-aware. 2021. https://arxiv.org/pdf/2104.08593.

[BCO04] E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a
leakage model. In Cryptographic Hardware and Embedded Systems (CHES),
LNCS 3156, pages 16–29. Springer-Verlag, 2004. https://doi.org/10.
1007/978-3-540-28632-5_2.

[BDM+20] S. Belaïd, P.-É. Dagand, D. Mercadier, M. Rivain, and R. Winters-
dorff. Tornado: Automatic generation of probing-secure masked bit-
sliced implementations. In Advances in Cryptology (EUROCRYPT), LNCS
12107, pages 311–341. Springer-Verlag, 2020. https://doi.org/10.1007/
978-3-030-45727-3_11.

[BGG+14] J. Balasch, B. Gierlichs, V. Grosso, O. Reparaz, and F.-X. Standaert. On the
cost of lazy engineering for masked software implementations. In Smart Card
Research and Advanced Applications (CARDIS), LNCS 8968, pages 64–81.
Springer-Verlag, 2014. https://doi.org/10.1007/978-3-319-16763-3_5.

[BGG+20] G. Barthe, M. Gourjon, B. Grégoire, M. Orlt, C. Paglialonga, and L. Porth.
Masking in fine-grained leakage models: Construction, implementation and
verification. IACR Transactions on Cryptographic Hardware and Embedded
Systems (TCHES), 2021(2):189–228, 2020. https://doi.org/10.46586/
tches.v2021.i2.189-228.

[BGI+18] R. Bloem, H. Groß, R. Iusupov, B. Könighofer, S. Mangard, and J. Win-
ter. Formal verification of masked hardware implementations in the
presence of glitches. In Advances in Cryptology (EUROCRYPT), LNCS
10821, pages 321–353. Springer-Verlag, 2018. https://doi.org/10.1007/
978-3-319-78375-8_11.

[BGR18] S. Belaïd, D. Goudarzi, and M. Rivain. Tight private circuits: Achiev-
ing probing security with the least refreshing. In Advances in Cryptol-
ogy (ASIACRYPT), LNCS 11272, pages 343–372. Springer-Verlag, 2018.
https://doi.org/10.1007/978-3-030-03329-3_12.

[BMT16] W. Burleson, O. Mutlu, and M. Tiwari. Who is the major threat to to-
morrow’s security? You, the hardware designer. In Design Automation
Conference (DAC), pages 145:1–145:5, 2016. https://doi.org/10.1145/
2897937.2905022.

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m3
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m3
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4
https://static.docs.arm.com/ihi0033/bb/IHI0033B_B_amba_5_ahb_protocol_spec.pdf
https://static.docs.arm.com/ihi0033/bb/IHI0033B_B_amba_5_ahb_protocol_spec.pdf
https://developer.arm.com/documentation/ddi0403
https://doi.org/10.1007/978-3-030-29959-0_15
https://arxiv.org/pdf/2104.08593
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-030-45727-3_11
https://doi.org/10.1007/978-3-030-45727-3_11
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.46586/tches.v2021.i2.189-228
https://doi.org/10.46586/tches.v2021.i2.189-228
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-030-03329-3_12
https://doi.org/10.1145/2897937.2905022
https://doi.org/10.1145/2897937.2905022

Ben Marshall, Dan Page and James Webb 217

[BP18] A. Barenghi and G. Pelosi. Side-channel security of superscalar CPUs:
evaluating the impact of micro-architectural features. In Design Automation
Conference (DAC), pages 120:1–120:6, 2018. https://doi.org/10.1109/
DAC.2018.8465784.

[CBG+17] T. De Cnudde, B. Bilgin, B. Gierlichs, V. Nikov, S. Nikova, and V. Rij-
men. Does coupling affect the security of masked implementations? In
Constructive Side-Channel Analysis and Secure Design (COSADE), LNCS
10348, pages 1–18. Springer-Verlag, 2017. https://doi.org/10.1007/
978-3-319-64647-3_1.

[CBS+19] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss. A systematic evaluation of
transient execution attacks and defenses. In USENIX Security Symposium,
pages 249–266, 2019.

[CEM18] T. De Cnudde, M. Ender, and A. Moradi. Hardware masking, revis-
ited. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems (TCHES), 2018(2):123–148, 2018. https://doi.org/10.13154/tches.
v2018.i2.123-148.

[CGD18] Y. Le Corre, J. Großschädl, and D. Dinu. Micro-architectural power simu-
lator for leakage assessment of cryptographic software on ARM Cortex-
M3 processors. In Constructive Side-Channel Analysis and Secure De-
sign (COSADE), LNCS 10815, pages 82–98. Springer-Verlag, 2018. https:
//doi.org/10.1007/978-3-319-89641-0_5.

[CGMA+15] C. Cernazanu-Glavan, M. Marcu, A. Amaricai, S. Fedeac, M. Ghenea,
Z. Wang, A. Chattopadhyay, J. Weinstock, and R. Leupers. Direct FPGA-
based power profiling for a RISC processor. In IEEE International Instrumen-
tation and Measurement Technology Conference (I2MTC), pages 1578–1583,
2015. https://doi.org/10.1109/I2MTC.2015.7151514.

[DAK19] W. Diehl, A. Abdulgadir, and J.-P. Kaps. Vulnerability analysis of a soft
core processor through fine-grain power profiling. Cryptology ePrint Archive,
Report 2019/742, 2019. https://eprint.iacr.org/2019/742.pdf.

[GHP+20] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, and R. Bloem. Coco: Co-design
and co-verification of masked software implementations on CPUs. Cryptology
ePrint Archive, Report 2020/1294, 2020. https://eprint.iacr.org/2020/
1294.

[GJJR11] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi. A testing methodology for
side-channel resistance validation. In NIST Non-Invasive Attack Testing
Workshop, 2011.

[GMO01] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic analysis: Concrete
results. In Cryptographic Hardware and Embedded Systems (CHES), LNCS
2162, pages 251–261. Springer-Verlag, 2001. https://doi.org/10.1007/
3-540-44709-1_21.

[GMPO19] S. Gao, B. Marshall, D. Page, and E. Oswald. Share slicing: friend or
foe? IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems (TCHES), 2020(1):152–174, 2019. https://doi.org/10.13154/tches.
v2020.i1.152-174.

https://doi.org/10.1109/DAC.2018.8465784
https://doi.org/10.1109/DAC.2018.8465784
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.1007/978-3-319-64647-3_1
https://doi.org/10.13154/tches.v2018.i2.123-148
https://doi.org/10.13154/tches.v2018.i2.123-148
https://doi.org/10.1007/978-3-319-89641-0_5
https://doi.org/10.1007/978-3-319-89641-0_5
https://doi.org/10.1109/I2MTC.2015.7151514
https://eprint.iacr.org/2019/742.pdf
https://eprint.iacr.org/2020/1294
https://eprint.iacr.org/2020/1294
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.13154/tches.v2020.i1.152-174
https://doi.org/10.13154/tches.v2020.i1.152-174

218 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

[GMPP20] S. Gao, B. Marshall, D. Page, and T. Pham. FENL: an ISE to mitigate
analogue micro-architectural leakage. IACR Transactions on Cryptographic
Hardware and Embedded Systems (TCHES), 2020(2):73–98, 2020. https:
//doi.org/10.13154/tches.v2020.i2.73-98.

[GOP21] S. Gao, E. Oswald, and D. Page. Reverse engineering the micro-architectural
leakage features of a commercial processor. Cryptology ePrint Archive,
Report 2021/794, 2021. https://eprint.iacr.org/2021/794.

[GYCH18] Q. Ge, Y. Yarom, D. Cock, and G. Heiser. A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware. Journal
of Cryptographic Engineering (JCEN), 8:1–27, 2018. https://doi.org/10.
1007/s13389-016-0141-6.

[GYH18] Q. Ge, Y. Yarom, and G. Heiser. No security without time protection:
we need a new hardware-software contract. In Asia-Pacific Workshop on
Systems (APSys), pages 1:1–1:9, 2018. https://doi.org/10.1145/3265723.
3265724.

[HKSS12] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh. SASEBO-GIII: A hardware
security evaluation board equipped with a 28-nm FPGA. In IEEE Global
Conference on Consumer Electronics, pages 657–660, 2012. https://doi.
org/10.1109/GCCE.2012.6379944.

[KGBR19] M. Arsath KF, V. Ganesan, R. Bodduna, and C. Rebeiro. PARAM: A
microprocessor hardened for power side-channel attack resistance. 2019.
https://arxiv.org/abs/1911.08813.

[KJJ99] P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances
in Cryptology (CRYPTO), LNCS 1666, pages 388–397. Springer-Verlag, 1999.
https://doi.org/10.1007/3-540-48405-1_25.

[KSM20] D. Knichel, P. Sasdrich, and A. Moradi. SILVER – Statistical Independence
andÂăLeakage Verification. In Advances in Cryptology (ASIACRYPT),
LNCS 12491, pages 787–816. Springer-Verlag, 2020. https://doi.org/10.
1007/978-3-030-64837-4_26.

[LBS19] I. Levi, D. Bellizia, and F.-X. Standaert. Reducing a masked implementation’s
effective security order with setup manipulations. IACR Transactions on
Cryptographic Hardware and Embedded Systems (TCHES), 2019(2):293–317,
2019. https://doi.org/10.13154/tches.v2019.i2.293-317.

[MDLG18] D. Mercadier, P.-É. Dagand, L. Lacassagne, and G. Gilles. Usuba: optimizing
& trustworthy bitslicing compiler. In Workshop on Programming Models for
SIMD/Vector Processing (WPMVP), pages 1–8, 2018. https://doi.org/
10.1145/3178433.3178437.

[Mea] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/stm32f071cb.pdf.

[Meb] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/stm32f100cb.pdf.

[Mec] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/stm32f215re.pdf.

[Med] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/stm32f303cb.pdf.

https://doi.org/10.13154/tches.v2020.i2.73-98
https://doi.org/10.13154/tches.v2020.i2.73-98
https://eprint.iacr.org/2021/794
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1007/s13389-016-0141-6
https://doi.org/10.1145/3265723.3265724
https://doi.org/10.1145/3265723.3265724
https://doi.org/10.1109/GCCE.2012.6379944
https://doi.org/10.1109/GCCE.2012.6379944
https://arxiv.org/abs/1911.08813
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.1007/978-3-030-64837-4_26
https://doi.org/10.13154/tches.v2019.i2.293-317
https://doi.org/10.1145/3178433.3178437
https://doi.org/10.1145/3178433.3178437
https://www.st.com/resource/en/datasheet/stm32f071cb.pdf
https://www.st.com/resource/en/datasheet/stm32f071cb.pdf
https://www.st.com/resource/en/datasheet/stm32f100cb.pdf
https://www.st.com/resource/en/datasheet/stm32f100cb.pdf
https://www.st.com/resource/en/datasheet/stm32f215re.pdf
https://www.st.com/resource/en/datasheet/stm32f215re.pdf
https://www.st.com/resource/en/datasheet/stm32f303cb.pdf
https://www.st.com/resource/en/datasheet/stm32f303cb.pdf

Ben Marshall, Dan Page and James Webb 219

[Mee] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/dm00037051.pdf.

[Mef] ST Micro-electronics. Data-sheet. https://www.st.com/resource/en/
datasheet/dm00039193.pdf.

[MGH19] E. De Mulder, S. Gummalla, and M. Hutter. Protecting RISC-V against side-
channel attacks. In Design Automation Conference (DAC), pages 45:1–45:4,
2019. https://doi.org/10.1145/3316781.3323485.

[MMT20] L. De Meyer, E. De Mulder, and M. Tunstall. On the effect of the (mi-
cro)architecture on the development of side-channel resistant software. Cryp-
tology ePrint Archive, Report 2020/1297, 2020. https://eprint.iacr.org/
2020/1297.

[MOP07] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing
the Secrets of Smart Cards. Springer, 2007. https://doi.org/10.1007/
978-0-387-38162-6.

[MPW21] Ben Marshall, Dan Page, and James Webb. Miracle: Micro-architectural
leakage evaluation. Cryptology ePrint Archive, Report 2021/261, 2021.
https://ia.cr/2021/261.

[MR04] S. Micali and L. Reyzin. Physically observable cryptography. In Theory
of Cryptography (TCC), LNCS 2951, pages 278–296. Springer-Verlag, 2004.
https://doi.org/10.1007/978-3-540-24638-1_16.

[MWO16] D. McCann, C. Whitnall, and E. Oswald. ELMO: Emulating leaks for the
ARM Cortex-M0 without access to a side channel lab. Cryptology ePrint
Archive, Report 2016/517, 2016. https://eprint.iacr.org/2016/517.

[New] NewAE. Data-sheet. https://wiki.newae.com/CW308T-STM32F.

[NXPa] NXP. Data-sheet. https://www.nxp.com/docs/en/data-sheet/LPC81XM.
pdf.

[NXPb] NXP. Data-sheet. https://www.nxp.com/docs/en/data-sheet/LPC111X.
pdf.

[NXPc] NXP. Data-sheet. https://www.nxp.com/docs/en/data-sheet/LPC1311_
13_42_43.pdf.

[PV17] K. Papagiannopoulos and N. Veshchikov. Mind the gap: Towards secure
1st-order masking in software. In Constructive Side-Channel Analysis and
Secure Design (COSADE), LNCS 10348, pages 282–297. Springer-Verlag,
2017. https://doi.org/10.1007/978-3-319-64647-3_17.

[RKL+04] S. Ravi, P.C. Kocher, R.B. Lee, G. McGraw, and A. Raghunathan. Security
as a new dimension in embedded system design. In Design Automation Con-
ference (DAC), pages 753–760, 2004. https://doi.org/10.1145/996566.
996771.

[RP10] M. Rivain and E. Prouff. Provably secure higher-order masking of
AES. In Cryptographic Hardware and Embedded Systems (CHES), LNCS
6225, pages 413–427. Springer-Verlag, 2010. https://doi.org/10.1007/
978-3-642-15031-9_28.

https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://www.st.com/resource/en/datasheet/dm00037051.pdf
https://www.st.com/resource/en/datasheet/dm00039193.pdf
https://www.st.com/resource/en/datasheet/dm00039193.pdf
https://doi.org/10.1145/3316781.3323485
https://eprint.iacr.org/2020/1297
https://eprint.iacr.org/2020/1297
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://ia.cr/2021/261
https://doi.org/10.1007/978-3-540-24638-1_16
https://eprint.iacr.org/2016/517
https://wiki.newae.com/CW308T-STM32F
https://www.nxp.com/docs/en/data-sheet/LPC81XM.pdf
https://www.nxp.com/docs/en/data-sheet/LPC81XM.pdf
https://www.nxp.com/docs/en/data-sheet/LPC111X.pdf
https://www.nxp.com/docs/en/data-sheet/LPC111X.pdf
https://www.nxp.com/docs/en/data-sheet/LPC1311_13_42_43.pdf
https://www.nxp.com/docs/en/data-sheet/LPC1311_13_42_43.pdf
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1145/996566.996771
https://doi.org/10.1145/996566.996771
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28

220 MIRACLE: MIcRo-ArChitectural Leakage Evaluation

[RRKH04] S. Ravi, A. Raghunathan, P.C. Kocher, and S. Hattangady. Security in em-
bedded systems: Design challenges. ACM Transactions on Embedded Com-
puter Systems, 3(3):461–491, 2004. https://doi.org/10.1145/1015047.
1015049.

[RSVC+11] M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon, D. Kamel, and D. Flan-
dre. A formal study of power variability issues and sidechannel attacks
for nanoscale devices. In Advances in Cryptology (EUROCRYPT), LNCS
6632, pages 109–128. Springer-Verlag, 2011. https://doi.org/10.1007/
978-3-642-20465-4_8.

[RV:19] The RISC-V instruction set manual. Technical Report Volume I: User-
Level ISA (Version 20190608-Base-Ratified), 2019. http://riscv.org/
specifications/.

[SSB+20] M.A. Shelton, N. Samwel, L. Batina, F. Regazzoni, M. Wagner, and Y. Yarom.
Rosita: Towards automatic elimination of power-analysis leakage in ciphers.
arXiv:1912.05183 [cs.CR], 2020. https://arxiv.org/abs/1912.05183.

[SSG17] H. Seuschek, F. De Santis, and O.M. Guillen. Side-channel leakage aware
instruction scheduling. In Cryptography and Security in Computing Systems
(CS2), pages 7–12, 2017. https://doi.org/10.1145/3031836.3031838.

[Sze19] J. Szefer. Survey of microarchitectural side and covert channels, attacks,
and defences. Journal of Hardware Systems Security, 3(3):219–234, 2019.
https://doi.org/10.1007/s41635-018-0046-1.

[Wel47] B.L. Welch. The generalization of “student’s” problem when several different
population variances are involved. Biometrika, 34(1-2):28–35, 1947. https:
//doi.org/10.2307/2332510.

[Wol] C. Wolf. https://github.com/cliffordwolf/picorv32.

[Xil] Xilinx. Data-sheet. https://www.xilinx.com/support/documentation/
sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf.

[ZBPF18] D. Zoni, A. Barenghi, G. Pelosi, and W. Fornaciari. A comprehensive
side-channel information leakage analysis of an in-order RISC CPU mi-
croarchitecture. Transactions on Design Automation of Electronic Systems
(TODAES), 23(5):57:1–57:30, 2018. https://doi.org/10.1145/3212719.

https://doi.org/10.1145/1015047.1015049
https://doi.org/10.1145/1015047.1015049
https://doi.org/10.1007/978-3-642-20465-4_8
https://doi.org/10.1007/978-3-642-20465-4_8
http://riscv.org/specifications/
http://riscv.org/specifications/
https://arxiv.org/abs/1912.05183
https://doi.org/10.1145/3031836.3031838
https://doi.org/10.1007/s41635-018-0046-1
https://doi.org/10.2307/2332510
https://doi.org/10.2307/2332510
https://github.com/cliffordwolf/picorv32
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://doi.org/10.1145/3212719

	Introduction
	Background
	Terminology
	Notation
	Architectural leakage
	Micro-architectural leakage
	Summary

	Infrastructure
	Devices
	Platforms
	Micro-benchmarks
	Artifacts

	Case studies
	Memory: hidden state
	Memory: data bus widths
	Memory: sequential accesses
	Pipeline register overwrites
	Control-flow instructions
	Speculative execution in short pipelines

	Discussion
	A mental model of micro-architectural power leakage
	Implications for evaluation of masking schemes
	Implications for power leakage modelling

	Conclusion

