
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 94–126. DOI:10.46586/tches.v2022.i1.94-126

CFNTT: Scalable Radix-2/4 NTT Multiplication
Architecture with an Efficient Conflict-free

Memory Mapping Scheme
Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu*

Beijing National Research Center for Information Science and Technology (BNRist).
School of Integrated Circuits, Tsinghua University, China.

cxr19@mails.tsinghua.edu.cn;{bohanyang,yinsy,wsj,liulb}@tsinghua.edu.cn
* Corresponding Author.

Abstract. Number theoretic transform (NTT) is widely utilized to speed up polyno-
mial multiplication, which is the critical computation bottleneck in a lot of crypto-
graphic algorithms like lattice-based post-quantum cryptography (PQC) and homo-
morphic encryption (HE). One of the tendency for NTT hardware architecture is to
support diverse security parameters and meet resource constraints on different com-
puting platforms.Thus flexibility and Area-Time Product (ATP) become two crucial
metrics in NTT hardware design. The flexibility of NTT in terms of different vector
sizes and moduli can be obtained directly. Whereas the varying strides in memory
access of in-place NTT render the design for different radix and number of parallel
butterfly units a tough problem. This paper proposes an efficient conflict-free memory
mapping scheme that supports the configuration for both multiple parallel butterfly
units and arbitrary radix of NTT. Compared to other approaches, this scheme owns
broader applicability and facilitates the parallelization of non-radix-2 NTT hard-
ware design. Based on this scheme, we propose a scalable radix-2 and radix-4 NTT
multiplication architecture by algorithm-hardware co-design. A dedicated schedule
method is leveraged to reduce the number of modular additions/subtractions and
modular multiplications in radix-4 butterfly unit by 20% and 33%, respectively. To
avoid the bit-reversed cost and save memory footprint in arbitrary radix NTT/INTT,
we put forward a general method by rearranging the loop structure and reusing
the twiddle factors. The hardware-level optimization is achieved by excavating the
symmetric operators in radix-4 butterfly unit, which saves almost 50% hardware
resources compared to a straightforward implementation. Through experimental
results and theoretical analysis, we point out that the radix-4 NTT with the same
number of parallel butterfly units outperforms the radix-2 NTT in terms of area-time
performance in the interleaved memory system. This advantage is enlarged when
increasing the number of parallel butterfly units. For example, when processing 1024
14-bit points NTT with 8 parallel butterfly units, the ATP of LUT/FF/DSP/BRAM
in radix-4 NTT core is approximately 2.2× /1.2× /1.1× /1.9× less than that of the
radix-2 NTT core on a similar FPGA platform.
Keywords: number theoretic transform, polynomial multiplication, algorithm-hardware
co-design, radix-4, conflict-free memory mapping scheme

1 Introduction
In recent years, both industrial and academic community have sparked a boom in the
research of post-quantum cryptography and homomorphic encryption. Since the Shor
algorithm renders the traditional cryptosystems, like Rivest Shamir Adleman (RSA) and

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.94-126
mailto:cxr19@mails.tsinghua.edu.cn; {bohanyang, yinsy, wsj, liulb}@tsinghua.edu.cn
http://creativecommons.org/licenses/by/4.0/

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 95

Elliptic Curve Cryptography (ECC), to be cracked by quantum computer within polynomial
time [Sho94], the National Institute of Standards and Technology (NIST) has initiated a
contest to solicit post-quantum cryptographic algorithms around the world. In July 2020, 7
finalists and the 8 alternate candidates are announced in the third round and lattice-based
schemes account for 5/7 of them. Lattice-based cryptography provides both solid security
and hardware friendly way to build post-quantum cryptosystems [MAA+20]. It also offers
other advanced applications, such as fully homomorphic encryption [Gen09] and zero
knowledge proof [LNS20]. The polynomial multiplication is the well-known computational
bottleneck in lattice-based schemes, while leveraging number theoretic transform can
reduce its complexity from O(N2) to O(N logN) [Nic71]. As a result, works focused on
the design of NTT hardware accelerator have been intensively carried out.

Although the NTT algorithm applied in lattice-based PQC and HE is slightly different,
the overall hardware architecture has a lot of similarities. It is interesting to propose a NTT
multiplication architecture as a building block for these schemes [CHK+21] [MKO+20a].
Besides, some resource-constrained scenarios focus on compact and energy-efficient design
like IoT, while others pursue high throughput and better performance like 5G [XHY+20].
To meet these diverse requirements, flexibility and Area-Time Product become two crucial
metrics in NTT hardware design.

Related work. Plenty of works have developed optimization techniques for radix-2
NTT hardware architecture. But the design of radix-4 NTT hardware core is still rare.
With regard to the algorithm level optimization, [POG15] and [ZYC+20] demonstrate
the iterative radix-2 NTT algorithm free from the pre-processing and post-processing. It
reduces the computation complexity by merging the 2N -th primitive roots of unity and
scale factor into every stage. [XL21] and [POG15] avoid the bit-reversed cost by changing
the loop structure of decimation in time (DIT) and decimation in frequency (DIF) radix-2
NTT. This method is also adopted by the reference software implementation of Kyber
published by NIST. [ACC+21] and [CHK+21] introduce various NTT extension algorithms
by applying versatile FFT tricks, enabling the software implementation of polynomial
multiplication on NTT unfriendly rings. In terms of architecture level design, unlike the
popular pipelined FFT architecture, such as single delay feedback (SDF) and multiple delay
commutator (MDC) [TCH19] [HT96], the current NTT core mainly adopts memory-based
architecture allowing for a trade-off between area and performance. [CMV+15] proposes a
high-speed pipelined polynomial multiplication architecture based on constant geometry
radix-2 NTT. This paper points out the temporal conflicts in pipeline architecture. [FL19]
presents a HE integer multiplier utilizing the negative wrapped convolution and Ping-pong
radix-2 FFT algorithm. Compared to in-place NTT architecture, the aforementioned two
types have a simpler memory access pattern at the price of double memory overheads.
Actually, [GGMG13] and [SYJ84] indicate that radix-4 FFT architecture has advantages
in high-throughput-demanding applications.

The conflict-free memory mapping scheme is a key component for parallel NTT hard-
ware architecture. However, to our best knowledge, an efficient and general memory
mapping scheme for arbitrary radix in-place NTT with parallel butterfly units is still in
lack. [Joh92] presents a conflict-free address mapping method for arbitrary radix FFT.
[LSW01] and [WHEW14] design a dedicated radix-2 FFT and radix-16 NTT architecture
based on this method, respectively. But it is identified in [XMX17] and [ZYC+20] that
this scheme cannot be applied to the case when placing multiple parallel butterfly units
into every stage. [ZYC+20] handles this problem by reordering the last loop of NTT
algorithm, but it finitely considers the case of radix-2 NTT. [XMX17] [TJS03] present a
memory mapping approach in terms of radix-2k constant geometry FFT (not in-place)
configured with several parallel butterfly units. The vector radix-2 NTT core configured
with 32 parallel butterfly units is proposed in [XHY+20]. The memory access pattern is

96 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

implemented by six types of permutation networks, which have complex control mode
and consume much hardware resources. [RV08] puts forward an address mapping scheme
supporting arbitrary radix in-place FFT and parallel butterfly units. But this scheme
requires a lot of banks positioning at every stage as read-write buffer. The memory mapping
approach proposed in [RMD+15] will vary with stages, increasing the complexity of the
pipeline design. A constant geometry radix-2 NTT architecture with only two parallel
butterfly units is demonstrated in [BUC19]. [FLX20] also proposes a parallel Stockham
NTT hardware design. [XWXY17] derives an address mapping approach for parallel
arbitrary radix MDC-memory-based FFT architecture. However, the aforementioned three
cases consume double memory overheads. [MKÖ+20b] [RVM+14] utilize a single RAM
and extra registers to construct the parallel radix-2 NTT address mapping scheme that
leads to pipeline stalls.

Contribution. We release the design codes as open source on https://github.com/
xiang-rc/cfntt_ref. In general, our contributions are summarized as follows:

1. We provide a detailed derivation for bit-reversed-free radix-4 NTT/INTT algorithm
with low complexity over polynomial rings. To avoid the bit-reversed cost and reduce
the memory footprint in arbitrary radix NTT/INTT, we put forward a general
method by rearranging the loop structure and making full use of the properties
of twiddle factors. The proposed new radix-4 DIT-NR NTT and DIF-RN INTT
algorithms achieve nearly minimal number of modular multiplication N log4 N and
clock cycles N/4 log4 N theoretically.

2. A scalable radix-2 and radix-4 NTT multiplication architecture is proposed in this
paper. We adopt a dedicated schedule method to reduce the number of modular
additions/subtractions and multiplications in radix-4 butterfly unit by 20% and 30%,
respectively. By reusing the symmetric operators in radix-4 butterfly unit, we save
almost 50% area overhead compared to a straightforward implementation. Through
experimental results and theoretical analysis, we point out that the radix-4 NTT has
an advantage over radix-2 NTT in terms of area-time performance in the interleaved
memory system, which is enhanced when increasing the number of parallel butterfly
units. The ATP of LUT/FF/DSP/BRAM in radix-4 NTT core is approximately
2.2× /1.2× /1.1× /1.9× less than that of the radix-2 NTT core on a similar FPGA
platform when processing 1024 14-bit points NTT with 8 butterfly units.

3. The efficient memory access of in-place NTT is guaranteed by the devised new conflict-
free mapping scheme, which supports the configuration for multiple parallel butterfly
units and arbitrary radix. This scheme avoids introducing queues and pipeline stalls,
thus enabling approximately 100% utilization of pipelined NTT architecture. It also
paves the way for other non-radix-2 NTT hardware designs. In contrast to other
approaches, this scheme covers broader applicability while still maintaining low logic
and storage overhead.

2 Preliminaries
2.1 NTT-based Multiplication Algorithm
The traditional Fast Fourier Transform (FFT) applied in the digital signal process is defined
on the complex field C, which reduces the computation complexity of Discrete Fourier
Transform (DFT) from O(N2) to O(N logN). The Number Theoretical Transform (NTT)
can be regarded as DFT defined on finite field Zq, so that the vector multiplication can
be computed without loss accuracy. The Inverse Number Theoretical Transform (INTT)

https://github.com/xiang-rc/cfntt_ref
https://github.com/xiang-rc/cfntt_ref

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 97

can be obtained by replacing the twiddle factor ω of NTT with its inverse element ω−1

followed by multiplying the scale factor N−1. The concrete formula is described as belows:

Ai = NTT (ai) =
N−1∑
j=0

ajω
ij
N mod q i = 0, 1, ..., N − 1

aj = INTT (Aj) = 1
N

N−1∑
i=0

Aiω
−ij
N mod q j = 0, 1, ..., N − 1

(1)

NTT multiplication on finite field. In general, the prime modulus q needs to satisfy
q ≡ 1 (mod N), which ensures the existence of N -th primitive roots of unity ω. N is a
power of 2. As a result, the multiplication of two N -term polynomials on finite field can
be performed as equation 2, where the length of vector a and b is N , the zeropadding
operation is to double the length of input vector by appending N zeroes at the end.
Therefore, the length of vector c becomes 2N .

c = INTT (NTT (zeropadding(a)) ·NTT (zeropadding(b))) (2)

NTT multiplication over the ring. In lattice-based PQC algorithm, the polynomial
multiplication over the ring Zq[x]/〈f(x)〉 needs extra modular reduction with irreducible
polynomial f(x). But if f(x) = xN + 1, we can use the well-known negative wrapped
convolution (NWC) method to avoid doubling efforts and extra modular reduction. The
NWC method can be expressed as equation 3, where φ is 2N -th roots of unity and q ≡ 1
(mod 2N) at this time.

Pre-processing : ai = ai · φi
2N bi = bi · φi

2N

Multiplication : ci = INTT (NTT (ai) ·NTT (bi))
Post-processing : ci = ci · φ−i

2N

(3)

The so-called pre-processing and post-processing can be eliminated by merging factors
φi

2N (φ−i
2N) into every stage of NTT [ZYC+20]. While the bit-reversed operation can be

Algorithm 1 Radix-2 Bit-reversed-free DIT NTT Algorithm
Input: a denotes a vector of length N , q is modulus and φ2N is 2N -th primitive roots of unity.
Output: A = DIT_NTT (a)
1: r ← 1
2: for p = log2 N − 1 to 0 do
3: J ← 2p

4: ωm ← φ
N/(2J)
2N

5: for k = 0 to N/(2J)− 1 do
6: ω ← ω

bit-reversed(r)
m

7: r ← r + 1
8: for j = 0 to J − 1 do
9: u← a2kJ+j

10: v ← a2kJ+j+J

11: A2kJ+j ← (u+ v · ω) mod q
12: A2kJ+j+J ← (u− v · ω) mod q
13: end for
14: end for
15: end for
16: return A

further removed by rearranging the loop structure [XL21]. The complete bit-reversed-free
radix-2 iterative NTT with low complexity is presented in algorithm 1, where the twiddle
factors ω can be precomputed and stored in the ROM. The operations within the innermost
loop are commonly defined as the butterfly computation owing to its butterfly-like dataflow

98 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

topological structure. [ACC+21] and [CHK+21] introduce a series of NTT extension
algorithms, e.g., mixed-radix, Good’s trick and multiple modulus NTT, which allows
the NTT multiplication to be performed on NTT-unfriendly rings. However, these novel
algorithms are only implemented on the software platform Cortex-M4 and AVX2.
Radix-2k NTT algorithm. The appearance of radix-22 is a milestone in FFT hardware
design, which is extended to radix-2k later [GGMG13]. The radix-4 FFT is preferable to
be applied in high-throughput-demanding applications [SYJ84]. In analogy with FFT, we
can also obtain the radix-2k NTT algorithm. Actually, in [ABCG20] [BKS19] [GOPS13]
[CHK+21], the radix-2k NTT algorithm is realized by merging multiple layers of radix-2
NTT on the resource-constrained micro-controller platforms. This method is leveraged
to reduce the cache loading and storing overheads. In this paper, we will provide the
detailed derivation of bit-reversed-free radix-4 NTT/INTT algorithm with low computation
complexity. Furthermore, we point out that its hardware advantage in terms of better
area-timing trade-off is benefited from the symmetric operators and less number of banks.
Properties of twiddle factor. The twiddle factor used in NTT algorithm refers to
powers of the N -th primitive roots of unity (ωi

N). In the deduction process, we will show
that the low computation complexity and minimal memory footprint of NTT algorithm
are based on the unique properties of twiddle factors, which can be generalized as four
items :

Sum property:
N−1∑
j=0

ωkj
N = (ωk

N)N − 1
ωk

N − 1
= (ωN

N)k − 1
ωk

N − 1
= 0 where k - N

Binary property: ω
k+N/2
N = −ωk

N

Periodicity property: ωk+N
N = ωk

N

Elimination property: ωdk
dN = ωk

N

(4)

It is easy to see that the Binary property can be derived from Elimination property and
the 2N -th roots of unity φ2N also has similar properties.

2.2 Scalability of NTT Architecture
2.2.1 Dimensions of Scalability

Motivation. Works in [BUC19] [XHY+20] [MKÖ+20b] consecutively propose the config-
urable PQC cryptosystems based on a NTT processor with different vector length and
moduli. [BUC19] mainly targets energy efficiency for IoT and thus proposes a NTT core
with 2 butterfly units. While [XHY+20] aims to achieve high performance for 5G and puts
forward a vector NTT processor with 32 butterfly units. To support the configuration
for diverse security parameters and satisfy different resource constraint of computation
platform, we propose a scalable NTT multiplication architecture in this paper. Based
on this design paradigm, one can generate the desired lightweight or high-performance
NTT core for different application scenarios. Our scalable in-place NTT multiplication
architecture considers four dimensions of scalability: length of data vector, different modu-
lus, number of parallel butterfly units and different radix, which are denoted as N, q, d,
R, respectively. While the configuration for N and q can be easily obtained, supporting
different radix and multiple parallel butterfly units becomes a tough problem owing to the
complex memory access in every stage. In fact, the interconnect network is an important
component of NTT hardware, which guarantees the data points to be fetched and stored
without conflicts so that no queues and reordering are needed. For example, [XHY+20]
increases the number of parallel butterfly units to achieve high throughput in radix-2
NTT. For correct memory access, it proposes a permutation network, which needs six
configuration modes and consumes more hardware resources. To reduce these overheads,

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 99

we propose an efficient conflict-free memory mapping scheme. This scheme is also valid for
parallel non-radix-2 NTT hardware design.
Interleaved memory system. If the radix-R in-place NTT contains d butterfly units,
R × d memory access should be performed in parallel. The memory bandwidth can be
increased by partitioning the memory into R × d independent banks, which is referred
to an interleaved (matched) memory system [TJS03]. Distributing data points over the
interleaved memory system without conflict is a more difficult and universal problem
compared to that of unmatched memory system. Because multiple data points can be
stored into a single address by increasing the row-bandwidth in unmatched memory system.
Its storage structure can be straightforwardly obtained according to the mapping scheme
of the interleaved memory system. Thus we focus on the memory mapping scheme for
in-place NTT with interleaved memory system in this article.

2.2.2 Temporal and Spatial Conflicts

Temporal conflict. In pipelined NTT architecture, temporal conflict occurs when the
read operation of stage k is performed before the write operation of stage k− 1 [CMV+15].
Figure 1 provides an example of 16-point in-place radix-2 NTT for this read-after-write
(RAW) conflict. At the first round of stage 1, the four data points (a0, a2, a1, a3) are
fetched from the banks right at the moment when the four data points (a0, a1, a2, a3) at
stage 0 are written into the banks, which results in the critical point of temporal conflict.
In pipeline radix-2 in-place NTT architecture, the transitional moment between the last

0 1 2 3 4 5 6 7

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a0

a1

a2

a3

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a0

a1

a2

a3

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

a0

a1

a2

a3

a4

a6

a5

a7

a8

a10

a9

a11

a12

a14

a13

a15

a0

a2

a1

a3

a0

a2

a1

a3

a4

a6

a5

a7

a8

a10

a9

a11

a12

a14

a13

a15

a0

a2

a1

a3

a4

a6

a5

a7

a8

a10

a9

a11

a12

a14

a13

a15

a0

a2

a1

a3

a4

a6

a5

a7

a8

a10

a9

a11

a12

a14

a13

a15

a0

a2

a1

a3

a0

a2

a1

a3

a4

a6

a5

a7

a8

a10

a9

a11

a12

a14

a13

a15

a0

a2

a1

a3

a4

a6

a5

a7

a8

a10

a9

a11

a12

a14

a13

a15

a0

a2

a1

a3

fetch data

from banks

pipeline depth

store data

into banks

 temporal conflict

STAGE0 STAGE1

Figure 1: The temporal conflict in pipelined in-place NTT architecture.

two stages is the point at which conflict is most likely to occur. The first-round butterfly
operation of the last stage will read N

2 -stride point pairs [CMV+15], which are computed
in the penultimate stage at time slot N

4d . To avoid this conflict and achieve 100% usage of
NTT processor, the pipeline depth ought to meet the condition: N

4d ≥ pipeline depth. This
condition will become more stringent when considering the higher radix NTT. Fortunately,
the data vector size in PQC and FHE algorithm is from hundreds to millions magnitude,
so this condition can be met under common situations.
Spatial conflict. In every stage of NTT computation, if multiple data points are mapped
onto the same bank, we need to perform several read or write operations on a single bank
address simultaneously, which results in the so-called spatial conflict. [Joh92] proposes a
memory mapping scheme for arbitrary radix in-place FFT hardware, which is described in
Figure 2(a) taking 8-point radix-2 FFT as an example. However, [ZYC+20] and [XMX17]
point out that this scheme is not suitable for the case when placing multiple butterfly units
in every stage. This spatial conflict is shown in Figure 2(b) using 8-point radix-2 FFT
with two butterfly units as an example. At the first round of stage 2, four row addresses
{0,4,1,5} are mapped onto the bank indexes {0,1,1,2}. It is obvious that raw addresses {4,1}

100 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

(a) Radix-2 in-place NTT with d = 1. (b) Radix-2 in-place NTT with d = 2.

Figure 2: The spatial conflict in 8-point radix-2 in-place NTT.

are mapped on to the same bank index 1, which results in the access conflict. Instead of
using complex permutation networks as [XHY+20], we will devise a refined and simplified
scheme to solve this problem in section 4.

3 Radix-4 DIT NTT and DIF INTT
3.1 DIT Radix-4 NTT with Low Complexity
The pre-processing requires N modular multiplications for each input vector as equation
3 shows. Inspired by the tricks of [ZYC+20] [POG15], we can still avoid this process by
merging the 2N -th roots of unity into every stage of Cooley-Tukey radix-4 DIT NTT
algorithm. Thus, the number of modular multiplications is reduced from (N log4 N) + 2N
to N log4 N in the proposed algorithm. Our derivation follows the divide-and-conquer
strategy in [Sto06], where the DFT is divided in time domain. Firstly, the pre-processing
and the main NTT are written together as belows :

Ai =
N−1∑
j=0

ajφ
j
2Nω

ij
N mod q i = 0, 1, ..., N − 1 (5)

Then, by splitting the summation into four coresidual groups according to the time-domain
index j, the equation 6 is transformed as :

Ai =
N/4−1∑

j=0
a4jφ

4j
2Nω

i·(4j)
N +

N/4−1∑
j=0

a4j+1φ
4j+1
2N ω

i·(4j+1)
N +

N/4−1∑
j=0

a4j+2φ
4j+2
2N ω

i·(4j+2)
N +

N/4−1∑
j=0

a4j+3φ
4j+3
2N ω

i·(4j+3)
N mod q

i = 0, 1, ..., N − 1

(6)

By leveraging the Elimination property of twiddle factor ω and φ, the equation 6 can be
simplified as :

Ai =
N/4−1∑

j=0
a4jφ

j
N/2ω

ij
N/4 + ωi

N · φ1
2N ·

N/4−1∑
j=0

a4j+1φ
j
N/2ω

ij
N/4+

ω2i
N · φ2

2N ·
N/4−1∑

j=0
a4j+2φ

j
N/2ω

ij
N/4 + ω3i

N · φ3
2N ·

N/4−1∑
j=0

a4j+3φ
j
N/2ω

ij
N/4 mod q

i = 0, 1, ..., N/4− 1

(7)

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 101

For simplicity, let F0, F1, F2 and F3 denote the four summation items
∑N/4−1

j=0 a4jφ
j
N/2ω

ij
N/4,∑N/4−1

j=0 a4j+1φ
j
N/2ω

ij
N/4,

∑N/4−1
j=0 a4j+2φ

j
N/2ω

ij
N/4,

∑N/4−1
j=0 a4j+3φ

j
N/2ω

ij
N/4, respectively.

Then, the equation 7 is written as :

Ai = F0 + ωi
N · φ1

2N · F1 + ω2i
N · φ2

2N · F2 + ω3i
N · φ3

2N · F3 i = 0, 1, ..., N/4− 1 (8)
Obviously, by applying the Periodicity property of twiddle factor, the other three equations
can be obtained as:

Ai+N/4 = F0 + ωi
N · ω1

4 · φ1
2N · F1 + ω2i

N · ω2
4 · φ2

2N · F2 + ω3i
N · ω3

4 · φ3
2N · F3

Ai+2N/4 = F0 + ωi
N · ω2

4 · φ1
2N · F1 + ω2i

N · (ω2
4)2 · φ2

2N · F2 + ω3i
N · (ω3

4)2 · φ3
2N · F3

Ai+3N/4 = F0 + ωi
N · ω3

4 · φ1
2N · F1 + ω2i

N · (ω2
4)3 · φ2

2N · F2 + ω3i
N · (ω3

4)3 · φ3
2N · F3

i = 0, 1, ..., N/4− 1

(9)

According to the Sum property and Binary property, we can derive that ω3
4 = −ω1

4 ,
ω2

4 = −ω0
4 = −1. So we can express the equation 8 and 9 in the form of matrix as belows:

Ai

Ai+N/4
Ai+2N/4
Ai+3N/4

 =


1 1 1 1
1 ω1

4 −1 −ω1
4

1 −1 1 −1
1 −ω1

4 −1 ω1
4

×


F0
F1
F2
F3

 ·


1
ωi

N · φ1
2N

ω2i
N · φ2

2N

ω3i
N · φ3

2N


 i = 0, 1, ..., N/4−1

(10)
Note that F0, F1, F2 and F3 are actually the four N/4-point NTTs, essentially similar to
equation 6. By adopting this divide-and-conquer strategy recursively until N

4 4-points, we
can obtain the radix-4 NTT algorithm. Furthermore, by merging the powers of N -th roots
of unity ωN and 2N -th roots of unity φ2N in equation 10, we can obtain that:

Ai

Ai+N/4
Ai+2N/4
Ai+3N/4

 =


1 1 1 1
1 ω1

4 −1 −ω1
4

1 −1 1 −1
1 −ω1

4 −1 ω1
4

×


F0
F1
F2
F3

 ·


1
φ2i+1

2N

φ
2(2i+1)
2N

φ
3(2i+1)
2N


 i = 0, 1, ..., N/4−1

(11)
Up to now, we just need to precompute the powers of φ2N for storage, eliminating the
pre-processing of 2N modular multiplication completely.

3.2 DIF Radix-4 INTT with Low Complexity
By merging the scale factor N−1 and powers of 2N -th roots of unity φ−i

2N into every stage,
the number of modular multiplications in radix-4 INTT algorithm can be reduced from
N log4 N +N to N log4 N [ZYC+20] [POG15]. At this time, we will adopt the strategy
in [GS66], where the DFT is divided in frequency domain and it turns out the so-called
Gentleman-Sande Butterfly. At the very beginning, the post-processing and the main
INTT are written together as:

ai = N−1 · φ−i
2N ·

N−1∑
j=0

Ajω
−ij
N mod q i = 0, 1, ..., N − 1 (12)

According to the index i, we can split the summation into four consecutive groups with
the same size N/4. Then, the equation 12 is transformed as:

ai = N−1 · (φ−i
2N ·

N/4−1∑
j=0

Ajφ
−j
2Nω

−ij
N + φ−i

2N ·
2N/4−1∑
j=N/4

Ajω
−ij
N +

φ−i
2N ·

3N/4−1∑
j=2N/4

Ajω
−ij
N + φ−i

2N ·
N−1∑

j=3N/4

Ajω
−ij
N) mod q i = 0, 1, ..., N − 1

(13)

102 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

Based on the Periodicity and Binary property of twiddle factor, we can put the four
summation items into the same range [0, N/4− 1]:

ai = N−1 · (φ−i
2N ·

N/4−1∑
j=0

Ajω
−ij
N + φ−i

2N ·
N/4−1∑

j=0
Aj+N/4ω

−i·(j+N/4)
N +

φ−i
2N ·

N/4−1∑
j=0

Aj+2N/4ω
−i·(j+2N/4)
N + φ−i

2N ·
N/4−1∑

j=0
Aj+3N/4ω

−i·(j+3N/4)
N) mod q

i = 0, 1, ..., N/4− 1
(14)

Because of the Elimination property, the equation 14 can be simplified as:

ai = N−1 · (φ−i
2N ·

N/4−1∑
j=0

Ajω
−ij
N + φ−i

2N · ω
−i
4 ·

N/4−1∑
j=0

Aj+N/4ω
−ij
N +

φ−i
2N · ω

−2i
4 ·

N/4−1∑
j=0

Aj+2N/4ω
−ij
N + φ−i

2N · ω
−3i
4 ·

N/4−1∑
j=0

Aj+3N/4ω
−ij
N) mod q

i = 0, 1, ..., N/4− 1
(15)

Note that the factors ω−i
4 , ω−2i

4 , ω−3i
4 can be classified into four cases according to the

coresidual groups of index i:

ω−i
4 =


0 i = 4r
ω−1

4 i = 4r + 1
−1 i = 4r + 2
−ω−1

4 i = 4r + 3

ω−2i
4 =


1 i = 4r
−1 i = 4r + 1
1 i = 4r + 2
−1 i = 4r + 3

ω−3i
4 =


0 i = 4r
ω−1

4 i = 4r + 1
−1 i = 4r + 2
−ω−1

4 i = 4r + 3
r = 0, 1, ..., N/4− 1

(16)
As a result, the equation 16 can be grouped into four parts based on the coresidual groups
of index i, correspondingly. With the Elimination property of twiddle factor, the first part
can be further written as:

a4i = (N4)−1 · (1
4 · φ

−i
N/2 ·

N/4−1∑
j=0

Ajω
−ij
N/4 + 1

4 · φ
−i
N/2 ·

N/4−1∑
j=0

Aj+N/4ω
−ij
N/4+

1
4 · φ

−i
N/2 ·

N/4−1∑
j=0

Aj+2N/4ω
−ij
N/4 + 1

4 · φ
−i
N/2 ·

N/4−1∑
j=0

Aj+3N/4ω
−ij
N/4) mod q

i = 0, 1, ..., N/4− 1
(17)

For simplicity, let G0,G1,G2,G3 denote the four summation items, respectively.

Gm = (N4)−1 · φ−i
N/2 ·

N/4−1∑
j=0

1
4Aj+mN/4φ

−i
N/2ω

−ij
N/4 m = 0, 1, 2, 3 (18)

Thus, the four parts of equation 16 can be expressed as:
a4i = G0 +G1 +G2 +G3

a4i+1 = φ−1
2N · ω

−j
N · (G0 + ω−1

4 G1 + ω−2
4 G2 + ω−3

4 G3)
a4i+2 = φ−2

2N · ω
−2j
N ·

[
G0 + ω−2

4 G1 + (ω−2
4)2G2 + (ω−3

4)2G3
]

a4i+3 = φ−3
2N · ω

−3j
N ·

[
G0 + ω−3

4 G1 + (ω−2
4)3G2 + (ω−3

4)3G3
]

i = 0, 1, ..., N/4− 1

(19)

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 103

With the Sum and Binary property, we can derive that ω−3
4 = −ω−1

4 , ω−2
4 = −ω0

4 = −1.
Thus, the equation 20 is further expressed in matrix form:

a4i

a4i+1
a4i+2
a4i+3

 =




1 1 1 1
1 ω−1

4 −1 −ω−1
4

1 −1 1 −1
1 −ω−1

4 −1 ω−1
4

×

G0
G1
G2
G3


 ·


1
ω−j

N · φ−1
2N

ω−2j
N · φ−2

2N

ω−3j
N · φ−3

2N


i = 0, 1, ..., N/4− 1

(20)

In this way, the N -points INTT can be divided into four N
4 -points INTTs. By adopting

this strategy recursively until N
4 4-points INTTs, we can obtain the DIF radix-4 INTT

algorithm. Note that the scale factor is also merged into each stage and the equation 20
can be further written as:

a4i

a4i+1
a4i+2
a4i+3

 =




1 1 1 1
1 ω−1

4 −1 −ω−1
4

1 −1 1 −1
1 −ω−1

4 −1 ω−1
4

×

G0
G1
G2
G3


 ·


1
φ

−(2j+1)
2N

φ
−2(2j+1)
2N

φ
−3(2j+1)
2N


i = 0, 1, ..., N/4− 1

(21)

By now, we just need to precalculate the powers of 2N -th roots of unity φ−1
2N for storage

and the post-processing of N -modular multiplication is removed completely.

3.3 Improvement with Divide and Schedule Method
In this section, a versatile schedule method is utilized to reduce the number of modular
multiplications and modular additions/subtractions by 20% and 30%, respectively. There-
after, the complete radix-4 DIT NTT algorithm and radix-4 DIF INTT algorithm with
low complexity are presented.

Figure 3: The radix-4 Cookley-Tukey butterfly unit.

Divide and schedule in radix-4 Cooley-Tukey butterfly. When directly calculating
the equation 11, it will take 5 modular multiplications, 6 modular additions and 6 modular
subtractions. However, based on the divide-and-conquer idea, this computation complexity
can be further reduced [HT96]. It is easy to see that some immediate results can be

104 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

Algorithm 2 Radix-4 DIT Iterative NTT Algorithm
Input: a denotes a vector of length N , q is modulus and φ2N is 2N -th primitive roots of unity.
ω1

4 is 4-th primitive roots of unity.
Output: A = DIT_NTT (a)
1: A← bit reverse(a)
2: for p = 0 to log4 N − 1 do
3: J ← 4p

4: ωm ← φ
N/(4J)
2N

5: for k = 0 to N/(4J)− 1 do
6: for j = 0 to J − 1 do
7: T0 ← (A4kJ+j +A4kJ+j+2J · ω2(2j+1)

m) mod q
8: T1 ← (A4kJ+j −A4kJ+j+2J · ω2(2j+1)

m) mod q
9: T2 ← (A4kJ+j+J · ω2j+1

m +A4kJ+j+3J · ω3(2j+1)
m) mod q

10: T3 ← (A4kJ+j+J · ω2j+1
m −A4kJ+j+3J · ω3(2j+1)

m) mod q
11: A4kJ+j ← (T0 + T2) mod q
12: A4kJ+j+J ← (T1 + T3 · ω1

4) mod q
13: A4kJ+j+2J ← (T0 − T2) mod q
14: A4kJ+j+3J ← (T1 − T3 · ω1

4) mod q
15: end for
16: end for
17: end for
18: return A

reused when calculating the radix-4 butterfly operation. Thus, we schedule the matrix
multiplication into two-layer operations as belows:

T0 = (F0 + F2 · φ2(2i+1)
2N) Ai = T0 + T2

T1 = (F0 − F2 · φ2(2i+1)
2N) Ai+N/4 = (T1 + T3 · ω1

4)

T2 = (F1 · φ2i+1
2N + F3 · φ3(2i+1)

2N) Ai+2N/4 = (T0 − T2)

T3 = (F1 · φ2i+1
2N − F3 · φ3(2i+1)

2N) Ai+3N/4 = (T1 − T3 · ω1
4)

(22)

At this time, the radix-4 butterfly operation is reduced to 4 modular multiplications,
modular additions and modular subtractions, which results in the two-layer Cooley-Tukey
butterfly unit. Figure 3 depicts this change intuitively and presents the detailed archi-
tecture. As a result, the complete two-layer radix-4 DIT NTT with low complexity is
demonstrated in algorithm 2.
Divide and schedule in radix-4 Gentleman-Sande butterfly. Similar to radix-4
NTT, the complexity in radix-4 INTT butterfly operation can also be further reduced.
Using straightforward method to compute the equation 21 still requires 5 modular mul-
tiplications, 6 modular additions and 6 modular subtractions. Thus, by scheduling the
matrix multiplication to reuse the immediate result, we obtain that:

T0 = F0 + F2 a4i = T0 + T2

T1 = F0 − F2 a4i+1 = (T1 + T3) · φ−(2j+1)
2N

T2 = F1 + F3 a4i+2 = (T0 − T2) · φ−2(2j+1)
2N

T3 = (F1 − F3) · ω−1
4 a4i+3 = (T1 − T3) · φ−3(2j+1)

2N

(23)

In this way, we just need 4 modular multiplications, modular additions and modular
subtractions, which results in the two-layer Gentleman-Sande butterfly unit. Figure 4
presents the changes and detailed architecture as well. Since the ω1

4 and ω−1
4 are constants,

the multiplication in BFU3 and IBFU2 can be alternatively implemented with a series of

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 105

Figure 4: The radix-4 Gentleman-Sande butterfly unit.

modular additions and shifts. So far, the complete two-layer radix-4 DIF INTT with low
complexity is demonstrated in algorithm 3.

Algorithm 3 Radix-4 DIF Iterative INTT Algorithm
Input: a denotes a vector of length N , q is modulus and φ−1

2N is inverse element of 2N -th
primitive roots of unity. ω−1

4 is inverse element of 4-th primitive roots of unity.
Output: A = DIF_INTT (a)
1: for p = log4 N − 1 to 0 do
2: J ← 4p

3: ωm ← φ
−N/(4J)
2N

4: for k = 0 to N/(4J)− 1 do
5: for j = 0 to J − 1 do
6: T0 ← 1

2 · (a4kJ+j + a4kJ+j+2J) mod q
7: T1 ← 1

2 · (a4kJ+j − a4kJ+j+2J) mod q
8: T2 ← 1

2 · (a4kJ+j+J + a4kJ+j+3J) mod q
9: T3 ← 1

2 · (a4kJ+j+J − a4kJ+j+3J) · ω−1
4 mod q

10: A4kJ+j ← 1
2 · (T0 + T2) mod q

11: A4kJ+j+J ← 1
2 · (T1 + T3) · ω−(2j+1)

m mod q
12: A4kJ+j+2J ← 1

2 · (T0 − T2) · ω−2(2j+1)
m mod q

13: A4kJ+j+3J ← 1
2 · (T1 − T3) · ω−3(2j+1)

m mod q
14: end for
15: end for
16: end for
17: A← bit reverse(A)
18: return A

3.4 Avoiding Bit-reversed Cost and Reducing Memory Footprint
When straightly performing the classic in-place DIT NTT and DIF INTT as [ZYC+20]
[XHY+20] [MKÖ+20b], bit-reversed operation is required at the very beginning of NTT
and ending of INTT, respectively. Because the classic DIT NTT receives the input vector in
bit-reversed order and produces the output vector in natural order. The classic DIF INTT
is contrary to the orientation of DIT NTT. [POG15] [XL21] [CG99] avoid the bit-reversed
operation for radix-2 DIT NTT and DIF INTT by rearranging the loop structure and
storage structure of twiddle factors. In this section, we will generalize this bit-reversed
issue for arbitrary radix DIT NTT and DIF INTT and propose the bit-reversed-free radix-4

106 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

DIT NTT and DIF INTT algorithm, respectively. We use the notation NR (RN) as belows
to represent that the input vector is received in natural (bit-reversed) order and the output
vector is produced in bit-reversed (natural) order. In addition, we will show how the
memory footprint can be reduced by reusing the twiddle factors of forward radix-2/4 NTT
in the inverse radix-2/4 NTT.

3.4.1 Proposed DIT-NR Radix-4 NTT

In DIT NTT, the bit-reversed-free trait indicates that the input vector is received in
natural order and the output vector is produced in bit-reversed order, which is opposite to
the classic situation. [CG99] obtains the radix-2 bit-reversed-free DIT NTT by changing
the loop structure and the storage method of twiddle factors. Inspired by this work,
we derive the radix-4 bit-reversed-free DIT NTT algorithm. Based on this derivation,
the bit-reversed operation in arbitrary radix NTT can be removed. This optimization
technique is achieved by three important observations as belows:

(1) In analogy with classic DIF INTT algorithm, the address with natural order in DIT
NTT can be generated by just reversing the first loop.

(2) To still obtain the correct results after reversing the first loop, the generation of
twiddle factors is required to rearranged accordingly.

(3) After performing the operation in (1), the iterative principle of index j and k in
algorithm 2 will exactly exchange with each other.

Based on these insights, the arrangement of twiddle factors in item (2) can be realized with
three steps based on item (3). The first step is to move the place of generating twiddle
factors from the innermost loop j to the middle loop k. The second step is to replace the
index j in exponential position of twiddle factors in algorithm 2 with bit-reversed index k.
The final step is to replace the powers N/(4J) in algorithm 2 line 4 with powers J . It is
worth to mention that this method can also be applied in DIT NTT of other radices to
avoid the bit-reversed cost. The detailed changes in terms of the generation of twiddle
factors are described in equation 24.

φ
N/(4J)
2N ⇒ φJ

2N ω2j+1
m ⇒ ω2bit-reversed(k)+1

m

ω2(2j+1)
m ⇒ ω2·(2bit-reversed(k)+1)

m ω3(2j+1)
m ⇒ ω3·(2bit-reversed(k)+1)

m

(24)

(a) The data flow of radix-4 DIT-NR NTT. (b) The data flow of radix-4 DIF-RN INTT.

Figure 5: The data flow of 16 points radix-4 NTT/INTT.

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 107

In the hardware implementation, the twiddle factors are actually precomputed and stored
in the ROM. Hence, we propose the complete bit-reversed-free radix-4 DIT NTT in
algorithm 4 along with the method of precomputing twiddle factors. Figure 5(a) presents

Algorithm 4 Radix-4 DIT-NR NTT Algorithm
Input: a denotes a vector of length N , q is modulus and φ2N is 2N-th primitive roots of unity. ω1

4 is
4-th primitive roots of unity.
Output: A = DIT-NR NTT(a)
1: Precompute the twiddle factors:
2: for p = log4 N − 1 to 0 do
3: J ← 4p

4: ωm ← φJ
2N

5: for k = 0 to N/(4J)− 1 do
6: ωa1_ROM.append [ω2bit-reversed(k)+1

m]
7: ωa2_ROM.append [ω2·(2bit-reversed(k)+1)

m]
8: ωa3_ROM.append [ω3·(2bit-reversed(k)+1)

m]
9: end for
10: end for
11: Perform the radix-4 DIT-NR NTT:
12: for p = log4 N − 1 to 0 do
13: J ← 4p

14: r ← 0
15: for k = 0 to N/(4J)− 1 do
16: ω1 ← ωa1_ROM [r]
17: ω2 ← ωa2_ROM [r]
18: ω3 ← ωa3_ROM [r]
19: r ← r + 1
20: for j = 0 to J − 1 do
21: T0 ← (a4kJ+j + a4kJ+j+2J · ω2) mod q
22: T1 ← (a4kJ+j − a4kJ+j+2J · ω2) mod q
23: T2 ← (a4kJ+j+J · ω1 + a4kJ+j+3J · ω3) mod q
24: T3 ← (a4kJ+j+J · ω1 − a4kJ+j+3J · ω3) mod q
25: A4kJ+j ← (T0 + T2) mod q
26: A4kJ+j+J ← (T1 + T3 · ω1

4) mod q
27: A4kJ+j+2J ← (T0 − T2) mod q
28: A4kJ+j+3J ← (T1 − T3 · ω1

4) mod q
29: end for
30: end for
31: end for
32: return A

the corresponding 16-points dataflow of radix-4 DIT-NR NTT where the input vector is
received in natural order and the output vector is produced in bit-reversed order. The
lines denoted with red and yellow color represent the first-round butterfly operation in
stage 0 and stage 1, respectively.

3.4.2 Proposed DIF-RN Radix-4 INTT

In DIF-RN INTT, the bit-reversed-free trait indicates that the input vector is received in
bit-reversed order and the output vector is produced in natural order, which is also opposite
to the classic DIF INTT. Based on DIT-NR NTT, we can obtain the DIF-RN INTT with
a direct method by just reversing the first loop in algorithm 3 line 1 and replacing the
twiddle factor in equation 24 with its inverse element. Nevertheless, this method cannot
lead to a perfect implementation in terms of memory footprint. As shown in the reference
software implementation of Kyber from NIST, the twiddle factors in radix-2 DIF INTT
can reuse the twiddle factors of radix-2 DIT INTT by leveraging the Binary property:
φN

2N = −1 mod q ⇒ φ−i
2N = −φN

2N · φ
−i
2N mod q = −φN−i

2N mod q. In this section, we show
that the twiddle factors in radix-4 DIT-NR NTT can also be reused in radix-4 DIF-RN
INTT by making full use of the properties of twiddle factors and suitable schedule. Firstly,

108 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

to transform the negative exponent of φ2N into positive field, we derive three tricks shown
in equation 25 from the Binary and Elimination property of twiddle factors:

φ−i
2N mod q = φ

−N/2
2N · φN/2−i

2N mod q = ω−1
4 · φN/2−i

2N mod q = −ω1
4 · φ

N/2−i
2N mod q

φ−i
2N mod q = −φN

2N · φN−i
2N mod q = −φN−i

2N mod q

φ−i
2N mod q = φ

−3N/2
2N · φ3N/2−i

2N mod q = −φ−N/2
2N · φ3N/2−i

2N mod q

= −ω−1
4 · φ3N/2−i

2N mod q = ω1
4 · φ

3N/2−i
2N mod q

(25)

Then, we apply these three tricks into equation 24 to obtain the inverse twiddle factor in
algorithm 3 as belows:

ω−(2j+1)
m ⇒ −ω1

4 · ωN/2−[2bit-reversed(k)+1]
m

ω−2(2j+1)
m ⇒ −ωN−[2·(2bit-reversed(k)+1)]

m

ω−3(2j+1)
m ⇒ ω1

4 · ω3N/2−[3·(2bit-reversed(k)+1)]
m

(26)

Note that the factor ω1
4 can be scheduled to multiply with ω−1

4 in algorithm 3 line 9. Hence
applying the equation 26 into the two-layer butterfly operation of algorithm 3 will not
increase the original complexity. To this end, we can reuse the twiddle factors generated
in algorithm 4, which turns out the complete bit-reversed-free DIF INTT algorithm 5. As
a result, the bit-reversed-free radix-4 Gentleman Sande butterfly unit can be obtained by
just exchanging the position of IBFU0 with IBFU2 and swapping the two operands of
modular subtracter in Figure 4. Figure 5(b) presents the corresponding 16-points dataflow
of radix-4 DIF-RN INTT where the input vector is received in bit-reversed order and the
output vector is produced in natural order. The lines denoted with red and yellow color
also represent the first-round butterfly operation in stage 0 and stage 1, respectively.

Algorithm 5 Radix-4 DIF-RN INTT Algorithm
Input: a denotes a vector of length N , q is modulus and ωa1_ROM, ωa2_ROM, ωa3_ROM are three

arrays generated by algorithm 4.
Output: A = DIF-RN INTT(a)
1: for p = 0 to log4 N − 1 do
2: J ← 4p

3: r ← N−1
3 − 1

4: for k = 0 to N/(4J)− 1 do
5: ω1 ← ωa1_ROM [r]
6: ω2 ← ωa2_ROM [r]
7: ω3 ← ωa3_ROM [r]
8: r ← r − 1
9: for j = 0 to J − 1 do
10: T0 ← 1

2 · (a4kJ+j + a4kJ+j+2J) mod q
11: T1 ← 1

2 · (a4kJ+j+2J − a4kJ+j) · ω1
4 mod q

12: T2 ← 1
2 · (a4kJ+j+J + a4kJ+j+3J) mod q

13: T3 ← 1
2 · (a4kJ+j+3J − a4kJ+j+J) mod q

14: A4kJ+j ← 1
2 · (T0 + T2) mod q

15: A4kJ+j+J ← 1
2 · (T1 + T3) · ω1 mod q

16: A4kJ+j+2J ← 1
2 · (T2 − T0) · ω2 mod q

17: A4kJ+j+3J ← 1
2 · (T3 − T1) · ω3 mod q

18: end for
19: end for
20: end for
21: return A

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 109

4 Conflict-free Memory Mapping Scheme
By applying loop unroll technique, a scalable iterative NTT algorithm is proposed in
section 4.1. Thereafter, the general and efficient conflict-free memory mapping scheme is
presented in section 4.2. Based on the scalable algorithm and memory mapping scheme,
the NTT multiplication architecture can be parallelized.

Algorithm 6 Scalable Iterative NTT Algorithm
Input: a, N , R. Here a denotes a vector of length N . d is the number of butterfly units. R denotes the

radix of NTT.
Output:A = Scalable_NTT (a)
1: for p = logR N − 1 to 0 do
2: J ← Rp

3: if J < d then
4: for k = 0 to N/(Rd)− 1 do
5: for i = 0 to d/J − 1 do
6: for j = 0 to J − 1 do

7:

 A0
A1
...
AR−1

 = BF

 akRd+iRJ+j

akRd+iRJ+j+J

...
akRd+iRJ+j+(R−1)J


8: end for
9: end for
10: end for
11: else
12: for k = 0 to N/(RJ)− 1 do
13: for i = 0 to J/d− 1 do
14: for j = 0 to d− 1 do

15:

 A0
A1
...
AR−1

 = BF

 akRJ+id+j

akRJ+id+j+J

...
akRJ+id+j+(R−1)J


16: end for
17: end for
18: end for
19: end if
20: end for
21: return A

4.1 Scalable Iterative NTT Algorithm
Determining the order. At the very beginning, we determine the way how the data
points are managed in parallel computation. Taking DIT-NR radix-2 NTT with 2 butterfly
units as an example, the 8 points data flow along with index set {p, k, j} is depicted in
Figure 6. Let G0

p,k,j and G1
p,k,j denote the upper and lower point in stage p, group k and

round j, respectively. The butterfly operations denoted with the same color belong to the
same group. Then, we determine that the parallel 4 data points in the second stage of 8-
points INTT are fetched and stored in the following order: {G0

1,0,0, G
1
1,0,0, G

0
1,0,1, G

1
1,0,1} →

{G0
1,1,0, G

1
1,1,0, G

0
1,1,1, G

1
1,1,1}. It is easy to see that the parallel data points are managed

gradually according to the growing order of index k. For 16 points radix-4 NTT with 8
parallel butterfly units, one can also utilize the similar method with radix-2 to fetch and
store the 8 data points.
Scalable NTT algorithm. We derive and present the scalable iterative algorithm for
arbitrary radix-R NTT based on the determined address order. However, applying the loop
unroll method in iterative NTT algorithm directly can not lead to a perfect implementation.
Because the range of index j, k in the inner loop and middle loop depends on the index p
in the outer loop. The relative size of d and J will influence the number of iterations. As
a result, the loop unroll method is classified into 2 cases: (1) J < d, the parallel data sets

110 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

Figure 6: The data flow of 8 points radix-2 DIT-NR NTT.

Algorithm 7 Conflict-free memory mapping scheme for arbitrary radix in-place NTT.
Input: a,N, rk, d. Here a denotes the old address to be mapped. N denotes the total number
of data points. r is a prime and rk = R denotes the radix of NTT. d represents the number of
parallel butterfly units and it also stands for step size.
Output: BI,BA. Here BI denotes the bank index into which the old address is mapped. BA
denotes the offset of the storage location within each inner bank.
1: Let B denote the number of banks, where B satisfies the condition B = R× d and N | B in

the interleaved memory system.
2: Calculating the total digit width T of old address expressed in radix r: T = logrN .
3: Calculating the digit width of bank number value expressed in radix r: M = logrB =
logr(R× d).

4: Computing the digit width of step size expressed in radix r: C = T −M .
5: Then the old address a can be expressed in radix r as:
6: a = [aT −1, aT −2, ..., a1, a0]r = [aT −1, ..., aT −C , aM−1, ..., a1, a0]r.
7: Expressing the lower part [aM−1, ..., a1, a0]r in radix B as [b]B .
8: Expressing the higher part [aT −1, ..., aT −C]r in radix R = rk as [bm−1, bm−2, ..., b0]R, where
m is the digit width after radix R transformation.

9: Then the old address can be expressed in mixed radix B-R as a = [bm−1, bm−2, ..., b0]R [b]B .
10: Defining the step number as SN = (bm−1 + bm−2 + ...+ b0) mod R.
11: Then, the bank index for old address is calculated as: BI = (b+ SN · d) mod B.
12: The new bank address for old address is calculated as: BA = a >> M = [aT −1, ..., aT −C]r.
13: return BI,BA.

will contain several iterations of inner loop. (2) J ≥ d, the inner loop will cover several
parallel data sets. The scalable iterative NTT algorithm is illustrated in algorithm 6. For
brevity, the concrete butterfly operation within the innermost loop is left out while the
address generation method is kept.

4.2 Proposed Solution to Conflict Issue
To address the spatial conflict in section 2.2.2, we propose a new and efficient memory
mapping scheme as algorithm 7 shows. The mixed radix expression divides the old address
into the higher part and the lower part, respectively. It is easy to see that this memory
mapping method can be implemented by a few XOR and shift operations if the radix is
power-of-2. In addition, it can support arbitrary radix in-place NTT algorithm, conducing
to the non-radix-2 NTT hardware design. Taking 16 points radix-2 NTT with 2 parallel
butterfly units as an example, the detailed mapping process is described in Figure 7.
According to the proposed memory mapping scheme, the 16 old addresses with 4 bit width
is expressed as mixed radix 2-4 form as the second column shows. Then the so-called step

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 111

number is obtained by accumulating the digit in the higher part of old address following a
modular reduction by 2 (R = 2) as shown in the third column. The value of slide distance
depends on the step number (SN) and the step size 2 (d = 2), which is calculated as
(SN × d) mod B. Finally, the bank index is handily obtained by adding the lower part to
the slide distance following a modular reduction by 4 (B = 4). As a result, at stage 0
(p = 2), the 4 parallel data points in group 0 round 0 (G2,0,0) and group 1 round 0 (G2,1,0)
are mapped onto 4 different banks {0, 1, 2, 3} and {2, 3, 0, 1}, respectively. By following
the memory mapping scheme ahead, the validity in other radices can be confirmed as
well. To make contrast with the memory mapping scheme in [Joh92] [ZYC+20], the final
column presents the corresponding bank mapping results, which leads to the memory
conflict mentioned in section 2.2.2. To highlight the wider applicability of this conflict-free
memory mapping scheme, Figure 15 in appendix also depicts the detailed mapping process
for 27 points radix-3 in-place NTT.

old address mix radix R-B step number slide distance bank index bank address

0

1

2

0

1

2

3

4

5

3

4

5

0

1

2

3

4

5

6

7

8

6

7

8

9

10

11

9

10

11

6

7

8

9

10

11

12

13

14

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

000

001

002

000

001

002

003

010

011

003

010

011

000

001

002

003

010

011

012

013

100

012

013

100

101

102

103

101

102

103

012

013

100

101

102

103

110

111

112

110

111

112

113

000

001

002

003

010

011

012

013

100

101

102

103

110

111

112

113

(0+0)

mod 2 = 0

(0+1)

mod 2 = 1

(1+0)

mod 2 = 1

(1+0)

mod 2 = 0

(0+0)

mod 2 = 0

(0+1)

mod 2 = 1

(1+0)

mod 2 = 1

(1+0)

mod 2 = 0

(0x2)

mod 4 = 0

(1x2)

mod 4 = 2

(1x2)

mod 4 = 2

(0x2)

mod 4 = 0

(0x2)

mod 4 = 0

(1x2)

mod 4 = 2

(1x2)

mod 4 = 2

(0x2)

mod 4 = 0

(0+0) mod 4 = 0

(0+1) mod 4 = 1
(0+2) mod 4 = 2

(0+3) mod 4 = 3

(0+0) mod 4 = 0

(0+1) mod 4 = 1
(0+2) mod 4 = 2

(0+3) mod 4 = 3

(2+0) mod 4 = 2

(2+1) mod 4 = 3
(2+2) mod 4 = 0

(2+3) mod 4 = 1

(2+0) mod 4 = 2

(2+1) mod 4 = 3
(2+2) mod 4 = 0

(2+3) mod 4 = 1

(2+0) mod 4 = 2

(2+1) mod 4 = 3
(2+2) mod 4 = 0

(2+3) mod 4 = 1

(2+0) mod 4 = 2

(2+1) mod 4 = 3
(2+2) mod 4 = 0

(2+3) mod 4 = 1

(0+0) mod 4 = 0

(0+1) mod 4 = 1
(0+2) mod 4 = 2

(0+3) mod 4 = 3

(0+0) mod 4 = 0

(0+1) mod 4 = 1
(0+2) mod 4 = 2

(0+3) mod 4 = 3

00

01

10

11

00

01

10

11

G2,0,0

G2,1,0

G3,0,0

bank index (conflict)

0

1

2

0

1

2

3

1

2

3

1

2

0

1

2

3

1

2

3

0

2

3

0

2

3

0

1

3

0

1

3

0

2

3

0

1

3

0

1

3

0

1

2

0

1

2

3

1

2

3

0

2

3

0

1

3

0

1

2

G2,0,0

√

√

×

G2,1,0

×
G2,1,0

×

√

Figure 7: The detailed memory mapping scheme for 16 points radix-2 NTT with d = 2.

5 Scalable Radix-2/4 NTT Multiplication Architecture
5.1 The Overall Scalable Architecture
In this section, we propose the scalable radix-2 and radix-4 NTT multiplication architecture
which can be instantiated for different vector size N , modulus q and number of parallel
butterfly units d. As shown in Figure 8, the overall architecture is composed of eight
different modules. The address generator is mainly implemented by the counter and shift
logic gates. The memory mapping unit consists of a few XOR logic gates and 4-to-1
or 2-to-1 multiplexers in radix-2 and radix-4 NTT, respectively. The arbiter module
decodes the bank indexes as corresponding selection signals to control the path of three
interconnect networks. The number of fan-ins in radix-2 NTT interconnect network is
fourfold as large as that of the radix-4 NTT. Because the number of banks in radix-2
NTT will double compared to radix-4 NTT under the same configuration of butterfly
numbers. This difference will influence the performance between radix-2 and radix-4 NTT.
In section 6.1, we will quantify this difference in detail. Another distinguishing feature is
that the one-dimension butterfly unit in radix-2 NTT is extended in two-dimension array
in radix-4 NTT, which elaborates the aforementioned difference in terms of bank number.
The twiddle factors of NTT are precomputed and stored in a ROM in this architecture.
Since we reuse the twiddle factors in both radix-2 and radix-4 NTT to obtain the radix-2
and radix-4 INTT, the total types of twiddle factors needs to be stored is just N − 1 words,

112 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

which is almost half amount of the state-of-the-art designs like [XHY+20] and [ZYC+20].
The proposed radix-4 NTT core requires vector length N to be powers-of-4, which can
be applied in third-round-candidate PQC algorithms like Falcon-1024 (N = 1024, q =
12289), Dilithium (N = 256, q = 223− 213 + 1) and Saber (N = 256, q with prime lift trick)
[FBR+21]. While Falcon-512 (N = 512, q = 12289) can resort to the radix-2 NTT core.
One can generate the case-oriented NTT hardware architecture with different parallel
degree based on the proposed design paradigm. In this context, we take the parameters
N = 1024 and q = 14-bit modulus as a case study to implement the radix-2 and radix-4
NTT kernels with different number of butterfly units.

Control

Unit

Arbiter

In
te

rc
o

n
n

e
c

t

Butterfly

Unit

tf_ROM

...

...

map0

map1

mapR-1

Bank Index

mapR

sel

aL

aL

aH

0

1

2

R-1

0

1

2

R-1

...

aL

PE 0 PE 0

PE 1 PE 1

PE d-1PE d-1

PE 1

PE 3

PE 1

PE 3

PE 0

PE 2

PE 0

PE 2

PE 1

PE 3

PE 0

PE 2

PE 1

PE 3

PE 0

PE 2

PE d-3

PE d-1

PE d-3

PE d-1

PE d-4

PE d-2

PE d-4

PE d-2

PE d-3

PE d-1

PE d-4

PE d-2

PE d-3

PE d-1

PE d-4

PE d-2

M
U

X
M

U
X

M
U

X

sel

i_cnt d

Offset 1

R x d J x R

Offset 2

J / J+offset

0

1

2

0 1

1

0

SHIFT SHIFT

k_cnt

Bank

In
te

rc
o

n
n

e
c

t

In
te

rc
o

n
n

e
c

t

Memory

Map

...

Memory

Map

...

A
d

d
re

s
s

G
e
n

e
ra

to
r

...

Figure 8: The scalable radix-2/4 NTT multiplication architecture.

5.2 Compact Radix-4 Butterfly Unit
As illustrated in section 3.3, the radix-4 butterfly unit is divided and scheduled into
two-layer architecture to further reduce the computation complexity. In this section, we
excavate the symmetric operator in radix-4 Cooley-Tukey and Gentleman-Sande butterfly
units to reuse the hardware resource. It is observed that the IBFU1 needs an extra modular
multiplication by 1/2 and the execution sequence is exactly on the contrary with BFU0.
The butterfly unit pairs BFU1 and IBFU0, BFU2 and IBFU3, BFU3 and IBFU2 also
have the similar features. As a result, the DIT radix-4 NTT and DIF radix-4 INTT
can be performed with 4 configurable processing elements. Figure 9 depicts the specific
architecture from PE0 to PE3. When the multiplexer selection signal sel is set to 0 or 1,
the four processing elements are configured to perform DIT NTT or DIF INTT operation,
respectively. So far, we just need 4 modular adders, modular subtracters and modular
multipliers to implement the NTT/INTT butterfly operation. For parametric hardware
design, Montgomery reduction and Barrett reduction are two commonly used methods.
[BGV93] indicates that when the bit width of modulus is less than 32 bits, using Barrett

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 113

A

B

C

m q

tune>> >>

const

Figure 9: The compact architecture of radix-4 butterfly unit.

reduction is feasible. Thus, our modular multiplier follows Barrett reduction method as
shown in Figure 9. The modular multiplier is designed with four pipeline stages and the
main critical path is the n-bit multiplication. The parameter µ is defined as b22n/qc and
can be precomputed for configuration. By adding slightly extra control logic, the radix-4
butterfly unit can also perform point-wise multiplication, modular addition/subtraction,
which are not depicted for brevity.

Figure 10 shows the configurable routing structure in the processing element array.
When the signal sel_p is set to 0, the PEs in the first column will receive the data points
fetched from the banks and conduct the first-layer butterfly operation. The PEs in the
second column will receive the computation results from the first-layer and perform the
second-layer butterfly operation. When the signal sel_p is set to 1, the configuration is
exactly the opposite. By applying this unified PE array, the hardware resource can be
reduced by approximately 50% compared to the naive implementation. It is worth to
mention that unifying the radix-8 or higher-radix NTT and INTT butterfly operation will
be more difficult because the symmetric property of these operators is hard to excavate

114 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

and the routing path will become more complicated.

00

1

00

1

00

1

00

1

00

1

00

1

00

1

00

1

00

1

0

1

00

1

0

1

00

1

00

1

PE0

PE2

PE1

PE3

u0

A1

v0

A0

u1

v1

A3

A2

u1

v1

u0

v0

T0

T1

T2

T3

A0

A2

A1

A3

T0

T1

T2

T3

bf0

bf1

bf2

bf3

sel_p sel_p sel_p

Figure 10: The routing structure of radix-4 PE array.

6 Implementation Results and Comparisons
The proposed architecture is designed with Verilog HDL and implemented on the 28
nm Xilinx Virtex-7 FPGA (xc7vx690tffg1761-3). The resource overhead and highest
frequency are obtained from Vivado 2020.2 under the default strategy for synthesis and
implementation. In section 6.1, we will make a performance evaluation between radix-4 and
radix-2 NTT multiplication architecture through theoretical analysis and implementation
results. In section 6.2, we will compare our implementation results of memory mapping
scheme and NTT core with the state-of-the-art works.

Table 1: The theoretical comparison between radix-2 and radix-4 NTT/INTT. AGU:
address generator. MMU: memory mapping unit. INN: interconnect network. AB: Arbiter.
BFU: butterfly unit. TF ROM: twiddle factor ROM. MA: modular adder. MS: modular
subtracter. MM: modular multiplier. The variation between radix-2 and radix-4 in terms
of MUXs is related to the total number of fan-ins.

Type AGU MMU AB INN Bank BFU TF
ROM

NTT/INTT
cycle

radix-2 2n
2n×
2-to-1
MUXs

2n×
2n-to-1
MUXs

2n×
2n-to-1
MUXs

2d
n×

MA/MS/MM
N − 1 (N/2d)log2N

radix-4 n
n×

4-to-1
MUXs

n×
n-to-1
MUXs

n×
n-to-1
MUXs

n
n×

MA/MS/MM* N − 1 (N/d)log4N

variation ↓ 50% − ↓ 75% ↓ 75% ↓ 50% − − −

* : Multiplying ω1
4 (ω−1

4) can be alternatively replaced with a series of modular additions and shifts.
n : number of processing elements.

6.1 Performance Evaluation Between Radix-4 and Radix-2 NTT
To justify the advantage of radix-4 NTT, we compare its area-time performance with
radix-2 NTT through theoretical analysis and implementation results. Table 3 shows the
theoretical difference between radix-2 and radix-4 NTT in terms of hardware resources
about some common modules. It is observed that the radix-4 NTT consumes the same

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 115

number of cycles with radix-2 NTT theoretically, but it only needs half number of banks
when configured with the same number of butterfly units. The reason for this difference is
that the radix-4 NTT performs two consecutive layers of butterfly operations, which halves
the concurrent data points to be fetched at every stage. This good balance between intra-
stage and inner-stage parallelization heavily reduces the number of fan-ins of interconnect
network. As shown in Table 3, the number of fan-ins in the interconnect network of radix-4
NTT is reduced by 75% compared to radix-2 NTT. In addition, the number of fan-outs in
the memory mapping unit and address generator unit of radix-4 NTT are both reduced by
75% and 50%, respectively.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0.8

11.5

0.2
0.7

28.0

1.4
0.6

42.4

4.2 0.5

61.8

% LUTs 1BFU % LUTs 2BFU % LUTs 4BFU % LUTs 8BFU

(a) LUTs proportion in radix-2 NTT

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

CTRL PT_AGU TF_AGU MMU INN AB BFU OTHER

4.7
1.2 2.5 0.8

18.8

1.0 2.6
2.0 2.1 0.8 0.5

31.5

2.9 3.4

% LUTs 4BFU % LUTs 8BFU

(b) LUTs proportion in radix-4 NTT

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

CTRL TF_AGU MMU INN BFU OTHER

12.0

3.2
6.5

3.6

61.0

13.6 6.2
1.8

7.1 5.3

67.0

12.5
3.1 0.8

7.5 7.3

70.3

11.0
1.5 0.4

7.5

70.8

10.5

% FFs 1BFU % FFs 2BFU % FFs 4BFU % FFs 8BFU

(c) FFs proportion in radix-2 NTT

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

CTRL TF_AGU MMU INN BFU OTHER

4.0
0.9

4.1 3.7

79.3

7.9
1.9 0.4

4.3 4.5

81.9

7.0

% FFs 4BFU % FFs 8BFU

(d) FFs proportion in radix-4 NTT

Figure 11: The variation of LUTs/FFs proportion in radix-2 and radix-4 NTT.

Figure 11 indicates the variation of LUTs and FFs proportion in radix-2 and radix-4 NTT
(N = 1024, 14-bit q) with different number of parallel butterfly units (parallel degrees) on
the FPGA platform. The CTRL represents the control unit and the PT_AGU, TF_AGU
are address generator units tailored for data points and twiddle factors, respectively. Based
on these figures, we made two important observations. First, it is obvious that the resource
proportion of AB and INN modules will become larger when increasing the number of
parallel butterfly units in both radix-2 and radix-4 NTT. Moreover, the LUTs proportion
of interconnect network accounts for the main part among these listed modules, especially
in the case of larger parallel degrees. Second, the growth rate of LUTs proportion in
radix-4 NTT is slower than that of radix-2 NTT. In other words, the growth rate of the
number of fan-ins in INN of radix-4 NTT is almost fourfold lower than that of radix-2
NTT, which promotes the area-time efficiency in radix-4 NTT.

Figure 12 with dual coordinates depicts the comparison of ATP measured by LUTs/FFs
and the number of DSPs/BRAMs between radix-2 and radix-4 NTT. The left coordinate
indicates that the ATP of radix-4 NTT outperforms radix-2 NTT when configured with

116 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

3

6

12

27

1.5
2.5

5

10

8.8
8.2

9.9

18.3

5.7
5.3 5.2

6.2

0

5

10

15

20

25

30

0

2

4

6

8

10

12

14

16

18

20

1BFU 2BFU 4BFU 8BFU

n
u

m
b

er

 A

TP

DSPs # BRAMs ATP of LUTs ATP of FFs

(a) radix-2 NTT

12

27

3

6.5

5.7

8

4.6

5.1

0

5

10

15

20

25

30

0

1

2

3

4

5

6

7

8

9

4BFU 8BFU

n
u

m
b

er

A

TP

DSPs # BRAMs ATP of LUTs ATP of FFs

(b) radix-4 NTT

Figure 12: The variation of ATP in radix-2 and radix-4 NTT (N = 1024, 14-bit q).

the same number of butterfly units. This advantage is enlarged with the growth of parallel
degree. When setting the number of butterfly units to 8, the ATP of LUT/FF in radix-4
NTT core is approximately 2.2× /1.2× less than the radix-2 NTT core. Moreover, the
radix-4 NTT configured with 4 butterfly units achieves the best balance between area
and time among these designs. The right coordinate indicates how the number of DSP
and BRAM varies with the parallel degree. Since the radix-2 and radix-4 butterfly unit
consume the same number of modular multiplication, the growth of DSP is identical as
well. But the radix-4 NTT consumes less number of BRAMs. Table 4 in Appendix also
presents the detailed resource usage broken down across different modules for radix-2 and
radix-4 NTT cores with different number of parallel butterfly units. This table is made
according to the resource utilization reported by Vivado 2020.2 on Windows 10.

Table 2: Conflict-free memory mapping scheme comparisons with related work.

Scheme
Radix

Config.

BFU

Config.

FFT

Type
Storage Architecture

Hardware

Resource

[Joh92]
√

× IP N

Memory-based

XOR+Shift

[XMX17]
√ √

CG 2N XOR+Shift

[RV08]
√ √

IP N logR N LUT+Shift

[BUC19] × × CG 2N XOR+Shift

[FLX20] ×
√

SH 2N Reorder+Shift

[RVM+14] ×
√

IP N -

[XWXY17]
√ √

IP 2N Memory-MDC-based XOR+Shift

This Work
√ √

IP N Memory-based XOR+Shift

IP : in-place FFT. CG : constant geometry FFT. SH : Stockham FFT.

6.2 Comparisons with Related Work
Quantifying the difference of memory mapping scheme. The devised memory
mapping scheme owns broader applicability but still maintaining low logic and memory
hardware overhead, which is promoted by making full use of the toggling principle of address
in every stage of in-place NTT. Table 2 lists the key comparison results between the related
conflict-free memory mapping schemes and our proposed one. The concrete difference is

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 117

mainly elaborated with five aspects as the following. (1) Broader applicability. It is
observed that the memory mapping scheme in this work can support the configuration for
arbitrary radix in-place NTT with valid number of parallel butterfly units. (2) Smaller
storage overhead. [XMX17] proposes a memory mapping scheme for constant geometry
radix-2k FFT supporting multiple number of butterfly units. The dataflow of constant
geometry FFT is much simpler than in-place FFT at the price of double memory overheads.
Moreover, other schemes in Table 2 neither can backup the FFT radix/BFU configuration
nor consume more hardware resource and memory footprint. (3) Lower permutation
complexity. [XHY+20] applies six types of permutation mode to guarantee the correct
memory access. This method utilizes extra control hardware to configure the routing path
of interconnect network according to the order of stage in NTT, which is fixed to suite
the radix-2 NTT with 32 butterfly units as well. While the memory mapping scheme
in this work only needs one type of memory mapping mechanism and thus reduces the
redundant control overhead. (4) Avoiding pipeline stalls. The memory access scheme
for radix-2 NTT in [RVM+14] utilizes extra registers to buffer and synchronize the data
points fetched at different operation moment. As a result, this method leads to pipeline
stalls and more clock cycle consumption. While the proposed scheme carefully avoids this
pipeline bubbles and thus improves the hardware utilization. (5) Slightly lower LUT
overhead. [ZYC+20] also presents a multi-bank NTT architecture based on the memory
mapping scheme in [WHEW14]. This scheme is revised by additionally reordering the last
loop of NTT to avoid the memory conflict mentioned in 2.2.2, which is limited to match
radix-2 NTT as well. To be specific, the bank index is derived from a modular accumulation
formula. To quantify and compare the resource consumption between [ZYC+20] and the
proposed one, we implement these two schemes on FPGA targeting at different vector
length N and number of butterfly units d for radix-2 NTT. Figure 13 shows that the
proposed one consumes slightly less amount of LUTs than [ZYC+20] under the same vector
length and parallel degree. Because the number of XOR chains in [ZYC+20] will increase
with the parallel degree while the proposed one is almost constant. Taking (N = 1024, d
= 8) as an example, the bank index calculated by [ZYC+20] is expressed in Verilog HDL
style as: bank index = a[9 : 8] + a[7 : 4] + a[3 : 0], which consists of four XOR chains
corresponding to 4-bit width. Synthesis result shows that it consumes 6× 16 = 96 LUTs
for mapping the 16 logic addresses. While the bank index derived from the proposed
formula in section 4 is expressed as: bank index = sel == 0 ? a[3 : 0] : {∼ a[3], a[2 : 0]},
sel = a[9] ⊕ a[8] ⊕ a[7] ⊕ a[6] ⊕ a[5] ⊕ a[4], which consumes 2 × 16 = 32 LUTs. This
advantage becomes even more prominent when increasing the vector length and parallel
degree.

2 2 2 4 4 4 4 4 64 4
8 8 8

12 12
16 1616 16

24 24 24

32

40

48

32

48

64 64

80

96 96

112

0

20

40

60

80

100

120

N=16 N=32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096

LU

Ts

d=1 d=2 d=4 d=8

(a) Resource usages in [ZYC+20].

2 2 2

4 4 4 4 4

6

4 4 4 4

8 8 8 8 8

4 4 4 4

16 16 16 1616 16 16 16 16

32 32 32

0

5

10

15

20

25

30

35

N=16 N=32 N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096

LU

Ts

d=1 d=2 d=4 d=8

(b) Resource usages in this work.

Figure 13: The comparison of radix-2 mapping scheme between [ZYC+20] and this work.

118 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

Table 3: The comparison of NTT with related works.

Work BFU Cycles
Freq.

(MHz)
Time.
(µs)

LUT/
ATP

FF/
ATP

DSP/
ATP

BRAM/
ATP

parameters: N = 1024, fixed modulus q = 12289

[ZYC+20]A 2 2569* 244 10.5 847/8.9 375/3.9 2/21.1 6/63.2
[FS19]A 1 10240 - - 980/41.1 395/16.6 26/1091 2/83.9
[BUC19]A 2 6155 - - 7690/194 16/0.4 11/277.5 13/327.9
[JGCS19]A 1 6206* 251 24.7 343/8.5 493/12.2 3/74.2 6/148.4
[XL20]Z 4 2688 153 5.52 4823/26.6 2901/16.0 8/44.2 -
[KLC+17]Z 4 2616* 150 17.44 2832/49.4 1381/24.1 8/139.5 10/174.4

parameters: N = 1024, tunable 14-bit modulus q

[MKO+20a]Z 32 200* 125 1.6 17188/27.5 - 96/153.6 48/76.8
[NDG19]Z 2 × 2 2032 188 10.81 898/9.7 1117/12.1 4/43.24 10/108.1
This workA 2 × 2 1308 213 6.1 1161/7.1 967/5.9 12/73.2 3/18.3

This workV

2 × 2 1308 270 4.8 1196/5.7 969/4.6 12/57.6 3/14.4
4 × 2 668 250 2.7 2953/8.0 1875/5.1 27/72.9 5.5/14.85
1 5134 278 18.5 475/8.8 307/5.7 3/55.5 1.5/27.75
2 2574 270 9.5 863/8.2 561/5.3 6/57 2.5/23.75
4 1294 263 4.9 2011/9.9 1070/5.2 12/58.8 5/24.5
8 654 227 2.9 6300/18.3 2124/6.2 27/78.3 10/29.0

* : The cycles for bit-reversed operation are not included.
A : Artix-7 FPGA platform. V : Virtex-7 FPGA platform. Z : Zynq-7000 FPGA platform.

The comparison of NTT with related works. As elaborated in section 6.1, the
radix-4 NTT with two-layer butterfly units owns the best ATP performance. The radix-4
butterfly unit has a slightly larger pipeline latency than radix-2, which is constant and
depends on the practical hardware implementation. But the heavier interconnect network
of radix-2 NTT with 8 BFUs results in a larger frequency drop than radix-4 NTT with
4× 2 BFUs. We mainly compare the implementation result of radix-4 NTT (2× 2 BFUs)
core with the state-of-the-art works as depicted in Table 3. [ZYC+20] proposes a radix-2
NTT design with two parallel butterfly units. It cannot naturally avoid the bit-reversed
operation and consumes approximately 2× cycles as our design. The ATP of LUT is 1.5×
greater than this work. Since it proposes a fixed architecture for a specific modulus 12289,
the ATP of FF and DSP is smaller than ours. However, owing to reusing the twiddle factors
in NTT and INTT, our architecture achieves almost 4.4× improvement in terms of BRAM
ATP. [FS19] presents a radix-2 NTT design with a single butterfly unit. It consumes less
number of BRAMs but the ATP of LUT, FF and DSP is approximately 7.2×, 3.6× and
18.9× as our work, respectively. [BUC19] puts forward a constant geometry radix-2 NTT
with two parallel butterfly units as well. This design targets power-efficiency and supports
multiple modulus. Therefore, it requires less FFs but the ATP of LUT, DSP and BRAM
is almost 34.0×, 4.8× and 22.8× as our design, respectively. A fast and configurable
radix-2 NTT is proposed in [JGCS19]. However, it needs extra cycles to execute the
bit-reversed operation, pre-processing and post-processing. The ATP of LUT, FF, DSP
and BRAM is almost 1.6×, 2.6×, 1.3× and 10.3× as our design, respectively. [XL20]
presents a constant geometry radix-2 NTT architecture based on 4 parallel butterfly units.

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 119

However, it consumes more memory overhead and computational cycles. The ATP of LUT,
FF is approximately 4.6×, 3.4× as our design. Because the modular multiplier is specific
for the modulus 12289, thus it consumes less number of DSPs as our design. [KLC+17]
also puts forward a parallel radix-2 NTT architecture with 4 butterfly units. However, it
cannot avoid the pre-processing and post-processing, thus consuming extra more clock
cycles. Its modular multiplier is based on a fixed Barrett reduction method for 12289. The
ATP of LUT, FF, DSP and BRAM is almost 8.6×, 5.2×, 2.4×, and 12.1× as our work,
respectively. [MKO+20a] proposes the highly parallel radix-2 NTT with 32 butterfly units,
which results in less number of computational cycles. Nonetheless, the high fan-out and
fan-in in this architecture will pull down the maximum frequency and it does not reuse
the twiddle factors. Therefore, the ATP of LUT, DSP and BRAM is nearly 4.8×, 2.6×
and 5.3× as our architecture. A two-layer radix-2 in-place NTT design based on high-level
synthesis method is also presented in [NDG19]. But the tricks of reusing twiddle factor
and radix-4 butterfly operator are not applied in this design. It also consumes more clock
cycles to compute NTT. As a result, the ATP of LUT, FF and BRAM is approximately
1.7×, 2.6× and 7.5× as our work. We also synthesize and implement the radix-4 NTT core
on Artix-7 (XC7Z020CLG484-3) FPGA platform considering the influence of FPGA type.
As shown in Table 3, the implementation result of frequency is lower than the former one,
but the resource usage is almost unchanged. The performance of the proposed radix-4
NTT core still has a clear advantage over the state-of-the-art works.

7 Conclusion
In this paper, we propose a scalable radix-2 and radix-4 NTT multiplication architecture
based on an efficient memory mapping scheme. The detailed derivation process for bit-
reversed-free radix-4 NTT and INTT with low complexity is provided. Both algorithm-level
and architecture-level optimization techniques are applied to reduce the area overhead
and memory footprint in our design. Through theoretical analysis and implementation
results, we point out that the proposed radix-4 NTT kernel with the same number of
parallel butterfly units outperforms the radix-2 one in terms of area-time performance.
This advantage is enlarged when increasing the parallel degree. In addition, the proposed
memory mapping scheme is able to support the parallelization of arbitrary radix NTT,
which is more universal and efficient than other methods. In the future, we plan to integrate
the NTT core into the PQC or FHE cryptosystem to improve the overall performance. It
is interesting to consider the protective implementations for NTT core against the side
channel attacks as well.

Acknowledgments
This work is supported in part by the National Key R&D Program of China (Grant
No.2018YFB2202101), and in part by the National Science and Technology Major Project
of the Ministry of Science and Technology of China (Grant No.2018ZX01027101-002), and
in part by the National Natural Science Foundation of China (Grant No.61804088). We
thank Alan Szepieniec from Nervos for his valuable discussion about this work. We also
thank the editors and reviewers for their thoughtful comments.

References
[ABCG20] Erdem Alkim, Yusuf Alper Bilgin, Murat Cenk, and François Gérard. Cortex-

m4 optimizations for \{R, M\}lwe schemes. IACR Cryptol. ePrint Arch.,
2020:12, 2020.

120 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

[ACC+21] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,
Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederha-
gen, Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polynomial multipli-
cation in NTRU prime comparison of optimization strategies on cortex-m4.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(1):217–238, 2021.

[BGV93] Antoon Bosselaers, René Govaerts, and Joos Vandewalle. Comparison of
three modular reduction functions. In Douglas R. Stinson, editor, Advances in
Cryptology - CRYPTO ’93, 13th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume
773 of Lecture Notes in Computer Science, pages 175–186. Springer, 1993.

[BKS19] Leon Botros, Matthias J. Kannwischer, and Peter Schwabe. Memory-efficient
high-speed implementation of kyber on cortex-m4. In Johannes Buchmann,
Abderrahmane Nitaj, and Tajje-eddine Rachidi, editors, Progress in Cryptol-
ogy - AFRICACRYPT 2019 - 11th International Conference on Cryptology
in Africa, Rabat, Morocco, July 9-11, 2019, Proceedings, volume 11627 of
Lecture Notes in Computer Science, pages 209–228. Springer, 2019.

[BUC19] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. Sapphire:
A configurable crypto-processor for post-quantum lattice-based protocols.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(4):17–61, 2019.

[CG99] E. Chu and A. George. Inside the FFT Black Box. Inside the FFT Black
Box, 1999.

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT multiplication for ntt-
unfriendly rings new speed records for saber and NTRU on cortex-m4 and
AVX2. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):159–188, 2021.

[CMV+15] Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy,
Ray C. C. Cheung, Derek Chi-Wai Pao, and Ingrid Verbauwhede. High-speed
polynomial multiplication architecture for ring-lwe and SHE cryptosystems.
IEEE Trans. Circuits Syst. I Regul. Pap., 62-I(1):157–166, 2015.

[FBR+21] Tim Fritzmann, Michiel Van Beirendonck, Debapriya Basu Roy, Patrick
Karl, Thomas Schamberger, Ingrid Verbauwhede, and Georg Sigl. Masked
accelerators and instruction set extensions for post-quantum cryptography.
Cryptology ePrint Archive, Report 2021/479, 2021. https://ia.cr/2021/
479.

[FL19] Xiang Feng and Shuguo Li. Accelerating an FHE integer multiplier using
negative wrapped convolution and ping-pong FFT. IEEE Trans. Circuits
Syst. II Express Briefs, 66-II(1):121–125, 2019.

[FLX20] Xiang Feng, Shuguo Li, and Sufen Xu. Rlwe-oriented high-speed polynomial
multiplier utilizing multi-lane stockham NTT algorithm. IEEE Trans. Circuits
Syst. II Express Briefs, 67-II(3):556–559, 2020.

[FS19] T. Fritzmann and J. Sepulveda. Efficient and flexible low-power ntt for lattice-
based cryptography. In 2019 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), 2019.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. Stoc, 2009.

https://ia.cr/2021/479
https://ia.cr/2021/479

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 121

[GGMG13] Mario Garrido, Jesús Grajal, Miguel A. Sánchez Marcos, and Oscar Gustafs-
son. Pipelined radix-2k feedforward FFT architectures. IEEE Trans. Very
Large Scale Integr. Syst., 21(1):23–32, 2013.

[GOPS13] Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe. Soft-
ware speed records for lattice-based signatures. In Philippe Gaborit, editor,
Post-Quantum Cryptography - 5th International Workshop, PQCrypto 2013,
Limoges, France, June 4-7, 2013. Proceedings, volume 7932 of Lecture Notes
in Computer Science, pages 67–82. Springer, 2013.

[GS66] W. M. Gentleman and G. Sande. Fast fourier transforms: for fun and profit.
ACM, 1966.

[HT96] Shousheng He and Mats Torkelson. A new approach to pipeline FFT proces-
sor. In Proceedings of IPPS ’96, The 10th International Parallel Processing
Symposium, April 15-19, 1996, Honolulu, Hawaii, USA, pages 766–770. IEEE
Computer Society, 1996.

[JGCS19] Arpan Jati, Naina Gupta, Anupam Chattopadhyay, and Somitra Kumar
Sanadhya. Spqcop: Side-channel protected post-quantum cryptoprocessor.
IACR Cryptol. ePrint Arch., 2019:765, 2019.

[Joh92] L. G. Johnson. Conflict free memory addressing for dedicated fft hardware.
IEEE Trans. on Circuit and Systems-II, 39(5):312–316, 1992.

[KLC+17] Po-Chun Kuo, Wen-Ding Li, Yu-Wei Chen, Yuan-Che Hsu, Bo-Yuan Peng,
Chen-Mou Cheng, and Bo-Yin Yang. High performance post-quantum key
exchange on fpgas. IACR Cryptology ePrint Archive, page 690, 2017.

[LNS20] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
lattice-based zero-knowledge proofs for integer relations. In Jay Ligatti, Xin-
ming Ou, Jonathan Katz, and Giovanni Vigna, editors, CCS ’20: 2020 ACM
SIGSAC Conference on Computer and Communications Security, Virtual
Event, USA, November 9-13, 2020, pages 1051–1070. ACM, 2020.

[LSW01] Hsin-Fu Lo, Ming-Der Shieh, and Chien-Ming Wu. Design of an efficient
FFT processor for DAB system. In Proceedings of the 2001 International
Symposium on Circuits and Systems, ISCAS 2001, Sydney, Australia, May
6-9, 2001, pages 654–657. IEEE, 2001.

[MAA+20] Dustin Moody, Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang,
John Kelsey, Yi-Kai Liu, Carl Miller, Rene Peralta, Ray Perlner, Angela
Robinson, Daniel Smith-Tone, and Jacob Alperin-Sheriff. Status report on
the second round of the nist post-quantum cryptography standardization
process, 2020-07-22 2020.

[MKO+20a] Ahmet Can Mert, Emre Karabulut, Erdinc Ozturk, Erkay Savas, and Aydin
Aysu. An extensive study of flexible design methods for the number theoretic
transform. IEEE Transactions on Computers, pages 1–1, 2020.

[MKÖ+20b] Ahmet Can Mert, Emre Karabulut, Erdinç Öztürk, Erkay Savas, Michela
Becchi, and Aydin Aysu. A flexible and scalable NTT hardware : Applications
from homomorphically encrypted deep learning to post-quantum cryptography.
In 2020 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2020, Grenoble, France, March 9-13, 2020, pages 346–351. IEEE,
2020.

122 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

[NDG19] Duc Tri Nguyen, Viet B. Dang, and Kris Gaj. A high-level synthesis approach
to the software/hardware codesign of ntt-based post-quantum cryptography
algorithms. In International Conference on Field-Programmable Technology,
FPT 2019, Tianjin, China, December 9-13, 2019, pages 371–374. IEEE, 2019.

[Nic71] Peter J. Nicholson. Algebraic theory of finite fourier transforms. Journal of
Computer and System Sciences, 5(5):524–547, 1971.

[POG15] Thomas Pöppelmann, Tobias Oder, and Tim Güneysu. High-performance
ideal lattice-based cryptography on 8-bit atxmega microcontrollers. In
Kristin E. Lauter and Francisco Rodríguez-Henríquez, editors, Progress in
Cryptology - LATINCRYPT 2015 - 4th International Conference on Cryptol-
ogy and Information Security in Latin America, Guadalajara, Mexico, August
23-26, 2015, Proceedings, volume 9230 of Lecture Notes in Computer Science,
pages 346–365. Springer, 2015.

[RMD+15] Stephen Richardson, Dejan Markovic, Andrew Danowitz, John Brunhaver,
and Mark Horowitz. Building conflict-free FFT schedules. IEEE Trans.
Circuits Syst. I Regul. Pap., 62-I(4):1146–1155, 2015.

[RV08] Dionysios I. Reisis and Nikolaos Vlassopoulos. Conflict-free parallel memory
accessing techniques for FFT architectures. IEEE Trans. Circuits Syst. I
Regul. Pap., 55-I(11):3438–3447, 2008.

[RVM+14] Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong
Chen, and Ingrid Verbauwhede. Compact ring-lwe cryptoprocessor. In
Lejla Batina and Matthew Robshaw, editors, Cryptographic Hardware and
Embedded Systems - CHES 2014 - 16th International Workshop, Busan, South
Korea, September 23-26, 2014. Proceedings, volume 8731 of Lecture Notes in
Computer Science, pages 371–391. Springer, 2014.

[Sho94] P.W. Shor. Algorithms for quantum computation: discrete logarithms and fac-
toring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 124–134, 1994.

[Sto06] H. S. Stone. R66-50 an algorithm for the machine calculation of complex
fourier series. IEEE Transactions on Electronic Computers, EC-15(4):680–681,
2006.

[SYJ84] E.E. Swartzlander, W.K.W. Young, and S.J. Joseph. A radix 4 delay com-
mutator for fast fourier transform processor implementation. IEEE Journal
of Solid-State Circuits, 19(5):702–709, 1984.

[TCH19] Wei-Lun Tsai, Sau-Gee Chen, and Shen-Jui Huang. Reconfigurable radix-2
k× 3 feedforward fft architectures. In IEEE International Symposium on
Circuits and Systems, ISCAS 2019, Sapporo, Japan, May 26-29, 2019, pages
1–5. IEEE, 2019.

[TJS03] J.H. Takala, T.S. Jarvinen, and H.T. Sorokin. Conflict-free parallel memory
access scheme for fft processors. In Proceedings of the 2003 International
Symposium on Circuits and Systems, 2003. ISCAS ’03., volume 4, pages
IV–IV, 2003.

[WHEW14] Wei Wang, Xinming Huang, Niall Emmart, and Charles C. Weems. VLSI
design of a large-number multiplier for fully homomorphic encryption. IEEE
Trans. Very Large Scale Integr. Syst., 22(9):1879–1887, 2014.

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 123

[XHY+20] Guozhu Xin, Jun Han, Tianyu Yin, Yuchao Zhou, Jianwei Yang, Xu Cheng,
and Xiaoyang Zeng. Vpqc: A domain-specific vector processor for post-
quantum cryptography based on risc-v architecture. IEEE Transactions on
Circuits and Systems I: Regular Papers, 67(8):2672–2684, 2020.

[XL20] Yufei Xing and Shuguo Li. An efficient implementation of the newhope key
exchange on fpgas. IEEE Trans. Circuits Syst. I Regul. Pap., 67-I(3):866–878,
2020.

[XL21] Yufei Xing and Shuguo Li. A compact hardware implementation of cca-secure
key exchange mechanism CRYSTALS-KYBER on FPGA. IACR Trans.
Cryptogr. Hardw. Embed. Syst., 2021(2):328–356, 2021.

[XMX17] Qianjian Xing, Zhen-guo Ma, and Yingke Xu. A novel conflict-free parallel
memory access scheme for FFT processors. IEEE Trans. Circuits Syst. II
Express Briefs, 64-II(11):1347–1351, 2017.

[XWXY17] Kaifeng Xia, Bin Wu, Tao Xiong, and Tian-Chun Ye. A memory-based FFT
processor design with generalized efficient conflict-free address schemes. IEEE
Trans. Very Large Scale Integr. Syst., 25(6):1919–1929, 2017.

[ZYC+20] Neng Zhang, Bohan Yang, Chen Chen, Shouyi Yin, Shaojun Wei, and
Leibo Liu. Highly efficient architecture of newhope-nist on FPGA using
low-complexity NTT/INTT. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(2):49–72, 2020.

124 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

Appendix
The concrete dataflow of 27-point radix-3 DIT-NR NTT with three butterfly units is
depicted in Figure 14. At each stage, 9 data points are accessed in parallel according to the
growing group order. The lines denoted with red, yellow and blue color represent the parallel
butterfly operations in the first round of each stage, respectively. The conflict-free memory
mapping scheme proposed in section 4 is also valid for radix-3 in-place NTT. The detailed
mapping process for 27-point radix-3 in-place DIT-NR NTT is depicted in Figure 15. Taking
stage 0 (p = 2) as an example, the nine old addresses {0, 9, 18, 1, 10, 19, 2, 11, 20} in group 0
round 0 (G2,0,0) are mapped onto nine desired different bank indexes {0, 1, 2, 3, 4, 5, 6, 7, 8},
respectively. By derivation, readers can find that other computation stages also hold valid
as stage 0.

Figure 14: The dataflow of 27-point radix-3 DIT-NR NTT with d = 3.

Xiangren Chen, Bohan Yang, Shouyi Yin, Shaojun Wei and Leibo Liu* 125

old address mix radix R-B step number slide distance bank index bank address

0

1

2

0

1

2

3

4

5

3

4

5

0

1

2

3

4

5

6

7

8

6

7

8

9

10

11

9

10

11

6

7

8

9

10

11

12

13

14

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 mod 3 = 0
(0x3)

mod 9 = 0

(1x3)

mod 9 = 3

0

1

G2,0,0

16

17

18

19

00

01

02

03

04

05

06

07

08

00

01

02

03

04

05

06

07

08

10

11

12

13

14

15

16

17

18

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

20

21

22

23

24

25

26

27

28

21

22

23

24

25

26

21

22

23

24

25

26

20

1 mod 3 = 1

2 mod 3 = 2
(2x3)

mod 9 = 6
2

(0+0) mod 9 = 0

(0+1) mod 9 = 1

(0+2) mod 9 = 2

(0+3) mod 9 = 3

(0+4) mod 9 = 4

(0+5) mod 9 = 5
(0+6) mod 9 = 6

(0+7) mod 9 = 7

(0+8) mod 9 = 8

(0+0) mod 9 = 0

(0+1) mod 9 = 1

(0+2) mod 9 = 2

(0+3) mod 9 = 3

(0+4) mod 9 = 4

(0+5) mod 9 = 5
(0+6) mod 9 = 6

(0+7) mod 9 = 7

(0+8) mod 9 = 8

(3+0) mod 9 = 3

(3+1) mod 9 = 4

(3+2) mod 9 = 5

(3+3) mod 9 = 6

(3+4) mod 9 = 7

(3+5) mod 9 = 8
(3+6) mod 9 = 0

(3+7) mod 9 = 1

(3+8) mod 9 = 2

(3+0) mod 9 = 3

(3+1) mod 9 = 4

(3+2) mod 9 = 5

(3+3) mod 9 = 6

(3+4) mod 9 = 7

(3+5) mod 9 = 8
(3+6) mod 9 = 0

(3+7) mod 9 = 1

(3+8) mod 9 = 2

(6+0) mod 9 = 6

(6+1) mod 9 = 7

(6+2) mod 9 = 8

(6+3) mod 9 = 0

(6+4) mod 9 = 1

(6+5) mod 9 = 2
(6+6) mod 9 = 3

(6+7) mod 9 = 4

(6+8) mod 9 = 5

(6+0) mod 9 = 6

(6+1) mod 9 = 7

(6+2) mod 9 = 8

(6+3) mod 9 = 0

(6+4) mod 9 = 1

(6+5) mod 9 = 2
(6+6) mod 9 = 3

(6+7) mod 9 = 4

(6+8) mod 9 = 5

old address mix radix R-B step number slide distance bank index bank address

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 mod 3 = 0
(0x3)

mod 9 = 0

(1x3)

mod 9 = 3

0

1

G2,0,0

16

17

18

19

00

01

02

03

04

05

06

07

08

10

11

12

13

14

15

16

17

18

20

21

22

23

24

25

26

27

28

21

22

23

24

25

26

20

1 mod 3 = 1

2 mod 3 = 2
(2x3)

mod 9 = 6
2

(0+0) mod 9 = 0

(0+1) mod 9 = 1

(0+2) mod 9 = 2

(0+3) mod 9 = 3

(0+4) mod 9 = 4

(0+5) mod 9 = 5
(0+6) mod 9 = 6

(0+7) mod 9 = 7

(0+8) mod 9 = 8

(3+0) mod 9 = 3

(3+1) mod 9 = 4

(3+2) mod 9 = 5

(3+3) mod 9 = 6

(3+4) mod 9 = 7

(3+5) mod 9 = 8
(3+6) mod 9 = 0

(3+7) mod 9 = 1

(3+8) mod 9 = 2

(6+0) mod 9 = 6

(6+1) mod 9 = 7

(6+2) mod 9 = 8

(6+3) mod 9 = 0

(6+4) mod 9 = 1

(6+5) mod 9 = 2
(6+6) mod 9 = 3

(6+7) mod 9 = 4

(6+8) mod 9 = 5

√

G2,0,1

√

G2,0,2

√

Figure 15: The detailed memory mapping scheme for 27-point radix-3 NTT with d = 3.

126 CFNTT: Scalable Radix-2/4 NTT Multiplication Architecture

Table 4: The resource usage broken down across different modules in radix-2 and radix-4
NTT cores. CTRL: control unit. PT_AGU: data point address generator. TF_AGU:
twiddle factor address generator. MMU: memory mapping unit. INN: interconnect network.
AB: Arbiter. BFU: butterfly unit. The resource utilization is reported by Vivado 2020.2
on Windows 10.

Modules
radix-2 NTT radix-4 NTT

1 BFUs 2 BFUs 4 BFUs 8 BFUs 2 × 2 BFUs 4 × 2 BFUs

CTRL
103 LUTs/

37 FFs

75 LUTs/

35 FFs

89 LUTs/

33 FFs

67 LUTs/

31 FFs

56 LUTs/

39 FFs

60 LUTs/

35 FFs

PT_AGU
28 LUTs/

0 FFs

38 LUTs/

0 FFs

61 LUTs/

0 FFs

67 LUTs/

0 FFs

14 LUTs/

0 FFs

61 LUTs/

0 FFs

TF_AGU
82 LUTs/

10 FFs

69 LUTs/

10 FFs

56 LUTs/

9 FFs

45 LUTs/

9 FFs

30 LUTs/

9 FFs

23 LUTs/

8 FFs

MMU
4 LUTs/

20 FFs

6 LUTs/

40 FFs

13 LUTs/

80 FFs

32 LUTs/

160 FFs

10 LUTs/

40 FFs

16 LUTs/

80 FFs

INN
55 LUTs/

11 FFs

242 LUTs/

30 FFs

852 LUTs/

78 FFs

3891 LUTs/

198 FFs

224 LUTs/

36 FFs

930 LUTs/

84 FFs

AB
1 LUTs/

0 FFs

12 LUTs/

0 FFs

84 LUTs/

0 FFs

429 LUTs/

0 FFs

12 LUTs/

0 FFs

87 LUTs/

0 FFs

BFU

185 LUTs/

188 FFs/

3 DSPs

379 LUTs/

376 FFs/

6 DSPs

772 LUTs/

752 FFs/

12 DSPs

1561 LUTs/

1504 FFs/

24 DSPs

813 LUTs/

768 FFs/

12 DSPs

1677 LUTs/

1536 FFs/

24 DSPs

OTHER
19 LUTs/

42 FFs

42 LUTs/

70 FFs

84 LUTs/

118 FFs

208 LUTs/

222 FFs

31 LUTs/

76 FFs

99 LUTs/

132 FFs

TOTAL

477 LUTs/

308 FFs/

3 DSPs

863 LUTs/

561 FFs/

6 DSPs

2011 LUTs/

1070 FFs/

12 DSPs

6300 LUTs/

2124 FFs/

24 DSPs

1190 LUTs/

968 FFs/

12 DSPs

2953 LUTs/

1875 FFs/

24 DSPs

	Introduction
	Preliminaries
	NTT-based Multiplication Algorithm
	Scalability of NTT Architecture

	Radix-4 DIT NTT and DIF INTT
	DIT Radix-4 NTT with Low Complexity
	DIF Radix-4 INTT with Low Complexity
	Improvement with Divide and Schedule Method
	Avoiding Bit-reversed Cost and Reducing Memory Footprint

	Conflict-free Memory Mapping Scheme
	Scalable Iterative NTT Algorithm
	Proposed Solution to Conflict Issue

	Scalable Radix-2/4 NTT Multiplication Architecture
	The Overall Scalable Architecture
	Compact Radix-4 Butterfly Unit

	Implementation Results and Comparisons
	Performance Evaluation Between Radix-4 and Radix-2 NTT
	Comparisons with Related Work

	Conclusion

