
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 1, pp. 28–68. DOI:10.46586/tches.v2022.i1.28-68

Bypassing Isolated Execution on RISC-V using
Side-Channel-Assisted Fault-Injection and Its

Countermeasure
Shoei Nashimoto1,2, Daisuke Suzuki1, Rei Ueno2 and Naofumi Homma2

1 Mitsubishi Electric Corporation, Japan, Nashimoto.Shoei@bx.MitsubishiElectric.co.jp
2 Tohoku University, Japan, homma@riec.tohoku.ac.jp

Abstract. RISC-V is equipped with physical memory protection (PMP) to prevent
malicious software from accessing protected memory regions. PMP provides a
trusted execution environment (TEE) that isolates secure and insecure applications.
In this study, we propose a side-channel-assisted fault-injection attack to bypass
isolation based on PMP. The proposed attack scheme involves extracting successful
glitch parameters for fault injection from side-channel information under cross-
device conditions. A proof-of-concept TEE compatible with PMP in RISC-V was
implemented, and the feasibility and effectiveness of the proposed attack scheme was
validated through experiments in TEEs. The results indicate that an attacker can
bypass the isolation of the TEE and read data from the protected memory region.
In addition, we experimentally demonstrate that the proposed attack applies to a
real-world TEE, Keystone. Furthermore, we propose a software-based countermeasure
that prevents the proposed attack.
Keywords: Fault Injection · RISC-V · Memory Protection · Trusted Execution
Environment

1 Introduction
RISC-V is an open instruction set architecture (ISA), published in 2011 [PW17]. It has
attracted considerable attention from both academia and industry due to features such
as the absence of license fees, eliminating unnecessary functions in existing ISAs, and
flexibility with respect to modular extensions [Int20]. Therefore, it can be used in various
applications, from low-end embedded devices running bare-metal programs to high-end
servers running the Linux operating system (OS).

It is important to design RISC-V by considering its security. Privileged instructions
and a memory protection unit called physical memory protection (PMP) play an important
role in its security, preventing malicious applications and/or libraries from accessing
protected memory regions. Application execution based on memory isolation and the
secure area isolated from the insecure area are referred to as isolated execution and trusted
execution environment (TEE), respectively. Intel Software Guard Extensions (SGX) and
ARM TrustZone are popular TEE-enabler technologies used in web servers and embedded
devices.

Physical attacks, such as side-channel attacks and fault-injection attacks, should be con-
sidered from the viewpoint of embedded devices such as smartphones, gaming consoles, and
electrical appliances [RRR+04, Gil15, PT17]. In particular, fault-injection attacks induce
improper operations and/or data corruption during the momentary distortion of the power
supply or by providing an abnormal clock signal to a target device. It has been reported
that security mechanisms, such as secure boot and read protections, can be bypassed by

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-07-15 Accepted: 2021-09-15 Published: 2021-11-19

https://doi.org/10.46586/tches.v2022.i1.28-68
mailto:Nashimoto.Shoei@bx.MitsubishiElectric.co.jp
mailto:homma@riec.tohoku.ac.jp
http://creativecommons.org/licenses/by/4.0/

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 29

fault injection [WP17, VTM+18]. Although PMP did not originally address resistance to
physical attacks as with other TEE-enabler technologies, the security evaluation of RISC-V
against fault-injection attacks is a significant issue in practice [WSUM19].

In this study, we present a fault-injection attack against the security mechanism of
RISC-V, that is, memory isolation by PMP. The basic idea is to bypass the isolated
execution by skipping the PMP configuration with fault injection. The proposed attack
targets the instructions for realizing memory isolation by PMP, whereas existing attacks,
as in [WP17, VTM+18, BFP19], target an implementation-dependent fragment of code
such as a secure boot and security configuration check. In particular, we focused on three
types of instructions that change the PMP configuration. The features of the instructions
allow the application of the proposed attack to any RISC-V-based TEE, starting with the
extraction of successful fault injection parameters. To verify the feasibility of the proposed
approach, we performed experiments with a proof-of-concept (PoC) TEE implementation
compatible with PMP in RISC-V, owing to its flexibility and analyzability. In addition, we
experimented using a real-world TEE to demonstrate the practicality of the proposed attack.
We demonstrate that the attack can read the memory of a victim application protected by
the PMP and propose a software-based countermeasure to prevent the proposed attack
absolutely1.

Related works. Fault-injection attacks were first proposed to compromise cryptographic
processors [BDL97, BECN+06]. Since then, various injection techniques have been reported,
in addition to theoretical studies. Clock glitch is a technique of inserting a distorted clock
signal with a sudden voltage drop over a very short time [BRSK17, TSS17]. When applied
to power supply, the same concept is referred to as a power glitch [BFP19]. Another
fault-injection technique directly irradiates laser or electromagnetic (EM) waves [WP17,
VTM+18]. The effect of fault injection on a target processor is represented by a fault
model [YSW18], such as instruction skip and data corruption models.

Fault-injection attacks have recently been adopted to overcome security mechanisms.
In [GA03, BTG10], a type-check operation on a Java virtual machine was subverted with
fault injection, which resulted in the execution of an arbitrary code. In [NHH+17], the
size limitation of the user input was broken by skipping the increment of a loop counter,
causing a buffer overflow. In [VTM+18], the secure boot was bypassed by inducing bit
errors in a security register with laser fault injection. In [TM17], as an attack after
booting, privilege escalation was demonstrated with fault injection at the system call.
Examples of practical attack scenarios include bypassing attacks against secure boot
and TrustZone-based TEE by corrupting the program counter register [TSW16]. In
[TSS17, QWLQ19a, QWLQ19b, MOG+20, KFG+20], dynamic voltage and frequency
scaling (DVFS) was used to inject faults and successfully subvert ARM TrustZone and
Intel SGX. In [WP17], joint test action group (JTAG) protection was proven to be
subverted even in automotive safety integrity level D (ASIL-D)-certified microcontrollers.
In [MTW+18, BFP19], memory dumps were performed by bypassing authentication or
parameter checks with faults.

The methods for extracting fault-injection parameters and attacker models in some
studies have not yet been clarified [GA03, BTG10, NHH+17], or attack scenarios are not
realistic [TM17, TSW16, WP17]. For example, in [TSW16], there is no valid scenario
in which an attacker’s code can be executed on the target. In [WP17], fault timing is
determined from the difference in power waveforms but implicitly assumes that the two
power waveforms (with and without a countermeasure) can be obtained from the same
target device.

The attacks on TEEs presented in [TSS17, QWLQ19a, QWLQ19b, MOG+20, KFG+20]
are related to our proposed attack to break the TEE isolation. The main differences between

1The word absolute indicates that it is not a stochastic countermeasure that reduces the success rate of
an attack, but a countermeasure that prevents an attack in principle.

30 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

the proposed attack and previous attacks lie in the architecture and protection mechanisms
for isolation. In addition, the proposed attack defeats the isolation itself by inducing a
fault in the PMP configuration, whereas previous attacks, such as in [TSS17, QWLQ19a,
QWLQ19b, MOG+20], exploit data corruption and apply cryptanalysis techniques to
extract a secret key or to subvert the signature verification. In [KFG+20], data corruption
was adopted to break the message authentication code. Thus, the previous fault model
and target function are different from ours.

In [WSUM19], countermeasures against fault-injection attacks were implemented on
the RISCY core, and the overhead was evaluated. In [LBDPP19], the attack targeting
hidden registers was proposed, and a simulation evaluation was performed. In [ELG20], a
profiling evaluation of EM fault-injection attacks on a device implementing the E31 core
was performed. However, no existing studies have evaluated the fault-injection attack
resistance of security mechanisms on RISC-V.

Contributions. The contributions of this study can be summarized as follows.

1. We propose a fault-injection attack that defeats isolated execution on RISC-V.
Furthermore, considering a more realistic setting, we propose a method to search
for fault-injection parameters in a cross-device environment, which is more effective
than brute force. This is the first fault-injection attack that targets the security
mechanism of RISC-V.

2. We validate the feasibility and effectiveness of the proposed attack through exper-
iments with the PoC TEE. We also demonstrate the practicality of the proposed
attack by attacking Keystone as a real-world TEE. We demonstrate that an attacker
can access the memory region of a victim application bypassing the isolated execution
provided by the PMP.

3. We propose a software-based countermeasure against the proposed attack. The pro-
posed countermeasure integrates the control flow and value verification to guarantee
that the correct PMP value is set when running each application. We formulate all
instruction skips that realize the proposed attack and prove that the attack cannot
succeed in principle.

Paper organization. The remainder of this paper is organized as follows. Section 2
describes the security mechanism of RISC-V and existing TEEs implemented with RISC-V.
In Section 3, the attacker model is introduced, and the proposed attack is explained.
Section 4 describes the PoC TEE implemented based on the TEEs described in Section 2.
Sections 5 and 6 describe the experiments using PoC TEE and Keystone, respectively.
Section 7 presents an absolute countermeasure against the proposed attack. Section 8
discusses the proposed attack and countermeasure including the applicability of the attack
to another architecture and the resistance of the countermeasure to other attacks. Finally,
Section 9 concludes the paper.

2 Security on RISC-V
This section briefly explains the privileged architecture and PMP mechanism based on
[PW17] and [WA19]. Existing TEE examples and their features are then introduced.
Hereinafter, we focus on the 32-bit RISC-V architecture (RV32).

2.1 Privileged Architecture
RISC-V defines four modes in descending order of privilege: machine (M-mode), hypervisor
(H-mode), supervisor (S-mode), and user (U-mode). A higher privilege mode can access

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 31

pmp3cfg pmp2cfg pmp1cfg pmp0cfg

pmp7cfg pmp6cfg pmp5cfg pmp4cfg

pmpcfg0

pmpcfg1

8888

8888

08 716 1524 2331

08 716 1524 2331

L 0 A X W R
1111 2 2

01235 467

Figure 1: Format of pmpcfg [WA19]. Typically, pmpicfg and pmpaddri consist of a PMP
entry.

all functions used in the lower-privilege modes. Therefore, the M-mode plays an important
role in providing security. The M, H, S, and U modes are mainly used for the bootloader
(or firmware), hypervisor, OS, and applications, respectively.

An important function of the M-mode is to handle exceptions. Hence, the privileged
architecture provides special registers called control and status registers (CSRs). For
example, in the CSRs, the mcause (Machine CAUSE) register memorizes why an exception
occurs, and the mie (Machine Interrupt Enable) register defines the exceptions that should
be handled. To realize isolated execution, the M-mode handles access fault exceptions
caused by invalid memory access and environmental call exceptions caused by execution of
ecall (environmental call) instruction.

2.2 Physical Memory Protection
The PMP consists of configuration (pmpcfgs) and address (pmpaddrs) registers included
in the CSRs, defining the permission and its applied range, respectively. The PMP refers
to these registers at every memory access and checks for permission. If not allowed, an
access fault exception occurs, which is handled in the M-mode.

Figure 1 shows the structure of pmpcfg. An 8-bit pmpicfg defines a PMP configuration
(0 ≤ i ≤ 15). Four pmpicfgs form a 32-bit pmpcfgj (0 ≤ j ≤ 3). Each pmpicfg has
attributes L, A, X, W, and R. X, W, and R indicate the executable, writable, and readable
permission bits, respectively. L represents the lock bit; if L = 1, pmpicfg does not change
until the central processing unit (CPU) is reset. A represents the address-matching
mode bit; it usually represents the naturally aligned power-of-two (NAPOT) and top of
range (TOR) methods. According to pmpicfg, NAPOT encodes pmpaddri into the size
and base address. The TOR covers the range between pmpaddri-1 and pmpaddri with
pmpicfg. Thus, NAPOT provides memory isolation with a pair of pmpicfg and pmpaddri,
whereas TOR provides memory isolation with a set of pmpicfg, pmpaddri-1, and pmpaddri.
Hereinafter, the pair or set is referred to as PMP entry.

2.3 TEEs on RISC-V
Figure 2 shows a typical flow of the context switch under isolated execution by a TEE on
RISC-V. The TEE is constructed by multiple applications running in U-mode, an OS in
S-mode if it exists, and a monitor in M-mode. First, (1) an application calls the monitor
using an exception or interrupt. Then, (2) the monitor handles the exception or interrupt
and changes the PMP configuration by either switching a partial or rewriting all the PMP
entries. Finally, (3) the monitor calls another application using privilege instructions.

32 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

Application
1

Application
2

Application
N

OS

Monitor

PMP1

PMP2

PMP3

PMP1

PMP2

PMP3

A) Switch partial PMPs

PMP1

PMP2

PMP3

PMP1

PMP2

PMP3

B) Rewrite all PMPs

(1) Call monitor

(2) Reconfigure PMP

(3) Call
application

U

S

M

Mode

Figure 2: Context switch on TEE. A square box denoted as “PMPi” denotes ith PMP
entry.

The remainder of this section introduces two typical constructions of TEEs on RISC-V.
The isolated execution can be represented as shown in Figure 2.

2.3.1 Keystone (UCB) [LK18, LKS+20]

Keystone adopts a two-world view model [VBOM+19] and separates the CPU memory
into untrusted and trusted regions. An application running in U-mode in a trusted region
is called an enclave application and is supported by the enclave runtime in the S-mode.
The host OS and applications are considered untrusted. The enclave application is called
from a host application. First, the host application calls the Keystone security monitor
(SM) in M-mode via the OS by the supervisor binary interface (SBI) call implemented
using ecall. Keystone SM deprives permissions of the caller application and permits
the callee application (i.e., the application being called). Finally, Keystone SM calls the
enclave application by the SBI call using mret. Keystone constructs a shared memory
region using OS memory to exchange data between the host and the enclave applications
or among the enclave applications.

2.3.2 MultiZone (Hex Five Security) [Sec21, Sec19]

The concept of MultiZone is to isolate all applications and libraries from each other. Each
isolated unit running in U-mode is called a zone and is controlled by the nanoKernel. The
context switch is realized as follows: First, a zone calls the nanoKernel by a timer interrupt
or environmental call exception, according to the MultiZone application programming
interface (API) function using ecall. Next, the nanoKernel changes the PMP entries
for another zone2. Finally, the nanoKernel calls another zone using mret. MultiZone
recommends using InterZone Messenger and not shared memory to exchange data between
zones.

3 Proposed Attack
This section describes the attacker model to organize the information required for the
proposed attack, and then presents the attack scheme to obtain the information and bypass
isolated execution provided by the PMP.

2Although we do not perform operation analysis for the purpose of license agreement, there is no doubt
that MultiZone adopts one of the PMP usages as shown in Figure 2.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 33

RISC-V-based CPU

Software
vendor

Monitor

Software
vendor

Applications /
Libraries

User

Blank area
Build & Install

Hardware vendor

Attacker

Malicious
application

Figure 3: Attack scenario based on a use case for ARM TrustZone [Yiu15].

3.1 Attacker Model
We assume that the purpose of the attacker is to write and/or read memory regions
protected by the PMP when the target device is running because TEEs guarantee only the
isolated execution of applications3. Therefore, although reverse engineering or tampering
with applications are attack vectors, they were not considered in this study.

The assumptions required for the attacker to inject faults into the device and collect
side-channel information, such as the EM wave of the device, are summarized as follows:
1) the target device is present with the attacker; 2) the same device or chip as the target
device is available for profiling (or reference); 3) the attacker can run any application in
U-mode on the target device; 4) the attacker application can call other applications; 5)
the TEE implementation is open, and 6) the attacker knows PMP values (i.e., allocated
address) that are set when each application runs. As in assumption 5, the (open source)
TEE code is known, but the applications running on the target device are unknown.

Figure 3 shows an attack scenario based on a typical use case for ARM TrustZone in
which the above assumptions are valid. Given a CPU and software provided by hardware
and software vendors, a user installs the application(s) in a blank region of the CPU [Yiu15],
satisfying assumptions 1–4. Assumption 5 is satisfied if the attack target is an open-source
TEE, such as the Keystone. Assumption 6 is satisfied by knowing in advance the addresses
assigned to each application, as in the MultiZone example [Sec21], or by accessing the
memory and identifying the range handled by the monitor as an exception.

The following steps are required for fault-injection attacks:

1. Target instruction: The attacker must determine which instruction should be
skipped to break memory protection.

2. Fault intensity (+ injection location): The attacker must determine the accurate
fault intensity to obtain desirable fault effects. In the fault-injection method with
spatial freedom, the injection location also needs to be determined.

3. Fault timing: The attacker must count the clock cycles from the trigger signal to
the target instruction to inject faults with proper timing. When a trigger signal is
obtained immediately before the target instruction, the fault timing need not to be
considered.

4. Trigger signal: The attacker must obtain a trigger signal as a reference to determine
the fault injection timing. In general, (1) communication signals such as the universal
asynchronous receiver/transmitter (UART) signal, (2) digital signals using a general-
purpose input/output (GPIO) port, and (3) power consumption due to distinctive op-
erations such as cryptographic operations are considered [TM17, MTW+18, BFP19].

3To manage sensitive data and to guarantee confidentiality, authenticity, and integrity of applications,
trusted platform module, application encryption, and remote attestation should be used instead of TEE.

34 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

The target instruction provides the novelty of the attack. Then, the target instruction and
attack scenario constrain how fault parameters and trigger signal are obtained. This study
focuses on target instruction, fault intensity, and fault timing, as discussed in the next
section.

3.2 Attack Scheme
In this section, we present the basic idea of the proposed attack and its challenges. Then, we
propose an attack scheme that involves obtaining fault-injection parameters for exploitation.
Hereinafter, we refer to the bypass attack of isolated execution using fault injection as the
proposed attack, and distinguish it from the attack scheme that shows a series of attack
procedures.

3.2.1 Basic Concept

The basic idea of the proposed attack is to bypass reconfiguring the PMP setting at the
context switch, enabling partial inheritance of the PMP setting of the previous application,
which is the attack target. The proposed attack calls the target application and injects
a fault when it returns to the attacker application. To this end, the possible target
instructions for skipping are limited to the following three instructions4:

CSR Write: csrw csr, rs
CSR Clear: csrc csr, rs
CSR Set: csrs csr, rs

where the first operand, csr, is either pmpcfgi or pmpaddri, and rs indicates a source
register storing the value written to the first operand. The reason for this limitation is that
the PMP, composed of CSRs, requires special instructions to change their values. In other
words, one or more of these instructions must be executed as long as the PMP provides
memory protection to RISC-V. Hence, our attack can generally be applied to a variety of
RISC-V-based TEEs.

3.2.2 Challenges

It is necessary to determine the appropriate fault intensity and timing. Because the fault
sensitivity varies from one instruction to another [BGV11], preliminary profiling of target
instruction(s) is required. However, target instructions are privileged instructions that
cannot be profiled on target devices operable only in the U mode. Therefore, fault intensity
is determined in a cross-device environment using a profiling device.

Because triggering immediately before the target instruction was not possible5, the
attacker first needs to determine the fault timing. It is difficult to calculate the clock
cycle using code analysis because applications, except for the attacker application, are un-
known. Side-channel-based reverse engineering, as in [VWG07, BTG10, SBO+15, PXJ+18,
YUZP19], is a promising solution. It is also compatible with the proposed attack because
there are only three types of target instructions, and the number of execution times is small
compared to general-purpose instructions. In determining the fault timing, the specific
challenges include the high operating frequency of the target device, the large number of
pipeline stages, and the requirement of cross-device deployment.

4More precisely, they are pseudo-instructions using csrrw, csrrc, and csrrs, respectively.
5When pattern triggers are used, PMP switching occurs multiple times in a series of attacks (cf.

Figure 10), so it is necessary to choose which trigger to use.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 35

Profiling
phase

Exploitation
phase

(1) Extract successful
fault injection parameters
=> fault intensity
(+ injection location)

(2) Measure side-
channel information for
target instructions
=> side-channel template

(3) Measure side-
channel information
through the execution
=> side-channel trace

(4) Search target
instruction using
template and trace
=> injection timing

(5) Exploit with
fault injection
=> secret data

Figure 4: Proposed attack scheme.

3.2.3 Attack Scheme

The proposed attack scheme, based on the above-mentioned observations, is shown in
Figure 4. The attack scheme consists of five steps divided into two phases: profiling and
exploitation. In the profiling phase, a proper fault intensity (and injection location, if
needed) is first extracted using a profiling device implemented on the same CPU as the
target device. The side-channel information for each target instruction is then measured,
and templates are created.

In the exploitation phase, the target device is used. First, a side-channel trace is
captured, collecting information from the trigger signal to the execution of the target
instruction. Then, the execution timing of the target instructions is identified using the
templates and side-channel trace. Finally, the exploitation is performed with fault injection
using the obtained fault intensity and timing. The concrete exploitation methods are
described in the following sections.

4 Implementation of the Trusted Execution Environment
This section describes the PoC TEE targeted for the attack scheme. This PoC implemen-
tation is advantageous as it overcomes the inconveniences of existing TEEs. MultiZone
has black-box components protected by patents and license agreements, making it difficult
to analyze the success of our attack [Sec21]. Because Keystone requires relatively high-end
devices running the Linux OS, further efforts are needed to apply power-based reverse
engineering in a cross-device environment. Although the feasibility of the proposed attack
is verified using Keystone, the application of the attack scheme is future work.

Our PoC TEE was implemented in a bare-metal manner (i.e., no OS) with the Freedom
Metal library (v201908) developed by SiFive [SiF20]. We present the system structure,
flowchart, and PMP usage in the PoC TEE. The detailed implementation of the PoC TEE
is shown in Appendix A.

4.1 System Structure
Figure 5 shows the system structure of the PoC TEE. Comprising a monitor in the M-mode,
three applications (APP1, APP2, and APP3) in the U-mode, and a shared library and
memory that can be used in all modes. APP1 acts as a dispatcher and runs on the
user commands via UART. It executes the command to send data to other applications,
call other applications, and send processed results from other applications to the user.
APP2 is a cryptographic application that executes the advanced encryption standard
(AES) [Sma19] and has a secret key in its RAM region. APP3 is an attacker application

36 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

Monitor

Shared library (Freedom Metal), Shared memory

APP1
(Dispatcher)

APP2
(Cryptography)

APP3
(Memory dump)

Mode

U

M

Victim Attacker

Figure 5: System structure of PoC TEE. Three applications are controlled by the monitor,
and they share data with shared memory.

Start

Monitor

(1) Initialize

APP1

(2) Execute command

Monitor

(4) Handle exception

Monitor

(5) Terminate
app?

Monitor

(6) Terminate app

Monitor

(7) Call / resume app

APP2 or APP3

(8) Run

APP1

(3) Call app?

Yes

No

No

Yes

… Monitor

… APP

Figure 6: Flowchart of PoC TEE describing context switch handled by the monitor.

that dumps the RAM. More specifically, it obtains an address from the shared memory,
reads data in the address, and stores the data in the shared memory.

The shared library is a subset of the Freedom Metal library. The PoC TEE mainly
uses peripheral control functions for UART, GPIO, and PMP and exception handling
functions. Shared memory is used to share data between isolated applications and those
sending data to the monitor to call for other applications.

4.2 Flowchart
Figure 6 shows a flowchart of the PoC TEE behavior. In (1), the monitor first registers
the exception handlers, initializes various variables, configures the PMP entries, and calls
APP1. In (2) and (3), APP1 receives a user command and executes it. If required, it calls
for another application using ecall. In (4), owing to the exception, the monitor runs the
exception handler. During an environment call exception, the exception handler invokes
the ecall handler registered in step (1). During a memory access fault exception, the
monitor fills the data region of the shared memory with a value of 0xFF in hexadecimal,
stops all running applications, and passes the control to APP1. In steps (5)–(7), the
application call and finalization are executed. In (8), each application runs and returns to
(4).

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 37

Table 1: PMP usage for rewriting method. N/A implies that PMP entry is disabled. All
PMPi is configured by NAPOT.

PMP APP1 APP2 APP3
PMP0 Shared library
PMP1 Shared memory
PMP2 ROM APP1 ROM APP2 ROM APP3
PMP3 RAM APP1 RAM APP2 RAM APP3
PMP4 UART N/A N/A
PMP5 N/A
PMP6 N/A
PMP7 N/A

Table 2: PMP usage for switching method. The gray and white cells represent configu-
rations with no accessibility (R=0, W=0, X=0) and all accessibility (R=1, W=1, X=1),
respectively. In the case of ”all region,” PMP6 and PMP7 construct one entry with TOR.
Apart from that, all PMP entries use NAPOT.

PMP APP1 APP2 APP3
PMP0 ROM monitor
PMP1 RAM monitor
PMP2 ROM APP2 ROM APP2 ROM APP2
PMP3 RAM APP2 RAM APP2 RAM APP2
PMP4 ROM APP3 ROM APP3 ROM APP3
PMP5 RAM APP3 RAM APP3 RAM APP3
PMP6 All region Shared library
PMP7 Shared memory

4.3 PMP Usage
As shown in Figure 2, we implemented two types of PMP usage referred to as the rewriting
and switching methods, respectively. The rewriting method, in Table 1, rewrites all PMP
entries to realize isolated execution. The shared library and memory use two PMP entries.
Each application uses two PMP entries for the isolation of ROM and RAM. If required,
peripheral PMP entries are added. The switching method shown in Table 2 switches the
permissions of PMP entries, that is, R, W, and X in pmpcfg, to provide isolation. We
refer to [LKS+20] and consider APP1 as untrusted and APP2 and APP3 as trusted. The
untrusted application can access all the memory regions as defined by PMP6 and PMP7
unless other PMPs forbid it. Only when the context switches from APP1 to APP2 (or
APP3) or vice versa, PMP6 and PMP7 including pmpaddr are rewritten.

5 Experiment #1: Attack on PoC TEE
This section describes the experiments and the actual devices to validate the feasibility
and effectiveness of the proposed attack scheme. First, the experimental setup is described.
Then, we show two experimental results for extracting fault-injection parameters and
exploitation based on the attack scheme in Figure 4.

5.1 Experimental Setup
This experiment employed clock-glitch injection as a fault injection technique because of its
high repeatability and temporal resolution [YSW18]. A monitor generates a trigger signal
before calling the attacker application for simplicity. However, an accurate fault-injection

38 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

Arty A7

RISC-V
core

(X300) UART

GPIO Computer

Control
program

CW1200

Trigger

Clock
generator

Reset

Oscilloscope
(DPO7104)

Amplifier
(PA 303)

H-Field Probe
(RF-U 5-2)

Monitoring
port

(a) Block diagram.

CW1200 Breakout board

DC 5V

USB UART

(to computer)

Arty A7

H-Field
probe

Amplifier

Clock

Ground

Trigger

Reset

Coaxial cable

(to oscilloscope)

(b) Overview.

Figure 7: Experimental setup. Computer is connected to Arty A7 and CW1200 with USB,
and Arty A7 and CW1200 are connected with wires. The clock signal wire is equipped
with a resistor of 100 Ω for impedance matching, and the clock signal is provided to the
RISC-V core via input buffer. The computer and oscilloscope are connected via Ethernet,
and the EM wave is acquired via the oscilloscope using an H-field probe. Modifications
from the original system-on-chip design are shown in red, that is, clock input/output ports.

timing should be identified because the trigger is not necessarily generated immediately
before the target instruction.

Figures 7(a) and (b) show the block diagram and overview of the experimental
setup, respectively. An X300 RISC-V core (Hex Five) [Sec20], based on UCB’s Rocket
Chip [AAB+16], was implemented on an Arty A7 field-programmable gated array (FPGA)
board to run the PoC TEE described in Section 4. The X300 RISC-V core supports the
PMP and operates at an operational frequency of 65 MHz. For simplicity, we set up
a port to provide an external glitchy clock (CW1200, NewAE Technology). A control
computer communicated with Arty A7 and CW1200 via a universal serial bus (USB)
UART. The computer calls an application and exchanges data in communication with Arty
A7. The computer changes the glitch parameters (i.e., intensity and timing) and sends
a reset command to Arty A7 in communication with CW1200. In addition, a DPO7104
(Tektronix), RF-U 5-2, and PA 303 (Langer EMV) measure EM leakage to determine the
fault injection timing. According to the GPIO signal of Arty A7, DPO7104 transmits the
measured EM leakage to the computer.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 39

40 20 20 400
width [%]

40

20

0

20

40

of
fs
et

 [%
]

No effect No responce Unexpected fault Expected fault

Figure 8: Characterization for searching proper glitch parameters. % represents ratio in
percent of each parameter to the original clock width.

5.2 Experiment #1.1: Extracting Glitch Parameters
This section addresses steps (1)–(4) in the attack scheme shown in Figure 4. For the
clock glitch provided by CW1200, the fault intensity and glitch timing are defined as the
parameters of width and offset, and external_offset, respectively.

5.2.1 Fault Intensity

First, we experimentally obtained the width and offset using a test program to inject
a fault into a profiling device. The program initializes GPIO, generates a pulse trigger
signal, executes an instruction before and after a sufficient number of nops, and sends the
result of the attack. In this experiment, we assumed that the target instruction was “csrw
pmpcfg0, a5,” where register a5 had a value of 0x1b1b1b1d. The attack results are given
as the value of pmpcfg0. Thus, we obtain 0x00000000 and 0x1b1b1b1d as the success and
failure to skip, respectively.

Figure 8 shows the experimental results, where the faults were injected 10 times for
each glitch parameter. We changed the width and offset from -45% to +45% in steps of
1%. The fault results are overwritten on the graph in the order of no effect, no response,
unexpected fault, and expected fault. The parameters plotted in blue indicate that the
attack was successful at least once. The following exploitation experiment used all the
parameters plotted in blue.

5.2.2 Glitch Timing

In this experiment, we obtained the external_offset by template matching of the EM
leakage. Following assumption 5 in Section 3.1, we ran a PoC TEE code on the profiling
device. For each of the three target instructions, EM waveforms for five clocks were
obtained as templates, considering the pipeline size. In addition, we ran the target device
and obtained EM leakage when the attacker application was running. The profiling and
target devices are different to validate the effectiveness of cross-device template matching.
The details of the template matching experiment is shown in Appendix B.3.

40 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

0 2 4 6 8
Time [ms]

trigger

csrs

csrc

csrw

4.84 ms

(a) Rewriting method.

0 2 4 6 8
Time [ms]

trigger

csrs

csrc

csrw

7.23 ms

(b) Switching method.

Figure 9: Positional relation between trigger and execution timings for target instructions.
The trigger signal becomes high-level logic during the attacker application running (cf.
Section 5.3.1).

Figures 9(a) and (b) show the trigger signals and identified timings of the csrw, csrc,
and csrs instructions, while running the PoC TEE with the switching and rewriting
methods, respectively. The EM leakages are measured using an oscilloscope at a sampling
rate of 1GS/s. Figure 9(a) shows that csrw, csrc, and csrs are executed eight times
each during the trigger signal in the high-level logic state (several spike signals overlap).
In Figure 9(b), csrw, csrc, and csrs are executed 16, 16, and 13 times, respectively.
The elapsed time between the trigger and identified instruction timings for each target
instruction is then used to calculate the number of elapsed cycles, corresponding to the
external_offset. The following exploitation experiment used all the candidates obtained
from the results.

5.3 Experiment #1.2: Exploitation
This section addresses step (5) in the attack scheme shown in Figure 4.

5.3.1 Operational Flow of Exploitation

Figure 10 shows the sequence diagram of the exploitation method. Again, the attacker
cannot know the behaviors of APP1 and APP2. The computer first initializes CW1200
and sends a command to call APP3. APP1 receives the command and calls APP3 via the
monitor. In this PMP reconfiguration, the monitor generates a trigger signal. APP3 stores
the necessary data in shared memory in case it loses its RAM access permission. Then,
APP3 directly calls the attack target (i.e., APP2) via the monitor. After encryption in
APP2, the program flow returns to the caller application. CW1200 must inject faults at the
proper timing with external_offset in this PMP reconfiguration for a successful attack.
If the faults are induced correctly, APP3 obtains the target RAM access permission. APP3
reads the RAM data of APP2 and sends it to APP1 via shared memory. When APP3
completes its operations, the monitor moves the trigger signal to the low-level logic state.
Finally, the computer sends the command to obtain the contents of the shared memory.

APP3 succeeds in dumping the target RAM data if the fault injection successfully
bypasses the target instruction. The influence of faults on the exploitation is classified
into the following four classes:

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 41

Monitor
APP1

(Dispathcer)
APP2

(Crypto.)
APP3

(Dump) Computer

Initialize & call

Call APP2

CW1200

Change
PMP

Finish

Trigger high
Call APP3

Encryption
Clock glitch

Dump APP2
RAMFinish & send dumped data

Request dumped data

Prepare
for dump

Dumped data

AttackerVictim

Processing

Hardware or software
component

Digital command or data
Analog signal

Trigger low

Initialize

Change
PMP

Change
PMP

Change
PMP

Figure 10: Sequence diagram for exploitation.

1. No effect: The CPU runs correctly, and the RAM access from APP3 to APP2 is
handled as an access fault exception. Thus, we obtain 0xFFFF... because the shared
memory is filled with 0xFF by the monitor.

2. No response: The CPU runs abnormally owing to excessive fault intensity. Thus,
no results are obtained.

3. Unexpected fault: A fault is induced in the CPU, but the target instruction is
not skipped. Thus, we obtain 0xFFFF... with no effect.

4. Expected fault: A fault is induced in the CPU, and the target instruction is
skipped. Thus, we obtain the secret key held by APP2.

5.3.2 Exploitation in Rewriting Method

Attack attempts. We set all the fault parameters, that is, combinations of width,
offset, and external_offset, obtained in Section 5.2 for the proposed attack. Here,
we provided a margin of ±50 cycles to the identified external_offset considering noise
effects such as CPU pipeline and clock jitter. Finally, the secret key was obtained at 14
cycles after the identified 8th csrw.
Cause analysis. For the rewriting method, we skip the reconfiguration of PMP3, as
shown in Table 1, to obtain the RAM permission for APP2 instead of APP3. This means
that APP3 cannot use its stack memory. Hence, APP3 is written to avoid using local
variables and function calls after calling APP2 or injecting the fault.

The attack requires the exchange of RAM permissions; therefore, pmpcfg does not
change. Thus, the target instruction is only the reconfiguration of pmpaddr. The assembly
code to reconfigure pmpaddr for PMP3 is as follows:

lw a5,-64(s0) // Load word (lw) on stack into a5
csrw pmpaddr3,a5 // Write addr value (a5) to CSR pmpaddr3

In this case, the target instruction is only csrw. If the lw instruction is skipped, register a5
becomes undefined, and success or failure of the attack remains unknown. To summarize
the above-mentioned observations, a successful glitch is considered to have skipped the
csrw in the experiment.

42 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

Table 3: Fault intensity parameters and their success rates with 10 trials.

Fault intensity [%] Success rate [%]

Width Offset Profiling Exploitation
Rewriting method Switching method

-32 6 10 90 20
-31 5 50 90 20
-31 4 40 100 10
39 20 20 90 0
40 20 40 90 0
40 19 40 90 0
41 21 40 100 0
42 19 100 0 0
42 18 90 0 0

5.3.3 Exploitation in Switching Method

Attack attempts. We also performed an experiment to exploit the switching method.
We successfully obtained the secret key through a fault injection attack using all the fault
parameters extracted in Section 5.2. The successful external_offset was smaller by 42
cycles than the identified 13th csrc.
Cause analysis. For the switching method, we skip the reconfiguration of PMP3, as
shown in Table 2, so that APP3 additionally obtains the permission of RAM for APP2.
This PMP protection is weaker than that of the rewriting method. Therefore, we use the
same code as in Section 5.3.2 (cf. Appendix A.6).

The switching method does not need to change pmpaddr; therefore, the target requires
only the reconfiguration of pmpcfg. The assembly code used to reconfigure pmpcfg for
PMP3 is as follows.

lw a5,-24(s0) // Load word (lw) on stack into a5
csrc pmpcfg0,a5 // Clear CSR pmpcfg0 with mask bit (a5)
lw a5,-28(s0) // Load word (lw) on stack into a5
csrs pmpcfg0,a5 // Set CSR pmpcfg0 with config bit (a5)

One pmpcfg has the configuration for four PMP entries, as shown in Figure 1. With the
specification of the Freedom Metal library, pmpicfg is cleared (csrc), and a new value is
then set into pmpicfg (csrs). Thus, the target instruction is limited to csrc. In summary,
successful glitches are considered to have skipped csrc.

5.4 Evaluation of Glitch Parameters
This section evaluates the effectiveness of the proposed attack by comparing the experi-
mental results of profiling and exploitation.

5.4.1 Fault Intensity

We performed the exploitation 10 times for each glitch parameter by fixing the value
of external_offset when the attack was successful in each experiment as described in
Sections 5.3.2 and 5.3.3. Table 3 summarizes a set of fault intensity values with success rates
of 90% or more in each experiment, including the profiling experiment. The results show
that (1) parameters with a high success rate differ between the profiling and exploitation
experiments, and (2) parameters with a high success rate differ even in the exploitation
experiments using the same device.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 43

Observation (1) was based on individual differences. Even though such differences
exist, the exploitation is successful. Observation (2) is due to the difference in the fault
sensitivity for each instruction: the fault intensity targeting csrw was used to skip csrc, but
additional experiments showed that the fault sensitivity of each instruction was different.
See Appendix B.2 for details.

5.4.2 Glitch Timing

We also investigated shortening the time required for exploitation by identifying the
timing of the target instructions. In the exploitation experiments, we expanded the
external_offset by ±50. Thus, 100 trials were performed for each candidate, resulting
in 2,400 (100 × 24 candidates) and 4,500 (100 × 45 candidates) overall trials for the
rewriting and switching methods, respectively. In contrast, for a brute-force attack, we
need approximately 314,600 (65 MHz × 4.84 ms) and 469,950 (65 MHz × 7.23 ms) trials
for each PMP usage, respectively. Thus, a reduction of more than 99% of the trials was
achieved with the proposed attack scheme.

6 Experiment #2: Attack on Keystone
This section demonstrates the practicality of the proposed attack through experiments on
Keystone. First, we describe the experimental setup. Next, we present the results of the
exploitation experiment. In this experiment, steps (1)–(4) in the proposed attack scheme
are completed in advance, and only the proposed attack is conducted.

6.1 Experimental Setup

In this experiment, we employed EM injection without any device modification as a fault
injection technique, while we modified the Keystone SM to generate a trigger signal
immediately before the target PMP reconfiguration. Therefore, we omitted the adjustment
of the fault-injection timing for simplicity.

Figures 11(a) and (b) show the block diagram and overview of the experimental setup,
respectively. A HiFive Unleashed (SiFive) is equipped with a Freedom U540 RISC-V core
(SiFive), and the official Keystone sample application (hello-native) [Lee21] is run. For an
untrusted host application (happ), we added a process to access an enclave’s memory after
calling the enclave application (eapp). Meanwhile, the eapp is not changed.

The EM pulses are injected by a CW520 (NewAE Technology) after receiving a trigger
signal from a CW1200. Because HiFive unleashed has a CPU covered by a heat spreader,
EM pulses are injected from the back side of the board. CW1200 generates the trigger signal
after receiving a GPIO signal from HiFive Unleashed. A control computer communicates
with HiFive Unleashed, CW540, and CW1200 via USB UART. The computer executes
the happ and receives the result of accessing the enclave memory with HiFive Unleashed.
The computer communicates with CW540 to change the fault-injection parameters (that
is, voltage and pulse width) and reset CW540. In addition, a rebooter hard-reset HiFive
Unleashed when an abnormal state occurs due to the EM fault injection.

6.2 Experiment #2.1: Exploitation

This experiment shows that the proposed attack enables the happ to access the protected
area of the eapp.

44 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

HiFive Unleashed

RISC-V
core

(Freedom
U540) UART

GPIO Computer

Control
program

CW1200

Trigger

Voltage
glitch

CW520

Reset

Trigger

EM pulse

Rebooter

Power
suppply

(a) Block diagram.

CW1200
Breakout board

DC 12V
(to Rebooter)

CW520

DC 19V

Trigger
Ground

Trigger

RJ12-based
USB UART

(to computer)

HiFive
Unleashed

Vise

DC 5V

USB UART
(to computer)

4mm CCW
injection tip

(b) Overview.

Figure 11: Experimental setup. Computer is connected to HiFive Unleashed, CW520,
and CW1200 with USB, and HiFive Unleashed and CW1200 are connected with wires.
CW520 and CW1200 are connected with coaxial cable. Rebooter provides power for HiFive
Unleashed. CW520 is fixed in position by vise. There is no hardware modifications.

6.2.1 Operational Flow of Exploitation

Figure 12 shows the sequence diagram for exploitation. First, the Keystone SM creates
the enclave memory (E1). Then, the happ calls the eapp that stores the string “hello
world” to the shared memory (U1). The eapp then stops, and the happ resumes. During
this context switch, the PMP should restrict memory access for eapp (E1). This PMP
reconfiguration is our target. Next, the happ accesses E1 and outputs the results. The
happ then stops, and the eapp resumes, and the finalization process runs in the order of
the eapp and happ. Finally, the Keystone SM destroys E1. Details of the target code are
shown in Appendix C.

The happ succeeds in accessing E1 if the fault injection successfully bypasses the
target instruction. As mentioned in Section 5.3.1, the influence of faults on exploitation is
classified into four classes:

1. No effect: The CPU runs correctly, and accessing E1 is handled as an access fault
exception.

2. No response: The CPU runs abnormally owing to the excessive fault intensity.

3. Unexpected fault: A fault is induced in the CPU, without skipping the target
instruction. Thus, accessing E1 is handled as an access fault exception.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 45

happ Keystone SM eapp

 Enable GPIO

 Change PMP

 Store “hello world”
to shared memory

 Change PMP

 Access memory
region for eapp

 Load data from
shared memory

 Change PMP

 Finalize eapp

 Finalize happ

Memory State

SM U1

SM U1

SM U1E1

SM

Zero filling

00...0

E1

E1

SM

Software component Processing Processing (attack target)

Enable (rwx=111)

Disable (rwx=000)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

 Create enclave SM U1E1

(1)

 Change PMP

 Destroy enclave

(11)

(12)

SM U1E1

(2)

Figure 12: Sequence diagram for exploitation and memory state. Red text in the sequence
diagram indicates changes from the original process. E1 and U1 in memory state represent
memory for eapp and shared memory, respectively.

4. Expected fault: A fault is induced in the CPU, and the target instruction is
skipped. As a result, we obtain the values stored in E1.

6.2.2 Result

In this section, we show the success rate of the proposed attack for each glitch parameter.
First, we injected a fault while setting random glitch parameters to CW540 and identified a
fault sensitive location. Next, the injection tip was fixed at the location (cf. Figure 11(b)),
and attacks were performed 10 times for each glitch parameter (i.e., EM pulse width and
voltage). Figure 13 shows the number of occurrences of each fault influence for the glitch
parameter (summed for one glitch parameter). The pulse width was varied from 90 to 980
ns in 100 ns steps, and the voltage was varied from 150 to 400 V in 10 V steps.

Figure 13 shows that the expected fault was obtained, and the attack was successful.
Figure 13(a) shows that the influence of faults is almost the same when the pulse width is
changed. Figure 13(b) shows that the expected fault is obtained mainly at 250 to 350 V.
However, above 300 V, the percentage of “no response” increases drastically. We fixed the
width to 80 ns and employed the voltage of 250 to 290 V, which has less “no response”
and more “expected fault.” Table 4 shows the attack success rates for the optimized
glitch parameters. For each glitch parameter, we performed our attack 100 times. In this
experimental setup, we can expect a high attack success rate (expected fault) of about
30% to 40% at best.

46 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

200 400 600 800 1000
Pulse width [ns]

0

50

100

150

200

250

of

 o
cc

ur
an

ce

No effect No response Unexpected fault Expected fault

(a) Pulse width.

150 200 250 300 350 400
Voltage [V]

0

20

40

60

80

100

of

 o
cc

ur
an

ce

No effect No response Unexpected fault Expected fault

(b) Voltage.

Figure 13: Relationship between glitch parameters and observed fault influences and their
number of occurrence.

Table 4: Fault intensity and probability of occurrence of each fault influence.

Width [ns] Voltage [V] No effect [%] No response
[%]

Unexpected
fault [%]

Expected
fault [%]

80 270 28 6 33 33
80 280 18 9 34 39
80 290 15 9 34 42

7 Countermeasure
This section proposes a software-based countermeasure against the proposed attack.
Software-based countermeasures have advantages such as flexibility in making changes to
devices and no additional hardware costs. However, existing countermeasures can only
reduce the success rate of fault-injection attacks or increase the difficulty of the attacks.
Therefore, hardware support has been considered essential for absolute countermeasures.

In this section, we briefly describe the issues associated with existing approaches. Next,
we present the proposed countermeasure and then evaluate its attack resistance. Finally,
the evaluation of the runtime overhead of the countermeasure is performed.

7.1 Existing Approaches
Memory encryption can prevent malicious applications from reading secret data. Key-
stone provides software-based encryption as a plugin for additional protection against
physical attackers [LKS+20]. However, the encryption mechanism significantly impacts
the execution speed. Executing protected instructions twice prevents a single instruction
skip [YGS+16, WP17, MTW+18, BFP19] and raises the bar by requiring the attacker to
have an advanced multiple fault injection capability. However, the attack is still possible
in principle. Inserting a random delay makes it difficult for the attacker to identify the
exact timing of fault injection [TSW16, WP17, MTW+18]. Even though the success rate
of each trial decreases, the attack will succeed after repeated trials.

The proposed attack can evade certain major countermeasures, including protecting data
with instruction duplication/triplication [YGS+16, MTW+18, BFP19], branch instructions
or loop structures [NHH+17, PHBC17, WSUM19], and control flows with integrity checks

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 47

XOR

Masked value

Raw value

Application
routine

(4) Transition
to jump address

ROM
Freedom-metal

(128K)

0x2040 0000

0x2042 0000

0x2043 0000

0x2044 0000

0x2045 0000

ROM monitor (64K)

ROM APP1 (64K)

ROM APP2 (64K)

ROM APP3 (64K)

0x2046 0000

PMP setting

Allocated address

pmpcfg0

PMP

Jump address

Memory

Register

pmpcfg1

pmpaddr7

APP 1, addr1

APP 1, addr2

APP i, addr j
Build & Install

(1) Mask
jump address

(2) Reconfigure
PMP

Monitor

Build phase Execution phase
Operational flow

PMP APP1 APP2 APP3
PMP0
PMP1
PMP2
PMP3
PMP4
PMP5
PMP6
PMP8

ROM APP1

UART

ROM APP2

N/A
N/A
N/A

ROM APP3

N/A

Shared library
Shared memory

(3) Unmask
jump address

Hash

RAM APP1 RAM APP2 RAM APP3

N/A

Figure 14: Operational flow of jump-address masking. Processes marked in red are added
to the original build and execution process for countermeasure.

(i.e., CFI) [WP17, VTM+18, MTW+18, WSUM19]. This is because the proposed attack
neither corrupts the data nor transfers the control flow to a malicious attack.

7.2 Proposed Countermeasure
This section formulates the proposed countermeasure and compares it with a similar one.

7.2.1 Overview

One of the key ideas in countermeasures against fault injection attacks is associating
the process to be protected with the program control flow [NHH+17]. Therefore, the
proposed countermeasure associates the validation of the PMP with the transition to an
application. If an attacker maliciously changes the value of the PMP, the transition to the
application will not be achieved, and the attack will fail. Therefore, it can be an absolute
countermeasure, even if the attacker can skip multiple instructions.

To associate PMP validation with transitions to each application, we mask the jump
addresses for each application, which are the entry point and return address. The opera-
tional flow of the proposed jump-address masking, in Figure 14, is divided into a build
phase and an execution phase, with four processes. In the build phase, an executable
file is generated and installed in the device. Then, (1) all jump addresses are masked
based on the PMP setting and the address assigned to each application. More specifically,
each jump address is XORed with the hash value of all the PMP registers (details are
shown in section 7.2.2). In the execution phase, the installed application is run. When an
application transition occurs, the CPU (2) reconfigures the PMP, (3) loads the masked
jump address and unmasks it using the inverse masking procedure, and (4) jumps to the
unmasked address.

7.2.2 Formulation

The list of variables for the proposed countermeasure is shown in Table 5 [Sec20, SiF21].
Masking ((1) in Figure 14), unmasking and hashing ((3) in Figure 14) can be formulated
as follows:

48 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

Table 5: Variable definition for jump-address masking.

Variable Description Remarks
addrjump[i, j] Jump address for the jth ad-

dress of application i.
j = 0 indicates the entry point. If there
are no other application calls, there is
no return address; therefore j = 0.addrmask[i, j] Masked address correspond-

ing to addrjump[i, j].
h[i]() Hash function for application

i.
h[i]() ∈ H, H : Universal family. E.g.,
Toeplitz Hash.

Ncfg Number of pmpcfg. 2 for X300 and 1 for Freedom U540.
Naddr Number of pmpaddr. 8 for X300 and Freedom U540.
pmpcfga[i] pmpcfga for application i. 0 ≤ a ≤ Ncfg − 1.
pmpaddra[i] pmpaddra for application i. 0 ≤ a ≤ Naddr − 1.

Masking:

addrmask = addrjump[i, j]⊕m[i]. (1)

Unmasking:

addrjump = addrmask[i, j]⊕m[i]. (2)

Hashing:

m[i] = h[i](x[i]), (3)
x[i] = x1[i] ‖ ... ‖ xk[i] ‖ ... ‖ xNcfg+Naddr

[i],
{x1[i], ..., xNcfg+Naddr

[i]} =
{pmpcfg0[i], ..., pmpcfgNcfg−1[i], pmpaddr0[i], ..., pmpaddrNaddr−1[i]},

where ‖ represents the concatenation of bit sequences.
Hash function h[i]() selection. h[i]() selection is based on the following four require-
ments: 1) the function is selected after determining the PMP setting and allocated address;
2) a different function may be selected for each application i; 3) addrmask[i, j] must not
point to the address allocated to application i, and 4) consider all the instruction skip
patterns so that the tampered jump address will not point to the address allocated to
application i. If requirements 3 and 4 are not met, the function must be reselected.

7.2.3 Feasibility Study on Universal Hashing

We show that requirements 3 and 4 in hash function selection are satisfied with high
probability. The jump that results in a PMP reconfiguration is realized using mret to set
the mepc register to the pc register. Thus, the space of the jump destination is equal to
the bit width of the processor, n. The hash output, m[i], and addrjump[i, j] tampered by
the instruction skipping can be regarded as random numbers. The probability that an
n-bit random number indicates an address space (m-bit) allocated to an application is

2m−n, (4)

where n > m. Therefore, the probability of satisfying requirement 3 when a certain hash
function is selected is p1 = 1− 2m−n. As described later in Section 7.3.2, the pattern of
instruction skipping is c = 2Ncfg+Naddr . Therefore, the probability that a hash function
satisfies requirement 4 is p2 = (1−2m−n)c. Because c includes patterns without instruction
skipping, p2 also satisfies requirement 3. Therefore, the probability that a hash function

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 49

satisfies requirements 3 and 4 is p = p2. Assuming Toeplitz hash function, we select a
Toeplitz matrix with n rows, m(Ncfg + Naddr) columns, and n + m(Ncfg + Naddr) − 1
degree of freedom (number of bits in space). Therefore, the probability of searching the
entire space and selecting a hash function that satisfies requirements 3 and 4 is

psuccess = 1− (1− p)2n+m(Ncfg+Naddr)−1
. (5)

Case 1: PoC TEE. As shown in Appendix A.1, the PoC TEE provides each application
with 64 KB (216) of code space. Thus, we have n = 32, m = 16, and Ncfg + Naddr = 10,
p = 0.984 and psuccess ≈ 1.
Case 2: Keystone. Assume that the size of an enclave application is 128 MB (227)
following the Intel SGX [CHKV19]. Thus, we have n = 64, m = 27, Ncfg + Naddr = 9,
p = 0.999 and psuccess ≈ 1.

7.2.4 Related Work

The authors in [LNW+19] proposed a pointer authentication code (PAC) that prevents
control flow hijacking and data corruption by authenticating pointers and return addresses
based on hashes. In particular, it is similar to the proposed countermeasure in that code
and data pointers are protected by associating them with hash values, and data pointers
are calculated and stored during compilation. However, the expected values should be
loaded into all the PMP registers to prevent the proposed attack, which is not possible
with PAC. For example, even if the code pointer is protected, the PMP can be modified.
In addition, the usage of the protected value is unmanaged, making the proposed attack
successful by skipping the load instruction into the PMP. Furthermore, PAC protects the
pointers by calculating hashes at runtime, but such an approach is likely invalidated by
instruction skipping. Therefore, the proposed countermeasure associates data verification
with control flow by jumping to unmasked addresses instead of detecting tampering by
runtime calculation.

7.3 Attack Resistance of Proposed Countermeasure
In this section, we present and verify security claims.

7.3.1 Security Claims

The attacker model was inherited from Section 3.1. The requirements for the proposed
countermeasure are as follows: 1) The proposed countermeasure is resistant to the proposed
attack, which is deterministically successful through instruction skipping; 2) the attack is
not successful even if the attacker knows the implementation of the TEE and countermeasure
and can skip any such instructions multiple times; 3) the attack is not successful even
if the attacker can control the address to which the application is allocated and the
corresponding changes in the PMP value. Incidental successful attacks are out of scope, as
in requirement 1, but such attack resistance is discussed in Section 8.4.

7.3.2 Evaluation

We present all possible attacks. Furthermore, we demonstrate that the proposed counter-
measure is resistant to them.
Attack 1: Skip PMP reconfiguration. The proposed attack forces xk[i] to inherit the
register value xk[i′] from the previous application i′. Therefore, the mask value is

m′[i] = h[i](x′[i]),
x′[i] = x1[i] ‖ ... ‖ xk[i′] ‖ ... ‖ xNcfg+Naddr[i]. (6)

50 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

Table 6: Comparison of execution time (Arty A7).

Toeplitz hash AES128
(enc. + dec.)

Context switch
Rewriting method Switching method

127.75 µs 798.73 µs 153.27 µs 110.97 µs
(80.00 + 718.73)

Thus, the address to jump to is

addr′jump[i, j] = addrjump[i, j]⊕m[i]⊕m′[i]. (7)

Because 1 ≤ k ≤ Ncfg + Naddr, the attacker can decide whether to skip or not for each
xk[i]; therefore, we define c = 2Ncfg+Naddr as the different instruction skipping patterns.
However, from requirement 4 of hash function selection in Section 7.2.2, this attack is
unsuccessful.
Attack 2: Skip hashing. The impact of this attack is implementation-dependent and is
not handled in requirement 1.
Attack 3: Skip XOR operation for unmasking. This attack results in the following
unmasking operation

addrjump[i, j] = addrmask[i, j]. (8)

From requirement 3 of hash function selection, the attack is unsuccessful.
Attack 4: Manipulate allocated address. From assumption 6 in Section 3.1, the
attacker can know m[i] and m′[i] in Eq. (6). Therefore, it is possible to manipulate
addrjump[i, j] and xk[i] to acquire the desired addr′jump[i, j]. However, based on require-
ment 1 of hash function selection, the hash function is newly selected based on the modified
addrjump[i, j], making the attack unsuccessful.

7.4 Runtime Overhead
This section evaluates the runtime overhead of hash computation, which is the core of
the proposed countermeasure. Furthermore, we compare the proposed countermeasure
with memory encryption (cf. Section 7.1), which is a promising countermeasure against
the proposed attack. Specifically, we implemented the Toeplitz hash as an example of
a universal hash and used AES [Sma19] as an example of memory encryption, and also
compared the time required for context switching in the PoC TEE and Keystone. The
Arty A7 platform with X300 core and HiFive Unleashed were used for the evaluation.

Table 6 shows the execution time of the Toeplitz hash, AES, and context switch for
the Arty A7 platform. The Toeplitz hash shows the result of the matrix operation on a
32× 320 Toeplitz matrix (cf. Section 7.2.3) and a 320-bit input (10 registers from Table 5).
AES shows the time required to encrypt and decrypt a 128-bit input. The context switch
shows the time from the ecall to the start of the application. In all cases, the O2 option
was used for optimization.

The Toeplitz hash is 6.25 times faster than AES128. In memory encryption, the
number of operations increases as the data to be protected increases, whereas the proposed
countermeasure is constant as long as the architecture (i.e., number of bits and PMP
entries) remains the same. Therefore, it is a reasonable countermeasure against the
proposed attack.

Meanwhile, when the hash calculation is added to the context switch, the rewriting
and switching methods become 1.8 and 2.2 times slower, respectively. The acceptability
of this overhead depends on the execution time of the application. As an example, the
MultiZone SDK sample [Sec21] provides an execution time of 10 ms for one application.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 51

Table 7: Comparison of execution time (HiFive Unleashed).

Toeplitz hash AES128
(enc. + dec.)

Context switch
Run Stop Resume Exit

42.22 µs 208.70 µs 11.01 µs 3.43 ms 5.52 µs 2.74 µs
(32.02 + 176.68)

Compared to this, the hash calculation accounts for 1.3% of the total time, indicating no
significant impact.

Table 7 shows the execution time for the HiFive Unleashed. Because the HiFive
Unleashed is 64-bit architecture and has 9 registers for PMP (cf. Table 5), the Toeplitz
hash shows the result of the matrix operation on a 64× 576 Toeplitz matrix and a 576-bit
input. The input size for AES is the same as the Arty A7 platform. The context switch
shows the time required for run, stop, resume, and exit which corresponds to the steps (3)
and (4), (5) and (6), (7) and (8), and (9) and (10) in Figure 12, respectively.

Similar to the results for the Arty A7 platform, the Toeplitz hash is 4.9 times faster
than AES128. Meanwhile, the countermeasure makes the context switch 1.01 to 16.4 times
slower. However, the processing time of Toeplitz hashing is much smaller than that of
“stop”. Furthermore, “stop” is an essential process for exchanging data between happ and
eapp. Therefore, there is no significant impact from the perspective of context switching.

8 Discussion
This section further discusses the proposed attack and countermeasure.

8.1 Attack Applicability to TrustZone
ARM TrustZone is a well-known TEE-enabler technology for embedded devices. First, we
describe the isolation mechanisms of TrustZone as in [ARM15, Yiu15, NMB+16, Yiu17,
PS19, ARM19], and then show that the proposed attack can be partially applied to
TrustZone-based TEEs. Here, we focus on the state-of-the-art TrustZone based on ARMv8-
A (v8-A) and ARMv8-M (v8-M). The bare-metal implementation is assumed to be a
RISC-V-based TEE, such as our PoC TEE. A detailed comparison between TrustZone
and RISC-V-based TEE is shown in Appendix D.

TrustZone has the concept of the world, which divides CPU resources into secure and
normal worlds, and isolates applications running in each world. Hereinafter, we refer
to world-based isolation and isolation for applications as world isolation and application
isolation, respectively. In v8-M, world and application isolations are realized by hard-
ware units called memory protection unit (MPU) and software attribution unit (SAU),
respectively. In v8-A, both isolations are realized by a hardware unit called the memory
management unit (MMU). Therefore, MPU+SAU or MMU corresponds to the PMP in
RISC-V. The usage of configuration values written to registers and memory to realize
isolation is consistent with the PMP.

We can summarize the attack applicability as follows.
1. The proposed attack is applicable to application isolation in TrustZone because

the hardware units and their configurations correspond to those of RISC-V. To
perform the attack, we skip the reconfigurations of MPU and MMU in v8-M and
v8-A, respectively.

2. The proposed attack is not applicable to world isolation in TrustZone. In v8-M, the
SAU settings are not reconfigured after initialization. In v8-A, each world has its

52 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

MMU setting. Therefore, tampering with MMU settings in the normal world does
not affect the secure world.

8.2 Attack Limitation
Although target instructions that change the PMP configuration can be identified and
skipped, the success or failure of the attack depends on the implementation of each TEE.

The main determinants of success or failure are considered as follows.

• Address-matching method in pmpcfg: We mainly used NAPOT for the PoC
TEE. In the rewriting method, NAPOT can be replaced with TOR using two PMP
entries. The order of the PMP entries then differs from those shown in Tables 1
and 2. TOR covers the range between the two pmpaddrs; therefore, skipping the
PMP configuration results in an increase or decrease in the target range. The former
enables the attack to succeed, whereas the latter causes the attack to fail.

• Order of PMP entry: For example, if the order of PMP2 and PMP3 is reversed
in the rewriting method, the access permissions of ROM and RAM are exchanged.
ROM access is necessary to execute instructions for applications; thus, only the
exchange of RAM for APP3 and ROM for APP2 is allowed. Although such an
exchange breaks memory protection by the PMP, it also fails the original goal of
obtaining the secret data. In contrast, an attack on the switching method would be
successful even if the order of the PMP entries was changed because the attacker
can obtain RAM permission for APP2 in addition to the original access permissions.

• Calling other applications: MultiZone adopts round-robin scheduling and allows
each application (or zone) to run for a short time by controlling them with timer
interrupts [Sec21]. Thus, attacker application cannot directly call a victim application.
Therefore, the attacker can only target the application executed just before the
attacker application. Meanwhile, Keystone allows untrusted host applications to
invoke an enclave application at an arbitrary timing [LKS+20]. The proposed attack
is applicable in such cases.

8.3 Applicability of Countermeasure
In this section, we show that the proposed countermeasure can be fully or partially applied
to MultiZone and Keystone.
Prerequisites. The proposed countermeasure can be applied to: 1) bare-metal environ-
ments (e.g., PoC TEE or MultiZone), where the build process can be modified, and the
allocated address for applications and PMP value are known, or 2) OS environments (e.g.,
Keystone), in which the address where an enclave application is deployed and PMP value
are known.
MultiZone. MultiZone build tool is encrypted and is a black box for users; therefore,
prerequisite 1 is not satisfied. However, because there is no technical problem, Hex Five
Security, the provider of the tool, can implement our countermeasure.
Keystone. Since the address where the enclave application is deployed is managed by
the OS, prerequisite 2 is not satisfied. Therefore, it is necessary to extend Keystone as
follows: fix the address where enclave applications are deployed and set up a special region
for enclave in the memory space. For this purpose, we have a table of IDs (indicating the
number of enclave applications), raw addresses, and mask addresses. When deploying the
application, the raw address is extracted from the ID, and the application is extracted.
At the time of execution, after switching the PMP, the mask address is extracted from
the ID, and the application jumps to the unmasked address according to the proposed
countermeasure.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 53

Although this approach can protect the entry point, it does not protect the return
address. The approach for fully applying the countermeasure to Keystone and evaluating
its resistance will be investigated in future work.

8.4 Resilience of Countermeasure to Other Attacks
Random jump attack. Even with the proposed countermeasure, an unexpected register
corruption may cause a random jump with a modified PMP. If the jump destination points
to the address where the attacker application is allocated, the attack code is executed. We
refer to such an attack as a random-jump attack.

Although random-jump attacks are not covered by the proposed countermeasure, as
shown in security claim 1, we discuss their success probability. From Eq. (4), the probability
of a successful random-jump attack by corrupting a certain register is 1/216 and 1/237 for
the PoC TEE and Keystone, respectively. Therefore, the proposed countermeasure alone
is insufficient, and random-jump attacks should be protected by other countermeasures
such as CFI [WSUM19].
Other bypassing attacks. The proposed countermeasure can protect against bypassing
attacks on secure boots [VTM+18] and authentication [MTW+18, BFP19]. Because the
hash value of the boot code is verified in the case of a secure boot, the transition address
to the boot process can be masked by the expected hash value. In the authentication
process, the transition address to the process after authentication can be masked by the
expected value as a password or a response to a challenge.

9 Conclusion
We proposed an attack to bypass isolated execution realized by the PMP in RISC-V.
Because the proposed attack targets the unique instructions required to construct TEEs, it
applies to various RISC-V-based TEEs. We also proposed an attack scheme for determining
the fault-injection parameters to conduct the proposed attack in a cross-device environment.
The effectiveness of the attack scheme was demonstrated through experiments using a PoC
TEE implemented with reference to existing RISC-V-based TEEs. The practicality of the
proposed attack was also demonstrated by attacking Keystone. Furthermore, we proposed
a software-based countermeasure that invalidates the proposed attack in principle.

From our experimental results (cf. Section 6) and discussion (cf. Section 8.2), we
conclude that the rewriting method is relatively secure for fault-injection attacks. The
switching method is easier to attack because the attacker can obtain permission from the
victim RAM in addition to the original permissions. As mentioned in Section 8.2, this
suggests that the attack should be effective even when the order of the PMP entries is
changed.

We did not report the attack results to RISC-V-based TEE developers for two reasons.
(1) There are obstacles to real attacks, and (2) TEE does not focus on invasive physical
attacks such as fault-injection attacks. Although the attack on Keystone was successful,
there are still challenges in applying the attack scheme (cf. Section 4). In addition,
Keystone is still mainly used for research purposes. It should be noted that for a critical
application requiring higher security, physical attacks should be considered, such as plugins
provided by Keystone, even though TEE is generally intended to protect against software
attacks, and most physical attacks are out of scope.

The following issues remain to be addressed in the future: (1) implementation of the
proposed countermeasure and a demonstration of its attack resilience; (2) application of
the attack scheme to Keystone; and (3) an evaluation of the proposed attack on TEEs
based on another architecture such as ARM TrustZone (cf. Section 8.1).

54 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

References
[AAB+16] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David

Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser,
Adam Izraelevitz, et al. The rocket chip generator. EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.

[ARM15] ARM. ARM Cortex-A Series Programmer’s Guide for ARMv8-A. https:
//developer.arm.com/documentation/den0024/a/, 2015. Accessed 5 July
2020.

[ARM16] ARM. Memory Protection Unit (MPU) Version 1.0. https://developer.
arm.com/documentation/100699/0100/, 2016. Accessed 19 September
2021.

[ARM19] ARM. Learn the architecture: AArch64 Virtualization. https://developer.
arm.com/documentation/102142/0100, 2019. Accessed 27 June 2021.

[BDL97] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the Importance of
Checking Cryptographic Protocols for Faults. In International conference on
the theory and applications of cryptographic techniques, pages 37–51. Springer,
1997.

[BECN+06] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire
Whelan. The Sorcerer’s Apprentice Guide to Fault Attacks. Proceedings of
the IEEE, 94(2):370–382, 2006.

[BFP19] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. Shaping the
Glitch: Optimizing Voltage Fault Injection Attacks. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 199–224, 2019.

[BGV11] Josep Balasch, Benedikt Gierlichs, and Ingrid Verbauwhede. An In-depth
and Black-box Characterization of the Effects of Clock Glitches on 8-bit
MCUs. In 2011 Workshop on Fault Diagnosis and Tolerance in Cryptography,
pages 105–114. IEEE, 2011.

[BRSK17] Swarup Bhunia, Sandip Ray, and Susmita Sur-Kolay. Fundamentals of IP
and SoC security. Springer, 2017.

[BTG10] Guillaume Barbu, Hugues Thiebeauld, and Vincent Guerin. Attacks on Java
Card 3.0 Combining Fault and Logical Attacks. In International Conference
on Smart Card Research and Advanced Applications, pages 148–163. Springer,
2010.

[CHKV19] Somnath Chakrabarti, Matthew Hoekstra, Dmitrii Kuvaiskii, and Mona Vij.
Scaling Intel R© Software Guard Extensions Applications with Intel R© SGX
Card. In Proceedings of the 8th International Workshop on Hardware and
Architectural Support for Security and Privacy, pages 1–9, 2019.

[ELG20] Mahmoud A Elmohr, Haohao Liao, and Catherine H Gebotys. EM Fault
Injection on ARM and RISC-V. In 2020 21st International Symposium on
Quality Electronic Design (ISQED), pages 206–212. IEEE, 2020.

[GA03] Sudhakar Govindavajhala and Andrew W Appel. Using Memory Errors to
Attack a Virtual Machine. In 2003 Symposium on Security and Privacy,
2003., pages 154–165. IEEE, 2003.

https://developer.arm.com/documentation/den0024/a/
https://developer.arm.com/documentation/den0024/a/
https://developer.arm.com/documentation/100699/0100/
https://developer.arm.com/documentation/100699/0100/
https://developer.arm.com/documentation/102142/0100
https://developer.arm.com/documentation/102142/0100

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 55

[Gil15] Brett Giller. Implementing Practical Electrical Glitching Attacks. Black Hat
Europe, 2015.

[Int20] RISC-V International. RISC-V International Members. https://riscv.
org/members/, 2020. Accessed 15 Janualy 2021.

[KFG+20] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and Ahmad-
Reza Sadeghi. V0LTpwn: Attacking x86 Processor Integrity from Software. In
29th USENIX Security Symposium (USENIX Security 20), pages 1445–1461.
USENIX Association, August 2020.

[LBDPP19] Johan Laurent, Vincent Beroulle, Christophe Deleuze, and Florian Pebay-
Peyroula. Fault Injection on Hidden Registers in a RISC-V Rocket Processor
and Software Countermeasures. In 2019 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 252–255. IEEE, 2019.

[Lee21] Dayeol Lee. keystone-sdk. https://github.com/keystone-enclave/
keystone-sdk/tree/master, 2021. Accessed 23 June 2021.

[LK18] Dayeol Lee and David Kohlbrenner. Welcome to Keystone Enclave’s Documen-
tation! http://docs.keystone-enclave.org/en/latest/index.html,
2018. Accessed 5 July 2020.

[LKS+20] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović, and Dawn
Song. Keystone: An Open Framework for Architecting Trusted Execution
Environments. In Proceedings of the Fifteenth European Conference on
Computer Systems, pages 1–16, 2020.

[LNW+19] Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik
Ekberg, and N Asokan. {PAC} it up: Towards Pointer Integrity using
{ARM} Pointer Authentication. In 28th {USENIX} Security Symposium
({USENIX} Security 19), pages 177–194, 2019.

[MOG+20] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss,
and Frank Piessens. Plundervolt: Software-based Fault Injection Attacks
against Intel SGX. In 2020 IEEE Symposium on Security and Privacy (S&P),
2020.

[MTW+18] Alyssa Milburn, Niek Timmers, Nils Wiersma, Ramiro Pareja, and Santiago
Cordoba. There Will Be Glitches: Extracting and Analyzing Automotive
Firmware Efficiently. Black Hat USA, 2018.

[NHH+17] Shoei Nashimoto, Naofumi Homma, Yu-ichi Hayashi, Junko Takahashi,
Hitoshi Fuji, and Takafumi Aoki. Buffer overflow attack with multiple fault
injection and a proven countermeasure. Journal of Cryptographic Engineering,
7(1):35–46, 2017.

[NMB+16] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and Sarah
Martin. Trustzone Explained: Architectural Features and Use Cases. In 2016
IEEE 2nd International Conference on Collaboration and Internet Computing
(CIC), pages 445–451. IEEE, 2016.

[PHBC17] Julien Proy, Karine Heydemann, Alexandre Berzati, and Albert Cohen.
Compiler-Assisted Loop Hardening Against Fault Attacks. ACM Transactions
on Architecture and Code Optimization (TACO), 14(4):1–25, 2017.

[PS19] Sandro Pinto and Nuno Santos. Demystifying Arm TrustZone: A Compre-
hensive Survey. ACM Computing Surveys (CSUR), 51(6):130, 2019.

https://riscv.org/members/
https://riscv.org/members/
https://github.com/keystone-enclave/keystone-sdk/tree/master
https://github.com/keystone-enclave/keystone-sdk/tree/master
http://docs.keystone-enclave.org/en/latest/index.html

56 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

[PT17] Jungmin Park and Akhilesh Tyagi. Using Power Clues to Hack IoT Devices:
The power side channel provides for instruction-level disassembly. IEEE
Consumer Electronics Magazine, 6(3):92–102, 2017.

[PW17] David Patterson and Andrew Waterman. The RISC-V Reader: An Open
Architecture Atlas. Strawberry Canyon, 2017.

[PXJ+18] Jungmin Park, Xiaolin Xu, Yier Jin, Domenic Forte, and Mark Tehranipoor.
Power-based Side-Channel Instruction-level Disassembler. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,
2018.

[QWLQ19a] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. Voltjockey:
Breaching Trustzone by Software-Controlled Voltage Manipulation over Multi-
core Frequencies. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 195–209, 2019.

[QWLQ19b] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. VoltJockey:
Breaking SGX by Software-Controlled Voltage-Induced Hardware Faults. In
2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST),
pages 1–6. IEEE, 2019.

[RRR+04] Srivaths Ravi, Srivaths Ravi, Anand Raghunathan, Paul Kocher, and Sunil
Hattangady. Security in Embedded Systems: Design Challenges. ACM
Transactions on Embedded Computing Systems (TECS), 3(3):461–491, 2004.

[SBO+15] Daehyun Strobel, Florian Bache, David Oswald, Falk Schellenberg, and
Christof Paar. SCANDALee: A Side-ChANnel-based DisAssembLer using
Local Electromagnetic Emanations. In 2015 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 139–144. IEEE, 2015.

[Sec19] Hex Five Security. MultiZone API. https://github.com/hex-five/
multizone-api, 2019. Accessed 5 July 2020.

[Sec20] Hex Five Security. X300. https://github.com/hex-five/multizone-fpga,
2020. Accessed 5 July 2020.

[Sec21] Hex Five Security. multizone-sdk. https://github.com/hex-five/
multizone-sdk, 2021. Accessed 21 July 2021.

[SiF20] SiFive. Freedom Metal Machine Compatibility Library. https://github.
com/sifive/freedom-metal, 2020. Accessed 5 July 2020.

[SiF21] SiFive. SiFive FU540-C000 Manual v1p4. https://sifive.cdn.
prismic.io/sifive/d3ed5cd0-6e74-46b2-a12d-72b06706513e_
fu540-c000-manual-v1p4.pdf, 2021. Accessed 2 October 2021.

[Sma19] SmarterDM. micro-aes. https://github.com/SmarterDM/micro-aes, 2019.
Accessed 5 July 2020.

[TM17] Niek Timmers and Cristofaro Mune. Escalating Privileges in Linux using
Voltage Fault Injection. In 2017 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 1–8. IEEE, 2017.

[TSS17] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. CLKSCREW:
Exposing the Perils of Security-Oblivious Energy Management. In 26th
USENIX Security Symposium (USENIX Security 17), pages 1057–1074, 2017.

https://github.com/hex-five/multizone-api
https://github.com/hex-five/multizone-api
https://github.com/hex-five/multizone-fpga
https://github.com/hex-five/multizone-sdk
https://github.com/hex-five/multizone-sdk
https://github.com/sifive/freedom-metal
https://github.com/sifive/freedom-metal
https://sifive.cdn.prismic.io/sifive/d3ed5cd0-6e74-46b2-a12d-72b06706513e_fu540-c000-manual-v1p4.pdf
https://sifive.cdn.prismic.io/sifive/d3ed5cd0-6e74-46b2-a12d-72b06706513e_fu540-c000-manual-v1p4.pdf
https://sifive.cdn.prismic.io/sifive/d3ed5cd0-6e74-46b2-a12d-72b06706513e_fu540-c000-manual-v1p4.pdf
https://github.com/SmarterDM/micro-aes

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 57

[TSW16] Niek Timmers, Albert Spruyt, and Marc Witteman. Controlling PC on ARM
using Fault Injection. In 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pages 25–35. IEEE, 2016.

[VBOM+19] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D
Garcia, and Frank Piessens. A Tale of Two Worlds: Assessing the Vulnerabil-
ity of Enclave Shielding Runtimes. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 1741–1758,
2019.

[VTM+18] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adele Morisset,
and Sebastien Ermeneux. Laser-Induced Fault Injection on Smartphone
Bypassing the Secure Boot. IEEE Transactions on Computers, 2018.

[VWG07] Dennis Vermoen, Marc Witteman, and Georgi N Gaydadjiev. Reverse
Engineering Java Card Applets Using Power Analysis. In IFIP International
Workshop on Information Security Theory and Practices, pages 138–149.
Springer, 2007.

[WA19] Andrew Waterman and Krste Asanovic. The RISC-V Instruction Set Manual
Volume II: Privileged Architecture. https://riscv.org/specifications/
privileged-isa, 2019. Accessed 5 July 2020.

[WP17] Nils Wiersma and Ramiro Pareja. Safety!= Security: On the resilience of
ASIL-D certified microcontrollers against fault injection attacks. In 2017
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pages
9–16. IEEE, 2017.

[WSUM19] Mario Werner, Robert Schilling, Thomas Unterluggauer, and Stefan Mangard.
Protecting RISC-V Processors against Physical Attacks. In 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1136–
1141. IEEE, 2019.

[YGS+16] Bilgiday Yuce, Nahid Farhady Ghalaty, Harika Santapuri, Chinmay Desh-
pande, Conor Patrick, and Patrick Schaumont. Software Fault Resistance is
Futile: Effective Single-Glitch Attacks. In 2016 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC), pages 47–58. IEEE, 2016.

[Yiu15] Joseph Yiu. ARMv8-M architecture technical overview. ARM WHITE
PAPER, 2015.

[Yiu17] Joseph Yiu. Software Development in ARMv8-M Architecture. embedded
world 2017, 2017.

[YSW18] Bilgiday Yuce, Patrick Schaumont, and Marc Witteman. Fault Attacks on
Secure Embedded Software: Threats, Design, and Evaluation. Journal of
Hardware and Systems Security, 2(2):111–130, 2018.

[YUZP19] Baki Berkay Yilamz, Elvan Mert Ugurlu, Alenka Zajic, and Milos Prvulovic.
Instruction Level Program Tracking Using Electromagnetic Emanations. In
Cyber Sensing 2019, volume 11011. International Society for Optics and
Photonics, 2019.

https://riscv.org/specifications/privileged-isa
https://riscv.org/specifications/privileged-isa

58 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

ROM
Freedom-metal

(128K)

0x2040 0000

0x2042 0000

0x2043 0000

0x2044 0000

0x2045 0000

ROM Monitor (64K)

ROM APP1 (64K)

ROM APP2 (64K)

ROM APP3 (64K)
0x2046 0000

分離デザイン Flash (ROM)
最⼤: 512MiB

.text

.rodata, .data

(a) ROM. The maximum size for the overall ROM
is 512 MB.

RAM
Shared memory

(4K)

0x8000 0000

0x8000 1000

RAM Monitor (4K)

RAM APP1 (4K)

RAM APP2 (2K)

RAM APP3 (2K)

.data, .bss

0x8000 2000

0x8000 3000

0x8000 3800

.heap

0x8000 4000

.stack

(b) RAM. The maximum size for the overall RAM
is 16 kB.

Figure 15: Memory map.

A Specification and Implementation of PoC TEE

A.1 Memory Map
The memory maps indicating the ROM and RAM for the PoC TEE are shown in Fig-
ures 15(a) and (b).

A.2 Specification of Shared Memory
The shared memory, shown in Figure 16, separates its memory region into two sub-regions:
one for application calls (0–11) and one for shared data (12–127). It is declared as a 128-
byte array of uint8_t. SP and RA denote registers for stack pointers and return addresses,
respectively. The monitor uses caller ID and callee ID to manage application calls.
The monitor saves the context of the application with the caller ID and calls an application
with the callee ID. Cmd (command) is used to determine the operation of each application.
An example of Cmd usage is presented in Section A.6.

A.3 Function for Switching Applications
The function for switching applications involves the following three steps: (1) store sp and
ra into the shared memory, (2) store caller ID and callee ID into the shared memory, and
(3) transfer the control to the monitor in M-mode by an environment call exception caused
by ecall. The original code of the function is as follows.
1 void cal l_app (uint8_t ca l l e r_ id , uint8_t ca l l e e_ id) {
2 uintptr_t sp , ra ;
3 uintptr_t ∗ t ;
4 __asm__ v o l a t i l e ("mv %0, sp " : "=r " (sp)) ;
5 __asm__ v o l a t i l e ("mv %0, ra " : "=r " (ra)) ;
6
7 t = (uintptr_t)&shared_buf fer [SHARED_SP] ;
8 ∗ t = sp ; // [0 : 3]
9 t = (uintptr_t)&shared_buf fer [SHARED_RA] ;

10 ∗ t = ra ; // [4 : 7]
11 shared_buf fer [SHARED_CALLER] = ca l l e r_ id ;
12 shared_buf fer [SHARED_CALLEE] = ca l l e e_ id ;
13 __asm__ v o l a t i l e (" e c a l l ") ;
14 }

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 59

共有メモリの構造
uint8_t shared_buffer[128]

124

0

8

12

SP

RA

Caller
ID cmdCallee

ID

4

data

…

127

Figure 16: Structure of shared
memory.

Table 8: Specification of commands for
APP1.

Cmd Class Function Size Description

0x80

0x10
0x10 N/A Echo cmd
0x20 N/A Get re-

sponse
0x30 size Set buffer

0x20
0x10 size Set shared

memory
0x18 size Get shared

memory
0x20 N/A Call APP2
0x30 N/A Call APP3

A.4 Specification of Commands for APP1
APP1 acts a dispatcher and executes commands from users via UART. Table 8 summarizes
the specifications of the commands. The command is given by a 4-byte array of uint8_t,
and the bytes are interpreted as Cmd, Class, Function, and Size, respectively.

A.5 Implementation of APP2
APP2 is a victim application executing AES encryption, which is implemented with
micro-aes [Sma19]. APP2 receives plaintext using the shared memory and then encrypts
it. Finally, it stores the corresponding ciphertext in the shared memory. A user can obtain
the ciphertext via APP1. A secret key used for encryption is declared as a static variable,
and it is copied to the RAM. The original code of APP2 is as follows:
1 #de f i n e AES_BLOCK_SIZE 16
2
3 aes_128_context_t ctx ;
4
5 s t a t i c uint8_t key [AES_BLOCK_SIZE] = {0x00 , 0x01 , 0x02 , 0x03 ,
6 0x04 , 0x05 , 0x06 , 0x07 ,
7 0x08 , 0x09 , 0x0a , 0x0b ,
8 0x0c , 0x0d , 0x0e , 0 x0f } ;
9

10 void sep2_main () {
11 i n t i ;
12 uint8_t block [AES_BLOCK_SIZE] = {0};
13
14 aes_128_init(&ctx , key) ;
15 f o r (i = 0 ; i < AES_BLOCK_SIZE; i++) {
16 block [i] = shared_buf fer [SHARED_DATA + i] ;
17 }
18
19 aes_128_encrypt(&ctx , b lock) ;
20
21 f o r (i = 0 ; i < AES_BLOCK_SIZE; i++) {
22 shared_buf fer [SHARED_DATA + i] = block [i] ;
23 }
24
25 cal l_app (CTX_SEP2, CTX_END) ; // f i n i s h
26 }

60 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

A.6 Implementation of APP3

APP3 is an attacker application that dumps the victim RAM. More specifically, it receives
a base address and an offset, and then reads data from the address of ”base adder + offset.”
During the execution of an attack (case 0xf1), APP3 stores the necessary data in the
shared memory in case it loses access to its own RAM (cf. Section 5.3.2). The original
code of APP3 is as follows:

1 void sep3_main () {
2 // f o r cal l_app () without us ing stack (RAM)
3 uintptr_t sp , ra ;
4 uintptr_t ∗ t ;
5
6 uint8_t cmd [2] ;
7 uint16_t o f f s e t ;
8 uint32_t reg_val ;
9 s t a t i c uint32_t base_addr = BASE_ADDR;

10
11 ∗ ((uint16_t ∗)cmd) = ∗ ((uint16_t ∗)&shared_buf fer [SHARED_CMD]) ;
12
13 switch (cmd [0]) {
14 case 0x33 :
15 switch (cmd [1]) {
16 // −−− s e t base addr −−−
17 case 0x10 :
18 base_addr = ∗(uint32_t ∗)&shared_buf fer [SHARED_DATA] ;
19 break ;
20
21 // −−− s e t o f f s e t & load data (without f a u l t i n j e c t i o n) −−−
22 case 0x20 :
23 o f f s e t = ∗(uint16_t ∗)&shared_buf fer [SHARED_DATA] ;
24 reg_val = ∗ ((uint32_t ∗) (base_addr + o f f s e t)) ;
25
26 ∗ ((uint32_t ∗)&shared_buf fer [SHARED_DATA]) = reg_val ;
27 break ;
28
29 // −−− e xp l o i t with f a u l t −−−
30 case 0 xf1 :
31 // TIP : save o f f s e t va lue from APP3 RAM to shared RAM
32 o f f s e t = ∗(uint16_t ∗)&shared_buf fer [SHARED_DATA] ;
33 ∗(uint16_t ∗)&shared_buf fer [SHARED_DATA+STR_ADDR] = o f f s e t ;
34
35 cal l_app (CTX_SEP3, CTX_SEP2) ; // <− f a u l t here
36 // TIP : e c a l l without cal l_app () to avoid us ing stack
37 __asm__ v o l a t i l e ("mv %0, sp " : "=r " (sp)) ;
38 __asm__ v o l a t i l e ("mv %0, ra " : "=r " (ra)) ;
39
40 t = (uintptr_t)&shared_buf fer [SHARED_SP] ;
41 ∗ t = sp ; // [0 : 3]
42 t = (uintptr_t)&shared_buf fer [SHARED_RA] ;
43 ∗ t = ra ; // [4 : 7]
44 shared_buf fer [SHARED_CALLER] = CTX_SEP3;
45 shared_buf fer [SHARED_CALLEE] = CTX_SEP2;
46 __asm__ v o l a t i l e (" e c a l l ") ;
47
48 // TIP : 16−byte memory acc e s s without us ing stack
49 ∗ ((uint32_t ∗)&shared_buf fer [SHARED_DATA+0]) = ∗ ((uint32_t ∗) (

BASE_ADDR_TGT + ∗ ((uint16_t ∗)&shared_buf fer [SHARED_DATA + STR_ADDR
]) +0)) ;

50 ∗ ((uint32_t ∗)&shared_buf fer [SHARED_DATA+4]) = ∗ ((uint32_t ∗) (
BASE_ADDR_TGT + ∗ ((uint16_t ∗)&shared_buf fer [SHARED_DATA + STR_ADDR
]) +4)) ;

51 ∗ ((uint32_t ∗)&shared_buf fer [SHARED_DATA+8]) = ∗ ((uint32_t ∗) (
BASE_ADDR_TGT + ∗ ((uint16_t ∗)&shared_buf fer [SHARED_DATA + STR_ADDR
]) +8)) ;

52 ∗ ((uint32_t ∗)&shared_buf fer [SHARED_DATA+12]) = ∗ ((uint32_t ∗) (
BASE_ADDR_TGT + ∗ ((uint16_t ∗)&shared_buf fer [SHARED_DATA + STR_ADDR
]) +12)) ;

53 // TIP : re turn without sp use
54 shared_buf fer [SHARED_CALLER] = CTX_SEP3;
55 shared_buf fer [SHARED_CALLEE] = CTX_END;
56 __asm__ v o l a t i l e (" e c a l l ") ;
57 break ;
58
59 de f au l t :
60 break ;

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 61

40 20 20 400
width [%]

40

20

0

20

40

of
fs

et
 [%

]

No effect No responce Unexpected fault Expected fault

Type #1

Type #2 Type #3

Type #4

Figure 17: Profiling result for the exploita-
tion device.

0 10 20 30 40 50
Time [ns]

3
2
1
0
1
2
3

V
ol

ta
ge

 [V
]

(a) Type #1

0 10 20 30 40 50
Time [ns]

3
2
1
0
1
2
3

V
ol

ta
ge

 [V
]

(b) Type #2

0 10 20 30 40 50
Time [ns]

3
2
1
0
1
2
3

V
ol

ta
ge

 [V
]

(c) Type #3

0 10 20 30 40 50
Time [ns]

3
2
1
0
1
2
3

V
ol

ta
ge

 [V
]

(d) Type #4

Figure 18: Successful glitches: (a) width=-
32, offset=6, (b) width=-10, offset=20,
(c) width=41, offset=21, (d) width=19,
offset=-45. The clock signal split into two
at the central position is a glitch.

61 }
62 break ;
63
64 de f au l t :
65 break ;
66 }
67
68 cal l_app (CTX_SEP3, CTX_END) ; // f i n i s h
69 }

B Supplement for Experiment #1
B.1 Fault Intensity for Target Device
We performed the same profiling experiment using the target device. Figure 17 verifies the
effectiveness of the method for extracting the fault intensity using a profiling device and
suggests trends similar to that in Figure 8.

Successful clock glitches are divided into four types, as shown in Figure 17. Figure 18
shows representative waveforms for each type. They indicate that pairs of types #1 and
#3 and types #2 and #4 show similar trends.

B.2 Fault Intensity for csrc

This section describes the profiling of csrc and clarifies the difference in fault sensitivity
between csrc and csrw. We performed the same profiling experiments for csrc as in
Section 5.2.1. Figure 19 shows the fault sensitivity of csrc in the profiling device and the
target device, as well as the fault sensitivity of csrw in the target device6. For detailed
comparison, Table 9 shows the parameters for which an expected fault was obtained with
a probability of more than 60%.

6The result of csrw is the same experiment as Figure 17, however since it has been a long time since
the previous experiment, it was re-experimented for comparison under the same conditions.

62 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

40 20 0 20 40
width [%]

40

20

0

20

40

of
fs

et
 [%

]

No effect No response Unexpected fault Expected fault

(a) csrc for profiling device.

40 20 0 20 40
width [%]

40

20

0

20

40

of
fs

et
 [%

]

No effect No response Unexpected fault Expected fault

(b) csrc for target device.

40 20 0 20 40
width [%]

40

20

0

20

40

of
fs

et
 [%

]

No effect No response Unexpected fault Expected fault

(c) csrw for target device.

Figure 19: Profiling results for csrc. Result for csrw is for reference.

Figures 19(b) and (c) show that the fault sensitivity of csrc and csrw are similar.
Furthermore, Figures 19(a) and (b) show that for csrc, the fault sensitivity is similar for
the profiling device and the target device. Table 9 shows that there is a difference between
csrc and csrw in terms of attack success rate. Therefore, as shown in the experiment in
section 5.4.1, the parameters for which the expected fault was obtained by the profiling
device were not sufficient for the attack. However, the similarity in fault sensitivity shown
in Figure 19 indicates that we can attack both csrc and csrw by extending the range of
fault parameters obtained by profiling either csrc or csrw.

B.3 Template Matching
This section describes the details of steps (2)–(4) of the attack scheme shown in Figure 4.
More specifically, we explain the template creation and matching methods and evaluate
the accuracy of template matching.

B.3.1 Creating Side-Channel Template

We created side-chennel templates for each target instruction, that is, csrw, csrc, and
csrs, following the steps below.

1. Extract target waveform. We ran the PoC TEE, including the target instructions

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 63

Table 9: Fault intensity parameters and their success rates with 10 trials.

Fault intensity [%] Success rate [%]

Width Offset csrc csrc csrw
(profiling device) (target device) (target device)

-42 18 60 20 20
-41 18 10 60 70
-29 30 0 0 90
-29 31 80 0 10
38 22 0 60 40
40 21 80 0 0

on the profiling device, and acquired EM waveforms. The average of 100 waveforms
was used as the target waveform.

2. Extract reference waveform. We replaced the target instruction with nop (no
operation) and acquired EM waveforms. As in step (1), the average of 100 waveforms
was used as the reference waveform.

3. Extract side-channel template. We calculated the difference between the target
and reference waveforms and identified the execution timing of the target instruction.
We then cut out the region around the identified position from the target waveform
as templates.

Figures 20(a)–(c) show the waveforms for each step above. In the difference waveform
in Figure 20(c), the target instruction was executed in the area where the difference is large,
that is, spikes are observed. Therefore, eight spike regions were extracted as templates.
In the template matching, all candidates were examined and the one with the highest
matching score was adopted.

B.3.2 Matching Templates with Trace

The sum of absolute difference (SAD), one of the simplest matching algorithms, matched
the side-channel templates with the side-channel traces. From the viewpoint of visibility,
the matching score was set to 1/SAD. Therefore, the higher the matching score, the more
the target instructions are executed.

Figure 21(c) shows the results of matching with the csrw template (Figure 21(a))
against the waveform in which the attacker application was run in the PoC TEE with
the rewriting method on the target device (Figure 21(b)). The template was cut out for
five clocks from the candidate templates, taking into account that the X300 core has a
five-stage pipeline [Sec20]. The average of 100 waveforms was used as the matching target.
Figure 21(b) shows that eight high matching scores are observed in the form of spikes (some
spikes overlap). The same matching was performed for the csrc and csrs templates, and
the spike locations are summarized in Figure 9(a) (cf. Section 5.2.2). Similarly, the same
process was applied to the switching method, and the results are shown in Figure 9(b).

B.3.3 Matching Accuracy

The execution timing of the target instructions identified by template matching was
compared with the true execution timing. To acquire the true execution timing, GPIO
control instructions were inserted into the target code7. Figures 22(a) and (b) show

7To avoid changing the fault-injection timing owing to the insertion of GPIO control instructions, these
instructions were left inserted throughout the experiments.

64 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

0 200 400 600 800 1000
Time [s]

100

50

0

50

100

Q
ua

nt
iz

ed
 v

al
ue

(a) Target waveform including execution of csrw.

0 200 400 600 800 1000
Time [s]

100

50

0

50

100

Q
ua

nt
iz

ed
 v

al
ue

(b) Reference waveform with csrw replaced by nop.

0 200 400 600 800 1000
Time [s]

0

25

50

75

D
iff

er
en

ce

(c) Difference between target and reference wave-
forms. Red circles indicate areas that were detected
as templates.

Figure 20: Side-channel template creation
process.

0 10 20 30 40 50 60 70
Time [ns]

50

0

50

Q
ua

nt
iz

ed
 v

al
ue

(a) Template waveform for csrw.

0 1 2 3 4 5 6 7
Time [ms]

100

0

100

Q
ua

nt
iz

ed
 v

al
ue

(b) Matching target including the process of mem-
ory dump by APP3 from the call of APP3 in rewrit-
ing method (cf. Figure 10).

0 1 2 3 4 5 6 7
Time [ms]

0.0000

0.0002

0.0004

0.0006

0.0008

M
at

ch
in

g
sc

or
e

(1
/S

A
D

)

(c) Matching score. Red circles indicate regions
where csrw is identified as being executed by peak
detection. Template matching is applied only to
the section where the trigger is at high level (cf.
Figure 10).

Figure 21: Template matching process.

the true execution timing of the target instructions and execution timing identified by
template matching in rewriting and switching methods, respectively. The results show the
occurrence of false positives, but no false negatives. Therefore, although the search space
is increased, the successful fault-injection timing of the attack can be identified by testing
all the candidates.

Based on Figures 22(a) and (b), the identified clock cycles are summarized in Tables 10(a)
and (b), respectively. The number of cycles obtained by template matching is at most
±50 cycles, which is different from that obtained from the GPIO signal. Therefore, the
proposed method can effectively identify the execution timing of target instructions.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 65

0 2 4 6 8
Time [ms]

trigger

csrs

csrc

csrw

4.84ms

(a) Rewriting method.

0 2 4 6 8
Time [ms]

trigger

csrs

csrc

csrw

7.23ms

(b) Switching method.

Figure 22: Identified and true execution timing. Black and red lines show the results from
template matching and GPIO, respectively.

Table 10: Comparison of identified clock cycles.

(a) Rewriting method.

csrw csrc csrs
Identified GPIO Diff. Identified GPIO Diff. Identified GPIO Diff.
26231 26239 8 26235 - - 26260 - -
27855 27862 7 27859 - - 27884 - -
34016 34032 16 34020 - - 34045 - -
34104 - - 34108 34121 13 34182 34168 -14
67772 67798 26 67776 - - 67801 - -
69395 69402 7 69399 - - 69424 - -
310164 310190 26 310168 - - 310193 - -
311788 311793 5 311792 - - 311817 - -

(b) Switching method.

csrw csrc csrs
Identified GPIO Diff. Identified GPIO Diff. Identified GPIO Diff.
33117 33141 24 33121 - - - - -
50991 - - 50995 51002 7 51020 - -
55345 - - 55349 - - 55374 55350 -24
66127 66156 29 66130 - - - - -
66214 - - 66268 66226 -42 66293 66284 -9
98627 - - 98680 98647 -33 98705 98683 -22
99459 - - 99512 99468 -44 99537 99515 -22
128685 - - 128738 128702 -36 128763 128739 -24
129514 - - 129567 129525 -42 129592 129568 -24
139876 - - 139830 139853 23 139855 139899 44
140996 - - 140950 140955 5 140975 141021 46
380740 - - 380694 380697 3 380719 380748 29
381806 - - 381860 381817 -43 381835 381880 45
387239 - - 387243 387263 20 - - -
391593 - - 391597 - - 391622 391598 -24
392662 - - 392715 392673 -42 392740 392716 -24

66 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

pmp_set_keystone()

context_switch_to_enclave()

PMP_SET

la t0 1f
csrrw t0, mtvec, t0
csrw pmpaddr#n, %0
csrw pmpcfg#g, %1
sfence.vma
.align 2
1: csrw mtvec, t0

(a) Original.

pmp_set_keystone()

context_switch_to_enclave()

PMP_SET
…
 la t0 1f
 csrrw t0, mtvec, t0
 ...
 GPIO_VAL |= 0x03 // GPIO0 GPIO1 ON
 GPIO_VAL &= ~0x01 // GPIO0 OFF ← trigger
 nop, nop, nop...
 t1 += 1
 t1 += 2
 t1 += 4
 …
 t1 += 1024
 t2 += 1
 …
 t3 += 1024
 csrw pmpaddr#n, %0
 csrw pmpcfg#g, %1
 t4 += 1
 …
 t5 += 1024
 GPIO_VAL &= ~0x02 // GPIO1 OFF
 ...
 sfence.vma
 .align 2
 1: csrw mtvec, t0
 ...

(b) Modified.

Figure 23: Target code for Keystone.

C Target Instructions for Keystone
Figure 23 shows the target instructions for Keystone. Figure 23(b) shows the target
code, which is a modified version of the original code shown in Figure 23(a). PMP
reconfiguration is realized by PMP_SET, which is executed by Keystone SM calling the
context_switch_to_enclave() and pmp_set_keystone(). Temporary registers, t1 to
t5, indicate the instruction that introduced a fault by assigning different values to each
bit and serves as buffers for filling the lag between the trigger and injection of faults.

The only target instruction is csrw pmpcfg. This is because, as shown in Figure 12,
the Keystone context switch does not change the address, but only the access attributes.
Therefore, there is no effect even if csrw pmpaddr is skipped. For this reason, the
experiment in Section 6.2.2 can also be regarded as a profiling experiment to investigate
the fault intensity that can skip the csrw on the HiFive Unleashed.

Shoei Nashimoto, Daisuke Suzuki, Rei Ueno and Naofumi Homma 67

Table 11: Comparison of RISC-V and TrustZone

Item RISC-V TrustZone v8-M TrustZone v8-A
How to isolate Check permissions at memory access. Check permissions at ad-

dress translation by MMU.
of world Any (PMP entries

are at most 16)
2 (secure and non-secure
(S/NS) states)

2 (secure and normal)

of applica-
tion

Any (MPU has up to 16 re-
gions)

Any

Hardware units PMA, PMP IDAU, SAU, MPU MMU
Privilege M, H, S, U Handler Mode (Privi-

leged), Thread Mode
(Privileged/Unprivileged)

EL3, EL2, EL1, EL0

How to config-
ure world isola-
tion

Configure PMP in
M-mode.

Configure SAU from code
in secure region.

Configure MMU (i.e., trans-
lation tables) in EL3 mode

How to config-
ure application
isolation

Configure MPU in Privi-
leged mode.

Configure MMU in EL1 or
EL2 modes

World switch Exceptions transfer
the control from
U/S-mode to
M-mode. M-mode
reconfigures PMP
and then returns the
control to U/S-mode
by mret.

Code in NS calls NSC func-
tion and then moves to S.
Code in S calls a callback
function and then moves to
NS.

SMC instruction, exceptions,
or interrupts, such as IRQ
and FIQ, transfer the con-
trol from normal to secure.
Secure returns to normal by
ERET.

Application
switch

Interrupts, such as IRQ
and FIQ, transfers the con-
trol from non-privileged to
privileged modes. Priv-
ileged mode reconfigures
MPU and then returns to
non-privileged mode.

Interrupts, such as IRQ
and FIQ, transfers the con-
trol from EL0 to EL1 or
EL2 modes. EL1 or EL2
mode reconfigures MMU
and then returns to EL0
mode by ERET

Abbreviations
PMA: Physical Memory Attribute, IDAU: Implementation Defined Attribution Unit, MMU:

Memory Management Unit, SAU: Software Attribution Unit, MPU: Memory Protection Unit, EL:
Exception Level, NSC: Non-Secure Callable, IRQ: Interrupt ReQuest, FIQ: Fast Interrupt reQuest

D Comparison with TrustZone
Table 11 summarizes the comparison of TrustZone-based TEE and RISC-V-based TEE
according to [ARM15, Yiu15, ARM16, NMB+16, Yiu17, PS19, ARM19]. RISC-V uses the
PMP for both world isolation and application isolation; therefore, there is no separation in
the column of RISC-V in Table 11. The major features of the TrustZone are as follows.
Hardware unit: The relation of PMA8 and PMP in RISC-V corresponds to that of
IDAU and SAU in v8-M. MPU in v8-M provides isolation based on the base address, size,
and attribute, which is similar to PMP. Meanwhile, MPU is different from PMP in that
MPU is defined in each world. MMU in v8-A has a richer function than MPU in v8-M in
the sense that MMU can translate a virtual address into a physical address.
Privilege: The privileges in v8-A are defined as EL3 for secure monitor, EL2 for hypervisor,
EL1 for OS, and EL0 for applications, which are the same as in RISC-V. Meanwhile, the
privileges in v8-M are defined as handler and thread modes, which are different from
RISC-V.
Configuration of world/application: TrustZone v8-M and v8-A perform the configura-
tion of world(s) with SAU and MMU, and then perform the configuration of application(s)
with MPU and MMU, respectively. The world configuration in v8-M does not change after
initialization, whereas the application configuration can be changed. In v8-A, each world
has its own translation tables for MMU, and they can be changed. Hence, the same virtual

8PMA is a H/W-defined unit for providing memory protection similarly to PMP.

68 Bypassing Isolated Execution on RISC-V using SC-Assisted FI and Its Countermeasure

address is translated to other physical addresses in each world.
World/application switch: Application switches resemble each other, although the
world switch is different from the application switch. The world switch in v8-M employs a
specific function called NSC to move the world from NS to S. Then, it employs a callback
function located in the NS world to return from S to NS. The world switch in v8-A employs
the SMC instruction, exceptions, or interrupts to move the world from normal to secure.
Then, it employs the ERET instruction to return from secure to normal. This is similar to
the operation of the monitor in RISC-V.

	Introduction
	Security on RISC-V
	Privileged Architecture
	Physical Memory Protection
	TEEs on RISC-V

	Proposed Attack
	Attacker Model
	Attack Scheme

	Implementation of the Trusted Execution Environment
	System Structure
	Flowchart
	PMP Usage

	Experiment #1: Attack on PoC TEE
	Experimental Setup
	Experiment #1.1: Extracting Glitch Parameters
	Experiment #1.2: Exploitation
	Evaluation of Glitch Parameters

	Experiment #2: Attack on Keystone
	Experimental Setup
	Experiment #2.1: Exploitation

	Countermeasure
	Existing Approaches
	Proposed Countermeasure
	Attack Resistance of Proposed Countermeasure
	Runtime Overhead

	Discussion
	Attack Applicability to TrustZone
	Attack Limitation
	Applicability of Countermeasure
	Resilience of Countermeasure to Other Attacks

	Conclusion
	Specification and Implementation of PoC TEE
	Memory Map
	Specification of Shared Memory
	Function for Switching Applications
	Specification of Commands for APP1
	Implementation of APP2
	Implementation of APP3

	Supplement for Experiment #1
	Fault Intensity for Target Device
	Fault Intensity for csrc
	Template Matching

	Target Instructions for Keystone
	Comparison with TrustZone

