
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 152–174. DOI:10.46586/tches.v2022.i1.152-174

A Constant-time AVX2 Implementation of a
Variant of ROLLO

Tung Chou and Jin-Han Liou

Academia Sinica, Taipei, Taiwan
blueprint@citi.sinica.edu.tw, hank93304@citi.sinica.edu.tw

Abstract. This paper introduces a key encapsulation mechanism ROLLO` and
presents a constant-time AVX2 implementation of it. ROLLO` is a variant of
ROLLO-I targeting IND-CPA security. The main difference between ROLLO`

and ROLLO-I is that the decoding algorithm of ROLLO` is adapted from the
decoding algorithm of ROLLO-I. Our implementation of ROLLO`-I-128, one of the
level-1 parameter sets of ROLLO`, takes 851823 Skylake cycles for key generation,
30361 Skylake cycles for encapsulation, and 673666 Skylake cycles for decapsulation.
Compared to the state-of-the-art implementation of ROLLO-I-128 by Aguilar-Melchor
et al., which is claimed to be constant-time but actually is not, our implementation
achieves a 12.9x speedup for key generation, a 10.6x speedup for encapsulation, and
a 14.5x speedup for decapsulation. Compared to the state-of-the-art implementation
of the level-1 parameter set of BIKE by Chen, Chou, and Krausz, our key generation
time is 1.4x as slow, but our encapsulation time is 3.8x as fast, and our decapsulation
time is 2.4x as fast.

Keywords: NIST PQC standardization · constant-time implementations · code-based
cryptography

1 Introduction
ROLLO is a code-based key encapsulation mechanism that was involved up to the second
round of the NIST post-quantum cryptography standardization process. It is the merger
of three first-round candidates Rank-Ouroboros [AMAB`17], LAKE [ABD`17a] and
LOCKER [ABD`17b]. While most of the code-based submissions are based on Hamming
metric, ROLLO is based on rank metric and makes use of so-called “low-rank parity-
check” (LRPC) codes. The construction of ROLLO, according to the latest version of the
specification (version 2020{04{21, available at [ABD`20]), is similar to the third-round
code-based candidate BIKE [ABB`20], in the sense that each public key is the quotient of
two “low-weight” ring elements. In other words, both schemes are NTRU-like [HPS98].

Unfortunately, the underlying hard problem of ROLLO was not fully studied at the
beginning of the second round of the standardization process. During the second round, two
algebraic attacks against ROLLO were published [BBC`20, BBB`20]. These attacks show
that the proposed parameter sets do not reach the claimed security levels. For example, the
parameter set ROLLO-I-128, which was claimed to be of 128-bit (pre-quantum) security,
was shown to have only 71-bit security in [BBC`20]. In response to these attacks, the
ROLLO team announced in the latest specification new parameter sets that achieved
desired security levels under the attacks of [BBC`20, BBB`20]. However, ROLLO still
failed to enter the third round.

Even though ROLLO will not be standardized by the current standardization process,
ROLLO does have some interesting features. First of all, ROLLO does have very small

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.152-174
https://orcid.org/0000-0003-3043-6190
mailto:blueprint@citi.sinica.edu.tw
mailto:hank93304@citi.sinica.edu.tw
http://creativecommons.org/licenses/by/4.0/

Tung Chou and Jin-Han Liou 153

keys. The public keys of the level-1, 3, 5 parameter sets ROLLO-I-128, ROLLO-I-192, and
ROLLO-I-256 are 696 bytes, 954 bytes, and 1371 bytes only. The key sizes are 2.2 to 5.3
times as small as the key sizes of the corresponding parameter sets of BIKE. Second, ROLLO
does have a CCA2-secure variant ROLLO-II, while BIKE is only claimed to be CPA-secure.
Under the assumption that there will not be attacks that outperform [BBC`20, BBB`20],
it seems that ROLLO could be a more interesting option for standardization than BIKE.
In fact, NIST also commented that

“Despite the development of algebraic attacks, NIST believes rank-based
cryptography should continue to be researched. The rank metric cryptosystems
offer a nice alternative to traditional hamming metric codes with comparable
bandwidth.”

in the status report for the second-round candidates [AASA`20].
Of course, it takes time to see whether the practical security of ROLLO has been

thoroughly studied, but [BBC`20, BBB`20] certainly help the community to understand
more about the security of ROLLO. On the other hand, there has been very little effort in
improving the performance of ROLLO. In particular, how to build a fast constant-time
implementation of ROLLO seems to be a problem that has never been well-studied, and
the goal of this paper is to show a solution.

1.1 Previous Works
We are aware of only two previous papers about implementing ROLLO. The first paper
is [LMB`19], which presents an implementation of the second-round version of ROLLO.
The target platform of [LMB`19] is ARM SecureCore SC300. The parameters and the
decoding algorithm used in the paper are based on the second-round specification instead
of the latest one. The authors did not claim that their implementation is constant-time,
and there is no discussion about how to make the implementation constant-time. For these
reasons, we think it is not very meaningful to consider the speeds reported in the paper.

The second paper is [AMAB`21], which presents two implementations of ROLLO-I-
128 and claims that they are constant-time. The target platform is Intel Coffee Lake.
Unfortunately, we found that the algorithm to_ref the authors used to reduce matrices
to row echelon form is vulnerable to cache-timing attacks.

The algorithm to_ref is shown in Algorithm 1 1. As one can see, the indices i and
j do not depend on the entries of M , so it is fine to access Mi,j and Mi directly using
memory load/store instructions. However, the value of µ̃ does depend on the entries of M ,
so Mµ̃,j and Mµ̃ should not be accessed directly. Of course, it can be that the authors’
implementation actually fixed this issue with some extra operations, but we have checked
the source code (available at https://github.com/peacker/constant_time_rollo) and
found that it is not the case. [AMAB`21] uses a similar algorithm to_rref to reduce
matrices into reduced row echelon form, and to_rref has the same problem. We have not
checked if other parts of the source code are actually constant-time.

Finally, the source code included in the second-round submission package of ROLLO is
not constant-time. This was first pointed out in [DGK20].

1.2 Our Contribution
This paper introduces a new key encapsulation mechanism ROLLO` and presents a
constant-time AVX2 implementation of it. ROLLO` is a variant of ROLLO-I. As ROLLO-I,
ROLLO` targets only CPA security. The main difference between ROLLO` and ROLLO-I

1 [AMAB`21, Algorithm 2] is not consistent with the source code and appears to be erroneous.
Algorithm 1 is written based on the source code.

https://orcid.org/0000-0003-3043-6190
https://github.com/peacker/constant_time_rollo

154 A Constant-time AVX2 Implementation of a Variant of ROLLO

Algorithm 1 to_ref [AMAB`21]
Input: M P Fµˆν2
Output: M P Fµˆν2 in row echelon form

1: µ̃Ð 0
2: for j “ 0, . . . , ν ´ 1 do
3: for i “ 0, . . . , µ´ 1 do
4: mask1 Ð 0
5: mask2 Ð 0
6: mask3 Ð 0
7: if i ą r̃ then
8: mask1 Ð 1
9: end if

10: if Mi,j “ 1 then
11: mask2 Ð 1
12: end if
13: if Mµ̃,j “ 0 then
14: mask3 Ð 1
15: end if
16: Mµ̃ ÐMµ̃ ` mask1 ¨ mask2 ¨ mask3 ¨Mi

17: Mi ÐMi ` mask1 ¨ mask2 ¨Mµ̃

18: end for
19: if Mµ̃,j “ 1 and µ̃ ă µ then
20: µ̃Ð µ̃` 1
21: end if
22: end for
23: return M

is that the decoding algorithm of ROLLO` is adapted from the decoding algorithm of
ROLLO-I. We adapted the decoding algorithm so that some invalid ciphertexts can be
identified and rejected.

Our implementation of ROLLO`-I-128, one of the level-1 parameter sets of ROLLO`,
takes 851823 Skylake cycles for key generation, 30361 Skylake cycles for encapsulation, and
673666 Skylake cycles for decapsulation. Compared to the state-of-the-art implementation
of ROLLO-I-128 (which is not constant-time) by Aguilar-Melchor et al., our implementation
achieves a 12.9x speedup for key generation, a 10.6x speedup for encapsulation, and a
14.5x speedup for decapsulation. Compared to the state-of-the-art implementation of the
level-1 parameter set of BIKE by Chen, Chou, and Krausz, our key generation time is 1.4x
as slow, but our encapsulation time is 3.8x as fast, and our decapsulation time is 2.4x as
fast.

As ROLLO` and ROLLO-I are very similar, we expect that key generation, encap-
sulation and decapsulation times similar to those of ROLLO-I can be achieved with our
implementation techniques (see below). We also expect that our implementation tech-
niques can be used to accelerate ROLLO-II and other rank-metric cryptosystems such as
RQC [AMAB`20].

1.3 Techniques
We consider field multiplication in F2mn , field inversion in F2mn , and Gaussian elimination
as the main building blocks. The speed of our implementation is achieved by optimizing
these building blocks. Here is a brief overview of how we optimize the building blocks.

• There are 3 multiplications in F2mn in key generation, encapsulation, and decapsu-

Tung Chou and Jin-Han Liou 155

lation. Each multiplication in F2mn involves one low-weight operand. In order to
exploit the structure of the low-weight operand, we make use of matrix transposition
to perform the multiplication. As far as we can tell, we are the first ones to introduce
this idea.

• The decoding algorithm computes the intersection of several vector spaces. One
way to compute the intersection is to use the Zassenhaus algorithm. On input
generating sets of two vector spaces, the Zassenhaus algorithm builds a matrix
from the generating sets and applies a Gaussian elimination. Gaussian elimination
is also useful for checking the weights of sampled elements in key generation and
encapsulation. In order to perform Gaussian eliminations in constant time, we
generalized the algorithm presented in [BCS13, Section 6]. The original algorithm is
only able to compute the systematic form (if it exists) of the input matrix, while
our generalized algorithm is able to compute row echelon form or reduced row
echelon form. The generalized algorthm turns out to be very efficient even under
the constraint of being constant-time. As far as we can tell, we are the first ones to
introduce this generalized algorithm.

• Key generation involves one field inversion in F2mn . We make use of the Itoh-Tsuji
algorithm [IT88] to perform the field inversions in F2mn . We found that this is much
faster than raising field elements to the power 2mn ´ 2.

At the end of each call to the Zassenhaus algorithm, we need to derive a generating
set of the intersection for the next call. We use a small loop that is carefully designed to
protect the procedure against timing attacks. We also propose an efficient way to generate
low-weight elements using our algortihm for Gaussian elimination. Both the loop and the
algorithm for generating low-weight elements are presented in Section 5.

1.4 Availability of Source Code
We plan to submit our implementation to the eBACS project [Be] so that the source code
can be included in SUPERCOP. Our source code will be in the public domain.

1.5 Organization
Section 2 reviews the specification of ROLLO and introduces ROLLO`. Section 3 presents
how we optimize field multiplications and field inversions. Section 4 presents how we
optimize Gaussian eliminations. Section 5 presents how we use the techniques in Section 3
and 4 to carry out the decoding algorithm and to sample low-weight elements. Section 6
shows some experiment results.

2 ROLLO and ROLLO`

This section reviews the specification of ROLLO (mainly ROLLO-I) and introduces the
specification of ROLLO`. In particular, we argue that ROLLO` is IND-CPA secure as
long as ROLLO-I is IND-CPA secure in this section.

2.1 Parameter Sets
The parameter sets of ROLLO and ROLLO` are shown in Table 1. As one can see
ROLLO` simply takes parameters from ROLLO. We note that ROLLO-II is claimed to
be CCA secure, while ROLLO`-II only targets CPA security.

https://orcid.org/0000-0003-3043-6190

156 A Constant-time AVX2 Implementation of a Variant of ROLLO

Table 1: Parameter sets of ROLLO and ROLLO`.

instance n m r d level
ROLLO-I-128 83 67 7 8 1
ROLLO-I-192 97 79 8 8 3
ROLLO-I-256 113 97 9 9 5
ROLLO-II-128 189 83 7 8 1
ROLLO-II-192 193 97 8 8 3
ROLLO-II-256 211 97 9 9 5
ROLLO`-I-128 83 67 7 8 1
ROLLO`-I-192 97 79 8 8 3
ROLLO`-I-256 113 97 9 9 5
ROLLO`-II-128 189 83 7 8 1
ROLLO`-II-192 193 97 8 8 3
ROLLO`-II-256 211 97 9 9 5

2.2 Finite Fields

Each parameter set of ROLLO and ROLLO` uses two distinct primes m and n. Each
m is associated with a degree-m irreducible polynomial Pm P F2rxs, and similarly each
n is associated with a degree-n irreducible polynomial Pn P F2rys. The list of Pm’s and
Pn’s is shown in Table 2. Pm and Pn are used to construct F2m as F2rxs{pPmq and
F2mn as F2mrys{pPnq. A field element a P F2m will always be represented as a vector
pa0, ..., am´1q P Fm2 such that a “

ř

i aix
i. A field element α P F2mn will be represented

as a vector pα0, ..., αn´1q P Fn2m such that α “
ř

i αiy
i, if α is a part of a key pair or a

ciphertext. Our implementation represents low-weight F2mn elements in a different way,
which will be explained in Section 3.

We note that Pn is called P in ROLLO’s specification [ABD`20]. We call the polynomial
Pn because this explicitly shows that its degree is n. Also, the specification does not
mention the field F2mn , even though it is actually used implicitly: the specification defines
operations of ROLLO as arithmetic between polynomials over F2m modulo P (i.e., modulo
Pn). For the purpose of this paper, we think it is better to describe operations as arithmetic
in F2mn .

Table 2: The lists of Pm’s and Pn’s as polynomials in F2[X].

m or n Pm or Pn
67 X67 `X5 `X2 `X ` 1
79 X79 `X9 ` 1
83 X83 `X7 `X4 `X2 ` 1
97 X97 `X6 ` 1
113 X113 `X9 ` 1
189 X189 `X6 `X5 `X2 ` 1
193 X193 `X15 ` 1
211 X211 `X11 `X10 `X8 ` 1

Tung Chou and Jin-Han Liou 157

Algorithm 2 Rank Support Recover (RSR) algorithm
Parameters: m,n, d, r P Z.
Input: An F2-subspace F of dimension d in F2m , represented as pf1, . . . , fdq P Fd2m such

that F “ xf1, . . . , fdy, and s “
řn´1
i“0 siy

i P F2mn .
Output: An F2-subspace E of F2m .

1: Compute S “ xs0, . . . , sn´1y.
2: E Ð

Şd
i“1 f

´1
i S

3: return E

Algorithm 3 RSR` algorithm
Parameters: m,n, d, r P Z.
Input: An F2-subspace F of dimension d in F2m , represented as pf1, . . . , fdq P Fd2m such

that F “ xf1, . . . , fdy, and s “
řn´1
i“0 siy

i P F2mn .
Output: An F2-subspace E of F2m or K.

1: Compute S “ xs0, . . . , sn´1y.
2: E Ð

Şd
i“1 f

´1
i S

3: if dimpSq ď dr then
4: return E
5: else
6: return K
7: end if

2.3 Terminologies and Notations
Given α P F2mn , we define Matpαq as

¨

˚

˚

˚

˝

α0,0 α0,1 . . . α0,m´1
α1,0 α1,1 . . . α1,m´1
...

...
. . .

...
αn´1,0 αn,1 . . . αn´1,m´1

˛

‹

‹

‹

‚

P Fnˆm2 .

Similarly, given α, β P F2mn , we define Matpα, βq as the vertical concatenation of Matpαq
and Matpβq.

The support of α P F2mn , denoted as Supppαq, is defined as

Supppαq “ RowSpacepMatpαqq.

Supppαq can be viewed as the F2-subspace of F2m generated by αi’s, i.e.,

xα0, . . . , αn´1y–

ÿ

i

biαi | pb0, . . . , bn´1q P Fn2
(

.

Similarly, given α, β P F2mn , Supppα, βq is defined as

RowSpacepMatpα, βqq “ Supppαq ` Supppβq

and can be viewed as xα0, . . . , αn´1, β0, . . . , βn´1y.
The rank weight (or simply weight) of α, denoted as ||α||, is defined as the dimension

of Supppαq. Similarly, we define the rank weight of pα, βq, i.e., ||pα, βq||, as the dimension
of Supppα, βq. The set S2n

w pF2mq is defined as

tpα, βq P F2
2mn | ||pα, βq|| “ wu.

https://orcid.org/0000-0003-3043-6190

158 A Constant-time AVX2 Implementation of a Variant of ROLLO

Alice

ph1, h2q Ð S2n
d pFqmq, h Ð h´1

1 h2

F Ð Suppph1, h2q

Bob

h
pe1, e2q Ð S2n

r pFqmq

E Ð Supppe1, e2q

c Ð e1 ` e2h mod P
c

s Ð h1c

E Ð RSRpF, sq

SHARED
SECRET

Hash(E) Hash(E)

Figure 1: Informal description of ROLLO-I.

Alice

ph1, h2q Ð S2n
d pFqmq, h Ð h´1

1 h2

F Ð Suppph1, h2q

Bob

h
pe1, e2q Ð S2n

r pFqmq

E Ð Supppe1, e2q

c Ð e1 ` e2h mod P
c

s Ð h1c

E or KÐ RSR`
pF, sq

SHARED
SECRET

Hash(E) or K Hash(E)

Figure 2: Informal description of ROLLO`.

We note that the specification instead defines S2n
w pF2mq as a set of vectors in F2n

2m , so the
definition there might look different from (but is actually equivalent to) our definition.

We use dimpSq to denote the dimension of a linear subspace S, and we use rankpMq
to denote the rank of a matrix M .

2.4 Decoding Algorithms
ROLLO uses the Rank Support Recover (RSR) algorithm as the decoding algorithm. The
algorithm is shown in Algorithm 2. On input an F2-subspace F Ă F2m of dimension d and
s P F2mn such that xs1, . . . , sny “ S Ď EF – xtef | e P E, f P F uy for some F2-subspace
E Ă F2m of dimension r, RSR recovers E with certain probability: RSR is a probabilistic
algorithm, so it might fail to recover E. Note that F is always represented as a vector
pf1, . . . , fdq P Fd2m such that F “ xf1, . . . , fdy.

As we will show in the next subsection, RSR is used as a subroutine of decapsulation of
ROLLO-I. The way decapsulation is defined ensures that S Ď EF and thus dimpSq ď dr,
as long as the ciphertext is valid. However, as shown in Algorithm 2, RSR does not check if
dimpSq ď dr. Even when dimpSq ą dr, in which case the ciphertext must be invalid, RSR
still computes and returns

Şd
i“1 f

´1
i S. As one might have expected, the larger dimpSq is,

the more computation it takes to compute
Şd
i“1 f

´1
i S. A constant-time implementation

of RSR thus has to take at least as much time as when dimpSq “ minpm,nq.
In order to avoid spending extra time on processing these invalid ciphertexts, ROLLO`

Tung Chou and Jin-Han Liou 159

uses an adapted version of RSR, which we call the RSR` algorithm. The pseudocode of
RSR` is shown in Algorithm 3. RSR` checks the dimension of S and only returns E
when dimpSq ď dr. When dimpSq ą dr, the algorithm simply returns K. In this way, the
running time of the algorithm can be bounded by the time for the case dimpSq “ dr.

In our implementation, each of S, f´1
i S, and E is represented as an array of F2m

elements that generate the subspace, which will be explained in more detail in Section 5.

2.5 Key generation, Encapsulation, Decapsulation
Key generation, encapsulation, and decapsulation of ROLLO-I are depicted in Figure 1. As
shown in the figure, Alice starts with generating the public key h and secret key ph1, h2q.
Then, Alice sends the public key to Bob. On receiving the public key h, Bob runs the
encapsulation algorithm to generate the ciphertext c and session key HashpEq, and he
sends c to Alice. Here, HashpEq means hashing the reduced row echelon form of the matrix
where the rows are formed by the basis elements of E. ROLLO uses SHA256 as the hash
function. With c and the secret key ph1, h2q, Alice runs the decoding algorithm to obtain
E and the session key HashpEq. We note that the specification denotes the secret key as
px, yq, but we use ph1, h2q because we would like to save x and y for polynomials.

Key generation, encapsulation, and decapsulation of ROLLO` are depicted in Figure 2.
The specification of ROLLO` is very similar to ROLLO-I. The differences between ROLLO-
I and ROLLO` are listed below.

• ROLLO-I uses RSR as the decoding algorithm, while ROLLO` uses RSR`.

• In ROLLO-I decapsulation always returns HashpEq, while in ROLLO` decapsulation
returns K if RSR` returns K.

• In ROLLO-I the secret key is defined as ph1, h2q, while in ROLLO` the secret key is
defined as ph1, F q. What decapsulation (of either ROLLO-I or ROLLO`) needs are
h1 and F , so we think it is more natural to define the secret key in this way.

2.6 IND-CPA Security of ROLLO`

We claim that ROLLO` is IND-CPA secure, as long as ROLLO-I is IND-CPA secure.
To see this, let us recall the IND-CPA game as shown in, say, [Pei14]. In the game, the
adversary is asked to distinguish between the following two experiments:

ppÐ Setup() ppÐ Setup()
ppk, skq “ Genpppq ppk, skq “ Genpppq
pc, kq Ð Encapsppp, pkq pc, kq Ð Encapsppp, pkq

k˚ Ð K
Outputppp, pk, c, kq Outputppp, pk, c, k˚q

In the experiments, Setup is a function that outputs public parameters, Gen stands for the
key generation algorithm, and Encaps stands for the encapsulation algorithm. As one can
see the decapsulation algorithm is not used in the game, and sk is generated but not used.
As ROLLO-I and ROLLO` only differ in the formats of secret keys and the decapsulation
algorithms, clearly ROLLO` must be IND-CPA secure if ROLLO-I is IND-CPA secure.

In fact it is also easy to see that if ph1, h2q is the same in ROLLO-I and ROLLO`,
then on input the same valid ciphertext c, the two decapsulation algorithms will generate
the same outputs. This implies that ROLLO` and ROLLO-I have the same failure rates
for decapsulation.

https://orcid.org/0000-0003-3043-6190

160 A Constant-time AVX2 Implementation of a Variant of ROLLO

2.7 Building Blocks
As mentioned in the introduction, our implementation of ROLLO` makes use of optimiza-
tions for the following building blocks.

• Field multiplication in F2mn : we need to multiply h´1
1 and h2 in key generation,

multiply e2 and h in encapsulation, and multiply h1 and c in decapsulation. The
reader should be aware that in each of the three multiplications, there is one operand
of weight bounded by either d or r: the weights of h2 and h1 are bounded by d, and
the weight of e2 is bounded by r.

• Gaussian elimination: as previous implementations, our implementation uses the
Zassenhaus algorithm to compute the intersection of two vector spaces, which requires
to compute row echelon form of matrices. Our implementation also uses Gaussian
elimination to check the weights of ph1, h2q and pe1, e2q.

• Field inversion in F2mn : we need to compute the inverse of h1 in key generation.

We emphasize that ROLLO-I and ROLLO-II can be implemented using essentially the
same building blocks.

3 Field Multiplications and Inversions
As described in Section 2.7, we need to multiply elements in F2mn in key generation,
encapsulation, and decapsulation. This section shows how we build our multiplication
functions for F2m “ F2rxs{pPmq and F2n “ F2rys{pPnq as subroutines of the multiplication
function for F2mn , and shows how we optimize our multiplication function for F2mn by
exploiting the fact that one of the operands is of weight bounded by d or r. In key
generation, it is necessary to compute the inverse of h1. This section shows how we
implement the field inversions in F2mn .

3.1 Field multiplications in F2m and F2n

As many cryptographic implementations that involve multiplications in binary fields, our
implementation makes use of the pclmulqdq instruction. Given two 64-bit polynomials in
F2rxs, i.e., binary polynomials of degree at most 63, the instruction computes the product
of them.

Take our multiplication function for F267 for example, which has been shown in Figure 3.
We consider the two operands a and b as polynomials a “

ř66
i“0 aix

i P F2rxs and b “
ř66
i“0 bix

i P F2rxs. Let c “
ř66
i“0 cix

i “ ab mod P67. To carry out the field multiplication
a is represented as pap0q, ap1qq, where ap0q “

ř63
i“0 aix

i and ap1q “
ř2
i“0 ai`64x

i. Similarly
b is represented as pbp0q, bp1qq. First, we obtain ap0qbp0q, ap0qbp1q, ap1qbp0q, and ap1qbp1q by
using pclmulqdq 4 times. Note that ap1qbp1q consists of 5 bits only. Our goal is to compute

c “ ap0qbp0q ` pap0qbp1q ` ap1qbp0qqx64 ` ap1qbp1qx128 mod P67.

To carry out the reduction modulo P67, Let

c1 “ ap0qbp0q ` pap0qbp1q ` ap1qbp0qqx64 ` ap1qbp1qx128 “ c1p0q ` c1p1qx64 ` c1p2qx128,

where degpc1piqq ă 64 for all i. Observe that x128 ” x61px5 ` x2 ` x ` 1q mod P67, so
c “ cp0q`cp1qx64`cp2qpx5`x2`x`1qx61 mod P67. We thus compute c1p2qpx5`x2`x`1q
using one pclmulqdq to obtain

c2 “ c1p0q ` c1p1qx64 ` c1p2qpx5 ` x2 ` x` 1qx61 “ c2p0q ` c2p1qx64,

Tung Chou and Jin-Han Liou 161

static inline void f2m_mul(f2m f1_times_f2, const f2m f1, const f2m f2)
{

__m128i f1lof2hi, f1hif2lo, lo, middle, hi, tmp;
__m128i f1_copy = _mm_set_epi64x(f1[1], f1[0]);
__m128i f2_copy = _mm_set_epi64x(f2[1], f2[0]);
__m128i poly;
__m128i zero = _mm_setzero_si128();

hi = _mm_clmulepi64_si128(f1_copy, f2_copy, 0x11);
lo = _mm_clmulepi64_si128(f1_copy, f2_copy, 0x00);

f1lof2hi = _mm_clmulepi64_si128(f1_copy, f2_copy, 0x10);
f1hif2lo = _mm_clmulepi64_si128(f1_copy, f2_copy, 0x01);
middle = _mm_xor_si128(f1lof2hi, f1hif2lo);
middle = _mm_xor_si128(middle, _mm_unpacklo_epi64(zero, hi));

poly = _mm_set_epi64x(0, 0x27);

tmp = _mm_clmulepi64_si128(middle, poly, 0x01);
lo = _mm_xor_si128(lo, _mm_unpacklo_epi64(zero, middle));
lo = _mm_xor_si128(lo, _mm_slli_epi64(tmp, 61));
lo = _mm_xor_si128(lo, _mm_unpacklo_epi64(zero, _mm_srli_epi64(tmp, 3)));
lo = _mm_xor_si128(lo, _mm_clmulepi64_si128(_mm_srli_epi64(lo, 3), poly, 0x01));

f1_times_f2[0] = _mm_extract_epi64(lo, 0);
f1_times_f2[1] = 0x7 & _mm_extract_epi64(lo, 1);

}

Figure 3: Our multiplication function for F267 .

where degpc2piqq ă 64 for all i. Finally, observe that

c2p0q ` c2p1qx64 “ c2p0q ` p
2
ÿ

i“0
c
2p1q
i xiqx64 ` p

63
ÿ

i“3
c
2p1q
i xiqx64

“ c2p0q ` p
2
ÿ

i“0
c
2p1q
i xiqx64 ` p

60
ÿ

i“0
c
2p1q
i`3 x

iqx67.

We thus compute p
ř60
i“0 c

2p1q
i`3 x

iqpx5 ` x2 ` x` 1q by using pclmulqdq to obtain

c “
66
ÿ

i“0
c2i x

i ` p

60
ÿ

i“0
c
2p1q
i`3 x

iqpx5 ` x2 ` x` 1q.

In addition to multiplications in F2m , we also implemented multiplications in F2n using
basically the same strategy. As described in the following subsection, our implementation
uses both the multiplication functions for F2m and F2n to carry out multiplications in F2mn .
Note that this differs from previous implementations, as they do not use any multiplication
function for F2n .

3.2 Accelerating Multiplications in F2mn with Matrix Transposition
To multiply two elements in F2mn , all previous implementations represent the operands as
polynomials over F2m and carry out a generic polynomial multiplication using arithmetic
in F2m . However, each of the three multiplications mentioned in Section 2.7 involves one
element of weight bounded by d or r, and we found that this can be exploited to make the
multiplications much faster.

https://orcid.org/0000-0003-3043-6190

162 A Constant-time AVX2 Implementation of a Variant of ROLLO

For each of the three multiplications, the task is to multiply v, w P F2mn , where pv, wq
is either ph2, h

´1
1 q, ph1, cq, or pe2, hq. Let t “ d if v P th1, h2u or t “ r if v “ e2. Let

β1, . . . , βt be a basis of Supp(h1, h2) if v P th1, h2u or a basis of Supp(e1, e2) if v “ e2.
We represent w as pw0, w1, ¨ ¨ ¨ , wn´1q in Fn2m such that w “ w0 ` w1y ` ¨ ¨ ¨ ` wn´1y

n´1.
In the meantime we represent v as two vectors pα1, . . . , αtq P Ft2n and pβ1, . . . , βtq P Ft2m ,
such that

v “ α1β1 ` α2β2 ` ¨ ¨ ¨ ` αtβt.

To see why v can be represented in this way, let v “ v0 ` v1y ` . . . vn´1y
n´1 such that

vi P F2m for all i. Suppose vi “
ř

j αj,iβj where each αj,i P F2, v can be rewritten as

p

t
ÿ

j“1
αj,0βjq ` p

t
ÿ

j“1
αj,1βjqy ` ¨ ¨ ¨ ` p

t
ÿ

j“1
αj,n´1βjqy

n´1.

Now, let αj “
řn´1
i“0 αj,iy

i P F2n , we have v “ α1β1 ` α2β2 ` ¨ ¨ ¨ ` αtβt.
Following the discussion above, we have

wv “ pwβ1qα1 ` ¨ ¨ ¨ ` pwβtqαt.

Since w is represented as an array of n elements in F2m , each wβi can be obtained by
calling the multiplication function for F2m n times. Let

γi “ wβi “ γi,0 ` γi,1y ` ¨ ¨ ¨ ` γi,n´1y
n´1,

where each γi,j P F2m . Now the task is to compute γiαi for each i. Mathematically, we can
view F2mn as F2nrxs{pPmq, which means γi can be written as γ1i,0`γ1i,1x`¨ ¨ ¨`γ1i,m´1x

m´1,
where each γ1i,k P F2n . Once we have γ1i,0, . . . , γ1i,m´1, it would be easy to multiply each γi
by αi: we can simply call our multiplication function for F2n m times. But how can we
derive γ1i,k’s from γi,j ’s?

This is actually not so hard to see. Let γi,j “
řm´1
k“0 γi,j,kx

k, where γi,j,k P F2. Then
we have

γi,0 ` γi,1y ` ¨ ¨ ¨ ` γi,n´1y
n´1

“
`

m´1
ÿ

k“0
γi,0,kx

k
˘

`
`

m´1
ÿ

k“0
γi,1,kx

k
˘

y ` ¨ ¨ ¨ `
`

m´1
ÿ

k“0
γi,n´1,kx

k
˘

yn´1

“
`

n´1
ÿ

j“0
γi,j,0y

j
˘

`
`

n´1
ÿ

j“0
γi,j,1y

j
˘

x` ¨ ¨ ¨ `
`

n´1
ÿ

j“0
γi,j,m´1y

j
˘

xm´1.

In other words, γ1i,k “
řn´1
j“0 γi,j,ky

j for k “ 0, . . . ,m´ 1.
To see how our implementation obtains γ1i,k for k “ 0, . . . ,m´ 1, it is useful to consider

the matrix

Matpγiq “

¨

˚

˚

˚

˝

γi,0,0 γi,0,1 . . . γi,0,m´1
γi,1,0 γi,1,1 . . . γi,1,m´1
...

...
. . .

...
γi,n´1,0 γi,n´1,1 . . . γi,n´1,m´1

˛

‹

‹

‹

‚

.

γi is stored as an array of n F2m elements γi,0, . . . , γi,m´1, meaning that the matrix is
stored in a row-major fashion. Our implementation performs a matrix transposition to
obtain an array of m F2n elements γ1i,0, . . . , γ1i,m´1. We then multiply each γ1i,k by αi using
our multiplication function for F2n to obtain γiαi.

Tung Chou and Jin-Han Liou 163

For ease of implementation, we actually augment the n ˆ m matrix to obtain a
256 ˆ 128 matrix. This is possible as m ă 128 and n ă 256. We then use an as-
sembly function transpose_64x256_sp_asm to transpose the 256 ˆ 128 matrix. What
transpose_64x256_sp_asm does is essentially transposing 4 64ˆ 64 matrices in parallel.
In total there are 8 64ˆ 64 submatrices in the 256ˆ 128 matrix, so to complete the matrix
transposition we need to call transpose_64x256_sp_asm twice. The algorithm used by
transpose_64x256_sp_asm to transpose each 64ˆ64 matrix has been explained in [Cho17,
Section 2], and the function simply vectorizes the algorithm so that 4 matrix transpositions
can be carried out in parallel using logical instructions for YMM registers. We note that
the assembly function is included in the source code of Classic McEliece [ABC`20]. The
source code of Classic McEliece, including the function, is in the public domain.

We make use of lazy reduction to save operations. To multiply γ1i,k’s by αi, we do
not actually use the complete multiplication function for F2n . Instead, we only reduce
the results so that they can fit into 256 bits. Then, we compute the array of m F2n

elements
ř

i γ
1
i,0αi, . . . ,

ř

i γ
1
i,m´1αi and reduce them fully. Finally, we transpose the

matrix corresponding to this array to obtain an array of n F2m elements as the default
representation of wv.

3.3 Field Inversions
We make use of the Bernstein-Yang constant-time GCD algorithm [BY19] to perform
field inversions in F2m . The basic version of the algorithm for modulo inversion is shown
in the code segments in Figure 5.1 and 6.1 of [BY19], and in [BY19, Section 7.1] an
adapted version for polynomials over F3 is shown. We consider the F2m element as a
polynomial over F2 and compute its inverse modulo Pm P F2rxs. The algorithm we use to
compute inversions in F2m is adapted from the algorithm for polynomials over F3. The
only modification we did is to replace the variable c in each step by g0.

For field inversions in F2mn , we use the Itoh-Tsuji algorithm [IT88]. Suppose the goal
is to compute α´1 given a nonzero element α P F2mn . Define γ “ 1` 2m ` 22m ` 23m `
¨ ¨ ¨ ` 2pn´1qm. The idea is to compute α´1 as αγ´1{αγ . Define frobp¨q as the operation
of raising the input to the power 2m. In order to compute αγ´1, we let t0 “ α and
compute t1 Ð frobpt0qt0, t2 Ð frob2

pt1qt1, t3 Ð frob4
pt2qt2, and so on, until we have

ttlog2 pn´1qu. Suppose n´ 1 “ p
ř

iPI 2iq ` 2tlog2 pn´1qu and let t1 “ ttlog2 pn´1qu. We perform
t1 Ð frob2i

pt1qti for each i P I. Now t1 “ α1`2m
`22m

`23m
`¨¨¨`2pn´2qm , so αγ´1 is computed

as frobpt1q.
Once we have αγ´1, αγ is computed as α ¨ αγ´1. Observe that 2mn ´ 1 “ p2m ´ 1qγ

and thus pαγq2m
´1 “ α2mn

´1 “ 1. This implies that αγ P F2m . Therefore, from αγ´1 and
αγ , we compute α´1 using 1 field inversion and n field multiplications in F2m .

Note that each frob2i

is a linear operation: suppose the input and output are viewed
as vectors in Fn2m , the operation simply multiplies the input by an nˆ n matrix over F2 to
obtain the output. frob2i

is thus very cheap for any i. In the Itoh-Tsuji algorithm, we have
to perform a few generic multiplications in F2mn . These multiplications are implemented
with four layers of Karatsuba, which appears to be provide the best performance for the
parameter sets.

4 Gaussian Elimination
As described in Section 2.7, we use Gaussian elimination to generate ph1, h2q P S2n

d pF2mq

and pe1, e2q P S2n
r pF2mq, and to perform the Zassenhaus algorithm. This section presents

how we implement Gaussian elimination to reduce matrices into row echelon form or
reduced row echelon form. We note that our implementation computes row echelon form
instead of reduced row echelon form whenever possible to save computation.

https://orcid.org/0000-0003-3043-6190

164 A Constant-time AVX2 Implementation of a Variant of ROLLO

4.1 A Constant-time Algorithm for Computing Systematic Form
Assume that matrix A P Fµˆν2 has systematic form. In [BCS13, Section 6], the authors
describe an algorithm for computing systematic form of A. We denote the ith row of A as
Ai. The algorithm consists of the following steps.

1. Set p “ 1.

2. For i P tp` 1, . . . µu, Ap Ð Ap `Ai ¨ p1´Ap,pq.

3. For i P t1, . . . , µuztpu, Ai Ð Ai `Ap ¨Ai,p.

4. If p` 1 ď minpµ, νq, increase p by 1 and go back to Step 2.

In each iteration of the algorithm, column p of the matrix is scanned to search for the pth
pivot. Step 2 sets Ap,p to 1 by conditionally adding row i to row p for all i ą p. Step 3 sets
all Ai,p’s with i ‰ p to 0 by conditionally adding row p to each row i. The values of p and
i at any point of the algorithm do not depend on the entries of the input matrix, so the
algorithm is constant-time even if Ai, Ap, Ap,p, Ai,p are accessed using memory load/store
instructions.

Note that systematic form is the same as reduced row echelon form for A. If in Step 3
the set t1, . . . , µuztpu is replaced by tp`1, . . . , µu, row-echelon form of A will be computed
instead of reduced row echelon form. However, for matrices without systematic form, it is
not guaranteed that the algorithm above will generate reduced row echelon form, and it is
also not guaranteed that the corresponding algorithm with tp` 1, . . . , µu in Step 3 will
generate row echelon form.

4.2 Computing Row Echelon Form and Reduced Row Echelon Form
We generalized the algorithm in Section 4.1 so that the reduced row echelon form of any
A can be computed. The main idea is to search for the column index j of pivot p in each
iteration. Once the column index is found, we can use steps that are similar to Step 2 and
3 in the algorithm in Section 4.1 to set Ap,j to 1 and set all Ai,j with i ‰ p to 0. Our
algorithm consists of the following steps.

1. Set p “ 1.

2. Set v to the logical OR of Ap, . . . , Aµ.

3. Find the index j of the first nonzero entry in v. If v “ 0, set j to any value in
t1, . . . , νu.

4. For i P tp` 1, . . . µu, Ap Ð Ap `Ai ¨ p1´Ap,jq.

5. For i P t1, . . . , µuztpu, Ai Ð Ai `Ap ¨Ai,j .

6. If p` 1 ď minpµ, νq, increase p by 1 and go back to Step 2.

In each iteration of the algorithm, we search for the pth pivot in the submatrix formed
by Ap, . . . , Aµ 2. Step 2 and 3 find the column index j of the pivot. Step 4 ensures that
Ap,j “ 1 by conditionally adding Ai with i ą p to row Ap. Step 5 ensures that Ai,j “ 0
for all i ‰ p by conditionally adding Ap to other rows.

We note that the algorithm works even if the input matrix is not full rank. Indeed,
in this case, at the end of iteration rankpAq, the matrix must be in reduced row echelon
form. In the last minpµ, νq ´ rankpAq iterations, Step 4 and 5 will not change the matrix

2 Actually the pth pivot must lie in column q with q ě p, so we can make Step 2,3,4, and 5 only operate
on columns of indices greater than or equal to p to save computation.

Tung Chou and Jin-Han Liou 165

static inline
int vec256_find_first_one(__m256i v, __m256i *out)
{

__m256i zero, mask;
uint64_t index, mask_one;

zero = _mm256_setzero_si256();
mask = _mm256_cmpeq_epi64(v, zero);
mask_one = ~_mm256_movemask_epi8(mask);
index = (_tzcnt_u64(mask_one) & 24) >> 1;
mask = _mm256_set1_epi64x(0x753100006420);
mask = _mm256_srli_epi64(mask, index);
a = _mm256_permutevar8x32_epi32(v, mask);
index = _tzcnt_u64(_mm256_extract_epi64(v, 0));
*out = mask;

return index & 0x3F;
}

Figure 4: Our function for finding the index of the first nonzero bit in a 256-bit vector.

because Ap, . . . , Aµ are always zero. We can modify the set in Step 5 to tp` 1, . . . , µu so
that the algorithm computes only row echelon form.

We have explained why the algorithm always computes reduced row echelon form and
how it can be adapted to computed row echelon form. The remaining question is, how can
we make the algorithm constant-time? In fact, it is not hard to see that the algorithm
must be constant-time if finding the first nonzero entry of v (Step 3) and accesses of Ap,j
(Step 4) and Ai,j (Step 5) are made constant-time. Below we show that the steps can be
made constant-time by using AVX/AVX2 intrinsics.

4.3 Implementing Our Gaussian Elimination algorithm
Consider 128 ă ν ď 256. In this case, our implementation represents A as an array of
µ 256-bit vectors of type __m256i. In each iteration of the algorithm in the previous
subsection, the vector v is thus computed using µ´ p ORs between the 256-bit vectors.
We then use the function vec256_find_first_one in Figure 4 to find the index of the
first one of v.

To understand how the function vec256_find_first_one works, let us first consider
the case when v is not a zero vector. We first use the intrinsic _mm256_cmpeq_epi64 to
generate a 256-bit vector mask where each of the 4 64-bit blocks is set to 0xFF. . . F if the
corresponding block in v is 0, or 0x00. . . 0 if the corresponding block in v is not 0. The 256-
bit vector is then compressed into a 32-bit value mask_one using _mm256_movemask_epi8,
such that each byte (of value either 0xFF or 0x00) in mask is reduced to the complement
of the most significant bit of it. Then, we use the intrinsic _tzcnt_u64 to compute the
index of the first (i.e., the least significant) 1 in the 32-bit value. _tzcnt_u64 is compiled
into the tzcnt instruction. The tzcnt instruction returns the index of the least significant
1 of the operand, or 64 if the operand is 0. The return value of _tzcnt_u64 thus lies
in t0, 8, 16, 24u. The right shift ensures that the value of index must be 0, 4, 8, or 12
when the index of the first nonzero 64-bit block is 0, 1, 2, or 3, respectively. We then
shift each 64-bit block of _mm256_set1_epi64x(0x753100006420) by index bits with
_mm256_srli_epi64. The output mask of _mm256_srli_epi64 can be used to broadcast
the 64-bit block in a 256-bit vector that has the same index with the first nonzero block in
v with _mm256_permutevar8x32_epi32. We then use mask to broadcast the first nonzero
64-bit block of v and use _mm256_extract_epi64(v, 0) to obtain the first nonzero block.

https://orcid.org/0000-0003-3043-6190

166 A Constant-time AVX2 Implementation of a Variant of ROLLO

static inline
__m256i f2m_double_get_coeff_avx(__m256i ai, int index, __m256i mask)
{

__m256i zero, one;

zero = _mm256_setzero_si256();
one = _mm256_set1_epi64x(1);

ai = _mm256_srli_epi64(ai, index);
ai = _mm256_and_si256(ai, one);
ai = _mm256_sub_epi64(zero, ai);
ai = _mm256_permutevar8x32_epi32(ai, mask);

return ai;
}

Figure 5: Our function for extracting a specific bit in a 256-bit vector.

_tzcnt_u64 is used to find the index of the first 1 in the 64-bit block. Finally, the function
returns the result of _tzcnt_u64, which is the lower 6 bits of the index of the first 1 in
v. The top 2 bits of the index of the first 1 in v are implicitly contained in mask. We set
*out to mask so that the caller function gets the information of the top 2 bits.

Now consider the case when v is a zero vector. In this case, both the first and second
lines involving the function _tzcnt_u64 set index to 0. This means that Step 3 of the
algorithm in Section 4.2 sets j to 1, which does not affect correctness of our algorithm.

We use the function in Figure 5 to obtain Ai,j and Ap,j . Without loss of generality, let
us consider the task of obtaining Ai,j . To use the function, the argument ai is set to Ai, and
index and mask are set to the return value and *out generated by vec256_find_first_one.
We first shift each 64-bit block in Ai to the right by index bits. This ensures that
Ai,j is moved to the least significant bit of the 64-bit block it lies in. The lines of
_mm256_and_si256 and _mm256_sub_epi64 then set each bit of the 64-bit block to Ai,j .
The 64-bit block is broadcasted using _mm256_permutevar8x32_epi32(ai, mask), so that
each bit of ai is set to Ai,j . Finally, ai is returned. We then compute an AND between
this return value and Ap and XOR the result into Ai to carry out the operation Ai Ð
Ai`Ap ¨Ai,j . We use essentially the same approach to carry out Ap Ð Ap`Ai ¨ p1´Ap,jq.

5 RSR`, RSR, and Sampling
This sections shows how we use the building blocks presented in the previous sections to
implement RSR` and to sample random elements from S2n

d and S2n
r . We also show how

RSR can be implemented using essentially the same way as how RSR` is implemented.

5.1 Implementing RSR`

Our implementation of RSR` consists of following steps.

1. Compute ps11, . . . , s1drq P Fdr2m , the vector of F2m elements formed by the first dr rows
of row echelon form of Matpsq.

2. E Ð f´1
1 xs11, . . . , s

1
dry.

3. For i “ 2, . . . , d, E Ð E
Ş

f´1
i xs11, . . . , s

1
dry.

4. If rankpMatpsqq ď dr, return E. Otherwise, return K.

Tung Chou and Jin-Han Liou 167

A minor optimization in our implementation is that we use Montgomery’s trick to compute
all f´1

i ’s: we compute f1, f1f2, . . . , f1 ¨ ¨ ¨ fn, compute pf1 ¨ ¨ ¨ fnq
´1, and finally compute

f´1
n as pf1 ¨ ¨ ¨ fn´1q ¨ pf1 ¨ ¨ ¨ fnq

´1, compute f´1
n´1 as pf1 ¨ ¨ ¨ fn´2q ¨ ppf1 ¨ ¨ ¨ fnq

´1 ¨ fnq, and
so on. Each subspace f´1

i xs11, . . . , s
1
dry is represented as an array containing

f´1
i s11, f

´1
i s12, . . . , f

´1
i s1dr.

Following previous implementations of ROLLO, we compute the intersection of two
subspaces using the Zassenhaus algorithm. Let U and V be two matrices over the same
field and with the same number of columns. The Zassenhaus algorithm applies Gaussian
elimination to the matrix

Z “

ˆ

U U
V 0

˙

to obtain row echelon form

Z 1 “

¨

˝

A C
0 B
0 0

˛

‚,

where A and B do not have any zero rows. It is guaranteed that
RowSpacepAq “ RowSpacepUq ` RowSpacepV q

and
RowSpacepBq “ RowSpacepUq

č

RowSpacepV q.
Therefore, in the first iteration of Step 3, to compute

f´1
1 xs11, . . . , s

1
dry

č

f´1
2 xs11, . . . , s

1
dry,

we set row i of U to the vector formed by f´1
1 s1i for i P t1, . . . , dru, set row i of V to

the vector formed by f´1
2 s1i for i P t1, . . . , dru, and apply the algorithm in Section 4.2 to

compute its row echelon form Z 1. Note that Z and Z 1 are 2dr ˆ 2m matrices.
After the Gaussian elimination, the rows of B form a basis of the intersection. We

need to extract the basis or a generating set of the intersection so that we can continue
with the next iteration of Step 3. This might seem to be a trivial task, but it is actually
not. A naive implementation can easily leak secret information (e.g., the dimension of the
intersection) though timing.

Let ∆ “ dr. To obtain a generating set with ∆ elements of the intersection in constant
time, our implementation sets ZpLq to the left half of Z 1, sets ZpRq to the right half of Z 1,
and carries out the following steps for i “ 1, . . . ,∆.

(a) if ZpLqi ‰ 0 and ZpLqi`∆ “ 0, set ZpRqi to ZpRqi`∆.

(b) if ZpLqi ‰ 0 and ZpLqi`∆ ‰ 0, set ZpRqi to 0.
Each iteration can be easily converted into a sequence of logical operations, making the
loop constant-time. We claim that after the last iteration, the first dr rows of ZpRq will
form a generating set with dr elements of the intersection.

It might be easier to see why our claim is true by analysing how the loop changes ZpRq
in different cases. Let µ and ν be the number of rows of A and B, respectively. Then Z 1
can be written as

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1,1 . . . a1,m
...

...
aµ,1 . . . aµ,m

C

0
b1,1 . . . b1,m
...

...
bν,1 . . . bν,m

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“
`

ZpLq ZpRq
˘

.

https://orcid.org/0000-0003-3043-6190

168 A Constant-time AVX2 Implementation of a Variant of ROLLO

C is a µˆm matrix, and the 0 at the bottom right corner is a matrix of m columns and
2dr ´ µ´ ν (which can be 0) rows. Note that we must have µ ě ν and ν ď dr.

We consider the following three cases: 1) µ ě dr, 2) µ ă dr and µ ` ν ě dr, and 3)
µ ă dr and µ` ν ă dr. In the first case, at the end of the loop, the first dr rows of ZpRq
will become

¨

˚

˚

˚

˚

˚

˝

0
b1,1 . . . b1,m
...

...
bν,1 . . . bν,m

0

˛

‹

‹

‹

‹

‹

‚

,

where the zero matrix at the bottom has 2dr´ µ´ ν rows, and the zero matrix on the top
has dr ´ ν ´ p2dr ´ µ ´ νq “ µ ´ dr rows. In the second case, the first dr rows of ZpRq
will become

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

bdr´µ`1,1 . . . bdr´µ`1,m
...

...
bν,1 . . . bν,m

0
b1,1 . . . b1,m
...

...
bdr´µ,1 . . . bdr´µ,m

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where the zero matrix in the middle has dr´ ν rows. In the third case, the first dr rows of
ZpRq will become

¨

˚

˚

˚

˚

˚

˝

0
b1,1 . . . b1,m
...

...
bν,1 . . . bν,m

0

˛

‹

‹

‹

‹

‹

‚

,

where the zero matrix on the top has µ rows, and the zero matrix at the bottom has
dr ´ µ´ ν rows. In other words, the first dr rows of ZpRq always form a generating set of
the intersection after the loop is carried out, which shows the correctness of our claim.

At the end of Step 3, we obtain a dr ˆm matrix that forms a generating set of E. For
decapsulation, we compute reduced row echelon form of this matrix to obtain a unique
representation of E for hashing.

5.2 Implementing RSR
One can implement RSR using essentially the same steps as presented at the beginning of
Section 5.1. One only needs to modify Step 1 so that it becomes

1. Compute ps11, . . . , s1mq P Fdr2m , the vector of F2m elements formed by the first m rows
of row echelon form of Matpsq.

Indeed, since m ă n, we have S “ xs11, . . . , s1my. Modifying Step 1 in this way will change
the dimension of the matrices Z and Z 1 in the Zassenhaus algorithm. Now the matrices
are in F2mˆ2m

2 instead of F2drˆ2m
2 . As dr ă m, a constant-time implementation for RSR

is thus expected to be slower than a constant-time implementation for RSR`. We note
that the loop for extracting a generating set of the intersection also needs to be modified
because the dimension of the matrices has changed. This can be done by setting ∆ to m
instead of dr.

Tung Chou and Jin-Han Liou 169

5.3 Sampling from S2n
r and S2n

d

In the key generation algorithm, ph1, h2q is sampled from S2n
d . In the encapsulation

algorithm, pe1, e2q is sampled from S2n
r . Without loss of generality, let us consider the

task of generating ph1, h2q. As explained in Section 3.2, h1 and h2 can be considered as

h1 “ α1β1 ` α2β2 ` ¨ ¨ ¨ ` αdβd,

h2 “ γ1β1 ` γ2β2 ` ¨ ¨ ¨ ` γdβd,

where αi, γi P F2n and βi P F2m for all i. In fact, Mat(h1, h2) is simply

ˆ

αT1 . . . αTd
γT1 . . . γTd

˙

¨

˚

˝

β1
...
βd

˛

‹

‚

P F2nˆm
2 ,

where αi’s, βi’s, and γi’s are considered as row vectors over F2. By definition, Supp(h1, h2)
= Supp(h1) + Supp(h2) is the row space of Mat(h1, h2). Mat(h1, h2) is of rank d if and
only if both matrices being multiplied are of rank d (i.e., full rank).

Following the discussion above, we carry out the following steps to generate ph1, h2q.

1. Generate a random dˆm matrix and use the algorithm in Section 4.2 to check if it
is full rank by reducing it to row echelon form. If the matrix is not full rank, repeat
this step.

2. Generate a random dˆ 2n matrix and use use the algorithm in Section 4.2 to check
if it is full rank by reducing it to row echelon form. If the matrix is not full rank,
repeat this step.

3. Obtain βi’s from the d ˆm matrix. Obtain αi’s and γi’s from the d ˆ 2n matrix.
Compute h1 as

ř

i αiβi to obtain the polynomial representation.

We do not compute the polynomial representation of h2 because we can use γi’s and βi’s
to carry out the multiplication between h´1

1 and h2 using the technique introduced in
Section 3.2.

6 Experiment Results and Discussions
This section presents some experiment results. All cycle counts for our implementation
and the implementation of [CCK21] are measured on one core of an Intel Xeon E3-1220
v5 CPU (Skylake), with Turbo Boost and hyper-threading disabled. The cycle counts
for [AMAB`21] are taken from the paper directly and are measured on an Intel Core
i7-8850H CPU (Coffee Lake).

Table 3 shows the timings of some operations in our implementation. Each column
correspond to a specific operation, as explained below.

Table 3: Cycle counts for several components in our implementation for ROLLO`.

instance mul F mul E inv reduced echelon
ROLLO`-I-128 22649 20100 779880 23812 84401
ROLLO`-I-192 25219 25223 915808 32543 110210
ROLLO`-I-256 34527 34597 1382769 50670 183346
ROLLO`-II-128 50651 44618 4502184 28496 92240
ROLLO`-II-192 63852 63688 3795529 37535 109578
ROLLO`-II-256 74067 66292 5528510 40243 138215

https://orcid.org/0000-0003-3043-6190

170 A Constant-time AVX2 Implementation of a Variant of ROLLO

Table 4: Cycle counts for key generation, encapsulation, and decapsulation of the ROLLO-I
implementations from [AMAB`21] (the paper did not implement ROLLO-II), our ROLLO`
implementation, and the BIKE implementation from [CCK21].

instance key gen. encap. decap level reference

ROLLO-I-128 11034623 984432 9775241 1 [AMAB`21]11204649 320835 9744693
ROLLO`-I-128 851823 30361 673666 1

this paperROLLO`-I-192 980860 38748 878398 3
ROLLO`-I-256 1477519 55353 1635966 5
ROLLO`-II-128 4663096 70621 876533 1

this paperROLLO`-II-192 4058419 94138 1060271 3
ROLLO`-II-256 4947630 90021 1497315 5

bikel1 589625 114256 1643551 1 [CCK21]
bikel3 1668511 267644 5128078 3

• “mul F” means a multiplication of two F2mn elements, where the support of one of
the elements is a subset of F . The multiplications of h´1

1 ¨ h2 and h1 ¨ c are of this
type.

• “mul E” means a multiplication of two F2mn elements, where the support of one of
the elements is a subset of E. The multiplication of h ¨ e2 is of this type.

• “inv” means a field inversion in F2mn , e.g., computation of h´1
1 .

• “echelon” means the process of reducing a 2dr ˆ 2m matrix over F2 into its row
echelon form, which is used for the Zassenhaus algorithm.

• “reduced” means the process of reducing a dr ˆm matrix over F2 into its reduced
row echelon form, which is used for deriving a unique representation of E for hashing.

Table 4 presents the cycle counts for key generation, encapsulation, and decapsulation of
our ROLLO` implementation, the two ROLLO-I-128 implementations from [AMAB`21],
and the BIKE implementation from [CCK21]. The numbers of our implementation and the
implementation of [CCK21] are measured using the SUPERCOP benchmarking framework.

6.1 How about the Speed of ROLLO-I?
One might think that the reason why our implementation is an order of magnitude faster
than the implementations of [AMAB`21] is because the specification of ROLLO` is
different from ROLLO-I. This is not true.

First of all, the encapsulation algorithm of ROLLO` is identical to that of ROLLO-I,
so our encapsulation time is exactly the encapsulation time one can achieve for ROLLO-I.
Second, the key generation algorithm of ROLLO` is almost identical to that of ROLLO-I,
so our key generation time is expected to be very close to the key generation time one
can achieve for ROLLO-I. Finally, the decapsulation algorithm of ROLLO` is somewhat
different from that of ROLLO-I, but it is easy to estimate the decapsulation time of
ROLLO-I when our techniques are used. To use our techniques for ROLLO-I, the matrices
for the Zassenhaus algorithm will be 2m ˆ 2m matrices instead of 2dr ˆ 2m matrices
as discussed in Section 5.2. Assuming that the decapsulation time is dominated by the
Zassenhaus algorithm, which is true according to our experiments, the decapsulation
time of ROLLO-I-128 is expected to be pm{drq2 “ 1.43 times our decapsulation time of
ROLLO`-I-128, which is still much smaller than 9744693.

Tung Chou and Jin-Han Liou 171

6.2 How about Other Platforms?
One might wonder whether it is possible to port our implementations to non-x86 platforms.
Although how ROLLO` should be implemented on other platforms is out of the scope of
this paper, we explain below how this can be done.

First of all, as shown in Section 3, our implementation makes use of pclmulqdq for
carryless multiplications. Many platforms do not support any instruction for carryless
multiplications. However, one can still use instructions for integer multiplications to carry
out carryless multiplications. For example, as shown in [CC21, Section 5.1.2], umlal can
be used to carry out carryless multiplications on Cortex-M4. Similarly, one can easily
implement a function that achieves the functionality of pclmulqdq on any reasonable
platform using instructions for integer multiplications and logical instructions. With such
a function, one can easily build multiplication functions for F2m and F2n .

Our implementation also makes use of tzcnt for counting trailing zeros. Many platforms
do not support any instruction for counting trailing zeros. However, as shown in [And05],
there are many methods to count the number of trailing zeros without using any tzcnt-like
instruction. Note that the methods are not constant-time but can all be easily made
constant-time. On Cortex-M4, one can simply use rbit to reverse the bits in a word and
clz to count leading zeros. Following the discussion above, one can easily implement the
functionality of tzcnt on any reasonable platform.

With a function that implements the functionality of tzcnt, one can find the index j
of the first nonzero entry of a vector: we need to do this for the vector v in Step 3 of the
Gaussian elimination algorithm presented in Section 4.2. Assuming that v is represented as
an array of b-bit words. It is easy to obtain the first nonzero word in the vector along with
its index j1 “ tj{bu in constant time using logical instructions. Then, using the function
that implements the functionality of tzcnt and j1, one can easily derive the index j. A
function find_first_one for finding the index of the first nonzero entry in a 256-bit vector
is shown in Figure 6. One can also easily obtain the jth entry of a vector in constant
time using simple instructions. This operation is required in Step 4 and 5 of the Gaussian
elimination algorithm. A function get_coef for obtaining the jth entry of a 256-bit vector
is also shown in Figure 6.

The function transpose_64x256_sp_asm and the loop for obtaining the generating set
of the intersection of two linear subspaces (Section 5.1) both consist of logical instructions,
so it is easy to implement the same functionalities on any reasonable platform.

Acknowledgements
This work was funded by Taiwan Ministry of Science and Technology (MOST) Grant
109-2222-E-001-001-MY3. Special thanks to the Cybersecurity Center of Excellence Project
at National Applied Research Labs, Taiwan.

References
[AASA`20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh

Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody, Rene Peralta,
Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status report on
the second round of the NIST post-quantum cryptography standardization
process, 2020. https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.
8309.pdf.

[ABB`20] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Santosh Ghosh, Shay

https://orcid.org/0000-0003-3043-6190
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf

172 A Constant-time AVX2 Implementation of a Variant of ROLLO

Gueron, Tim Güneysu, Carlos Aguilar Melchor, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur, and Gilles
Zémor. Bike – bit flipping key encapsulation, 2020. https://bikesuite.
org/.

[ABC`20] Martin Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben
Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters,
Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin
Tomlinson, and Wen Wang. Classic McEliece, 2020. https://classic.
mceliece.org/.

[ABD`17a] Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville, Philippe
Gaborit, Adrien Hauteville, Olivier Ruatta, Jean-Pierre Tillich, and Gilles
Zémor. LAKE, 2017. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-1/submissions/LAKE.
zip.

[ABD`17b] Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville, Philippe
Gaborit, Adrien Hauteville, Olivier Ruatta, Jean-Pierre Tillich, and Gilles
Zémor. LOCKER, 2017. https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-1/submissions/LOCKER.
zip.

[ABD`20] Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit,
Adrien Hauteville, Olivier Ruatta, Jean-Pierre Tillich, Gilles Zémor, Carlos
Aguilar-Melchor, Slim Bettaieb, Loïc Bidoux, Magali Bardet, and Ayoub
Otmani. ROLLO, 2020. https://pqc-rollo.org/index.html.

[AMAB`17] Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Loïc
Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Phillipe Gaborit,
Adrien Hauteville, and Gilles Zémor. Ouroboros-R, 2017. https:
//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round-1/submissions/Ouroboros_R.zip.

[AMAB`20] Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Phillippe Gaborit, Gilles Zémor, Alain
Couvreur, and Adrien Hauteville. RQC, 2020. https://pqc-rqc.org/.

[AMAB`21] Carlos Aguilar-Melchor, Nicolas Aragon, Emanuele Bellini, Florian Caullery,
Rusydi H Makarim, and Chiara Marcolla. Constant time algorithms for
ROLLO-I-128. SN Computer Science, 2(5):1–19, 2021.

[And05] Sean Eron Anderson. Bit twiddling hacks, 2005. https://graphics.
stanford.edu/~seander/bithacks.html.

[BBB`20] Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vincent
Neiger, Olivier Ruatta, and Jean-Pierre Tillich. An algebraic attack on rank
metric code-based cryptosystems. In Advances in Cryptology – EUROCRYPT
2020, pages 64–93. Springer, 2020. https://arxiv.org/pdf/1910.00810.
pdf.

[BBC`20] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner,
Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Verbel. Improvements of
algebraic attacks for solving the rank decoding and minrank problems. In
Advances in Cryptology – ASIACRYPT 2020, pages 507–536. Springer, 2020.
https://arxiv.org/pdf/2002.08322.pdf.

https://bikesuite.org/
https://bikesuite.org/
https://classic.mceliece.org/
https://classic.mceliece.org/
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/LAKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/LAKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/LAKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/LOCKER.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/LOCKER.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/LOCKER.zip
https://pqc-rollo.org/index.html
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/Ouroboros_R.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/Ouroboros_R.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/Ouroboros_R.zip
https://pqc-rqc.org/
https://graphics.stanford.edu/~seander/bithacks.html
https://graphics.stanford.edu/~seander/bithacks.html
https://arxiv.org/pdf/1910.00810.pdf
https://arxiv.org/pdf/1910.00810.pdf
https://arxiv.org/pdf/2002.08322.pdf

Tung Chou and Jin-Han Liou 173

[BCS13] Daniel J Bernstein, Tung Chou, and Peter Schwabe. Mcbits: fast constant-
time code-based cryptography. In Cryptographic Hardware and Embedded
Systems – CHES 2013, pages 250–272. Springer, 2013. https://eprint.
iacr.org/2015/610.pdf.

[Be] Daniel J. Bernstein and Tanja Lange (editors). eBACS: ECRYPT bench-
marking of cryptographic systems. Accessed Sep. 29, 2021. https://bench.
cr.yp.to.

[BY19] Daniel J Bernstein and Bo-Yin Yang. Fast constant-time GCD computation
and modular inversion. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 340–398, 2019. https://eprint.iacr.org/2019/
266.

[CC21] Ming-Shing Chen and Tung Chou. Classic McEliece on the ARM Cortex-M4.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
125–148, 2021. https://eprint.iacr.org/2021/492.pdf.

[CCK21] Ming-Shing Chen, Tung Chou, and Markus Krausz. Optimizing BIKE for the
Intel Haswell and ARM Cortex-M4. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 97–124, 2021. https://eprint.
iacr.org/2021/493.pdf.

[Cho17] Tung Chou. Mcbits revisited. In Cryptographic Hardware and Embedded
Systems – CHES 2017, pages 213–231. Springer, 2017. https://eprint.
iacr.org/2017/793.pdf.

[DGK20] Nir Drucker, Shay Gueron, and Dusan Kostic. Constant-time implementations
in some proposed KEMs: the case of ROLLO and RQC, 2020. http://math.
haifa.ac.il/shay/Side_Channels_2020_06_23_V01.pdf.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H Silverman. NTRU: A ring-
based public key cryptosystem. In International Algorithmic Number Theory
Symposium, pages 267–288. Springer, 1998. https://ntru.org/f/hps98.
pdf.

[IT88] Toshiya Itoh and Shigeo Tsujii. A fast algorithm for computing multiplica-
tive inverses in GF(2m) using normal bases. Information and computation,
78(3):171–177, 1988. https://core.ac.uk/download/pdf/82657793.pdf.

[LMB`19] Jérôme Lablanche, Lina Mortajine, Othman Benchaalal, Pierre-Louis Cayrel,
and Nadia El Mrabet. Optimized implementation of the NIST PQC submis-
sion ROLLO on microcontroller. 2019. https://eprint.iacr.org/2019/
787.pdf.

[Pei14] Chris Peikert. Lattice cryptography for the internet. In International
workshop on post-quantum cryptography, pages 197–219. Springer, 2014.
https://web.eecs.umich.edu/~cpeikert/pubs/suite.pdf.

https://orcid.org/0000-0003-3043-6190
https://eprint.iacr.org/2015/610.pdf
https://eprint.iacr.org/2015/610.pdf
https://bench.cr.yp.to
https://bench.cr.yp.to
https://eprint.iacr.org/2019/266
https://eprint.iacr.org/2019/266
https://eprint.iacr.org/2021/492.pdf
https://eprint.iacr.org/2021/493.pdf
https://eprint.iacr.org/2021/493.pdf
https://eprint.iacr.org/2017/793.pdf
https://eprint.iacr.org/2017/793.pdf
http://math.haifa.ac.il/shay/Side_Channels_2020_06_23_V01.pdf
http://math.haifa.ac.il/shay/Side_Channels_2020_06_23_V01.pdf
https://ntru.org/f/hps98.pdf
https://ntru.org/f/hps98.pdf
https://core.ac.uk/download/pdf/82657793.pdf
https://eprint.iacr.org/2019/787.pdf
https://eprint.iacr.org/2019/787.pdf
https://web.eecs.umich.edu/~cpeikert/pubs/suite.pdf

174 A Constant-time AVX2 Implementation of a Variant of ROLLO

A The Functions find_first_one and get_coef.

uint32_t is_zero(uint32_t w)
{

uint32_t t = w;

t |= t >> 16;
t &= 0xFFFF;
t -= 1;
t >>= 31;
t = -t;

return t;
}

int find_first_one(uint32_t v[8])
{

uint32_t w = 0, z, found = 0;
int i, j_prime = 0;

for (i = 0; i < 8; i++)
{

z = is_zero(v[i]);
w |= v[i] & (~found);
found |= ~z;
j_prime += (~found) & 1;

}

return ((tzcnt(w) & 31) + (j_prime << 5)) & 0xFF;
}

int get_coef(uint32_t v[8], int j)
{

uint32_t w = 0;
int i;

for (i = 0; i < 8; i++)
w |= is_zero(i ^ (j >> 5)) & v[i];

return (w >> (j & 31)) & 1;
}

Figure 6: The functions find_first_one and get_coef.

	Introduction
	Previous Works
	Our Contribution
	Techniques
	Availability of Source Code
	Organization

	ROLLO and ROLLO+
	Parameter Sets
	Finite Fields
	Terminologies and Notations
	Decoding Algorithms
	Key generation, Encapsulation, Decapsulation
	IND-CPA Security of ROLLO+
	Building Blocks

	Field Multiplications and Inversions
	Field multiplications in F2m and F2n
	Accelerating Multiplications in F2mn with Matrix Transposition
	Field Inversions

	Gaussian Elimination
	A Constant-time Algorithm for Computing Systematic Form
	Computing Row Echelon Form and Reduced Row Echelon Form
	Implementing Our Gaussian Elimination algorithm

	RSR+, RSR, and Sampling
	Implementing RSR+
	Implementing RSR
	Sampling from S2nr and S2nd

	Experiment Results and Discussions
	How about the Speed of ROLLO-I?
	How about Other Platforms?

	The Functions find_first_one and get_coef.

