
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 4, pp. 546–586. DOI:10.46586/tches.v2021.i4.546-586

Higher-Order Lookup Table Masking in
Essentially Constant Memory

Annapurna Valiveti and Srinivas Vivek

IIIT Bangalore, Bangalore, India
annapurna@iiitb.org,srinivas.vivek@iiitb.ac.in

Abstract. Masking using randomised lookup tables is a popular countermeasure for
side-channel attacks, particularly at small masking orders. An advantage of this class
of countermeasures for masking S-boxes compared to ISW-based masking is that it
supports pre-processing and thus significantly reducing the amount of computation
to be done after the unmasked inputs are available. Indeed, the “online” computation
can be as fast as just a table lookup. But the size of the randomised lookup table
increases linearly with the masking order, and hence the RAM memory required
to store pre-processed tables becomes infeasible for higher masking orders. Hence
demonstrating the feasibility of full pre-processing of higher-order lookup table-based
masking schemes on resource-constrained devices has remained an open problem.

In this work, we solve the above problem by implementing a higher-order lookup
table-based scheme using an amount of RAM memory that is essentially independent
of the masking order. More concretely, we reduce the amount of RAM memory needed
for the table-based scheme of Coron et al. (TCHES 2018) approximately by a factor
equal to the number of shares. Our technique is based upon the use of pseudorandom
number generator (PRG) to minimise the randomness complexity of ISW-based
masking schemes proposed by Ishai et al. (ICALP 2013) and Coron et al. (Eurocrypt
2020). Hence we show that for lookup table-based masking schemes, the use of a
PRG not only reduces the randomness complexity (now logarithmic in the size of the
S-box) but also the memory complexity, and without any significant increase in the
overall running time. We have implemented in software the higher-order table-based
masking scheme of Coron et al. (TCHES 2018) at tenth order with full pre-processing
of a single execution of all the AES S-boxes on a ARM Cortex-M4 device that has 256
KB RAM memory. Our technique requires only 41.2 KB of RAM memory, whereas
the original scheme would have needed 440 KB. Moreover, our 8-bit implementation
results demonstrate that the online execution time of our variant is about 1.5 times
faster compared to the 8-bit bitsliced masked implementation of AES-128.
Keywords: Side-channel attacks · Masking · S-box · Probing leakage model · PRG ·
SNI security · IoT security · Software implementation.

1 Introduction
An IoT ecosystem helps several heterogeneous devices to collect, send and act on the data
acquired from their environments. Even though IoT helps devices communicate over the
Internet, the security and privacy of the data being stored and exchanged is a primary
concern. Moreover, the physical availability of these devices make them vulnerable to
side-channel attacks [Koc96, KJJ99]. Since the cryptographic mechanisms to protect secret
data incur additional performance penalty, various trade-offs between processing time and
memory required have to be considered while designing security protocols. Specifically, to

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-04-15 Accepted: 2021-06-15 Published: 2021-08-11

https://doi.org/10.46586/tches.v2021.i4.546-586
mailto:annapurna@iiitb.org, srinivas.vivek@iiitb.ac.in
http://creativecommons.org/licenses/by/4.0/

Annapurna Valiveti and Srinivas Vivek 547

enable reliable IoT applications using resource-constrained devices keeping in mind the
limited memory and computation power is a challenging task.

In order to protect cryptographic implementations from side-channel attacks, various
countermeasures have been proposed. Masking is a popularly used countermeasure where
the secret variable, say x ∈ {0, 1}k, is split among n shares, where

n = t+ 1,

and t is usually referred as the masking order. Any t among t + 1 shares are assigned
uniform random and independent values such that:

x = x1 ⊕ · · · ⊕ xn. (1)

Since the secret is split among multiple shares, naturally, it becomes harder to recover
the secret from the side-channel observations. Precisely, the effort required to recover the
secret grows exponentially with the masking order [CJRR99, PR13, DDF14a].

To secure block ciphers using the masking countermeasure, the operations of the block
cipher have to be evaluated in the presence of shares. The operations are categorised into
linear and non-linear operations. It is straightforward to execute linear operations over
shares since the final sharing can be obtained by evaluating the operation on the individual
shares. On the other hand, evaluating non-linear operations, particularly the S-boxes,
in the presence of shares is a challenging task. There are various approaches presented
to mask S-boxes efficiently. These approaches can be broadly classified into ISW-based
[ISW03] or lookup table-based schemes [CJRR99, Cor14, CRZ18, GTP+20].

The polynomial-based and the circuit-based masking schemes belong to the former
category [CGP+12, CRV15, CPRR15, GRVV17, JS17, GR17]. The computation time of
circuit-based schemes depend on the number of non-linear multiplications required to
implement an S-box. Usually, the cost required per multiplication is O(t2) and is the
most expensive operation. However, the RAM memory required by these schemes is small
and hence higher order masking can be implemented on resource constrained devices
without any memory bottleneck. Since all the shares need to be present for every operation,
pre-processing is not possible. By pre-processing, we refer to the computation that can
be carried out independent of the unshared secret inputs. That is, the time required for
computation that can be carried out before and after the availability of the actual secret
inputs is referred to as offline and online times, respectively. Lookup table-based schemes
are implemented by constructing a randomised lookup table in RAM. This randomised
table typically can be fully pre-processed, thus substantially improving the online execution
time as the final share is computed by a table lookup. Therefore, any S-box masking
countermeasure has an overhead associated w.r.t computation time and/or RAM memory.

Lookup table-based masking schemes. The first provably secure first-order lookup
table-based masking scheme was proposed by Chari et al. in [CJRR99]. According to this
scheme, to securely evaluate a (k, k′) S-box S, a randomised lookup table is constructed in
RAM such that the S-box lookup table is shifted using x1 and the shift is protected using
an output mask, say, y1. Formally,

T (u) = S(u⊕ x1)⊕ y1, ∀u ∈ {0, 1}k, (2)

where x1 ∈ {0, 1}k and y1 ∈ {0, 1}k
′ are uniformly and independently chosen. It is evident

from (2) that the memory required to store T is k′ · 2k bits. It can also be observed that
the lookup table is constructed using x1 alone and x2 is used only in the final table lookup.
Schramm and Paar [SP06], and Rivain, Dottax and Prouff [RDP08] suggested second-order
lookup table masking schemes that have randomised lookup tables of size 2 · k′ · 2k and
k′ · 2k bits, respectively. Coron et al. [CRZ18] improved the lookup table-based scheme of

548 Higher-Order Lookup Table Masking in Essentially Constant Memory

[Cor14] and both these schemes require a RAM memory of 2 · n · k′ · 2k bits, where, the
number of shares n = t+ 1 for the former scheme and n = 2t+ 1 for the latter scheme,
and t is the masking order. The schemes in [CRZ18] are proven t-SNI secure with the
number of shares n = t+ 1.

The idea of compressing a lookup table was first discussed by Rao et al. [RRST02] for the
first-order lookup table masking scheme described above. The compressed randomised table
size will be k′ ·2k−1 bits which is a factor two reduction. Later, Vadnala [Vad17] generalised
this idea for first and second orders. This approach offers lookup table size vs. execution
time trade-offs based on a compression parameter l, where 1 ≤ l ≤ (n− 1). The size of the
table is shown to be ≈ k′ · 2k−l + (k− l) · 2l bits and ≈ k′ · 2k−l + (k− l+ 1) · 2l bits for first
and second orders, respectively. Vivek [Viv17] showed a second-order attack on Vadnala’s
scheme. Recently, Valiveti and Vivek [VV20] proposed a second-order secure compression
scheme that optimises memory, online execution time as well as randomness required for the
implementation. Precisely, their scheme requires k′ ·(k−l+1)+2l ·(k−l+k′)+k′ ·(2k−l+2l)
bits of RAM memory. An approach to reduce the size of lookup table at higher orders
was recently proposed by Guo et al. in [GTP+20]. This scheme is also secure against
horizontal attacks. Even though this scheme reduces the size of the lookup table by
a factor of two, it cannot take any advantage of pre-processing since the randomised
lookup table construction is dependent on all input shares. Therefore, reducing the RAM
memory required at higher orders for table-based masking schemes while still permitting
full pre-processing has remained as an open problem.
Our Contribution. In this work, we solve the problem mentioned above of implementing
a higher-order lookup table-based scheme using an amount of RAM memory that is
essentially independent of the masking order but still facilitating full pre-preprocessing.
Recall that the table-based masking schemes in [CRZ18] need 2 · k′ · 2k · n bits of RAM
memory per S-box, where n is the number of shares. We propose a variant scheme that
needs only (2 · k′ · 2k + k′ · k · (n − 1)2) bits of RAM memory and hence making the
memory requirement to be essentially independent of the number of shares. Moreover, the
randomness complexity is improved to O(k′ ·k ·n3) compared to O(k′ ·2k ·n) for the original
scheme. We achieve this reduction in RAM memory using the following observation: the
masked lookup table of higher-order lookup table-based scheme [CRZ18] requires k′ · 2k · n
bits of RAM memory per each of the two tables that includes the temporary table. For each
of these tables k′ · 2k · (n− 1) bits of memory are actually used to hold randomly generated
masks. For instance, to implement a 10-th order secure 128-bit AES using the randomised
lookup table scheme, we require 2 · 10 · 28 = 5120 bytes of RAM memory per S-box to
store random masks. Therefore, our idea is to generate these masks using a psuedorandom
generator (PRG) as in [IKL+13, CGZ20]. However, a straightforward use of PRG will not
necessarily lead to a reduction in memory utilisation as we still need to store the n columns
of the temporary tables. Our key idea is to use the locality refresh [IKL+13, CGZ20] to
restrict the input dependent tables values to a single column and store only this column.
During the table lookup, we re-generate the random values corresponding to the remaining
columns on-the-fly. The latter strategy was recently used in [VV20] in the context of
second-order table compression. We would like to note that the techniques used in this
work to achieve higher-order table compression is different from the one used in [VV20]
for the second-order case. Next we briefly elaborate on the above mentioned technique.

The first step in our method is to replace the true random number generator (TRNG)
of the higher-order masked lookup table scheme [CRZ18] with a PRG. Ishai et al. [IKL+13]
introduced the notion of robust PRG that can be used in place of a TRNG to improve
the randomness complexity of a circuit in the presence of probing leakage. Extending
this idea further, Coron et al. [CGZ20] proposed the use of multiple (non-robust) PRGs
to further improve the randomness complexity of ISW-based constructions. Both the
above constructions use a variant of mask refreshing called as locality refresh (LR). The

Annapurna Valiveti and Srinivas Vivek 549

locality of an intermediate variable (or more precisely, a wire in a circuit) refers to the
maximum number of local random bits that any intermediate variable would depend upon
(in addition to the original unmasked inputs). Improving the locality would reduce the
number of true random bits input to a PRG. Accordingly, we bound the locality of the
higher-order lookup table-based scheme [CRZ18] to O(k′ ·n) in Section 3. For completeness,
we recall the original higher-order lookup table scheme in Section 2.

Next, we achieve an essentially constant RAM memory requirement (see Table 1) to
store the masked lookup tables of [CRZ18] by evaluating the PRG on-the-fly and without
explicitly storing these outputs. Precisely, in the proposed variant, each row of the masked
lookup table has a single value unlike an n-tuple in the original scheme. Since the masked
table constructed in the Step (Shift) i+ 1 is dependent on the masked table computed
during Step i, there is a need to re-generate the random masks used in the Step i. This calls
for careful tracking of PRG outputs. The memory and randomness optimised variants of
the higher-order lookup table construction using robust and multiple PRG approaches are
described in Section 4. Coron et al. [CRZ18] presented a variant of the lookup table-based
higher-order maksing scheme with increasing no. of shares, originally proposed to reduce
the time and randomness complexity further by a factor of two. We extend our work
to this variant too. Section 5 describes the implementation of increasing shares variant
using robust and multiple PRG techniques. We also discuss the details of packing the
randomised table on architectures supporting large registers in Appendix A. While the
packing into a large register is going to improve the speed of the offline computation, we
have observed that it is going to increase the online execution time. All our constructions
are secure in the probing model and also satisfies the SNI composibility notion.

Finally, Section 6 presents the implementation details for AES-128 and PRESENT
block ciphers implemented in software using our method. Our target architecture is an
ARM Cortex-M4 device with 256 KB of RAM memory. We also explore the possibility of
optimising the time complexity using a tradeoff between the calls to TRNG and PRG. This
optimisation achieves a balance between the memory complexity and the online execution
time. We also compare the online execution time of our method with that of the 8-bit
bitsliced implementation of AES-128. Tables 5 and 6 demonstrate the results of AES-128
implemented using robust and multiple PRG approaches, respectively. We compare the
results of these approaches in terms of RAM memory, pre-processing and online execution
times along with number of true random bytes required for varying number of shares n=3,
5, 7, 9 and 11. We would like to mention that all our implementation results are based on
8-bit implementations. At tenth order and with full pre-processing of a single execution
of all the AES S-boxes, our technique requires only 41.7 KB of RAM memory, whereas
the original scheme would have needed 440 KB. Moreover, our implementation results in
Table 7 demonstrates that the online execution time of our variant is about 1.5 times faster
compared to the 8-bit bitsliced implementation of AES-128. Similarly, Table 8 presents
the results for PRESENT block cipher implemented using multiple PRG approach and
also compares it with the implementation of PRESENT using [CRV15].

2 Recap of Higher-Order Masked Lookup Table Scheme
from [CRZ18]

In [Cor14], to secure a (k, k′) S-box S against a t-probing adversary, the author proposed a
higher-order lookup table-based scheme with the number of shares n = 2t+ 1. According
to this scheme, each row is represented as an n-dimensional vector. In order to protect
the S-box evaluation, shift the S-box lookup table by the input shares iteratively, one at a
time. At the same time, the shifts by input shares are protected by masking table rows
using distinct output masks. Moreover, table entries are randomised across shifts using

550 Higher-Order Lookup Table Masking in Essentially Constant Memory

Table 1: Comparison of asymptotic complexities of our work vs. [CRZ18] to implement a
(k, k′) S-box using higher-order masked lookup table scheme. The schemes are compared
in terms of locality, RAM memory in bits, number of TRNG and PRG calls, and time to
generate a pseudorandom bit.

Locality RAM #TRNG #PRG time PRG

[CRZ18] Normal
shares

– 2k+1 ·k′ ·O(n) 2k · k′ ·O(n2) 0 –

[CRZ18] Increasing
shares

– 2k+1 ·k′ ·O(n) 2k−1 · k′ ·
O(n2)

0 –

Our work - single
robust PRG

O(k′ ·n) 2k+1 · k′ +
O(k′ · k · n3)

O(k′ · k · n3) 2k · O(k′ ·
n2)

O(k′ · k2 ·
n3)

Our work - multiple
PRG

O(k′) 2k+1 · k′ +
O(k′ · k · n2)

O(k′ · k · n2) 2k · O(k′ ·
n2)

O(k′ · k2 ·
n)

refreshmasks from [RP10]. Essentially, at the end of shift by the last but one share xn−1,
for every index u ∈ {0, 1}k of the table T , the following holds:

⊕
1≤i≤n

T (u) = S(u⊕ x1 ⊕ . . .⊕ xn−1). (3)

After shifting the table by n− 1 input shares, the final output sharing is obtained by a
single lookup of table T at the index xn. We can observe that the final share xn is used
only in the last step. Hence, it is possible to pre-process the randomised lookup table
independent of the secret by choosing uniform random values for n− 1 input shares. This
pre-processing significantly reduces the amount of computation after the availability of the
secret input x, thus reducing the online execution time.

Recently in [CRZ18], Coron et al. improved the security proof of the higher-order S-box
implementation from [Cor14] with the number of shares n = t+ 1 instead of n = 2t+ 1
to achieve t-th order probing security. Moreover, the S-box gadget from [CRZ18] was
proven t-SNI secure under composition i.e, combining any number of t-SNI secure gadgets
results in a t-SNI secure gadget. These improvements are possible due to the seminal
work of Barthe et al. [BBD+16], in which the authors introduced a stronger security
notion of the probing leakage model under compositions. This framework guarantees
the circuit to be t-probing secure using n = t + 1 shares only. For completeness, we
recollect refreshmasks procedure [RP10] and the higher-order lookup table-based scheme
from [CRZ18] in Algorithms 1 and 2, respectively.

In addition to the improved security proof, [CRZ18] discusses another refinement to
reduce the randomness complexity to approximately half of the original scheme. The idea
behind this improvement is that, while shifting the table using input share xi, the masked
S-box values can be protected using only i−1 output masks, instead of n−1 masks as in the
original scheme. Table 1 presents the randomness and memory complexity of this variant.
It can be observed from Table 1 that the randomness complexity is exponential in k and
also depends on the masking order t. Generating exponentially many random values may
involve significant overheads for higher values of t, particularly for resource-constrained
devices.

Annapurna Valiveti and Srinivas Vivek 551

Algorithm 1: refreshmasks [RP10].
Input : xi, 1 ≤ i ≤ n.
Output : yi, 1 ≤ i ≤ n such that

⊕
1≤i≤n

yi =
⊕

1≤i≤n
xi.

1 y1 ←− x1
2 for j ← 2 to n do
3 s

$←− {0, 1}k
′

4 yj ←− xj ⊕ s
5 y1 ←− y1 ⊕ s
6 end
7 return y1, . . . , yn

3 Improving Locality of the Scheme Using Locality Refresh
The objective of refreshmasks procedure (see Algorithm 1) is to re-randomise the n-sharing
of the input x. This is achieved by xoring input share xi, i ≤ 2 ≤ n with random mask si
at the same time adding the same mask to the first share. For ease of explanation, we will
be using the first share to add the remaining random masks, unlike the last index n as
in the original scheme. Precisely, it is a re-sharing of the input x. From this procedure,
it can be observed that the first output share is computed using x1 and n − 1 random
masks whereas all the remaining output shares are of the form xi ⊕ si, 2 ≤ i ≤ n. The
procedure refreshmasks is called a total of n− 1 times, once per shift, while constructing a
randomised lookup table. Finally, the output T (xn) is refreshed before the final output.
Hence, the first share in the final sharing of S(x) is influenced by a total of k′ · n · (n− 1)
bits of randomness thus resulting in a larger locality value. In simple terms, the amount
of randomness any variable would depend as part of the implementation is referred as
randomness locality. Formally,

Definition 1. Locality of Randomness ([IKL+13]). A circuit C is said to have l-
locality if the value of each of its intermediate/output variables depends on its unshared
input and at most l-random bits used in the circuit.

Theorem 1. [CGZ20, Theorem 2]. A gadget obtained by composition of l-locality gadgets
has l-locality.

One has to assume that a gadget always receives the locality refreshed inputs. Hence,
the randomness from these refreshed inputs should be taken into consideration while com-
puting the locality of a gadget. According to the Definition 1, the locality of the higher-order
scheme recalled in Algorithm 2 is (n− 1)2. It is possible to reduce the randomness com-
plexity of the implementation by reducing the locality of the scheme. As suggested by the
authors of [IKL+13], replacing refreshmasks with locality refresh (LR) would bring down lo-
cality of the circuit. For completeness, we recall the locality refresh [CGZ20] in Algorithm 3.

Security Models. For completeness, we recall the various security notions followed for
proving the SCA countermeasures. For the ease of definitions, we consider a gadget G that
takes an n-sharing of a single input x and outputs an n-sharing of y = f(x).

Definition 2. Soundness of t-private circuit [ISW03]. A private circuit implementing
a function f : {0, 1}k → {0, 1}k′ is a transformer (I, C,O) where I : {0, 1}k → {0, 1}ki is
an encoder and C : {0, 1}ki → {0, 1}ko is a Boolean circuit using randomness A ∈ {0, 1}p.
Then, Pr[(O(C(I(x))), A) = f(x)] = 1 for any input x ∈ {0, 1}k where the probabilities
are over the randomness used in I and C.

552 Higher-Order Lookup Table Masking in Essentially Constant Memory

Algorithm 2: Computation of y = S(x) using higher-order masked lookup
table computation [CRZ18, Algorithm 1, Section 3].

Input :
• xi, 1 ≤ i ≤ n ∈ {0, 1}k.

• An (k, k′) S-box lookup table.

Output : yi, 1 ≤ i ≤ n− 1 and yn := S(x)⊕ y1 ⊕ . . . yn−1 ∈ {0, 1}k
′ .

1 for u← 0 to 2k − 1 do
2 T (u)←− (S(u), 0, . . . , 0) // initialise table to S-box
3 end
4 for i← 1 to n− 1 do
5 for u← 0 to 2k − 1 do
6 for j ← 1 to n do
7 Taux(u)[j]←− T (u⊕ xi)[j] // shift by xi
8 end
9 end

10 for u← 0 to 2k − 1 do
11 T (u)←− refreshmasks(Taux(u)) // refresh table rows
12 end
13 end
14 y1, . . . , yn = refreshmasks(T (xn))
15 return y1, . . . , yn

The first formal study of noisy leakage using the noisy leakage model has been introduced
by Chari et al. [CJRR99] and extended by [PR13] demonstrated that the number of samples
required to recover the secret is at least exponential in the masking order t. According to
this model, the adversary obtains the noisy leakage of the intermediate variables during
the computation. In practice, the noisy leakage model is often considered more realistic,
since experimental leakages are noisy. However, as stated in [DDF14a], this security notion
is not always convenient for cryptographic setting.

Ishai et al. [ISW03] initiated the study of the formal security of masked algorithms
against t-probing attacks such that the private circuit remains secure when the adversary
can observe at most t internal wires. The security proofs demonstrate that the knowledge of
t probes cannot give the attacker any information about the secret, by assuming that their
leakages are independent and sufficiently noisy. However, this assumption may not hold
for parallel implementations which can possibly leak all the shares that are manipulated at
the same time [BDF+17]. Thus, the probing model is more suitable to prove the security
of the serial implementations.

In 2014, Duc et al. [DDF14a] show that the security in the noisy leakage model of
[PR13] can be reduced to the security in the t-threshold probing model of [ISW03]. Hence,
it is necessary to prove a masked implementation secure in the t-probing model since
insecurity in the probing model usually leads to attacks in other models.

Definition 3. t-probing security [ISW03]. A circuit C is a private implementation of
f using encoder I and decoder O is t-secure against probing attacks if for any pair of
inputs x, x′ ∈ {0, 1}k, and let T ⊂ C(I(x), A) and T′ ⊂ C(I(x′), A) be the set of at most t
observations anywhere in the circuit implementation, then the distribution of T and T′
are identical.

Definition 4. Non-Interference (t-NI) Security [BBD+16]. Let a gadget G take an
n-sharing of x as input and output an n-sharing of y, where y = f(x). Let a set of t1

Annapurna Valiveti and Srinivas Vivek 553

Algorithm 3: Locality Refresh (LR) [CGZ20].
Input : xi, 1 ≤ i ≤ n.
Output : yi, 1 ≤ i ≤ n such that

⊕
1≤i≤n

yi =
⊕

1≤i≤n
xi.

1 y1 ←− x1 . y1,1
2 for j ← 2 to n do
3 s

$←− {0, 1}k
′

. sj−1
4 y1 ←− y1 ⊕ (s⊕ xj) . y1,j = x1

⊕
1≤k≤j

(sk ⊕ xk)

5 yj ←− s
6 end
7 return y1, . . . , yn

input/intermediate variables are observed along with to output shares where (t1 + to) ≤ t <
n. Then, G is called t-NI secure gadget if the observed values can be perfectly simulated
by using a maximum of t1 + to input shares of x.

A gadget is t-SNI secure if the number of inputs required for simulation are bounded
only by the number of observations on the input/intermediate variables and not on the
output shares. Formally,

Definition 5. Strong Non-Interference (t-SNI) Security [BBD+16]. Let a gadget
G take an n-sharing of x as input and output an n-sharing of y, where y = f(x). Let
a set of t1 input/intermediate variables are observed along with o output shares where
t1 + to ≤ t < n. Then, G is called t-SNI secure gadget if the total set of observations can
be perfectly simulated by using a maximum of t1 input shares of x.

We need to ensure that replacing the refreshmasks by the LR procedure does not affect
the security guarantees of the higher-order lookup table scheme. Hence, Lemmas 1 and
2 present the security properties of the LR procedure that are instrumental in the t-SNI
security proof of the scheme. Even though the security proofs are very similar to that
of the refreshmasks discussed in [CRZ18], we present them for the sake of completeness.
Precisely, Lemma 1 is to show that it is possible to assign any t output shares uniform
random values whereas Lemma 2 is to show the simulation of the LR procedure.

Lemma 1. Any n− 1 output shares of LR procedure in Algorithm 3 are independent of
the unshared input.

Proof. It is trivial to prove the claim if y1 is not probed. This is due to the fact that the
output shares yi, 2 ≤ i ≤ n in Algorithm 3 are nothing but random values. Hence, these
output shares can be simulated independent of the secret, x. If y1 is probed, there exists
at least one unprobed index i, i /∈ I such that y1 = x⊕ si

⊕
1≤k≤j,k 6=i

sk. Since si acts as a

one-time pad to mask x, assign a uniform random value to y1.

Lemma 2. The LR gadget in Algorithm 3 is t-NI secure.

Proof. To prove the t-NI security of a gadget (see Definition 4), we construct an index set
I such that the observed values can be simulated using input share indices from I. The
index set I is constructed as follows: when the variables xi or yi, 1 ≤ i ≤ n, are probed,
add i to I. Also, when si, 1 ≤ i ≤ n − 1 is probed, add i to I. For the intermediate
variables y1,j , 2 ≤ j ≤ n, add j to I.

After constructing the set I, it is straightforward to show the simulation of probed
variables using the input share indices from I. Each random variable si, 1 ≤ i ≤ n− 1 is

554 Higher-Order Lookup Table Masking in Essentially Constant Memory

assigned a uniform random value as this would have happened in the actual execution.
Any probed output shares yi, 2 ≤ i ≤ n can be simulated since yi = si, for 2 ≤ i ≤ n. First
output share y1 can be assigned a uniform random value using Lemma 1. The simulation
of the intermediate variable of the form y1,j , 1 ≤ j ≤ n− 1 has two cases. If there exist an
index j′ such that 1 ≤ j′ ≤ j and j /∈ I, then we assign an uniform random value to y1,j .
This is because the random variable sj′ is not probed and acts as a one-time pad. We
compute the value of y1,j using the indices i ∈ I such that 1 ≤ i ≤ j, otherwise. Since only
one input index per observation is added to I and at most t = n− 1 values only can be
observed, |I| < n. Hence, we show the simulation using t1 + to ≤ t input shares of x.

Even though reducing the randomness locality helps to reduce the number of true
random values required for the implementation, there is still an overhead associated
with the amount of RAM memory required to store the randomised lookup table (see
Table 1). The amount of memory will be a bottleneck for higher-order implementations,
particularly for resource-constrained devices. Therefore, there is a need to optimise not
only the randomness complexity but also the memory complexity of lookup table-based
countermeasures to achieve the practicality of this class of side-channel countermeasures.

4 RAM Memory Optimisation of Masked Lookup Table
After minimising the randomness locality of the higher-order lookup table scheme as
described in the previous section, the next step will be to attain the randomised lookup
table with a single column, thus achieving an almost constant RAM memory (up to
logarithmic factor in the size of the S-box) for the overall implementation of the higher-
order lookup table-based scheme [CRZ18]. This section discusses our approach to arriving
at the desired result by adapting robust and multiple PRG techniques [IKL+13, CGZ20].

4.1 No. of Columns of Lookup Table Independent of Masking Order
It is easy to see from the higher-order lookup table scheme (see Algorithm 2) that the only
step which uses random values is re-sharing (see Algorithm 1), which is to be replaced
by LR in our scheme (see Algorithm 4). The idea is to generate the random masks
required by the LR algorithm (see Algorithm 3) from a PRG. Moreover, we will store only
the first column of the lookup table while the remaining n − 1 columns are computed
on-the-fly by the PRG. There are a total of n−1 shifts by the input shares where each shift
requires (n− 1) · 2k pseudorandom values, each of size k′-bits. Hence, the total number of
pseudorandom bits for implementing the higher-order lookup table-based scheme is given
by:

k′ · 2k · (n− 1)2. (4)

We would like to highlight a few observations here. Algorithm 3 takes an n-sharing of the
input and returns a re-sharing of the same input of which n− 1 shares are nothing but
random values. As part of the higher-order lookup table scheme, these re-shared outputs
are the inputs to the next shift (Step 7 of Algorithm 2). When the output masks are
computed on-the-fly i.e. the values are not explicitly stored, random masks of the previous
shift are to be recomputed during further shift (see Remark 1). Precisely, the LR procedure
after shift by xi+1 requires the output masks of LR after shift by xi (see Remark 2). One
more point to observe is when the table T is shifted by xi+1, the value at the table index
u in ith-shift will be at u⊕ xi+1 in (i+ 1)th-shift (Step 7 of Algorithm 2).

To facilitate the recomputation of pseudorandom values on-the-fly, we need to keep
track of the shift, row, and column indices and pass on these indices as inputs to the
PRG construction. Further, assign a unique index, say α, per every random mask that is
generated as part of Algorithm 3. Needless to say, the PRG construction will return the

Annapurna Valiveti and Srinivas Vivek 555

same pseudorandom value if called on the same value of α. The upper bound on the range
of unique index α is the number of pseudorandom values required for the construction of
randomised lookup table (4). As explained above, the input share xi+1 is also required
along with the shift and the row indices to recompute the output masks of the previous
shift. Also, the input share xn is passed as input to mask refresh in the final table lookup
(Step 19 of Algorithm 4).
Remark 1. The idea of the lookup table scheme using PRG is to discard the output masks
generated by PRG without storing them. As explained in Section 3, the randomised lookup
table to be computed during the shift by xi+1 depends on the lookup table constructed in
the shift by xi. Concretely, inside the LR procedure, entries of the randomised lookup
table after the (i+ 1)th-shift are to be xored with the masks generated during the ith-shift,
i ≥ 2. Hence, there is a need to recompute the random masks of the previous shift.
Remark 2. One more observation here is that using LR instead of refreshmasks not only
reduces the randomness locality of the scheme, but also reduces the number of calls to
PRG to recompute the random values of previous shifts. This is possible since LR limits
the dependence of output masks in shift i+1 only to shift i, unlike refreshmasks. Therefore,
we need to compute output masks of ith-shift in (i + 1)th-shift using LR vs. masks of
(1, . . . , i) shifts in (i + 1)th-shift using refreshmasks. Concretely, the number of calls to
PRG to recompute random values with refreshmasks and LR are (n− 1)2 · (n− 2) · 2k−1

and (n− 1) · (n− 2) · 2k, respectively. Hence, the number of calls to PRG in turn depends
on the locality.

4.2 Masking Lookup Tables using robust PRG
Ishai et al. [IKL+13] introduced the concept of a robust PRG where the randomness
required for a secure implementation of a cryptographic circuit, say C, can be obtained
from a robust PRG instead of a TRNG, without degrading the security. This substitution
indeed helps to reduce the randomness complexity of the circuit C. Precisely, the robust
PRG is associated with a parameter r such that the outputs of PRG construction remain
r-wise independent even if the adversary can leak a set of intermediate values, say A,
using at most t probes anywhere in the circuit C. We follow the weaker notion of strong
robustness as explained in [CGZ20] since it leads to slightly more efficient construction in
terms of the number of true random inputs to PRG. We recall the definition of a strong
robust PRG.

Definition 6. Strong robust PRG ([IKL+13, CGZ20]). A circuit implementation
C of a PRG G : {0, 1}m → {0, 1}p is strong (r, t, q)-robust if given Y = G(X) where
X ← {0, 1}m and q is a parameter, for any set R of at most t-probes in C, there is a set A
of at most q · t output bits, such that by fixing the values CR of the wires in R and of the
YA output bits, the values YA of the output bits not in A are (r − q|R|)-wise independent
and uniformly distributed.

Trivial construction [CGZ20]. We would like to implement a strong (r, t, q)-robust
PRG using trivial construction. We recall this construction in Lemma 3. This is obtained
by xoring the outputs of t+ 1 non-robust r-wise independent PRGs. It can be observed
from the robust PRG definition from [IKL+13] that the parameter q indicates the impact
of observing the input wires of PRG on the outputs.The parameter q = 1 for the robust
PRG constructed using trivial construction. The reason being out of the t + 1 outputs
from (non-robust) r-wise independent PRGs, at least one of the output remains unprobed.
Hence, that unprobed value acts as a one-time-pad.

Definition 7. r-wise independent PRG. A PRG g : {0, 1}m → {0, 1}p is said to be
r-wise independent if any set of at most r output bits of g(x) are uniform and independent
of x when x $←− {0, 1}m.

556 Higher-Order Lookup Table Masking in Essentially Constant Memory

Lemma 3. [CGZ20, Lemma 2] Let g : {0, 1}m → {0, 1}p be a r-wise independent
PRG. A strong (r, t, 1)-robust PRG G : {0, 1}m·(t+1) → {0, 1}p can be obtained such
that: G(x1, . . . , xt+1) = g(x1)⊕ . . .⊕ g(xt+1).

One way to implement each of these r-wise independent (non-robust) PRGs is by
evaluating a random r− 1 degree polynomial over a finite field. Let F be a field of order 2β
such that the representation of each element needs β bits. The higher-order lookup table
scheme contains n− 1 shift and LR operations of the table, and each such LR requires
(n − 1) · 2k · k′ bits. Moreover, the final LR requires k′ · (n − 1) random bits. Overall
randomness per S-box is given by,(

k′ · (n− 1) ·
(
2k · (n− 1) + 1

))
.

The following inequality should hold,(
k′ · (n− 1) ·

(
2k · (n− 1) + 1

))
≤ (β · 2β). (5)

The seed to PRG is nothing but the coefficients of this r−1 degree polynomial. It turns
out that the alternative construction of robust PRG based on expander graphs [IKL+13]
becomes expensive for our approach (see Remark 3).
Remark 3. As mentioned in [CGZ20], the expander graph robust PRG construction based
on unbalanced bipartite expander graphs become better than the trivial construction only
for r ≥ 218 and at least 236 random input bits. For the majority of the practical imple-
mentations of higher-order lookup table-based masking schemes on resource-constrained
devices, the amount of randomness will be much lower than 236. Even though the expander
graphs can optimise the time generation of each pseudorandom value, our primary focus is
to reduce the memory required to store the true random input seed to PRG. Therefore, we
choose to go with the trivial construction instead of expander graph-based construction.

We summarise the steps involved in the higher-order masked lookup table-based
computation of an S-box using a robust PRG in Algorithm 4. The LR-n-r procedure to
compute pseudorandom outputs using robust PRG is described in Algorithm 5. We would
like to mention that the input and the auxiliary tables are each of size k′ · 2k bits only.

Lemma 4. The randomness locality of the (k, k′) S-box gadget in Algorithm 4 is k′ ·2·(n−1)
bits.

Proof. The S-box gadget takes an n-sharing as input and outputs the masked S-box
computation such that

⊕
1≤i≤n

yi = S(x). The masked table construction contains a sequence

of n− 1 shifts by input shares followed by LR. During each shift by xi, the lookup table T
depends on input shares x1, . . . , xi. Also, the LR process re-shares the table row with the
help of n− 1 random output masks. As part of this process, add input share along with a
random mask, si to the first column. Also, assign the same random mask si to the output
share. At step i of LR, i− 1 random masks would have been added to the first index. By
the end of step n− 1, the first and the remaining output shares depend on k′ · (n− 1) bits
and k′ bits, respectively. One interesting property of the LR procedure is that, after any
given LR, the output shares depend only on n− 1 random values. Therefore, by the end
of the shift by xn−1, the first row of table T depends only on n− 1 input shares and n− 1
random output masks from LR, each of size k′ bits. Therefore, the randomness locality of
Algorithm 4 is k′ · (n− 1 + n− 1) = k′ · 2 · (n− 1) bits.

We need to set the value of the parameter r for the robust PRG construction such
that the implementation of the robust PRG remains secure against t probes. We recall
the following theorem from [IKL+13] which states that the randomness required for the
implementation can be generated from a robust PRG that remains secure under probing
attacks.

Annapurna Valiveti and Srinivas Vivek 557

Algorithm 4: Higher-order masked lookup table computing output
masks on-the-fly using robust PRG.

Input :
• xi, 1 ≤ i ≤ n ∈ {0, 1}k.

• A (k, k′) S-box lookup table.

Output : yi, 1 ≤ i ≤ n− 1 and yn := S(x)⊕ y1 ⊕ . . . yn−1 ∈ {0, 1}k
′ .

1 for u← 0 to 2k − 1 do
2 T (u)←− S(u)
3 end
4 for i← 1 to n− 1 do
5 for u← 0 to 2k − 1 do
6 Taux(u)←− T (u⊕ xi)
7 end
8 for u← 0 to 2k − 1 do
9 T (u)←−

(
LR-n-r (Taux(u), i, u, xi)

)
[0]

// LR-n-r is described in Algorithm 5
// Copy only the first entry from LR-n-r output

10 end
11 end
12 y1, . . . , yn = LR-n-r (T (xn), n− 1, xn, 0)

Algorithm 5: LR-n-r : LR procedure for normal variant using the
robust PRG.

Input : y1, i, u, xi.
// y1 is the u-th table entry after the i-th shift by xi.

Output : z1, . . . , zn.
1 z1 ←− y1
2 for j ← 2 to n do
3 s∗ ←− 0

// recomputation of the (i− 1)th shift randoms.
4 if (2 ≤ i ≤ n− 1) then
5 α←−

((
(i− 2) · (n− 1) · 2k

)
+
(
(u⊕ xi) · (n− 1)

))
+ (j − 1)

6 s∗
F2k←−− PRGr(α)

// output of the strong (r, t, 1)-robust PRG at α

7 end
8 α←−

((
(i− 1) · (n− 1) · 2k

)
+
(
u · (n− 1)

))
+ (j − 1)

9 s
F2k←−− PRGr(α)

10 zj ←− s
11 z1 ←− z1 ⊕ (s∗ ⊕ zj)
12 end
13 return z1, . . . , zn

558 Higher-Order Lookup Table Masking in Essentially Constant Memory

Theorem 2. [IKL+13, Theorem 30] Suppose C is a t-secure implementation of a function
f that requires p random bits for implementation such that the randomness locality of
the circuit is l. Let G : {0, 1}m → {0, 1}p be a strong (r, t, q)-robust linear PRG with a
parameter r ≥ t·max(l, q). Then the circuit Ĉ is a t-secure implementation of f constructed
using G that requires m random bits.

From Theorem 2, set the value of r-wise independent parameter to t · l. Since we opt
to use trivial construction to obtain strong (r, t, 1)-robust PRG by combining outputs of
n = t + 1 polynomial evaluations over a finite field F of size β = O(k) (from (5)), the
overall randomness complexity of the masked lookup table scheme is

(t+ 1) · r · β = n ·
(
k′ · 2 · (n− 1)2) ·O(k) = O(k′ · n3 · k).

It takes O(k′ · n3 · k2) bit operations to generate a pseudorandom value. Needless to say,
each output of PRG is of length β bits. As already mentioned, the PRG construction
outputs the β-bit pseudorandom value based on the unique index α that we compute using
the lookup table indices. Overall, the total memory required for the scheme in Algorithm 4
is nothing but the size of a single column of the lookup table plus the size of the input seed
to each of the t+ 1 PRGs. We summarise in Table 2 the formulas for α computation and
recomputation along with the total memory required for the masked S-box computation
using the higher-order lookup table-based scheme.

Since the scheme in Algorithm 4 is analogous to [CRZ18, Algorithm 1, Section 3], even
the t-SNI security proof of our approach is almost identical to the proofs discussed in
[Cor14, CRZ18]. Of course, one immediate difference here in our case is that the random
values used for masking are the outputs of a robust PRG instead of the outputs of a TRNG.
To bridge this gap between a TRNG and a robust PRG, we need the following lemma
from [CGZ20] to show that any (r − q · |U |) outputs of PRG can be assigned uniform
random values and any t internal observations from a PRG can be simulated using a
subset of at most q · |U | output bits of PRG. Since we are using trivial construction to
implement the robust PRG, the parameter q = 1. Hence, probing any t internal wires of
PRG construction gives no more advantage than probing t outputs of the TRNG.

Lemma 5. (Robust PRG)[CGZ20, Lemma 3] Let G : {0, 1}m → {0, 1}p be a strong
(r, t, q)-robust linear PRG with r ≥ t · q. Let U be a set of at most t probes in G and L
be any subset of (r − q|U |) output bits of PRG. There exist a subset T with |T | ≤ q|U |
such that the distribution of V = GL∪T (X) is uniform in {0, 1}|L∪T | when X ← {0, 1}m.
Moreover, GU (X) can be efficiently simulated given VT only.

Theorem 3. The higher-order masked lookup table-based S-box computation in Algorithm
4 locality refreshed using Algorithm 5 (with the strong (r, t, 1)-robust PRG) where the
adversary observe t1 intermediate variables and to output variables such that t1 +to ≤ t < n
is t-SNI secure.

Proof idea. The idea behind the proof is as follows: table T is shifted by xi, 1 ≤ i ≤ n− 1
and each shift is followed by the LR of each row of T . After this sequence of operations, a
table lookup of T at xn-th row will give the n-sharing of S(x) and a final LR is performed
on the shares of S(x). Hence, there are a total of n− 1 shifts and LRs followed by a final
table lookup and LR. When the internal variables of the LR are not probed, then any n− 1
output shares of that LR can be assigned uniform random values, without requiring the
knowledge of input shares. Whereas if the intermediate variables of ith shift and LR are
probed, then we need the knowledge of the input share xi for simulation. Essentially, the
number of input shares required for the simulation depends on the number of intermediate
observations made by the adversary. Not only that, since the PRG construction outputs
are r-wise independent, we must use at most r bits of randomness while showing the
simulation of the observed variables.

Refer to Appendix B.1 for the detailed t-SNI security proof.

Annapurna Valiveti and Srinivas Vivek 559

4.3 Lookup Table Construction using Multiple PRGs
Coron et al. [CGZ20] introduced the notion of multiple independent PRGs wherein replace
a single robust PRG with multiple PRGs, such that the PRG construction no more requires
the robustness property. Adapting this notion for lookup table setting, even though we
could not achieve any asymptotic improvement in randomness complexity compared to
robust PRG setting, we still can reduce the time to generate a pseudorandom to Õ(n) from
Õ(n3). This reduction is possible since the randomness locality of each of these multiple
PRGs is defined only w.r.t. to a subset of random values, unlike the entire circuit in the
case of robust PRG. For completeness, we recall the definition of locality w.r.t. a subset of
randomness.

Definition 8. l-local gadget with randomness subset ([CGZ20]). Let G be a
gadget and let A be a subset of the randomness used by G. The gadget G makes an l-local
use of its randomness if any intermediate variable of G depends on at most l-random bits
from the set A.

To implement Algorithm 4 with multiple PRGs approach, one interesting observation
is that while generating random values using PRG for output masks j = 2, . . . , n, the
values generated for two distinct row indices, say j1 and j2, j1 6= j2, are never combined
as part of the algorithm. Intuitively, we can use an independent PRG per column of the
S-box computation. But there is an issue with this approach. Since the adversary can
potentially leak all the output values of a non-robust PRG with a single probe, the column
values across multiple LR operations are no longer independent which is contrary to the
sole purpose of using refreshmasks in [Cor14]. Therefore, we need to use an independent
non-robust PRG per column per shift by input share. Also, n− 1 PRGs in the final LR
after the table lookup at xn. A total of n · (n − 1) independent PRGs are required for
implementing a higher-order lookup table-based scheme using [CRZ18] algorithm. In spite
of n · (n− 1) PRGs required for the implementation, we need to store only the true random
input seeds of n− 1 PRGs after the offline phase. This reduction in memory is possible
because the masked lookup table after the shift and LR by xn−1 depends only on the
random masks generated during the (n− 1)th LR. Hence, after pre-processing the masked
lookup table, discard the input seeds of PRGs used prior to shift by xn−1. Of course, we
still need to store the input seed to PRGs for the final LR. Overall, reducing the total
memory required for the scheme further by a factor of (approximately) (n− 1).

The randomness locality is now defined only with respect to the set of random values
per column, yi,j where i represents the index of input share xi and j represents the column
index, 2 ≤ j ≤ n. As mentioned earlier, since these values belonging to a subset of random
masks used in the lookup table are never combined, the locality for each PRG is set to

l = 1.

Now, to determine the r-wise independence parameter for each PRG, we recollect the
following theorem from [CGZ20].

Theorem 4. [CGZ20, Theorem 7] Let C be a t-secure circuit implementing a function
f . The circuit requires the set of random values Ai, 1 ≤ i ≤ γ such that each set uses p
random bits and has a randomness locality l (see Definition 8). An adversary can get all
random bits of any Ai, i = 1, . . . , γ with a single probe. Let G : {0, 1}m → {0, 1}p be a
l · t-wise independent PRG. Then, the circuit Ĉ implementing the same function f remains
t-secure if the random values required by the sets Ai are replaced by PRGs Gi, i = 1, . . . , γ,
such that the circuit Ĉ requires γ ·m random bits for the implementation.

As per Theorem 4, the corresponding security parameter per PRG is set to r = t · l =
t. Therefore, to obtain t-wise independence, each such PRG can be implemented using

560 Higher-Order Lookup Table Masking in Essentially Constant Memory

polynomial evaluation over a finite field F with t coefficients. Table 2 summarises the total
memory required for the masked S-box computation using multiple PRG approach along
with formulas for unique index α computation and recomputation during LR procedure.
It can be observed from Table 2 that there is no asymptotic reduction in the randomness
complexity between robust and multiple PRG approaches, we observe that for practical
instantiations of masking order n, the use of multiple PRG leads to a slightly lesser number
of input random bits.

For the multiple PRG approach, the sub-routine to compute pseudorandom values
has to be updated accordingly, even though the remaining steps of the higher-order
masked lookup table scheme in Algorithm 4 remain the same. Another change is w.r.t. α
computation. The index α is unique per each PRG and not for the entire scheme. Since we
use a PRG per shift per column, the column and shift indices together decide the index of
the PRG. The multiple PRGs construction receives a pair of values as input where the first
input parameter indicates the index of the PRG, then evaluates the PRG with the given
index over the second input parameter α. Algorithm 6 describes the way of computing
this pair of values during the LR procedure. The procedure calls to LR-n-r in the Step 9
of Algorithm 4 will be replaced by the LR-n-m which is described in Algorithm 6.

Algorithm 6: LR-n-m: LR procedure for normal variant using
the multiple PRGs approach.

Input : y1, i, u, xi.
// y1 represents T (u) after the ith shift by xi.
Output : z1, . . . , zn.

1 z1 ←− y1
2 for j ← 2 to n do
3 s∗ ←− 0

// recomputation of the (i− 1)th shift randoms.
4 if (2 ≤ i ≤ n− 1) then
5 ind←−

(
(i− 2) · (n− 1)

)
+ (j − 1)

6 α←− u⊕ xi
7 s∗

F2k←−− PRGm(ind, α)
// output of PRGind evaluated at α

8 end
9 ind←−

(
(i− 1) · (n− 1)

)
+ (j − 1)

10 α←− u

11 s
F2k←−− PRGm(ind, α)

12 zj ←− s
13 z1 ←− z1 ⊕ (s∗ ⊕ zj)
14 end
15 return z1, . . . , zn

To prove the security using the multiple PRGs notion, Coron et al. [CGZ20] introduced
an extended security notion called t-SNI-R according to which an adversary can obtain
any subset of randomness (that is generated using a non-robust PRG) using a single probe.
The extended model is to make sure that the adversary has no additional advantage when
the intermediate values of the PRG construction are probed since he can get the entire
subset with a single probe. Precisely, the impact of observing the internal wires of PRG
on the output is given to the adversary. We slightly modified the t-SNI-R security notion
to suit our setting and introduced t-SNI-R∗ (see Remark 4). We would like to mention
that the t-SNI-R∗ notion is a generalisation of the prior t-SNI-R security notion.

To prove the security using the multiple PRGs approach, Coron et al. [CGZ20]

Annapurna Valiveti and Srinivas Vivek 561

introduced an extended security notion called t-SNI-R according to which an adversary
can obtain any subset of randomness (generated from a non-robust PRG) using a single
probe. The extended model is to make sure that the adversary has no additional advantage
in probing the intermediate values of the PRG construction since he can get the entire
subset with a single probe. Precisely, the adversary will obtain the shadow of observing
the internal wires of PRG on the output. We adapt the t-SNI-R security notion to suit our
setting and introduced t-SNI-R∗. We would like to mention that the t-SNI-R∗ notion, is an
extension of the prior t-SNI-R security notion, that follows the same security guarantees
in addition to the notational changes mentioned in Remark 4. Formally,

Definition 9. t-SNI-R∗. Let G be a gadget taking an n-sharing of input x and outputs
an n-sharing of y = f(x). Let the randomness of the gadget G be divided into partitions
Ai, i = 1, . . . , γ such that adversary can get all random bits of any Ai, i = 1, . . . , γ with
a single probe. Consider any t1 input/intermediate variables, any subset O of output
shares, to = |O| and any subset R∗ ⊂ [1, γ] such that t1 + to + |R∗| < n. Then, there
exists a set of input share indices I with |I| ≤ t1 such that the t1 input observations,
yO∗ = {yi, yi ∈ yO or yi ∈ Aj , j ∈ R∗} output shares along with the partition Ai, i ∈ R∗
can be perfectly simulated using |I ∪R∗| input shares of x.

For instance, for AES-128 implementation using our higher-order lookup table-based
construction with multiple PRGs, the adversary can get the subset A(j)

i ,∀j ∈ [1, 160]
across the S-box gadgets. Thus, it is possible to generate column i of the randomised
lookup table across the S-boxes using the same PRG. The following theorem shows the
composition of t-SNI-R∗ gadgets according to which the adversary can get the subset
A

(j)
i , 1 ≤ j ≤M across the composed gadget, which is a combination of M such t -SNI-R∗

gadgets. We mimic the security of this composition gadget from the t-SNI-R composition
proof [CGZ20].

Theorem 5. Let M represents the set of t-SNI-R∗ gadgets, Gi, i ∈ M, |M | = m. The
gadget obtained by any composition of m such gadgets is t-SNI-R∗ where the randomness
is considered as

⋃
i∈M

A
(i)
j for 1 ≤ j ≤ γ.

The proof of Theorem 5 can be found in Appendix B.2.

Theorem 6. The masked higher-order lookup table-based S-box computation in Algorithm
4 that is locality refreshed using Algorithm 6 (using multiple PRGs each with a locality
l = k′) where the adversary observe t1 intermediate variables and to output variables and
any set R∗ ⊂ [1, n · (n− 1)] such that t1 + to + |R∗| < n is t-SNI-R∗ secure. Moreover, all
values from the randomness partition Az, z ∈ R∗ can be perfectly simulated using at most
t1 + |R∗| input shares of x.

Proof idea. The security proof of the higher-order lookup table using the multiple PRGs
approach is similar to Theorem 3 with the change that the random values are generated
using the multiple PRGs approach instead of a single robust PRG. Moreover, while
using the multiple PRGs technique in the memory optimised variant of the table-based
construction, we considered the set of random masks per column per shift as one of a
partition of the overall randomness. In turn, this subset is generated from a non-robust
polynomial-based PRG construction. While proving the security of our construction in
the extended t-SNI-R∗ security model, we need to show the simulation of the entire subset
even if a single random value from the set is probed.

We provide the full security proof in Appendix B.3.

Remark 4. In the t-SNI-R definition introduced by [CGZ20], the security notion consid-
ers the case where the randomness of the implementation is divided into n partitions,

562 Higher-Order Lookup Table Masking in Essentially Constant Memory

Table 2: Summary of the total number of bits of pseudorandom values, true random
values, memory required per (k, k′) S-box along with formulas for index α computation
and recomputation of Algorithms 5 and 6 using robust PRG and multiple PRG approaches,
respectively. Here, i represents the shift index, u is the row index and j represents the
column index.

Description Value
pseudorandom k′ · (n− 1) ·

(
2k · (n− 1) + 1

)
.

Algorithm 4 using strong robust PRG
input to PRG β · k′ · 2 · n · (n− 1)2.

Memory required k′ ·
(
2 · 2k + β · 2 · n · (n− 1)2).

Index α computation
(
(i− 1) · (n− 1) · 2k

)
+
(
u · (n− 1)

)
+ j − 1.

Index α recomputation
(
(i−2) ·(n−1) ·2k

)
+
(
(u⊕xi) ·(n−1)

)
+j−1.

Algorithm 4 using multiple PRG
input to PRG β · k′ · (n− 1)3.

Memory required k′ ·
(
2 · 2k + β · 2 · (n− 1)2).

(index to PRG, α) computation
((

(i− 1) · (n− 1) + j − 1
)
, u
)
.

(index to PRG, α) recomputation
((

(i− 2) · (n− 1) + j − 1
)
, (u⊕ xi)

)
.

A1, . . . , An. The randomness for the masked S-box using lookup table-based implementa-
tion is divided into n · (n− 1) partitions. Moreover, the indices of PRGs used to generate
output shares are [((n − 1)2 + 1), (n · (n − 1))], and not [1, n − 1]. Hence, we can not
directly use the same notation suggested by [CGZ20]. We introduce an extended security
notion t-SNI-R∗ where the adversary can still get any partition Ai using a single probe.
One more subtle difference between the ISW-based implementation from [CGZ20] and our
approach is we use a dedicated PRG per column and the final output shares, yi, 2 ≤ in
are nothing but random masks generated from n− 1 PRGs. This difference makes the our
proofs elegant compared to the proofs from [CGZ20].

5 Lookup Table With Increasing Shares Using PRG
This section discusses the implementation of the higher-order masked lookup table scheme
with increasing shares [CRZ18, Section 5] following a similar approach as discussed in
Section 4. An advantage with the increasing shares approach is that it helps to bring down
the total number of pseudorandom bits required by a factor of two. This was possible with
the observation that only i random masks are sufficient to protect the randomised lookup
table entry during the i-th shift, unlike n− 1 masks as in the normal variant approach.
Moreover, the reduction in overall randomness leads to a factor of two improvement in the
execution time of the masked S-box implementation. Since the number of output masks
increases gradually for increasing shares variant, the required number of pseudorandom
values per shift also changes. Hence, the upper bound and the computation/recomputation
of the unique index α has to be adjusted that will induce changes in the LR procedure
accordingly.

5.1 Lookup Table Scheme with Increasing Shares using Robust PRG
Here we discuss the process of computing the masked lookup table with increasing shares
using a strong (r, t, 1)-robust PRG, where we compute the random output masks on-the-fly.

Annapurna Valiveti and Srinivas Vivek 563

The structure of the higher-order masked lookup table scheme presented in Algorithm 4
remains the same for increasing shares variant since the masked lookup table construction
in Algorithm 4 is independent of the number of columns. Since the computation of index
α depends on the number of pseudorandom values required per shift, we present the LR
variant for increasing shares using a strong (r, k, 1)-robust PRG in Algorithm 7. Therefore,
the only change in Algorithm 4 is to replace the sub-routine call to Algorithm 5 by
Algorithm 7.

Algorithm 7: LR-i-r : LR procedure for increasing shares
variant using the robust PRG.

Input : y1, i, u, xi.
// y1 represents T (u) after the ith shift by xi.
Output : z1, . . . , zn.

1 z1 ←− y1
2 for j ← 2 to i+ 1 do
3 s∗ ←− 0

// recomputation of the (i− 1)th shift randoms.
4 if ((2 ≤ i ≤ n− 1) and j < (i+ 1)) then
5 α←−

((
(i−2)·(i−1)·2k−1)+((u⊕xi)·(i−2)

))
+(j−1)

// j < (i+ 1) excludes last index from the
recomputation

6 s∗
F2k←−− PRGr(α)

// output of the strong (r, t, 1)-robust PRG
at α

7 end
8 α←−

((
(i− 1) · i · 2k−1)+

(
u · (i− 1)

))
+ (j − 1)

9 s
F2k←−− PRGr(α)

10 zj ←− s
11 z1 ←− z1 ⊕ (s∗ ⊕ zj)
12 end
13 return z1, . . . , zn

The total number of pseudorandom bits required for the increasing shares variant is
given by:

k′ ·
(
1 · 2k + 2 · 2k + . . .+ (n− 1) · 2k

)
= k′ · 2k−1 · n · (n− 1).

To determine the parameters for the strong (r, k, 1)-robust PRG, first, we need to
compute the locality of the implementation using increasing shares. Even though the
number of output masks are gradually increasing, it turns out that the locality of the
implementation remains the same i.e. 2 · (n − 1). This is due to the fact that after the
shift by xn−1, the table still depends on n− 1 input shares and n− 1 output masks.

Lemma 6. The randomness locality of the (k, k′) S-box gadget in Algorithm 4 locality
refreshed using Algorithm 7 is k′ · 2 · (n− 1) bits.

Proof. The proof provided for Lemma 4 can be extended to increasing shares with the
only change that the lookup table depends on i random masks instead of n − 1 masks
after shift and LR by xi. Therefore, by the end of shift by xn−1, the first row of table T
depends on n− 1 random output masks from LR along with n− 1 input shares, each of
size k′ bits. Therefore, the randomness locality of Algorithm 4 locality refreshed using
Algorithm 7 is k′ · (n− 1 + n− 1) = k′ · 2 · (n− 1) bits.

564 Higher-Order Lookup Table Masking in Essentially Constant Memory

Due to the same value of locality, the parameter r, the number of true random input bits
to PRG and the memory complexity remains unchanged. Hence, the memory complexity
is β · k′ · (n − 1)2 · n = Õ(k′ · k · n3). Even though the time required to generate a
pseudorandom value remains Õ(k′ · k · n3), there is a factor of two reduction in the
total number of pseudorandom values required for the increasing shares implementation.
Effectively, this improves the overall execution time by (≈) a factor of two when compared
to the implementation using the approach presented in Section 4. The changes in the
unique index α computation using the inputs to LR are summarised in Table 3.

Theorem 7. The masked higher-order lookup table-based S-box computation in Algorithm
4 locality refreshed using Algorithm 7 (with the strong (r, t, 1)-robust PRG) where the
adversary observe t1 intermediate variables and to output variables such that t1 +to ≤ t < n
is t-SNI secure.

The security proof of increasing shares with robust PRG is almost similar to Theorem
3 except for the difference in the simulation of LR. The LR procedure for increasing shares
recomputes i random masks from the shift by xi (in steps 4 - 7 of Algorithm 7) and
produces an i+ 1 re-sharing as the output. Essentially, invoke the procedure with the last
input share being zero. Since there is an increment of column index by one, the number of
random values used to mask the randomised lookup table is incremented by one at a time.
So, we can not use Lemma 2 as it is to show the simulation of output variables of LR.
Hence, we need to prove that the modified LR still respects the t-NI security definition.
Precisely, add i to I when all (i + 1) < n output shares of the LR after shift by xi is
observed.

We provide the full security proof in Appendix C.1.

Increasing Shares Construction Using Multiple PRGs. Unlike the implementation
in Subsection 5.1, this approach reduces the total number of truly random input bits
to PRG from β · k′ · (n − 1)3 bits to (β · k′ · n · (n − 1)2)/2 bits. The formulas for the
index computation/recomputation to suit the increasing shares variant along with the
total memory complexity are summarised in Table 3. Algorithm 8 lists the steps for the
LR procedure using multiple PRGs with the modified computation of index α for the
increasing shares variant.

Theorem 8. The masked higher-order lookup table-based S-box computation in Algorithm
4 that is locality refreshed using Algorithm 8 (using multiple PRGs each with a locality
l = k′) where the adversary observe t1 intermediate variables and to output variables and
any set R∗ ⊂ [1, n · (n − 1)] such that t1 + to + |R∗| < n is t-SNI-R∗ secure. Moreover,
Moreover, all values from the randomness partition Az, z ∈ R∗ can be perfectly simulated
using at most t1 + |R∗| input shares of x.

The security proof for this increasing shares approach using the multiple PRGs is
similar to the proof presented in the Theorem 6 except the change that the LR procedure
as explained in previous subsection. Accordingly, the way we construct the index set I will
be modified. Also, we show the simulation in the extended model of security, t-SNI-R∗.

The detailed proof can be found in Appendix C.2.

6 Implementation
In this section, we present the implementation results of a masked software implementation
of the full block ciphers AES-128 [FIP] and PRESENT 80-bit key variant [BKL+07] using
the constructions described in the previous sections. We would like to mention that all
our results are based on an 8-bit implementation. As explained in [CGZ20, Section 5],
while implementing the full block cipher using PRG constructions discussed so far, we

Annapurna Valiveti and Srinivas Vivek 565

Algorithm 8: LR-i-m: LR procedure for the increasing
shares approach using the multiple PRGs.

Input : y1, i, u, xi.
// y1 represents T (u) after the ith shift by xi.
Output : z1, . . . , zn.

1 z1 ←− y1
2 for j ← 2 to i+ 1 do
3 s∗ ←− 0

// recomputation of the (i− 1)th shift
randoms.

4 if ((2 ≤ i ≤ n− 1) and j < (i+ 1)) then
5 ind←− (i− 2) · (n− 1) + (j − 1)
6 α←− u⊕ xi
7 s∗

F2k←−− PRGm(ind, α)
// output of PRGind evaluated at α

8 end
9 ind←− (i− 1) · (n− 1) + (j − 1)

10 α←− u

11 s
F2k←−− PRGm(ind, α)

12 zj ←− s
13 z1 ←− z1 ⊕ (s∗ ⊕ s)
14 end
15 return z1, . . . , zn

Table 3: Summary of the total number of bits of pseudorandom values the true random
values, the number memory required per (k, k′) S-box along with the formulas for the com-
putation and the recomputation of index α for the increasing shares variant of Algorithms
7 and 8 using the robust PRG and the multiple PRG approaches, respectively. Here, i
represents the shift index, u is the row index and j represents the column index.

Description Value
pseudorandom k′ · 2k−1 · (n− 1)2.

Algorithm 4 using strong robust PRG
input to PRG β · k′ · 2 · n · (n− 1)2.

Memory required k′ · (2 · 2k + β · 2 · n · (n− 1)2).
Index α computation

(
i · (i− 1) · 2k−1)+

(
u · (i− 1)

)
+ j − 1.

Index α recomputation
(
(i−1)·(i−2)·2k−1)+((u⊕xi)·(i−2)

)
+j−1.

Algorithm 4 using multiple PRG
input to PRG

(
βk′ · n · (n− 1)2)/2.

Memory required k′ · (2 · 2k + β · 2 · (n− 1)2).
(index to PRG, α) computation

((
(i · (i− 1)/2) + j − 1

)
, u
)
.

(index to PRG, α) recomputation
((

((i− 1) · (i− 2)/2) + j − 1
)
, (u⊕ xi)

)
.

566 Higher-Order Lookup Table Masking in Essentially Constant Memory

Table 4: Summary of locality, the total number of true and pseudorandom bits required
for a full block cipher execution of AES-128 using the robust and the multiple PRGs
approaches. The values represent number of bits.

Normal shares variant
[CRZ18, Algorithm 1]

Increasing shares variant [CRZ18,
Algorithm 3]

S-box (n− 1)2 · 2k (n− 1)2 · 2(k−1)

Robust PRG approach
Locality 2 · (n− 1) · 8 2 · (n− 1) · 8
True rand 48 · n · (n− 1)2 48 · n · (n− 1)2

Multiple PRG approach
Locality 8 8
PRG seed 16 · (n− 1)3 8n · (n− 1)2

need to calculate the total number of pseudorandom bits required for the full block cipher
implementation. In the following Table 4, we indicate the number bits of pseudorandom and
true randoms along with the overall locality of the AES-128 block cipher implementation.
The first row of Table 4 corresponds to the total number of bits of randomness required
for all the S-box function calls (10 rounds · 16 S-box/round=160 S-box calls) for a t-th
order secure AES-128 implementation.

Since our aim is to design a masking scheme that is feasible for resource-constrained
devices, we choose NXP-FRDM-k64F, an ultra-low-cost development platform as our target
architecture. The FRDM-K64 is supported by various open source embedded operating
systems. The microcontroller used in the development platform is MK64FN1M0VLL12, a
low-power microcontroller based on ARM Cortex-M4 processor having a 256 KB RAM,
1 MB flash memory and a clock frequency of 120 MHz. This device using the in-built
TRNG, requires (approximately) 300 clock cycles to generate a 32-bit random number.

Depending on the speed of the in-built TRNG of the target architecture, there is a trade-
off between online execution time and generating the random values from PRG/TRNG.
Since the chosen target architecture (NXP-FRDM-k64F) has a relatively faster TRNG, we
followed a hybrid approach to generate the random values required for the implementation.
To reduce the RAM to store the pre-processed tables, generate the random values during
the pre-processing phase from PRGs. We made this choice since the recomputation of the
random values (without explicitly storing them) is possible only with the PRG approach.
Hence, we met the primary motivation of optimised RAM memory. Whereas to improve
the online execution time of the block cipher implementation, generate the random values
during the online phase from the in-built TRNG. After the table lookup using the final
share T (xn), the random masks required for the final LR are generated from a TRNG.
Precisely, the final output shares of S-box are masked without PRG. The major advantage
of this approach is the random values from the randomised table pre-processing will not
enter into the gadgets in the further linear layers of the block-cipher computation. Hence,
there is no need to perform the LR after each xor operation. On the other hand, on
a device having a relatively slower TRNG, one can choose to generate the entire set of
random values from the PRG itself. So, the gadgets from the further linear layers of
block-cipher have to be locality refreshed. Precisely, use a PRG to optimise the RAM
and use a PRG/TRNG for a better online execution time. In either case, our techniques
achieve a balance between RAM and online execution time.

To take the pre-processing advantage of lookup table-based masking schemes, pre-
compute the lookup tables for all 160 (16/round · 10 rounds) and 496 (16/round · 31
rounds) S-box function calls for AES-128 and PRESENT block ciphers, respectively. This

Annapurna Valiveti and Srinivas Vivek 567

pre-computation happens independent of the secret x. We refer to this time required for
pre-processing as the offline time. The rest of the computation of the block cipher happens
after the availability of the secret. The time required for execution after the availability of
secret is referred to as online time. Hence, the overall execution time is divided into offline
and online time. Note that the offline calculations have to be repeated for every single
execution of block cipher. Reusing the same set of pre-processed lookup tables leads to an
insecure implementation since the random output masks across two independent block
cipher executions remain the same.
AES-128 using the robust PRG approach: In order to implement AES-128 using a
robust PRG, the first step is to initialise the input seed with true random values. The
number of true random bits required for initialisation of the seed in turn depends on the
locality of the circuit. As proved in Lemma 4, the locality of the S-box gadget described
in Algorithm 4 is 2 · (n− 1) · k′. Since the random values generated from PRG are being
used only in the pre-processing phase of the randomised lookup table construction, the
locality of the overall implementation is nothing but the locality of the S-box gadget
i.e. 2 · (n − 1) · 8 (for AES-128, k′ = 8). Now the task is to identify the size of the
finite field to obtain the random values mentioned in Row 3 of Table 4. Let R represent
the total number of random values such that R ≤ β · |F28·β |. To observe the results of
implementations secure against t-th order where t ≤ 10, we have β = 3. Needless to say
that each evaluation of polynomial over F28·β generates 8 · β-bit random values. Since the
robust PRG is constructed by combining outputs of n = t+ 1 PRGs (refer Lemma 3), the
number of bytes of true random inputs to robust PRG is given by:

β · n · r = 48 · n · (n− 1)2.

Along with the masked lookup table, in order to generate the outputs of PRG on-the-fly, we
also need to store the inputs to PRG. Therefore, the number of bytes of memory required
per S-box for the implementation of AES-128 using robust PRG is:

2 · 8 · 28 + 48 · n · (n− 1)2.

We summarise the values for concrete instantiations for n = 3, 5 in Table 5.

AES-128 using the multiple PRG approach: As discussed in Section 4.3, the locality
of each of these multiple PRGs is k’. There is an independent PRG per column per shift.
For the case of AES-128, each PRG has to generate 160 · 28 = 40, 960 bytes of random
values which implies β = 2. For the scheme presented in Subsection 4.3, at the end of shift
by xn−1, we need to store only true random inputs of n− 1 PRGs. Precisely, the memory
required in bytes is given by:

2 · 28 + 16 · n · (n− 1)2.

We have built our code for the memory optimised variant of the masked implementation
of AES-128 implemented using higher-order lookup table-based scheme on top of the
publicly available masked implementations from [Cor]. We referred the publicly available
unmasked implementation of PRESENT block cipher from [Klo]. Our implementation
code is available at [VV]. For the experiments, we assume that the masked implementation
will receive shares of the subkeys. However, the masked lookup table techniques can be
extended to subbyte operation of key expansion. But, storing the pre-processed lookup
tables of subbyte of key expansion requires an additional RAM memory. For instance, for
AES-128, this requires an additional 10 KB (40 · 256 bytes) of memory for subbyte of key
expansion.

Table 5 lists the offline and the online execution times along with the true random
values and the memory required for AES-128 implemented using the robust PRG technique

568 Higher-Order Lookup Table Masking in Essentially Constant Memory

Table 5: Higher-order masked S-box computation using our variant of the table-based
scheme with full pre-processing (Algorithm 4) using robust PRG technique for the normal
shares (Algorithm 5) and the increasing shares variants (Algorithm 7). The true ran-
dom PRG seed and the total memory required for AES-128 are given in bytes and KB,
respectively. The offline, online and total execution are represented in millions of clock
cycles.

n PRG seed Total
Memory (KB)

Offline (M) Online (M) Total (M)

Normal shares variant using robust PRG approach
3 72 40.14 2535.303 3.973 2539.276
5 480 40.94 66330.46 39.086 66369.546

Increasing shares using robust PRG approach
3 72 40.14 2021.685 3.955 2025.64
5 480 40.94 46360.51 39.024 46399.534

for n = 3, 5. Similarly Table 6 lists the execution times and the corresponding values
for multiple PRGs approach. We compared the implementation results of our approach
with circuit-based implementation of AES-128 using [RP10] with FullRefresh [DDF14b]
that is proven t-SNI secure in [BBD+16]. Also, with masked bitsliced variant of AES-128
[RSD06, GR17] adapted to 8-bit implementation and the original implementation described
in [GR17] along with the optimisation suggested for 32-bit architecture. It is evident from
Table 7 that the online execution of our approach is approximately 2 and 1.5 times faster
compared to [RP10] and the 8-bit bitsliced implementations, respectively. However, the
online execution time of 16-bit bitsliced approach is slightly better than our approach,
particularly at higher orders. The reason being the recomputation of random masks using
polynomial-based PRG during the online phase is computationally heavy compared to
the bitsliced implementation (see Remark 5). We also implemented our approach for
light-weight block cipher PRESENT. The experimental results for the PRESENT block
cipher implemented using the multiple PRGs technique are tabulated in Table 8 along
with a comparison of the results with the circuit-based implementation of PRESENT using
[CRV15].

Remark 5. We present the total amount of computation required to implement AES-
128 using our approach and the bitsliced approach. Let us consider the lookup table-
based implementation of the S-box. There are 16 S-box operations per round. Further,
each S-box performs recomputation of t output masks using PRG. Inturn each output
mask is an evaluation of a t degree polynomial over F216 . We implement each field
multiplication over F216 using 5 xors and 20 table lookups. Also, refresh the inputs to and
outputs from S-box using LR. So, the total number of operations required per round is
16 · t2 · (5 xor + 20 TL) + 32 · t. Even though the random masks during shift and LR by
xn−1 are 8-bit values, as part of the reccomputation, we still need to compute the 16-bit
output from the polynomial-based PRG evaluation over F216 .

In the 16-bit bitsliced implementation of AES-128, there is one bitsliced S-box compu-
tation per round, and it involves 16 32-bit ISW-AND gates followed by fullrefresh, 84 XOR
gates, and 8 move operations. Since our target device has a faster TRNG, the number of
random values for fullrefresh will not impact the execution time of the bitsliced variant.

For a concrete instantiation of t = 10, the online phase of the lookup table computation
per round requires:

(
8000 xors, 32,000 table lookups

)
for recomputation of masks and 320

xors per LR. Also, 320 bytes from TRNG. Similarly, for t = 10, the bitsliced computation
per round needs: 3872 logical and, 7890 xors and 3520 bytes from TRNG.

Annapurna Valiveti and Srinivas Vivek 569

Table 6: Higher-order masked S-box computation using our variant of the table-based
scheme with full pre-processing (Algorithm 4) using the multiple PRGs technique for the
normal shares (Algorithm 6) and the increasing shares variants (Algorithm 8). The true
random PRG seed and the total memory required for AES-128 are given in bytes and KB,
respectively. The offline, online and total execution are represented in millions of clock
cycles.

n PRG seed Total
Memory (KB)

Offline (M) Online (M) Total (M)

Normal shares variant using the multiple PRGs approach
3 16 40.1 111.618 0.429 112.047
5 128 40.4 832.862 0.968 833.83
7 432 40.7 2675.283 1.786 2677.069
9 1024 41.3 6219.613 2.893 6222.506
11 2000 42.1 11945.748 4.238 11949.986

Increasing shares variant using the multiple PRGs approach
3 12 40.1 72.59 0.423 73.013
5 80 40.5 465.558 0.968 466.526
7 252 41.4 1439.652 1.765 1441.417
9 576 40.8 3265.303 2.873 3268.176
11 1100 41.2 6267.878 4.197 6272.075

Table 7: Higher-order masked S-box computation using [RP10] with FullRefresh and 8-bit
bitslicing. Also, 16-bit bitslicing using 32-bit ISW-AND [GR17]. The true randoms and
the total memory required for AES-128 are given in bytes and KB, respectively. The total
execution is represented in millions of clock cycles.

n True
rand

Memory
(KB)

Total(M) True
rand

Memory
(KB)

Total(M)
8-bit
bitslicing

Total(M)
16-bit
bitslicing

[RP10] Bitslicing
3 960 0.02 1.612 20480 1.055 0.825 0.477
5 1920 0.03 2.61 40960 1.758 1.76 0.869
7 2880 0.04 4.078 61440 2.461 3.272 1.437
9 3840 0.05 6.027 81920 3.164 4.89 1.846
11 4800 0.06 8.458 102400 3.867 6.938 2.825

570 Higher-Order Lookup Table Masking in Essentially Constant Memory

Table 8: Higher-order masked S-box computation using our variant of the table-based
scheme with full pre-processing (Algorithm 4) using the multiple PRG technique for
increasing shares variant (Algorithm 8) and the circuit-based implementation of PRESENT
using [CRV15]. The first entry represents the number of input shares. The true random
PRG seed and the total memory required for PRESENT are given in bytes and KB,
respectively. The offline, online and total execution are represented in millions of clock
cycles.

n PRG seed Total Mem-
ory (KB)

Offline (M) Online (M) Total (M)

Increasing shares variant using the multiple PRGs approach
3 6 7.8 8.586 0.996 9.582
5 40 7.85 51.735 0.968 52.703
7 126 7.93 156.924 2.239 159.163
9 288 8.13 351.086 4.761 355.847
11 550 8.4 661.489 7.166 668.655

Circuit-based implementation using [CRV15]
n True rand Total Mem-

ory (KB)
Offline (M) Online (M) Total (M)

3 1488 0.042 – 2.056 2.056
5 2976 0.063 – 3.173 3.173
7 4464 0.086 – 4.686 4.686
9 5952 0.11 – 6.755 6.755
11 7440 0.133 – 9.24 9.24

7 Conclusion
The amount of RAM memory required to store the pre-processed tables for a full block
cipher execution makes the table-based schemes infeasible at higher orders. In our work,
we demonstrate that the higher-order masked lookup table schemes with full pre-processing
can be implemented on resource-constrained devices. Concretely, the amount of RAM
memory required to implement the masked lookup table-based scheme from [CRZ18] is now
essentially made independent of the masking order. It will be an interesting future work to
achieve RAM compression for the masked higher-order lookup table-based implementation
of block ciphers with modes of operation, instead of a single block cipher execution as
done currently.

Acknowledgements
This work was funded by the INSPIRE Faculty Award (DST, Govt. of India) for Srinivas
Vivek. We would like to thank anonymous reviewers for their valuable inputs.

References
[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Ben-

jamin Grégoire, Pierre-Yves Strub, and Rébecca Zucchini. Strong Non-
Interference and Type-Directed Higher-Order Masking. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Annapurna Valiveti and Srinivas Vivek 571

Communications Security, Vienna, Austria, October 24-28, 2016, pages 116–129.
ACM, 2016.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations of
masking schemes and the bounded moment leakage model. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, Advances in Cryptology - EURO-
CRYPT 2017 - 36th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I, volume 10210 of Lecture Notes in Computer Science,
pages 535–566, 2017.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: an ultra-lightweight block cipher. In Pascal Paillier and Ingrid
Verbauwhede, editors, Cryptographic Hardware and Embedded Systems - CHES
2007, 9th International Workshop, Vienna, Austria, September 10-13, 2007,
Proceedings, volume 4727 of Lecture Notes in Computer Science, pages 450–466.
Springer, 2007.

[CGP+12] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and
Matthieu Rivain. Higher-Order Masking Schemes for S-Boxes. In Anne Can-
teaut, editor, FSE 2012, volume 7549 of LNCS, pages 366–384. Springer, 2012.

[CGZ20] Jean-Sébastien Coron, Aurélien Greuet, and Rina Zeitoun. Side-channel mask-
ing with pseudo-random generator. In Anne Canteaut and Yuval Ishai, editors,
Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part III, volume 12107 of Lecture Notes
in Computer Science, pages 342–375. Springer, 2020.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
Sound Approaches to Counteract Power-Analysis Attacks. In Wiener [Wie99],
pages 398–412.

[Cor] Jean-Sébastian Coron. Higher-order countermeasures for AES and DES. Avail-
able at https://github.com/coron/htable. Last accessed on April 15, 2021.

[Cor14] Jean-Sébastien Coron. Higher Order Masking of Look-Up Tables. In Nguyen
and Oswald [NO14], pages 441–458.

[CPRR15] Claude Carlet, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Alge-
braic Decomposition for Probing Security. In Rosario Gennaro and Matthew
Robshaw, editors, CRYPTO 2015, Proc., Part I, volume 9215 of LNCS, pages
742–763. Springer, 2015.

[CRV15] Jean-Sébastien Coron, Arnab Roy, and Srinivas Vivek. Fast Evaluation of
Polynomials over Binary Finite Fields and Application to Side-channel Coun-
termeasures. J. Cryptographic Engineering, 5(2):73–83, 2015.

[CRZ18] Jean-Sébastien Coron, Franck Rondepierre, and Rina Zeitoun. High order
masking of look-up tables with common shares. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(1):40–72, 2018.

[DDF14a] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage. In Nguyen and Oswald
[NO14], pages 423–440.

https://github.com/coron/htable

572 Higher-Order Lookup Table Masking in Essentially Constant Memory

[DDF14b] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying Leakage
Models: From Probing Attacks to Noisy Leakage. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology - EUROCRYPT 2014 -
33rd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Copenhagen, Denmark, May 11-15, 2014. Proceedings,
volume 8441 of Lecture Notes in Computer Science, pages 423–440. Springer,
2014.

[FH17] Wieland Fischer and Naofumi Homma, editors. Cryptographic Hardware and
Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in
Computer Science. Springer, 2017.

[FIP] NIST FIPS. Advanced Encryption Standard (AES), Federal Information
Processing Standards Publication 197, US Department of Commerce/NIST,
November 26, 2001. Available from the NIST website.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How Fast Can Higher-Order Masking
Be in Software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris,
France, April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of Lecture
Notes in Computer Science, pages 567–597, 2017.

[GRVV17] Dahmun Goudarzi, Matthieu Rivain, Damien Vergnaud, and Srinivas Vivek.
Generalized Polynomial Decomposition for S-boxes with Application to Side-
Channel Countermeasures. In Fischer and Homma [FH17], pages 154–171.

[GTP+20] Zhipeng Guo, Ming Tang, Emmanuel Prouff, Maixing Luo, and Fei Yan.
Table Recomputation-Based Higher-Order Masking Against Horizontal Attacks.
IEEE Trans. on CAD of Integrated Circuits and Systems, 39(1):34–44, 2020.

[IKL+13] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran,
Amit Sahai, and David Zuckerman. Robust pseudorandom generators. In
Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg, ed-
itors, Automata, Languages, and Programming - 40th International Colloquium,
ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, volume 7965
of Lecture Notes in Computer Science, pages 576–588. Springer, 2013.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 463–481. Springer, 2003.

[JS17] Anthony Journault and François-Xavier Standaert. Very High Order Masking:
Efficient Implementation and Security Evaluation. In Fischer and Homma
[FH17], pages 623–643.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In Wiener [Wie99], pages 388–397.

[Klo] D. Klose. C PRESENT Implementation. Available at http://www.
lightweightcrypto.org/implementations.php. Last accessed on April 15,
2021.

[Koc96] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Neal Koblitz, editor, CRYPTO 1996, Proc.,
volume 1109 of LNCS, pages 104–113. Springer, 1996.

http://www.lightweightcrypto.org/implementations.php
http://www.lightweightcrypto.org/implementations.php

Annapurna Valiveti and Srinivas Vivek 573

[NO14] Phong Q. Nguyen and Elisabeth Oswald, editors. EUROCRYPT 2014. Proc.,
volume 8441 of LNCS. Springer, 2014.

[PR13] Emmanuel Prouff and Matthieu Rivain. Masking against Side-Channel Attacks:
A Formal Security Proof. In Thomas Johansson and Phong Q. Nguyen, editors,
EUROCRYPT 2013. Proc., volume 7881 of LNCS, pages 142–159. Springer,
2013.

[RDP08] Matthieu Rivain, Emmanuelle Dottax, and Emmanuel Prouff. Block Ciphers
Implementations Provably Secure Against Second Order Side Channel Anal-
ysis. In Kaisa Nyberg, editor, Fast Software Encryption, 15th International
Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised
Selected Papers, volume 5086 of Lecture Notes in Computer Science, pages
127–143. Springer, 2008.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES
2010. Proc., volume 6225 of LNCS, pages 413–427. Springer, 2010.

[RRST02] Josyula R. Rao, Pankaj Rohatgi, Helmut Scherzer, and Stephane Tinguely.
Partitioning Attacks: Or How to Rapidly Clone Some GSM Cards. In 2002
IEEE Symposium on Security and Privacy, Berkeley, California, USA, May
12-15, 2002, pages 31–41. IEEE Computer Society, 2002.

[RSD06] Chester Rebeiro, A. David Selvakumar, and A. S. L. Devi. Bitslice imple-
mentation of AES. In David Pointcheval, Yi Mu, and Kefei Chen, editors,
Cryptology and Network Security, 5th International Conference, CANS 2006,
Suzhou, China, December 8-10, 2006, Proceedings, volume 4301 of Lecture
Notes in Computer Science, pages 203–212. Springer, 2006.

[SP06] Kai Schramm and Christof Paar. Higher Order Masking of the AES. In David
Pointcheval, editor, CT-RSA 2006, volume 3860 of LNCS, pages 208–225.
Springer, 2006.

[Vad17] Praveen Kumar Vadnala. Time-Memory Trade-Offs for Side-Channel Resistant
Implementations of Block Ciphers. In Helena Handschuh, editor, Topics in
Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA Conference
2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings, volume
10159 of Lecture Notes in Computer Science, pages 115–130. Springer, 2017.

[Viv17] Srinivas Vivek. Revisiting a Masked Lookup-Table Compression Scheme. In
Arpita Patra and Nigel P. Smart, editors, Progress in Cryptology - INDOCRYPT
2017 - 18th International Conference on Cryptology in India, Chennai, India,
December 10-13, 2017, Proceedings, volume 10698 of Lecture Notes in Computer
Science, pages 369–383. Springer, 2017.

[VV] Annapurna Valiveti and Srinivas Vivek. Implementation of Higher-order
Lookup Table using PRG. Available at https://github.com/annapurna-pvs/
Higher-Order-LUT-PRG. Last accessed on July 14, 2021.

[VV20] Annapurna Valiveti and Srinivas Vivek. Second-order masked lookup table
compression scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(4):129–
153, 2020.

[Wie99] Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA, August
15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer Science.
Springer, 1999.

https://github.com/annapurna-pvs/Higher-Order-LUT-PRG
https://github.com/annapurna-pvs/Higher-Order-LUT-PRG

574 Higher-Order Lookup Table Masking in Essentially Constant Memory

A A Variant Scheme for Large Registers
In this section, we extend the scheme to improve the computations for devices with large
registers, as previously done by [RDP08, Cor14, CRZ18]. The idea is to pack, say w S-box
outputs each of {0, 1}k′-bits in a single m-bit register where m = w · k′. Let us assume
that the target architecture register size is always a power of 2. Therefore, a set of w
values can be shifted at the same time which not only helps to reduce the size of lookup
table but also improves the running time of the scheme. Formally, the packing proceeds as
follows. Treat the k-bit input as:

k := a(1) ‖ a(2), (6)

where a(1) ∈ {0, 1}k1 and a(2) ∈ {0, 1}k2 such that k = k1 + k2 and k2 = log2 w.
We group w values having the same most significant k1-bits and a(2) ranges from

0 ≤ a(2) ≤ w − 1. For instance, consider packing the (8, 8)-bit AES S-box into a 32-bit
register, we can pack w = 32/8 = 4 S-box values into a single 32-bit register. Essentially,
this variant improves the computation speed by a factor of w since a set of w values each
of k′-bits are processed in parallel. Precisely, let each row of T1 contains a pack of w S-box
outputs, such that each row of T1 can be represented as:

T1(u) := S(u || 0)|| . . . S(u || (w − 1)), (7)

where u ∈ {0, 1}k1 . This table T1 is shifted using x(1)
i which represents k1 bits of the ith

input share xi. Similar steps as in Algorithm 4 are followed except the fact that only
k1-bits of the input shares are used for shifting, and T1 is shifted by x(1)

1 , . . . , x
(1)
n−1. But

there is a corresponding change in the way LR works. We need to sample an m-bit random
value instead of a k′-bit value (see Remark 6). The rows of the table T1 are masked using
the m-bit words. The steps of this process are described in Algorithm 9. We present the
randomised lookup table construction using the robust PRG approach. Similar steps can
be followed in the multiple PRGs approach as well.
Remark 6. One way of generating the m-bit value is to pass the value of u, u ∈ {0, 1}k1 , to
the robust PRG construction. Then it generates the values for u||z, ∀z ∈ {0, 1}k2 . Then,
concatenate these values generated to form a m-bit value as the output. But, we need
k′-bit random values during the construction of T2. Hence, the input parameters to the
robust PRG construction inside T2 to be passed in such a way that the value of the unique
index α needs to be distinct from the values generated during T1 construction. We need
to follow similar steps for the multiple PRGs construction as well.

After the construction of T1 as explained in Algorithm 9, the most significant k1-bits
of the final share is used to lookup T1 that returns an m-bit value:

LR(T1(x(1)
n), x(1)

n) = ym1 , . . . ymn , (8)

where ymi ∈ {0, 1}m and

ymn = S(x(1) || 0k2)|| . . . || S(u || 1k2)⊕ ym1 ⊕ · · · ⊕ ymn−1 . (9)

Since each of the values in the n-dimensional vector obtained in Equation 7 is a concatena-
tion of w words, parsing the values to obtain the k′-bits at position x(2) would result in the
shared evaluation of S(x). But, we cannot use x(2) as it is since it is going to leak k2-bits
of the secret x. Therefore, we construct another Table T2 of w rows each of size k′-bits.

The constructions of T2 proceeds as follows. The vector obtained in Equation 7 is
processed and the w words of k′-bits are extracted into w rows of T2. Then, the same
procedure of shift by x(2)

1 , . . . , x
(2)
n−1, each shift followed by a refresh is repeated. Finally, a

table lookup of T2(x(2)
n) is going to return the shared evaluation of S(x). This procedure is

Annapurna Valiveti and Srinivas Vivek 575

Algorithm 9: Construction of T1 for larger register
variant using robust PRG.

Input :
• xi, 1 ≤ i ≤ n ∈ {0, 1}k.

• Register size, m.

• An (k, k′) S-box lookup table.

Output :Table T1.
1 w ←− m/k′
2 k2 ←− log2 w

3 k1 ←− k − k2 for u← 0 to 2k1 − 1 do
4 T1(u)←− S(u || 0)|| . . . S(u || (w − 1))
5 end
6 for i← 1 to n− 1 do
7 for u← 0 to 2k1 − 1 do
8 Taux(u)←− T1(u⊕ x(1)

i)
9 end

10 for u← 0 to 2k1 − 1 do
11 (t1, . . . , tn)←− (Taux(u), 0, . . . , 0)
12 foreach i > 1 do
13 for j ← 2 to n do
14 tj ←− PRGm(i− 1, j, u⊕ x(1)

i)
// PRG returns an m-bit random
value (see Remark)

15 end
16 end
17 (t1, . . . , tn)←− LRm(t1, . . . , tn)
18 T1(u)←− t1
19 end
20 end

summarised in Algorithm 10. One subtle point to observe here is that, unlike the scheme
presented in Algorithm 4, it is not possible to preprocess the entire table offline. Hence,
compute tables T1 and T2 during offline and online, respectively.

Since this approach for larger register variant require the construction of two tables T1
and T2 where the amount of randomness required for T1 is the same as Algorithm 4 and
T2 requires additional random values to mask, the total number of k′-bit random values
required are:

(n− 1) ·
(
2k · (n− 1) + 1

)
+ (n− 1) ·

(
2k2 · (n− 1) + 1

)
. (10)

576 Higher-Order Lookup Table Masking in Essentially Constant Memory

Algorithm 10: Larger register variant using robust
PRG (continued).

Input :
• xi, 1 ≤ i ≤ n ∈ {0, 1}k.

• Register size, m.

• Table T1.

Output : yi, 1 ≤ i ≤ n− 1 and yn :=
S(x)⊕ y1 ⊕ . . . yn−1 ∈ {0, 1}k

′ .
1 w ←− m/k′
2 k2 ←− log2 w
3 k1 ←− k − k2

4 tm1 = LR(T1(x(1)
n))

5 for j ← 2 to n do
6 tmj ←− PRG(n− 1, j, x(1)

n)
7 end
8 ym1 , . . . ymn = LR(tm1 , . . . , tmn)
9 for u← 0 to 2k2 − 1 do

10 T2(u)←− extract(ym1 , u+ 1)
// extract the u+ 1thk′−bit chunk from
m-bit register

11 end
12 for i← 1 to n− 1 do
13 for u← 0 to 2k2 − 1 do
14 Taux(u)←− T2(u⊕ x(2)

i)
15 end
16 for u← 0 to 2k2 − 1 do
17 if i == 1 then
18 for j ← 2 to n do
19 tj ←− extract(ymj , u+ 1)
20 end
21 end
22 foreach i > 1 do
23 for j ← 2 to n do
24 tj ←− PRG(i− 1, j, u⊕ x(2)

i)
25 end
26 end
27 t1, . . . , tn ←− LR(t1, . . . , tn)
28 T2(u)←− t1
29 end
30 end
31 t1 ←− T2(x(2)

n)
32 for j ← 2 to n do
33 tj ←− PRG(n− 1, j, x(2)

n)
34 end
35 y1, . . . , yn = LR(t1, . . . , tn)

Annapurna Valiveti and Srinivas Vivek 577

B Security Proof of Normal Variant
B.1 Proof of Theorem 3 (Normal variant with robust PRG)
Proof. The security proof of Theorem 3 heavily depends on the proof strategies from
[CRZ18, CGZ20]. The evident reason being the two modifications to the original lookup
table-based construction from [CRZ18]. The first one is the replacement of refreshmasks
with LR and the second change is w.r.t. the way of generating the random values.
Concretely, generate the random values from a strong (r, t, 1)-robust PRG construction
instead of a TRNG. We have proved the Lemmas 1 and 2 in Section 3 which follows the
same security properties of refreshmasks to show that the higher-order lookup table-based
scheme remains t-SNI secure, after the replacement.

Before proceeding with the t-SNI proof of Theorem 3 to demonstrate the replacement
of a TRNG with a a strong (r, t, 1)-robust PRG, let us recollect the steps of Theorem 2.
This theorem is instrumental in demonstrating that the number of input bits required for
the simulation of the robust PRG construction is always bounded by the number of true
random inputs to robust PRG (represented by the parameter r).

Recap of proof of Theorem 2. We recall the proof of Theorem 2 to illustrate the
(r, t, 1)-robust PRG construction is t-probing secure. As mentioned in Section 4, for the
robust PRG implemented using trivial construction (see Lemma 3), the parameter

q = 1.

Moreover, each of the t + 1 PRGs of the trivial construction are polynomials with r
coefficients evaluated over a field F2β . So, each input/output of the polynomial-based PRG
is a β-bit value.

Let the adversary put tPRG ≤ t probes in the robust PRG circuit and the remaining
(t− tPRG) probes in the lookup table computation. We recollect the steps of Theorem 2
to show the simulation of the tPRG ≤ t internal observations in the PRG circuit requires
at most β · tPRG output bits of the robust PRG and any other subset of r − (β · tPRG)
output bits can be assigned uniform random values.

Using Lemma 5, the number of output bits of G that can be assigned true random
values is given by

r − q · β · tPRG = (t ·max(q · β, l))− β · tPRG. (11)

Moreover, the simulation of tPRG variables require (tPRG · β) random bits. The remaining
(t− tPRG) probes in the randomised lookup table computation depends on (t− tPRG) · l
bits of randomness. According to Lemma 4, the locality of the (k, k′) S-box gadget is
k′ · 2 · (n− 1) bits. Hence, we need the following inequality to hold:

(t− tPRG) · l ≤(r − tPRG · β)

≤(t ·max(β, l)− tPRG · β).

We have two cases here.

Case I:(max(β, l) = β): note that both β, l are positive integers. In this case,

(t− tPRG) · l ≤(t · β − tPRG · β)

(t− tPRG) · l ≤β · (t− tPRG)
l ≤β.

578 Higher-Order Lookup Table Masking in Essentially Constant Memory

Case II:(max(β, l) = l): in this case,

(t− tPRG) · l ≤(t ·max(β, l)− tPRG · β)

(t− tPRG) · l ≤(t · l − tPRG · β)

(t · l − tPRG · l) ≤(t · l − tPRG · β)

tPRG · β ≤tPRG · l
β ≤l.

The tPRG variables in G are simulated as follows: let R = {A∪B, |A∪B| ≤ r}. There
exist a set B, |B| ≤ β · tPRG whereas the set A is any subset of (r − β · |A|) output bits
of G such that R ← {0, 1}|A∪B| is assigned uniform and random bits. This is possible
since |R| ≤ r. Since the PRG construction is linear, it is possible to simulate the tPRG
observations using only the output bits from the set B. Hence, using at most (t− tPRG) · l
random bits we need to show the simulation of the observed variables in the higher-order
lookup table implementation.

Simulation of variables from Algorithm 4 refreshed using LR-n-r. As explained
in Case I and Case II above, the internal probes of PRG along with the probes in the
lookup table scheme can be simulated using r random bits. For simplicity, we show the
proof when tPRG = 0, i.e., the adversary using all t probes in the lookup table circuit.
The proof still holds for any tPRG > 0. We now proceed to show the simulation using at
most r random bits. We follow an ISW way of simulation to prove Theorem 3. Initially,
we construct an index set I to hold the set of input shares depending on the observations
made by the adversary. Let the adversary observe the input/intermediate variables using
t1 probes and put to probes on output variables such that

t1 + to ≤ t < n.

To prove that the S-box gadget is t-SNI, we need to show that the variables (including
input/intermediate/output variables) observed using t probes can be simulated using at
most t1 input shares, |I| ≤ t1. Since the table T is shifted and refreshed n− 1 times, we
use Ti, Taux,i to represent the lookup and the auxiliary tables, respectively. Let SLRi
represent the sequence of shift by xi and the subsequent LR operation. Also, we main-
tain a list of table indices probed across shifts i, 1 ≤ i ≤ n − 1. Let V = {Ti(u, j),
1 ≤ i ≤ n− 1, u ∈ {0, 1}k, 1 ≤ j ≤ n}, |V | ≤ t1, where Ti(u, j) represents the jth element
in uth vector of table T during ith shift. As mentioned in Remark 7, we will show the
simulation of the observed table entries. We will not show the simulation of the entire
column as in the t-SNI proof from [CRZ18].

We construct a set of input share indices required to show the simulation of the t obser-
vations. As described above, the steps involved are SLRi, 1 ≤ i ≤ n− 1 and final table
lookup. The construction of I proceeds as follows:

1. Initialise I = {}.

2. Add i to I if xi or u⊕ xi (1 ≤ i ≤ n) are probed.

3. Add i to I if any of the intermediate variables of the form Ti(u, j), Taux,i(u, j) or
Ti(u⊕ xi, j) where 1 ≤ i ≤ n− 1 are probed.

4. Add n to I if Tn−1(xn, j) is probed.

Annapurna Valiveti and Srinivas Vivek 579

5. Add i to I if the internal variables y1,1 or y1,j , 2 ≤ j ≤ n− 1 of SLRi are probed.

6. No index is added to I when probing the outputs of SLRi. The same holds for the
final sharing of S(x) in Step 12 of Algorithm 4.

Since we are adding at most one index per internal probe and no index is added to I
while probing the output shares, |I| ≤ t1. The simulation of the probed variables using the
input share indices from I proceeds as follows. We prove the simulation using induction.
Assume that SLRi receives the simulated inputs.

1. Needless to say, the simulation of all the loop variables u, i and public values of S(x)
requires no knowledge of input shares.

2. Base case: the induction hypothesis is true for i = 1 since T1(u) = S(u).

3. We show the simulation of variables observed during SLRi operation is divided
further into two subcases.

• i /∈ I: according to the construction of I, the only possibility is by probing the
outputs of LR. Using Lemma 1, any n − 1 outputs can be assigned uniform
random values without knowledge of xi. In particular, we can assign the outputs
of LR yi, 1 ≤ i ≤ n−1 uniform random values since t · l ≤ r. The same argument
holds for simulating the final outputs of S(x) after the final LR.
• i ∈ I: since SLRi receives simulated inputs, we can use xi to simulate any
intermediate variable observed including Ti(u ⊕ xi, j), Taux,i(u, j) in Step 6.
These values will be the inputs to Step 9 of of Algorithm 4, LR-n-r (see
Algorithm 5). Now we move on to the simulation of the probed variables of
LR-n-r. As mentioned in the proof of Lemma 2, for every 1 ≤ j ≤ n, if the
adversary probes jth input to LR, then we need to simulate the random value
sj as well. Assign a uniform random value to sj . Hence, using the inputs to
LR and the random values sj , we can simulate the intermediate variables y1,1
or y1,j or the output shares yj of LR.

4. It can be observed that the table entries added to set V are nothing but the output
shares from the LR, which we show the simulation in Step 3.

5. In either case, we show the simulation of input/intermediate/output variables using
the input share indices from the index set I. Hence, the induction hypothesis holds
true for SLRi+1 as well.

6. The index set I would contain the index n when observing the final lookup or internal
variables of LR in Step 12 of Algorithm 4. Hence, the simulation of these observations
using xn is similar to Step 3.

This concludes the t-SNI security proof of Theorem 3.

Remark 7. In the t-SNI security proof from [CRZ18], the whole table column is treated
as a single share and simulated. This approach would have followed in [CRZ18] to view
the table in each shift as a gadget for the ease of security proof. In our security proof,
we only show the simulation of the individual entries of the table (not the entire column)
due to the following. Since the random values from the same column having two distinct
indices T (u, j) and T (u+ 1, j) are never combined as part of the scheme, the locality of
the robust PRG is l = k′ · 2 · (n− 1) bits. Hence, it is possible to assign uniform random
values to at most t · l bits. To show the simulation of the entire column, we would need a

580 Higher-Order Lookup Table Masking in Essentially Constant Memory

PRG with 2k-independence that requires 2k coefficients from TRNG, which would increase
the memory/randomness complexity of the proposed scheme. Hence, we opt to provide
iterative proof rather than recursive proof. Accordingly, we consider the entire S-box as a
single gadget.

B.2 Proof of Theorem 5 (t-SNI-R∗ Gadget composition)
Proof. Consider M gadgets G1, . . . GM that are t-SNI-R∗ secure. Arrange these gadgets
in a directed acyclic graph and organise the nodes in the graph in reverse topological
sort ordering. Let each gadget Gi have t1,i input/intermediate probes in Gi such that
t1,1 + · · ·+ t1,M ≤ t1. The randomness partitions for gadget Gi are denoted by A(i)

j for
1 ≤ j ≤ γ. We use induction on i to prove that the composed gadget is t-SNI-R∗.

For the base case |M | = 1, the composed gadget has a single gadget. Since the gadgets
Gi are t-SNI-R∗, we can infer that the final gadget is also t-SNI-R∗. Now consider the
induction hypothesis that the composition of l gadgets G1, . . . , Gl is t-SNI-R∗ holds true
for i = l. Now we need to prove that the composed gadget remains t-SNI-R∗ for i = l + 1.

For the case i = l, since the composition of G1, . . . , Gl gadgets is t-SNI-R∗, all
intermediate variables t1,1 + · · · + t1,l ≤ t, output shares O∗ and any subset of indices

R∗l ⊂ [1, γ] along with random bits
l⋃
i=1

A
(i)
j , j ∈ R∗l can be simulated using |Il ∪R∗l | input

shares of x. Since the gadgets are arranged in reverse topological sort, the outputs of
Gl+1 are the inputs to the composed gadget G1, . . . , Gl. Since each individual gadget
is t-SNI-R∗, the intermediate variables tl+1,1 ≤ t, output shares O∗ and any subset of

indices R∗l+1 ⊂ [1, γ] along with random bits
l⋃
i=1

A
(l+1)
j can be simulated using the input

shares from the set I ′ ∪R∗l+1 ∪ (Il ∪R∗l) where |I ′| ≤ t1,l+1. The t-SNI-R∗ property holds
for any subset R∗ ⊂ [1, γ]. Hence, in the composed gadget obtained using G1, . . . , Gl+1,
the intermediate variables t1,1 + · · ·+ t1,l+1, output shares O∗ and any subset of indices

R∗ ⊂ [1, γ] along with random bits
l+1⋃
i=1

A
(i)
j , j ∈ R∗l can be simulated using the input shares

xi where i ∈ (Il+1 ∪R∗l+1) and Il+1 = I ′ ∪ Il. We have,

|Il+1| = |I ′ ∪ Il| ≤ |I ′|+ |Il| ≤ t1,l+1 + (t1,1 + · · ·+ t1,l) ≤ t,

which proves that the composed gadget of G1, . . . , Gl+1 is t-SNI-R∗. This even holds when
l + 1 = m = |M |, which terminates the proof.

B.3 Proof of Theorem 6 (Normal Variant with Multiple PRGs)
The security proof of Theorem 6 is similar to the one presented in Subsection B.1. One
immediate difference being the extended security model t-SNI-R∗ where we need to show
the simulation of the entire randomness partition by even probing a single value from this
partition. Moreover, unlike a robust PRG, the adversary has no advantage in probing the
internal wires of non-robust PRG implementation. The index set construction of Theorem
6 is the same as that of Theorem 3. We still provide the details for completeness.

Proof. We follow an ISW way of simulation to prove Theorem 6. Initially, we construct
an index set I to hold the set of input shares depending on the observations made by the
adversary. Let the adversary observe the input/intermediate variables using t1 probes and
put to probes on output variables such that

t1 + to ≤ t < n.

Annapurna Valiveti and Srinivas Vivek 581

To prove that the S-box gadget is t-SNI-R∗ (see definition 9), we need to show that the
variables (including input/intermediate variables) observed using t1 probes and O∗ output
shares can be simulated using at most t1 + |R∗| input shares, |I| ≤ t1. Since the table
T is shifted and refreshed n− 1 times, we use Ti, Taux,i to represent the lookup and the
auxiliary tables, respectively. Let SLRi represent the sequence of shift by xi and the
subsequent LR operation. Also, we maintain a list of table indices probed across shifts i,
1 ≤ i ≤ n− 1. Let V = {Ti(u, j), 1 ≤ i ≤ n− 1, u ∈ {0, 1}k, 1 ≤ j ≤ n}, |V | ≤ t1, where
Ti(u, j) represents the jth element in uth vector of table T during ith shift. As mentioned
in Remark 7, we will show the simulation of the observed table entries. We will not show
the simulation of the entire column as in the case of the proof from [CRZ18].

We construct a set of input share indices required to show the simulation of the t observa-
tions. As described, the steps involved are SLRi, 1 ≤ i ≤ n− 1 and final table lookup. Let
I represent the set of input share indices and the construction of I proceeds as follows:

1. Initialise I = {}.

2. Add i to I if xi or u⊕ xi (1 ≤ i ≤ n) are probed.

3. Add i to I if any of the intermediate variables of the form Ti(u, j), Taux,i(u, j) or
Ti(u⊕ xi, j) where 1 ≤ i ≤ n− 1 are probed.

4. Add n to I if Tn−1(xn, j) is probed.

5. Add i to I if the internal variables sj or y1,1 or y1,j , 2 ≤ j ≤ n of SLRi are probed.

6. No index is added to I while probing the outputs of SLRi. The same holds for the
final sharing of S(x) in Step 12 of Algorithm 4.

Since we are adding at most one index per internal probe and no index is added to I while
probing the output shares, |I| ≤ t1.

In the first step, we show the simulation of the partitions Aj , j ∈ R∗.

• When the internal variables sj or the outputs, yj of the LR or the output shares
Ti(j) of SLRi with indices j, 2 ≤ j ≤ n are probed, then we need to simulate the
corresponding Aind where ind =

(
i · (n− 1) + j − 1

)
.

• Also, if the final shares yj , 2 ≤ j ≤ n of S(x) are probed, then ind = n · (n−1)+ j−1.

• As explained in Section 4.3, each of these subsets are output pseudorandom values
of size 2k from a non-robust linear lt-wise independent PRG with l = 1. Assign
uniform random values to t outputs of the non-robust PRG having the index ind.

• Since the polynomial-based PRG construction is linear and since only lt outputs are
assigned, sample the PRG input seed following the same distribution as the output
values.

• Then, using the sampled input seed, compute the remaining outputs of the partition
Aind.

Once we show the simulation of Aind, ind ∈ R∗, we proceed with the simulation of
SLRi. Now we continue with the observed variables. Assume that SLRi receives the
simulated inputs.

1. Needless to say, simulation of the loop variables u, i and public values of S(x) requires
no knowledge of input shares.

582 Higher-Order Lookup Table Masking in Essentially Constant Memory

2. Base case: the induction hypothesis is true for i = 1 since T1(u) = S(u).

3. We now show the simulation of variables observed during SLRi operation.

• i /∈ I: according to the construction of I, the only possibility is by probing the
outputs of LR. If the probed outputs of LR are yj , 2 ≤ j ≤ n− 1, then assign
the value from the corresponding partition Aind, ind ∈ R∗ which is already
simulated. If the probed output is first share y1, then there exist at least one
unprobed yj∗ , 2 ≤ j∗ ≤ n which acts as a one-time pad. Hence, assign a uniform
random value to y1. Follow the exact steps to simulate the output shares after
the final LR.
• i ∈ I: since SLRi receives simulated inputs, we can use xi to simulate any
intermediate variable observed including Ti(u ⊕ xi, j), Taux,i(u, j) in Step 6.
These values will be the inputs to Step 9 of of Algorithm 4, LR-n-m (see
Algorithm 6). Now we move on to the simulation of the probed variables
of LR-n-m. As explained in the previous step, assign the values to si from
the partition Aind. Using the simulated random masks sj and input share xi,
compute the intermediate variables y1,j or the output shares yj of SLRi.

4. It can be observed that the table entries added to set V are nothing but the output
shares from LR, which we show the simulation in Step 3.

5. In either case, we show the simulation of input/intermediate/output variables using
the input share indices added to index set I. Hence, the induction hypothesis holds
true for SLRi+1 as well.

6. The index set I would contain the index n while observing the final lookup or internal
variables of LR in Step 12. Hence, simulate the observations using xn as explained
above.

Thus, we can conclude the t-SNI security proof of Theorem 6.

C Increasing Shares Variant Proofs
C.1 Proof of Theorem 7 (Increasing shares using Robust PRG)
As mentioned in the security proof of Theorem 3, simulate the internal observations of the
PRG circuit. Hence, we proceed with the t-SNI security proof of increasing shares variant
in Algorithm 4 locality refreshed using the procedure LR-n-i presented in Algorithm 7.
Let SLRi represent the sequence of shift by xi and the subsequent LR operation.

The proof for higher-order lookup table-based construction using robust PRG is similar
to the Theorem 3, except for the following differences. We use the Lemma 1 to assign
uniform random values to output shares when the intermediate variables of LR remain
unprobed. But, the same can not be applied directly in case of increasing shares variant.
The reason being during the i-th shift and LR, the output table has i+ 1 < n shares for
every i < n − 1. So, the adversary can observe all (i + 1) < n shares, in which case it
is not possible to simulate the output shares with the knowledge of the input share xi.
Hence, we need to add i to I when all (i + 1) < n output shares of SLRi are observed.
But, this is not going to affect the security of our construction. Since there a total of n
LRs and one of the LR remains unprobed, which still obeys the t-SNI condition |I| ≤ t1.
Moreover, we can still use Lemma 1 for the LR after (n− 1)-th shift and the final LR as
long as the intermediate variables are unprobed. This is possible since the output shares
for these cases are equal to n > t. The rest of the proof, along with the simulation of the

Annapurna Valiveti and Srinivas Vivek 583

probed observations, remains the same as Theorem 3. We provide detailed security proof
for completeness.

Proof. We follow an ISW way of simulation to prove Theorem 7. Initially, we construct
an index set I to hold the set of input shares based on the observations made by the
adversary. Let the adversary observe the input/intermediate variables using t1 probes and
put to probes on output variables such that

t1 + to ≤ t < n.

To prove that the S-box gadget is t-SNI, we need to show that the simulation of variables
(including input/intermediate/output variables) using t probes requires at most t1 input
shares. Since the table T is shifted and refreshed n− 1 times, we use Ti, Taux,i to represent
the lookup and the auxiliary tables, respectively. Let SLRi represent the sequence of shift
by xi and the subsequent LR operation. Also, we maintain a list of table indices probed
across shifts i, 1 ≤ i ≤ n − 1. Let V = {Ti(u, j), 1 ≤ i ≤ n − 1, u ∈ {0, 1}k, 1 ≤ j ≤ n},
|V | ≤ t1, where Ti(u, j) represents the jth element in uth vector of table T during ith shift.

We construct a set of input share indices required to show the simulation of the t observa-
tions. As described, the steps involved are SLRi, 1 ≤ i ≤ n− 1 and final table lookup. Let
I represent the set of input share indices and the construction of I proceeds as follows:

1. Initialise I = {}.

2. Add i to I if xi or u⊕ xi (1 ≤ i ≤ n) are probed.

3. Add i to I if any of the intermediate variables of the form Ti(u, j), Taux,i(u, j) or
Ti(u⊕ xi, j) where 1 ≤ i ≤ n− 1 are probed.

4. Add n to I if Tn−1(xn, j) is probed.

5. Add i to I if the internal variables y1 or y1,j , 2 ≤ j ≤ n of SLRi are probed.

6. Add i to I only if all the i+ 1 outputs of SLRi, 1 ≤ i ≤ n− 2 are probed.

7. No index is added to I while probing the outputs of SLRn−1. The same argument
holds for the final sharing of S(x) in Step 12 of Algorithm 4.

Since we are adding at most one index per internal probe and no index is added to I
while probing the output shares, |I| ≤ t1. The simulation of the probed variables using the
input share indices from I proceeds as follows. We prove the simulation using induction.
Assume that SLRi receives the simulated inputs.

1. Needless to say, the simulation of the loop variables u, i and public values of S(x)
needs no knowledge of input shares.

2. Base case: the induction hypothesis is true for i = 1 since T1(u) = S(u).

3. We now describe the simulation of variables observed during SLRi operation in the
following two sub-cases.

• i /∈ I: according to the construction of I, the possibilities are either by probing
the LR outputs of SLRn−1 or at least one of the i+ 1 outputs of SLRi remains
unprobed. For all other cases, we would have added the input index i to I when
observed. So, none of them come under this case. Hence, we can use Lemma 1
since one of the output shares of SLRi acts as a one-time pad. In particular,
we can assign the outputs of LR yi, 1 ≤ i ≤ n− 1 uniform random values as in
the original circuit since t · l ≤ r. The same argument holds for simulating the
final outputs of S(x) after the final LR.

584 Higher-Order Lookup Table Masking in Essentially Constant Memory

• i ∈ I: since SLRi receives simulated inputs, we can use xi to simulate any
intermediate variable observed including Ti(u ⊕ xi, j), Taux,i(u, j) in Step 6.
These values will be the inputs to Step 9 of of Algorithm 4, LR-i-r (see Algorithm
7). Now we move on to the simulation of the probed variables of LR-i-r. As
mentioned in the proof of Lemma 2, for every 1 ≤ j ≤ n, if the adversary probes
jth input to LR, then we need to simulate the random value sj as well. Assign
a random value to sj . Hence, using the inputs to LR and the random values sj ,
we can simulate the intermediate variables y1,1 or y1,j or the output shares yj
of the LR.

4. It can be observed that the table entries added to set V are nothing but the output
shares from the LR, which we show the simulation in Step 3.

5. In either case, we show the simulation of input/intermediate/output variables using
the input share indices added to index set I. Hence, the induction hypothesis holds
true for SLRi+1 as well.

6. The index set I would contain the index n by probing the final lookup or internal
variables of LR in Step 12. Hence, simulate the observations using xn, as explained
above.

This proves the t-SNI security of Theorem 7.

C.2 Proof of Theorem 8 (Increasing shares using multiple PRG)
As explained in Section C.1, this proof is the same as the arguments provided for other
constructions, except for the change that we need xi to simulate the outputs of SLRi, i <
(n− 1). We provide detailed proof for completeness.

Proof. We follow an ISW way of simulation to prove Theorem 8. Initially, we construct
an index set I to hold the set of input shares based on the observations made by the
adversary. Let the adversary observe the input/intermediate variables using t1 probes and
put to probes on output variables such that

t1 + to ≤ t < n.

To prove that the S-box gadget is t-SNI, we need to show that the simulation of variables
(including input/intermediate/output variables) observed using t probes requires at most t1
input shares. Since the table T is shifted and refreshed n−1 times, we use Ti, Taux,i to rep-
resent the lookup and the auxiliary tables, respectively. Let SLRi represent the sequence of
shift by xi and the subsequent LR operation. Also, we maintain a list of table indices probed
across shifts i, 1 ≤ i ≤ n − 1. Let V = {Ti(u, j), 1 ≤ i ≤ n − 1, u ∈ {0, 1}k, 1 ≤ j ≤ n},
|V | ≤ t1, where Ti(u, j) represents the jth element in uth vector of table T during ith shift.

We construct a set of input share indices required to show the simulation of the t observa-
tions. As described, the steps involved are SLRi, 1 ≤ i ≤ n− 1 and final table lookup. Let
I represent the set of input share indices and the construction of I proceeds as follows:

1. Initialise I = {}.

2. Add i to I if xi or u⊕ xi (1 ≤ i ≤ n) are probed.

3. Add i to I if any of the intermediate variables of the form Ti(u, j), Taux,i(u, j) or
Ti(u⊕ xi, j) where 1 ≤ i ≤ n− 1 are probed.

Annapurna Valiveti and Srinivas Vivek 585

4. Add n to I if Tn−1(xn, j) is probed.

5. Add i to I if the internal variables y1 or y1,j , 2 ≤ j ≤ n of SLRi are probed.

6. Add i to I only if all the i+ 1 outputs of SLRi, 1 ≤ i ≤ n− 2 are probed.

7. Add no index to I by probing the outputs of SLRn−1. The same argument holds for
the final sharing of S(x) in Step 12 of Algorithm 4.

Since we are adding at most one index per internal probe and no index is added to I
while probing the output shares, |I| ≤ t1. In the first step, we show the simulation of the
partitions Aind, ind ∈ R∗.

• When the internal variables sj or the outputs, yj of the LR or the output shares
Ti(j) of SLRi with indices j, 2 ≤ j ≤ n are probed, then we need to simulate the
corresponding Aind where ind =

(
i · (i− 1)/2

)
+ j − 1

)
.

• Also, if the final shares yj , 2 ≤ j ≤ n of S(x) are probed, then ind =
(
(n− 1) · (n−

2)/2
)

+ j − 1.

• As explained in Section 4.3, each of these subsets are output pseudorandom values
of size 2k from a non-robust linear lt-wise independent PRG with l = 1. Assign
uniform random values to t outputs of the non-robust PRG having the index ind.

• Since the polynomial-based PRG construction is linear and since only lt outputs are
assigned, sample the PRG input seed following the same distribution as the output
values.

• Then, using the sampled input seed, compute the remaining outputs of the partition
Aind.

Once we show the simulation of Aind, ind ∈ R∗, we proceed with the simulation of
SLRi. We show the simulation using induction. Assume that SLRi receives the simulated
inputs.

1. Needless to say, the simulation of the loop variables u, i and public values of S(x)
requires no knowledge of input shares.

2. Base case: the induction hypothesis is true for i = 1 since T1(u) = S(u).

3. We now show the simulation of variables observed during SLRi operation.

• i /∈ I: according to the construction of I, the possibilities are either by probing
the LR outputs of SLRn−1 or at least one of the i+ 1 outputs of SLRi remains
unprobed. For all other cases, we would have added the input index i to I when
observed. So, none of them fall under this case. If the probed outputs of LR are
yj , 2 ≤ j ≤ n− 1, then assign the value from the corresponding partition Aind
which is already simulated. If the probed output is first share y1, then there
exist at least one unprobed yj∗ , 2 ≤ j∗ ≤ n such that yj∗ acts as a one-time
pad. Hence, assign a uniform random value to y1. Follow the same steps for
simulating the output shares after the final LR.
• i ∈ I: since SLRi receives simulated inputs, we can use xi to simulate any
intermediate variable observed including Ti(u ⊕ xi, j), Taux,i(u, j) in Step 6.
These values will be the inputs to Step 9 of of Algorithm 4, LR-i-m (see
Algorithm 8). Now we move on to the simulation of the probed variables of
LR-i-r. As explained in the previous step, assign the values to si from the
partition Aind, ind ∈ R∗. Using the simulated random masks sj and input share
xi, compute the intermediate variables y1,j or the output shares yj of SLRi.

586 Higher-Order Lookup Table Masking in Essentially Constant Memory

4. It can be observed that the table entries added to set V are nothing but the output
shares from the LR, which we show the simulation in Step 3.

5. In either case, we show the simulation of input/intermediate/output variables using
the input share indices added to index set I. Hence, the induction hypothesis holds
true for SLRi+1 as well.

6. The index set I would contain the index n by observing the final lookup or internal
variables of LR in Step 12. Hence, simulate the observations using xn.

This proves the t-SNI security of Theorem 8.

	Introduction
	Recap of Higher-Order Masked Lookup Table Scheme from DBLP:journals/tches/CoronRZ18
	Improving Locality of the Scheme Using Locality Refresh
	RAM Memory Optimisation of Masked Lookup Table
	No. of Columns of Lookup Table Independent of Masking Order
	Masking Lookup Tables using robust PRG
	Lookup Table Construction using Multiple PRGs

	Lookup Table With Increasing Shares Using PRG
	Lookup Table Scheme with Increasing Shares using Robust PRG

	Implementation
	Conclusion
	A Variant Scheme for Large Registers
	Security Proof of Normal Variant
	Proof of Theorem 3 (Normal variant with robust PRG)
	Proof of Theorem 5 (t-SNI-R* Gadget composition)
	Proof of Theorem 6 (Normal Variant with Multiple PRGs)

	Increasing Shares Variant Proofs
	Proof of Theorem 7 (Increasing shares using Robust PRG)
	Proof of Theorem 8 (Increasing shares using multiple PRG)

