
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 4, pp. 474–509. DOI:10.46586/tches.v2021.i4.474-509

Scabbard: a suite of efficient learning with
rounding key-encapsulation mechanisms

Jose Maria Bermudo Mera, Angshuman Karmakar, Suparna Kundu, Ingrid
Verbauwhede

imec-COSIC, KU Leuven
Kasteelpark Arenberg 10, Bus 2452, B-3001 Leuven-Heverlee, Belgium

{firstname.lastname}@esat.kuleuven.be

Abstract. In this paper, we introduce Scabbard, a suite of post-quantum key-
encapsulation mechanisms. Our suite contains three different schemes Florete, Espada,
and Sable based on the hardness of module- or ring-learning with rounding problem.
In this work, we first show how the latest advancements on lattice-based cryptography
can be utilized to create new better schemes and even improve the state-of-the-art
on post-quantum cryptography.
We put particular focus on designing schemes that can optimally exploit the parallelism
offered by certain hardware platforms and are also suitable for resource constrained
devices. We show that this can be achieved without compromising the security of the
schemes or penalizing their performance on other platforms.
To substantiate our claims, we provide optimized implementations of our three new
schemes on a wide range of platforms including general-purpose Intel processors using
both portable C and vectorized instructions, embedded platforms such as Cortex-M4
microcontrollers, and hardware platforms such as FPGAs. We show that on each
platform, our schemes can outperform the state-of-the-art in speed, memory footprint,
or area requirements.
Keywords: Post-quantum cryptography · Learning with rounding · Key-encapsulation
mechanism · Lattice-based cryptography · Hardware implementations · FPGA ·
Cortex-M4 · AVX2

1 Introduction
Lattice-based hard problems started to gain traction in cryptography with the introduction
of Regev’s learning with errors (LWE) [Reg04] and Lyubashevsky et al.’s [LPR10] ring-
learning with errors (RLWE) as an alternative to integer factorization and elliptic-curve
based cryptosystems. However, the launch of the National Institute of Standards and
Technology’s (NIST) post-quantum standardization program [NIS17] undeniably imparted
a fresh impetus to the development of lattice-based cryptography. The majority of the
80 initial submissions in this program were based on lattices. During the first phase of
the NIST competition designers incorporated many fresh ideas into the design of lattice-
based cryptography, e.g., the Falcon signature scheme [FHK+18] was designed based on
Gentry, Peikert and Vaikuntanathan’s framework [GPV07] for signatures instead of the
more traditional Fiat-Shamir (with abort) [FS87, Lyu09] framework, Kyber [BDK+17],
Saber [DKRV19], Dilithium [DKL+18] used module-lattices instead of more traditional
standard or ideal lattices, Titanium [SSZ19] used the middle-product LWE [RSSS17]
problem to construct a key-encapsulation mechanism (KEM) instead of LWE or RLWE,
etc. During the latter phases, the cryptographic community is witnessing a substantial effort
to improve the designs and implementations [KRS18, HOKG18, KBMSRV18, BUC19],

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-04-15 Accepted: 2021-06-15 Published: 2021-08-11

https://doi.org/10.46586/tches.v2021.i4.474-509
mailto:{firstname.lastname}@esat.kuleuven.be
http://creativecommons.org/licenses/by/4.0/

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 475

come out with new physical attacks [ADP18, BP18, PPM17], and find better concrete
security estimates [APS15, DSDGR20]. Such efforts have enriched the knowledge of
lattice-based cryptography to an unprecedented level.

The primary motivation of our work is to show that carefully crafted decisions motivated
by innovations in the lattice-based cryptography during last couple of years can lead to
very efficient designs of cryptosystems. We want to show that due to changes at design
level it is possible to instantiate our schemes by using off the shelf hardware and software
implementations with small adaptations only. We also show that it is possible to improve
the design of existing schemes using these advancements. Finally, we want to design KEMs
with a particular focus on practicality. Our schemes should be efficient on a wide range of
hardware and software platforms. To bolster confidence in our schemes we refrain from
assuming aggressive assumptions in our design decisions which have been shown to be
vulnerable to various attacks during past couple of years. We only use design elements
which have stood the test of time by going through rigorous security evaluations during the
lifetime of the NIST’s standardization effort and, thus, elicit high confidence. Furthermore,
we take into account the state-of-the-art cryptanalysis and security estimation techniques
while proposing concrete instantiations of our designs. We conclude this section by briefly
summarizing our contributions as below.

1. We propose Scabbard, a suite of new lattice-based KEMs. Our first scheme, named
Florete, is a ring-learning with rounding (RLWR) based KEM. We used one of the
third round finalists of NIST’s program Saber’s hardware and software implementa-
tions with some modifications for an efficient implementation of Florete. Our results
show that Florete is one of the fastest KEMs when compared to other finalist KEMs
in the NIST’s post-quantum standardization procedure.

2. The introduction of module-lattices [LS15] opened up a whole spectrum of new lattices
to designers who were earlier left with only standard or ring-lattices. Although, there
exist module-lattice based schemes such as Kyber [BDK+17] and Saber [DKSRV18],
it is beneficial to explore other constructions. Here, we propose the first of its
kind module-learning with rounding (MLWR) with small degree polynomials named
Espada, the second KEM in our suite. Espada has been designed to exploit parallelism
on hardware platforms and achieves the lowest memory footprint among all KEM
finalist in the NIST’s standardization process on software platforms.

3. The errors in learning with rounding (LWR) based schemes are generated by rounding
elements of one number field to another. Since these errors influence the security
of the KEM, it is important to estimate them properly. In this work, we properly
formalize the distribution of such errors. We combine this with state-of-the-art
cryptanalytic methods to propose improved parameters for Saber. We also suggest a
new design choice for Saber. Being an MLWR based scheme, Saber is very flexible
and scalable in terms of security and resource utilization. We show that incorporating
our design choices further boosts these characteristics. We also show that using our
parameters it is possible to improve the hardware designs in the state-of-the-art and
reduce the key-sizes, and hence the required bandwidth of Saber. We name this
modified Saber as Sable and include it as the third KEM in our suite.

4. We provide efficient software implementations optimized for general-purpose Intel
processors and Cortex-M4 micro-controllers for all our schemes, and propose hardware
architectures for accelerate them on field-programmable gate arrays. We compare
our implementations with the state-of-the-art to demonstrate the efficiency of our
schemes. All our implementations strictly avoid branching on secret data and run in
constant-time. All our sources are publicly available1.

1https://github.com/josebmera/scabbard

https://github.com/josebmera/scabbard

476 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

2 Preliminaries

We denote the set of integers {0, . . . , q−1} as Zq. We refer to the quotient ring Zq[x]/(1+xn)
by Rn

q unless otherwise stated. In this work, the moduli p and q are power-of-two integers
(p < q). We denote the ring of (l ×m)-matrices over any ring R as Rl×m and the ring of
l-length vectors over any ring R as Rl. Polynomials are denoted by lower case alphabets,
vectors are denoted by bold lower case alphabets, and matrices are denoted by bold upper
case alphabets. If a ∈Rn

q , then the scaling down operation b·ep : Rn
q →Rn

p is defined by
applying the rounding operator bpq (·)e to each coefficient of a and is extended to vectors
by applying it to each element. We denote the uniform distribution as U. The centered
binomial distribution (CBD) is denoted by βη, where the standard deviation is

√
η/2.

Sampling according to βη is realized by calculating
∑η−1
i=0 (bi − b′i), where bi and b′i are

pseudo-random bits. Random sampling from any set S according to a distribution χ
is denoted by ← χ(S) and · represents the matrix-vector multiplication, vector-vector
multiplication or polynomial multiplication depending on the context. The bits(x, i, j)
operator is a selection function that takes as input positive integers x, i, j with i ≥ j and
outputs j consecutive bits of the positive integer x, ending at the i-th index, where the
least significant bit (LSB) is the 1st index. It is extended to polynomials, vectors and
matrices by applying it coefficient-wise.

2.1 Learning with errors and its variants

The learning with rounding (LWR) by Banerjee et al . [BPR12] is a variant of the well
known learning with errors (LWE) problem introduced by Oded Regev [Reg04]. An LWE
sample is of the form (A,b = A · s + e) ∈ Zm×nq × Zmq whereas an LWR sample has the
form (A,b = bpqA · se = bA · sep) ∈ Zm×nq × Zmp . Here, the error e is generated inherently
because of the scaling from Zq to Zp, where p < q. The decisional version of LWR problem
states that it is hard to distinguish between the LWR samples and (A,u) ∈ Zm×nq × Zmp ,
where s is sampled from χ(Znq) for a specific distribution χ, A and u are sampled uniformly
from Zm×nq and Zmq respectively.

Similar to the Ring-LWE problem introduced by Lyubashevsky et al . [LPR10], the
decisional version of Ring-LWR problem states that it is hard to distinguish between the
samples of the form (a, b = bpqa ·se) ∈Rn

q ×Rn
p from (a, u) ∈Rn

q ×Rn
q , where s is sampled

from χ(Rn
q) for a specific distribution χ, a and u are sampled uniformly from Rn

q .
Modules lattices [LS15] were introduced as a trade-off between standard and ideal

lattices in terms of efficiency and security. The decisional version of Module-LWR problem
states that it is hard to distinguish between the samples of the form (A,b = bpqA · se) ∈
(Rn

q)l×l × (Rn
p)l from (A,u) ∈ (Rn

q)l×l × (Rn
p)l, where s is sampled from χ((Rn

q)l)
according to the specific distribution χ, A and u are sampled uniformly from (Rn

q)l×l and
(Rn

q)l respectively.
The rank of the underlying matrices in these problems is n for LWR and RLWR and

l× n for MLWR with very high probability. In the absence of efficient attacks that exploit
the underlying algebraic structure to their advantage and when all other parameters such
as q, p and χ are kept the same, the security of all cryptosystems based on these lattices is
considered the same if the rank of their underlying matrices is the same. The structure
of Module-LWR is more generic as we can convert it to Ring-LWR by making l = 1 and
n = n, and to standard LWR by setting l = n and n = 1. For the rest of this paper, we
considered the structure of the Module-LWR problem as a generalized LWR problem.

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 477

2.2 LWR key-exchange (KEX) protocol
A generalized LWR based key-exchange (KEX) is shown in Protocol. 1. To accomplish
this, we need another power-of-two modulus t such that t < p < q. Here, the function
gen generates the public pseudo-random matrix A with the help of an extendable-output
function XOF and a 256-bit random seed. Unlike the classic Diffie-Hellman [DH76] KEX,
LWR or in general LWE based schemes may not end up with same keys. This is due to he
fact that the difference between the final polynomials Alice (u) and and Bob (u′) are not
negligible. Hence we need an error correction scheme [Pei14, Din12] described in Sec. 2.4.
A KEX is called IND-RND secure if the advantage of any adversary A to distinguish the
key k ∈ K (if K is the key space) generated by the KEX from a uniformly random chosen
key k′ ∈ K is negligible. It can be proven that the generalized LWR based KEX as shown
in Protocol 1 is IND-RND secure if q/p ≤ p/(2Bt). This proof closely follows the security
proof of Saber [DKSRV18].

Alice Bob
1 seedA ← U({0, 1}256)
2 r ← U({0, 1}256)
3 A← genl×ln (XOF(seedA)) ∈ (Rn

q)
l×l

4 s← βη((Rn
q)l)

5 b = bA · sep ∈ (Rn
p)
l

6 (b, seedA)
−−−−−−−−−−→

7 r′ ← U({0, 1}256)
8 A← genl×ln (XOF(seedA)) ∈ (Rn

q)
l×l

9 s′ ← βη((Rn
q)l)

10 b′ = bAT · s′ep ∈ (Rn
p)
l

11 u′ = bT · (s′ mod p) ∈Rn
p

12 c′ = HelpDecode(u′) ∈Rn
t

13 (b′, c′)
←−−−−−−−

14 u = b′ · (s mod p) ∈Rn
p

15 c = Decode(u, c′) ∈Rn
2Bt

16 k = Encode(c) k′ = Encode(u′)
17 keyAlice = Hash(k) keyBob = Hash(k′)

Protocol 1: A generalized key-exchange scheme based on LWR

Theorem 1. LWR based KEX is IND-RND secure if q/p ≤ p/(2Bt).

Proof. See Appendix A.

2.3 CCA secure LWR based KEM
The LWR based KEX is a noisy Diffie-Hellman key-exchange [DH76] and can be transformed
to an indistinguishable against chosen plaintext attack (IND-CPA) secure public-key
encryption (PKE), analogous to the transformation from a Diffie-Hellman key-exchange to
the IND-CPA secure ElGamal PKE scheme. In the PKE, the message is added or XORed
with each coefficient of the key k′ of Bob in the KEX. The correctness of the PKE scheme
also depends on the equality of the keys k and k′ used in the KEX scheme. LWR based
KEX and LWR based PKE are equivalent in terms of security and correctness. It is very
simple to show that LWR based PKE scheme is IND-CPA secure if the underlying KEX is
IND-RND secure.

Jiang et al . [JZC+17] provided a version of the Fujisaki-Okamoto transformation [FO99]
to convert an IND-CPA secure LWR based PKE to an indistinguishable against chosen
chiphertext attack (IND-CCA) secure key-encapsulation mechanism (KEM), when the
underlying PKE scheme is not perfectly correct. The authors also proved that if the
underlying PKE scheme is (1 − δ) correct, then the KEM based on it will be S post-
quantum secure where δ ≤ 2−S .

478 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

Following Jian et al .’s construction, we provide generic algorithms for IND-CCA secure
LWR based KEM (KeyGen, Encaps, Decaps) in Alg. 1, 2, and 3. For example, if we set
n = 256, l = 3, q = 213, p = 210, t = 23, η = 4, B = 1 we will get the Saber KEM.

In these algorithms, H and G are hash functions. h1, h2, and h3 are constant
polynomials with each coefficient set to 2(εq−εp−1), (2(εq−εp−1) + 2(εp−B−1) − 2(εp−εt−1)),
and 2(εq−εp−1) respectively. Here, εq = log2 q, i.e., q = 2εq , similarly p = 2εp and p = 2εt .
These are used to calculate the rounding operators b·ep and b·et. In KeyGen Alg. 1 H(pk)
is stored in the public key and the Decaps Alg. 3 returns a random value if it fails. These
are the extra parts of this FO-transformation for achieving CCA security.

Algorithm 1: LWR.KEM.KeyGeneration
Data: nil
Result: pk = (seedA,b), sk =

(s, H(pk), r)
1 seedA ← U({0, 1}256)
2 r ← U({0, 1}256)
3 A← genl×ln (XOF(seedA)) ∈ (Rn

q)
l×l

4 s← βη((Rn
q)l)

5 b = bits(A · s + h1, εq, εp) ∈ (Rn
p)
l

//Rounding
6 pk← (seedA,b) r ←$ {0, 1}256

7 sk← (s, H(pk), r)
8 return

pk = (seedA,b), sk = (s, H(pk), r)

Algorithm 2: LWR.KEM.Encapsulation
Data: pk = (seedA,b)
Result: cipher_txt = (c′, b′), key =

K
1 m′ ←$ {0, 1}256

2 m = arrange_msg(m′)
3 (K ′, r′)← G(m||H(pk))
4 r′ ← U({0, 1}256)
5 A← genl×ln (XOF(seedA)) ∈ (Rn

q)
l×l

6 s′ ← βη((Rn
q)l)

7 b′ = bits(AT · s′ + h1, εq, εp)
//Rounding

8 u′ = bT · (s′ mod p) ∈Rn
p

9 c′ = bits((u′ + h3 − 2εp−Bm), εp, (εt +
B)) ∈Rn

2Bt //HelpDecode
10 K ← H(K ′, H(c′))
11 return

cipher_txt = (c′, b′), key = K

Algorithm 3: LWR.KEM.Decaps
Data: pk = (seedA,b), sk =

(s, H(pk), r), cipher_txt =
(c′,b′)

Result: key = K
1 u = b′ · (s mod p) ∈Rn

p

2 m′1 = bits((u+ h2 −
2εp−εt−Bm), εp, B) ∈Rn

2B //Decode
3 m1 = original_msg(m′1)
4 m2 = arrange_msg(m1)
5 (K ′1, r′1)← G(m2||H(pk))
6 A← genl×ln (XOF(seedA)) ∈ (Rn

q)
l×l

7 s1
′ ← βη((Rn

q)l)
8 b1

′ = bits(AT · s1
′ + h1, εq, εp)

//Rounding
9 u′1 = bT · (s1

′ mod p) ∈Rn
p

10 c′1 = bits((u′1 + h3 − 2εp−Bm), εp, (εt +
B)) ∈Rn

2Bt //HelpDecode
11 if c′ = c′1 then
12 return K = H(K ′1, H(c′))
13 else
14 return K = H(r,H(c′))

2.4 Error correction mechanism
The error correction mechanism contains three functions Encode, Decode, HelpDecode.
Here, the target is to establish the following relation. Let, u and u′ be the polynomials
computed by Alice and Bob respectively and ui, u′i be the i-th coefficient of the polynomial
u and u′.

If |ui−u′i| < ε, where ε is the error tolerance, then Encode(Decode(ui, HelpDecode(u′i)))
= Encode(u′i) with high probability. If we take u′i = x and ui = y, then the func-
tions Encode, HelpDecode and Decode are defined by Encode(x) = "first B bits of x",
HelpDecode(x) = "next εt bits of x" and Decode(y, HelpDecode(x)) = y−HelpDecode(x) q

2B+εt .
These functions can be extended to polynomial by applying them coefficient-wise. It can

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 479

be shown that if the absolute value of error tolerance is bounded by q
2B+1 − q

2B+εt+1 then
the above requirement is satisfied.

Theorem 2. If x = y + e and |e| ≤ q
2B+1 − q

2B+εt+1 , then

Encode(x) = Encode(Decode(y, HelpDecode(x))).

Proof. See Appendix B.

2.5 Polynomial multiplication
There are two efficient algorithms for multiplying two polynomials a, b ∈Rn

q , the number
theoretic transform (NTT) [Pol71] which runs in O(n logn) and the Toom-Cook [Too63,
Coo66, KO62] based polynomial multiplication that runs in O(n1+ε), 0 < ε < 1. While the
NTT is faster, it forces few constraints on the degree of the polynomial n and modulus q.
Many RLWE and Module-LWE schemes [BDK+17, ADPS16, DKL+18] use this polynomial
multiplication.

We will only discuss Toom-Cook multiplication or specifically Toom-Cook k-way here
since it is the most relevant to our work. Given a, b ∈Rn

q a pre-processing stage, evaluation,
is applied to create a vector of length 2k − 1 from each of a and b, where each element in
the vector is a polynomial of length n/k. Each element from each vector can be further
split into smaller polynomials by applying Toom-Cook k-way evaluation recursively until
the polynomials are small enough to be multiplied with the corresponding polynomial in
the other vector by the quadratic complexity schoolbook multiplication algorithm. After
the multiplication stage, the Toom-Cook k-way interpolation is applied recursively on the
results to get the resulting polynomial c = a · b. The Toom-Cook 3-way and Toom-Cook
4-way algorithms are described in Alg. 4 and 5 in Appendix G. For more details on
Toom-Cook multiplication we refer the interested reader to [Ber01, MKV20].

3 Our suite of LWR based KEMs
This section describes our Scabbard KEM suite. All of our schemes follow the generic
KEM=(KeyGen, Encaps, Decaps) constructions as shown in Alg. 1, 2, and 3 respectively.
Only the ring/module parameters (n, l), moduli (εq, εp, εt), encoding parameter (B), CBD
parameter (η) and polynomial multiplication change in each scheme. Hence, in the
description of our schemes we will only discuss these parameters that are unique to each
scheme and their implications. We discuss in detail our design rationale, implementation
strategies, challenges and our approaches to overcome them. We first discuss the shape of
rounding-errors of LWR based cryptosystems which is very crucial to our designs.

3.1 Rounding error : discrete vs. continuous uniform distribution
As we have discussed before, the errors in LWR based cryptosystems are generated
inherently. A series of recent LWR based cryptosystems such as (Round2 [BBG+17],
Saber [DKRV19], Lizard [CKLS18]) considered this error as continuous uniform in the
interval (−q/2p, q/2p]. The following Theorem 3 shows that this error distribution is
discretely uniform rather than continuous uniform as assumed earlier.

Consider LWR samples of the form (A,b = bA.sep) ∈ (Rn
q)l×l × (Rn

p)l, with n ≥ 1
and q > p ≥ 2. We can write b = (b1, b2, . . . , bl), where bi = (bji).

Theorem 3. Each coefficient of every polynomial of the rounding error vector follows a
discrete uniform distribution over the set {−q/2p, . . . , q/2p− 1}.

480 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

Proof. Let us consider the j-th coefficient of i-th polynomial of rounding error is e and
bits(bji , εq−p, εq−p) = λ. Then e = bji − b(q/p)bb

j
i epe = b(q/p)fe ,

where f =

−1 + 1
2 if λ = q

2p
−1 + 1

2 + 1
2(εq−p) if λ = q

2p + 1
...
−1 + 1

2 + · · ·+ 1
2(εq−p) if λ = q

p − 1
0 if λ = 0

1
2(εq−p) if λ = 1

1
2((εq−p)−1) if λ = 2

1
2((εq−p)−1) + 1

2(εq−p) if λ = 3
...
1
22 + · · ·+ 1

2(εq−p) if λ = q
2p − 1

.So, e =

− q
2p if λ = q

2p
− q

2p + 1 if λ = q
2p + 1

...
−1 if λ = q

p − 1
0 if λ = 0
1 if λ = 1
2 if λ = 2
3 if λ = 3
...
q

2p − 1 if λ = q
2p − 1

.

As λ = bits(bji , εq−p, εq−p), then Pr[λ = λ′] = 1/2(εq−p) = p/q, ∀λ′ = {0, 1, . . . , (qp − 1)}.
Therefore, Pr[e = e′] = p/q, ∀e′ = {−q/2p,−q/2p+ 1, . . . , q/2p− 1}. Hence, e follows a
discrete uniform distribution over the set {−q/2p,−q/2p+ 1, . . . , q/2p− 1}

While evaluating the security and failure probability of any LWE based cryptosystem,
the variance of the error plays a very crucial role. The variance of the continuous uniform
distribution and discrete uniform distribution are q2

12p2 and q2−p2

12p2 respectively. As we can
see q2−p2

12p2 < q2

12p2 , considering the rounding error as continuous uniform overestimates
the error distribution and consequently the concrete security estimation. Security of
lattice-based cryptosystems is proportional to the ratio of standard deviation of error
and moduli. Hence, to maintain security we have to decrease the moduli to compensate
for the lower standard deviation of error. The parameter calculation of lattice-based
cryptography is an optimization problem where the modulus, rank of the lattice, and
standard deviation are the control variable. Whereas security and failure probability are
the objective function. The standard procedure [ADPS16, BDK+17] to solve this problem
is to exhaustively search over a wide range of control variables and choosing options which
best satisfiy the requirements. We have followed the same procedure to find parameters
of our schemes. We have considered the above observation during the concrete security
estimation of our cryptographic schemes in Sec. 4.1.

3.2 Florete: Ring-LWR based KEM
Our primary focus while designing Florete was to maximally reuse the already very efficient
hardware architectures and software modules [KRS18, KBMSRV18, RB20, MKV20] that
have been developed for Saber for a more efficient KEM without compromising the security.

Since the introduction of binomial distributions in lattice-based cryptography, the
polynomial multiplication has become the most computationally expensive operation in
lattice-based cryptography. Although, in some platforms such as Cortex-M4 the pseudo-
random number generation can take upto 50% of the total execution time [KRS18]. Due
to our choice of moduli we are unable to use asymptotically faster number theoretic
transform (NTT) based polynomial multiplications without using a larger NTT friendly
prime (discussed in Appendix C). Hence, we resort to generic Toom-Cook polynomial
multiplications. Below we describe the fundamental building blocks of Florete.

Polynomial multiplication: For our efficient implementation of Florete, we fix our
quotient ring Rn

q as Zq[x]/(x768 − x384 + 1). Now, while multiplying two polynomials
a, b ∈Rn

q during KeyGen, Encaps, and Decaps we first apply a Toom-Cook 3-way evaluation

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 481

on a and b. This splits both of them into 2 ∗ 3 − 1 = 5 polynomials of length 256 each.
To multiply these 256 length polynomials we use the efficient hardware and software
routines to perform 256× 256 polynomial multiplications for Saber. Further we can join
these results using Toom-Cook 3-way interpolation to get the result c = a× b ∈Rn

q after
reduction by (x768−x384+1). Since the computational cost for Toom-cook 3-way evaluation
and interpolation are small (as shown in Alg. 4 in Appendix. G) the time to perform
5 individual 256 × 256 polynomial multiplications is very close to the time to perform
one 768× 768 polynomial multiplication using our strategy. Further, as we are working
in RLWR, our underlying ideal lattice can be represented by a single public polynomial
of length 768 whereas for Saber the underlying module-lattice needs 9 polynomials of
length 256 each. A comparison of the required randomness and the number of 256× 256
polynomial multiplications to generate the LWR samples in Florete and in Saber is shown
in Table. 1. We can see from this table that Florete gains in efficiency compared to Saber
in both number of multiplications and pseudo-random number generation.

Table 1: Required pseudo-random bytes for generating public matrix (A) and secret vector
(s), and number of 256× 256 multiplications in Saber and Florete.

Name Pseudo-random
number (Bytes)

256× 256 multiplications
KeyGen Encaps Decaps

Florete 1152 5 10 15
Saber 4512 9 12 15

However, there is a small caveat in this arrangement. We want the coefficients of our
polynomials to fit within 16 bits for efficient multiplication in vector processors, small
microcontrollers, or FPGAs. While applying Toom-Cook interpolations we often need to
divide the field elements by r, where r = 2d ·m with gcd(m, 2) = 1. Since we are working
in the power-of-two finite fields there exists no inverse of r = 2d ·m where d ≥ 1. To
overcome this while dividing by r, first multiply the number by inverse of m in the field
followed by right shift of d bits. Thus, if we limit ourselves to 16-bit word length then
it means our εq can not be more than 16− d bits long for correct multiplication in Rq

n.
The maximum value of d in Toom-Cook 3-way and Toom-Cook 4-way interpolation is
d = 1 and d = 3 respectively. Hence, to combine these two algorithms according to our
strategy our εq cannot be more than 12 bits long. Note that, in Saber’s design εq = 13,
therefore this combination of multiplications do not work if we use Saber’s parameters.
Here, we utilize our observation on Sec. 3.1 to reduce the standard deviation of the error
and reduction of εq as a compensation to achieve our goal of εq ≤ 12. As we can see from
Table 2, this reduces the post-quantum security of Florete than Saber by 12 bits but it is
still high enough to qualify for NIST security level 3.

Error correction and encoding: Schemes like Round5 [BGML+18, BBG+17],
LAC [LLZ+18] used error-correcting codes to reduce their failure probabilities of their
KEMs. But these schemes open up many avenues of side-channel attacks [GMR20,
DTVV19, GJY19, SC19, Son19]. This was one of the biggest reason for them not to
qualify to the NIST’s post-quantum standardization final round [AASA+17] . We used
the error correction mechanism shown in Sec. 2.4 which is also used by Saber. In this
mechanism, the size of the second rounding modulus t is proportional to the maximum
error that can be corrected. As we need a very low failure probability, εt should be large.
And as εt < εp < εq this imposes a limit on εp and εq as well. Here, we are working in
ring Rn

q with n = 768, with the only 256 bits of secret payload (m′). We can set B = 1
and use each coefficient of our polynomial to embed each bit of secret with repetitions as
arrange_msg(m′) = m′||m′||m′. To recover the message we can take a majority vote as

482 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

shown below

original_msg(m1[b]) =
{

0 if m′1[b] +m′1[b+ 256] +m′1[b+ 512] ≤ 1
1 else

.

As the error tolerance is increased due to the use of repetition we can reduce εt without
increasing the failure probability. This consequently helps to reduce εp and εq further.

Security levels: We have so far described Florete to target a NIST security level
3. Our strategy can be extended to provide a security level 1 version with n = 512 and
using Karatsuba [KO62] to split the polynomial into three polynomials of length 256 for
the multiplications. A security level 5 version can be provided with n = 1024 and using
Toom-Cook 4-way to split the actual polynomial into 7 polynomials of length 256. We
leave instantiation of different security levels of Florete as a future work. We provide the
full parameter list of Florete in Table 2. Following the works of Alkim et al . [ABC19] and
Chung et al . [CHK+20] it is possible to improve the speed of Florete further by using a
larger NTT friendly prime. We discuss this in Appendix C.

3.3 Espada: Module-LWR based KEM
The fundamental motivation behind designing our Module-LWR based KEM Espada was
to have a scheme that is extremely parallelizable and has a small memory footprint in
resource-constrained devices. Overall we also keep the performance on other platforms
within the practical limits. As before we aim for ≥ 128 bits of post-quantum security.

If we look carefully, cryptosystems based on module-lattices are very suitable for
parallel implementation. To recapitulate, in module-lattice based cryptosystems we need
multiplications of the form A · s or b · s where A ∈ (Rn

q)l×l and b, s ∈ (Rn
q)l. On a

detailed note, these multiplications are basically multiplications of a, b ∈ Rn
q which can

be performed in parallel. Unfortunately, due to the large size of n it is very costly in
terms of area requirement to have multiple instances of polynomial multipliers. As an
example, for Saber, where n = 256, the recent compact implementation by Bermudo
Mera et al . [MTK+20] first splits each 256× 256 polynomial multiplication to 7 64× 64
polynomial multiplications which are then performed in parallel. This implementation
avoids the 2-levels of Karatsuba multiplication as 64 × 64 schoolbook multiplication is
already very fast on the target hardware platform. The whole 256× 256 multiplier requires
28 DSP units, which is a more scarce resource than LUTs or FFs on FPGAs, and creating
multiple instances of the 256× 256 would rapidly exhaust it. Another implementation by
Roy et al . [RB20] focuses on high-speed implementation but it again requires prohibitively
high area for parallel instantiations. Lastly, the implementation by Dang et al . [DFAG19]
uses such a high number (256) of DSP units that even a single instance of the multiplier is
only suitable for the most powerful FPGAs like the UltraScale+ family by Xilinx.

Therefore, if we make n smaller we can easily exploit the parallelism reducing the
cost of creating multiple instances of multipliers. Depending on the value n and the
implementation philosophy, one can either use a compact multiplier inspired by the small
64× 64 multipliers in [MTK+20] or an approach based on the fast schoolbook multiplier
in [RB20]. As n is small both of them will be very fast and will require very low area. In this
way the multiple instances of n× n polynomial multipliers can perform the multiplications
in batch. This is explained in Fig. 1, where we compare this approach to the use of
small polynomial multipliers in parallel after applying Toom-Cook to break down a larger
multiplication. Furthermore, in implementations of module-lattice based cryptosystems,
the memory footprint is proportional to the size of one polynomial thanks to the just-
in-time matrix generation and other techniques developed in the context of the NIST
PQC competition [KBMSRV18, KRS18]. Considering this, we have optimally chosen n in
Espada as 64. Keeping n small has another benefit. As the rank of the module-lattices

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 483

a
l-1,l-1

a
0,i

a
0,l-1

a
l-1,i

a
0,0

a
l-1,0

s
0

s
i

s
l-1

c
0

c
i

c
l-1

s
0

s
i

s
l-1

c
0

c
i

c
l-1a

l-1,l-1

a
0,i

a
0,l-1

a
l-1,ia

l-1,0

a
j,0

a
j,l-1

a
j,0

a
j,l-1

.

.

. .
. .

. .
.. .

.

. . . .
. . . .

.
. . .

. . . .

. . .
. . .

. . .
. . .

. . . .
. . . .

. . . .
. . . .

.

.

. .
. .

. .
. .

. .

a
0,0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

64 x 64
multiplier

64 x 64
multiplier

64 x 64
multiplier

64 x 64
multiplier

64 x 64
multiplier

64 x 64
multiplier

eval

TC

interp

TC

Figure 1: Comparison of parallel polynomial multiplication in Espada (top) with poly-
nomial multiplication in Saber (bottom). The lines in blue and green denotes parallel
and serial execution respectively. The components inside the boxes are implemented on
hardware.

are multiples of n and the security is dependent on the rank of underlying matrix, having
larger n often overshoots the security target. However, for small n we can have fine-grain
control over security.

Encoding and error-correction: As our n is small and we are still considering a
secret message payload of 256 bits, we set B = 4, i.e., we embed 4 secret bits in a single
coefficient of the polynomial. However, according to Theorem 2, having a large B reduces
the ability of the amount of error that can be corrected in our scheme. To compensate
this, we have to increase εt. As εt < εp < εq, this further requires a larger εp and εq to
achieve the desired failure probability of ≤ 2−128.

Polynomial multiplication: As can be seen in Table 2, our modulus is 15 bits
long. Hence, as discussed in Sec. 3.2, in order to limit ourselves within 16 bits of word-
length, we cannot use algorithms such as Toom-Cook 3-way or 4-way multiplications.
Hence, for software implementations we use two levels of Karatsuba to split each 64× 64
polynomial multiplication into 9 16 × 16 polynomial multiplications. Also, in software
implementation Toom-cook 4-way algorithm takes almost same time as 2-level karatsuba
due to the interpolation and evaluation overhead. For hardware implementations we use
a different approach which is described in Sec. 5. Further, as our l = 12 is quite large
compared to other module-lattice based schemes, we use the lazy interpolation polynomial
multiplication proposed in [MKV20]. As l is large we can reduce a lot of overhead for
polynomial multiplication using this technique. We also use the optimized assembly routine
from Kannwischer et al . [KRS18] for our microcontroller implementation.

Others: As we have reduced n, which in turn requires larger l and q for sufficient
security and failure probability, we need to generate more pseudo-random numbers. Also
we need to perform more 64× 64 polynomial multiplications compared to Saber. Despite
this, as shown in Sec. 4.2 our software implementation is quite fast for both portable C
and micro-controller implementation. Similar to Florete, we can instantiate two other
variants of Espada satisfying NIST security level 1 and 5 by increasing or decreasing l.
Also, it might be possible to create a MLWE based KEM that can be instantiated with
n = 64 and NTT friendly parameters using similar strategies to the ones explained here.

484 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

3.4 Sable: Alternate Saber
Sable is the third lattice-based KEM in our suite. As discussed in section Sec. 3.1, the
Saber design used rounding error as continuous uniform distribution rather than discrete
uniform distribution. Due to a different standard deviation of error, we have to readjust
other parameters, i.e., εp, εq and η to ensure that there is no significant drop in security.
The updated parameters can be found in Table 2. We describe the rationale behind our
choices below.

Secret distribution: We sample our secret values from the centered binomial dis-
tribution with η = 1 that means secret coefficients can be −1, 0, 1 only. This enables
very fast multiplication in the platforms where multiplications are costlier than addition
and subtraction such as MSP430 microcontrollers as the multiplication instructions can
be replaced by additions and subtractions only. A recent hardware implementation has
been proposed utilizing the small values of the secret [RB20]. We show in Sec. 5.3 that
our parameters can further improve the performance and area of that hardware imple-
mentation. Furthermore, due to our choice η = 1, the secret can be stored using only
2-bits per coefficient. This results in a smaller memory requirement for Sable. Please
note that here we have refrained from aggressive choices of secret distributions such as
fixing the hamming weight of secret polynomials like Round5 [BGML+18], using any error
correcting code to reduce failure probability like LAC [LLZ+18] or fixing the weight of the
secret vector [BCLvV16]. We have stuck to binomial distribution to prevent the adversary
from gaining any additional advantage due to the secret distribution. We discuss security
implications in more details in Sec. 4.1. Currently, Saber team has produced another
version called uSaber with 2 bits of uniform secret due to its advantage in implementation.
This is very similar to our choice if we consider signed-bit representation.

New design choice: In Saber, we perform polynomial multiplications with the form
of a · s, where a is random in Rn

q or Rn
p and s sampled according to the distribution βη.

Saber has η = 5, 4, 3 for LightSaber, Saber and FireSaber respectively. We realized that
it is more beneficial to keep η equal across all variants and varying εq and εp instead of
keeping εq and εp same and varying η as done in Saber. Since secrets have a particular
distribution, it is easy to exploit this distribution for every efficient implementation. Hence,
if η is kept same for different variants, the multiplier can be heavily optimized and used in
all variants. Since the distribution of a is random in Rn

q or Rn
p , it is difficult to exploit the

distribution of a for fast multiplication. In this case, the multiplier can be optimized for
the maximum value of εq and εp only. This will work fine since εp and εq are power-of-two
numbers. The recent implementation [RB20] for fast implementation of Saber exploits
the special structure of the secret. However, they had to create additional hardware to
support different η values. Since Saber designers stresses on the flexibility of the design,
we think our design provides more flexibility than the original design. In addition to the
fast polynomial multiplications, keeping a small η equal for all variants is also beneficial
in masking. A recent paper on masking Saber [BDK+20] mentioned that the binomial
sampler requires the most complex algorithms for masking among all the components. It
also becomes more expensive for larger η. Indeed easier masking has been cited as the
main reason for proposal of uSaber in the Round-3 submission of Saber [BMD+20] and a
smaller η offers advantages for masking. We note that Kyber adopted the same design
choice in their Round-2 submission [ABD+19].

4 Concrete instantiations
4.1 Security estimation
Like for other public-key cryptosystems, the concrete security of lattice-based cryptosystems
is evaluated by calculating the time required by the best-known algorithm to solve the

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 485

underlying computationally hard problem. For lattice-based cryptosystems this accounts
to estimating the time to solve the underlying shortest vector problem using the block
Korkine-Zolotarev [CN11, SE94] algorithm.

The state state-of-the-art solution which is used by almost all lattice-based schemes
is using the LWE-estimator framework provided by Albrecht et al . [APS15]. Given
(n, q, σe, secret distribution) where σe is the standard deviation of the error of a lattice
based cryptosystem, this framework can compute the concrete security by estimating the
run-time of all possible methods to solve the underlying hard lattice problem. Kindly note
that, this estimator always considers error distribution as Gaussian distribution. Since the
proposal of Applebaum et al . [ACPS09] to sample the secret from the same distribution
as the errors most LWE based cryptosystems use σs = σe. However, in most LWR based
cryptosystems [DKRV19, BBG+17, CKLS18] due to the rounding errors σs < σe. In
this case, determining the concrete security of an LWR based cryptosystem using this
framework while considering σe = σs will lead to overestimation of the security of the
scheme 2.

A new toolkit leaky-LWE-Estimator by Dachman-Soled et al . [DSDGR20] has been
published recently to attack and estimate the hardness of the underlying LWE problem with
side information. Leaky-LWE-Estimator considers (n, q,De, Ds) as input, where De, Ds

are error distribution and secret distribution of a lattice-based cryptosystem respectively
and outputs the security of that cryptosystem. Moreover, in this estimator, we have
the flexibility to consider the error distribution of a cryptosystem as a discrete uniform
distribution.

Since, any adversary instead of trying to solve the original LWR instance A,b = A·s+er
can solve the easier instance (A−1,A−1 ·b = s+A−1 ·er), here er is the inherently generated
rounding error. Therefore, to avoid the problem of overestimating the concrete security, we
have estimated the security of the scheme using Ducas et al .’s framework by considering
minimum of (n, q,De, Ds) and (n, q,Ds, De) estimations.

As can be seen in Table 2, we have considered CBD with η = 1. This means our secrets
can have values in the set {−1, 0, 1}. Recently, few attacks [GMR20, DTVV19, GJY19,
DDGR20] have been proposed on schemes that have considered some aggressive secret
distributions mainly to reduce failure probabilities, such as considering fixed hamming
weight binomial distribution as secret distribution with an error correcting code (like
LAC [LLZ+18]) or fixed the number of 1’s and −1’s of the ternary secret polynomial
(like Round5 [BGML+18]). Although, Dachman-Soled et al . [DDGR20] proved that if the
secret has a fixed number of ±1 without knowing the exact amount of 1 and −1 (as in
NTRU Prime [BCLvV16]), then the loss of security is negligible. Chen et al . [CCLS20]
have also studied the some special ternary distributions and their security implications on
lattice-based cryptography. To avoid adverse security implications we have refrained from
taking any of such aggressive assumptions and used the standard binomial distribution
where there is no fixed limit on the numbers of −1, 1, or 0. To the best of our knowledge,
there does not exist any attack which can take advantage from binomially distributed
secret distribution with η = 1.

4.2 Parameters and performance
We compare parameters of Scabbard with Saber in Table 2. As we can see, for similar
security levels, all the variants of Sable improve the key sizes of Saber. Further, if we
consider the bandwidth usage of each scheme, i.e., the combined size of public-key and
ciphertext we can see that the bandwidth usage of Florete (2048 bytes) is slightly smaller
than Saber (2080 bytes) despite being an ideal-lattice based scheme. The bandwidth of
Espada (2584 bytes) is expected to be higher than Saber due to larger moduli. However,

2Due to this reason the concrete security of Saber was overestimated in their previous submis-
sions [DKRV19, DKSRV18]. This has been rectified in the round-3 submission [BMD+20]

486 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

this increase is less than 25%.

Table 2: Comparison of Scabbard suite with Saber
Scheme Name Ring/Module

Parameters
PQ

Security
Failure

probability Moduli CBD
(βη)

Encoding Key sizes for
KEM (Bytes)

n: 768 εq: 10 Public key: 896
Florete 2157 2−131 εp: 9 η = 1 B=1 Secret key: 1152

l: 1 εt: 3 Ciphertext: 1248
n: 64 εq: 15 Public key: 1280

Espada 2128 2−167 εp: 13 η = 3 B=4 Secret key: 1728
l: 12 εt: 3 Ciphertext: 1304
n: 256 εq: 11 Public key: 608

LightSable 2104 2−139 εp: 9 η = 1 B=1 Secret key: 800
l: 2 εt: 2 Ciphertext: 672
n: 256 εq: 11 Public key: 896

Sable 2169 2−143 εp: 9 η = 1 B=1 Secret key: 1152
l: 3 εt: 4 Ciphertext: 1024
n: 256 εq: 11 Public key: 1312

FireSable 2203 2−208 εp: 10 η = 1 B=1 Secret key: 1632
l: 4 εt: 2 Ciphertext: 1376
n: 256 εq: 13 Public key: 672

LightSaber 2107 2−120 εp: 10 η = 5 B=1 Secret key: 992
l: 2 εt: 2 Ciphertext: 736
n: 256 εq: 13 Public key: 992

Saber 2172 2−136 εp: 10 η = 4 B=1 Secret key: 1440
l: 3 εt: 3 Ciphertext: 1088
n: 256 εq: 13 Public key: 1312

FireSaber 2236 2−165 εp: 10 η = 3 B=1 Secret key: 1760
l: 4 εt: 5 Ciphertext: 1472

Software performance: We have compiled our portable C implementations and
vectorized implementations using advanced vector instructions (AVX2) using GCC 6.5 hav-
ing optimization flags -O3 and -fomit-frame-pointer enabled on an Intel(R) Core(TM)
i7-6600 CPU running at 2.60GHz. We also disabled hyperthreading, turbo-boost and
multicore support as per standard procedure. For our Cortex-M4 implementations, all
performance and memory measurements were taken using the easy to use the framework
provided in [KRSS] on an STM32F4DISCOVERY board running at 24 MHz.

As we can observe in Table 3 and 4, Florete has better performance in all software
implementations. In the Cortex-M4 platform, it performs better than Saber by 48% and
25%, 14% in KeyGen, Encaps and Decaps respectively. The KeyGen, Encaps algorithms of
Florete perform 42%, 11% faster than Kyber respectively. Only the Decaps algorithm is
11% slower in Florete than Kyber. It requires larger memory due to the ring structure.
However, it still requires less memory compared to NTRU [CDH+19] except Encaps.

Espada has the lowest memory footprint among all KEMs. It requires, 61%, 67%,
69% and 11%, 28%, 33% less memory than Saber and Kyber for KeyGen, Encaps and
Decaps respectively. Espada (17856 Bytes) requires almost 4 times more pseudo-random
numbers than Saber (4512 Bytes) and almost twice 64× 64 polynomial multiplications
(for Espada 468 and for Saber 252). In software implementations, Keccak algorithm takes
more than 50% of the execution time to generate the matrix and secret vector. Despite
of all these disadvantages, the running time of this scheme in software is approximately
2.5 times slower than the Saber in the worst case, which we still believe that is suitable
for practical scenarios. On the other hand, if one uses faster pseudo-random number
generators than Keccak in software such as AES-CTR mode then better performances can
be achieved. Kyber uses NTT multiplication which is an in-place algorithm in terms of
memory. Despite this, Espada needs less memory than Kyber. Lastly, the performance and
memory requirements of Sable are better than Saber in every platform. For a better insight
into these results we have provided a breakdown of clockcyles on Cortex-M4 platform in
Appendix D.

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 487

We have also included a concurrent work by Chung at al . [CHK+20] which employs
NTT to perform polynomial multiplication in Saber in the comparison. We have described
how this strategy can be applied to Sable in Appendix C.2. Table 8 shows that even our
preliminary implementation of NTT-Sable has better efficiency than NTT-Saber using this
method. Although using a slower polynomial multiplication routine than NTT-Saber, we
can see Florete still has better efficiency than NTT-Saber except Decaps (slower by 14%).
We have sketched how Florete can also be implemented using NTT in Appendix C. We
firmly believe when employed this method Florete will outperform all the KEMs in all of
KeyGen, Encaps, and Decaps.

Table 3: Performance comparison in portable C and AVX2 implementation of Scabbard
with other lattice-based KEMs.

C (X1000 clock cycles) AVX (X1000 clock cycles)Scheme Name Security
level KeyGen Encaps Decaps KeyGen Encaps Decaps

Florete Medium 86 147 193 58 87 97
Espada Medium 334 354 350 258 273 267

Low 79 106 116 54 64 58
Medium 152 186 207 80 95 89Sable
High 240 285 308 125 143 144
Low 88 129 120 66 76 73

Medium 159 201 215 107 118 112Saber
High 265 315 338 149 173 165
Low 154 209 250 271 335 310

Medium 252 324 365 537 594 557Kyber
High 400 515 566 874 969 907
Low 136 205 231 76 121 124NewHope High 265 404 448 139 224 233

Table 4: Comparison Scabbard with NIST finalist KEMs on Cortex-M4 for security level 3
∗ Collected from pqm4 [KRSS] † Collected from the official website of Saber for high-speed version.

Cortex-M4 performance
(X1000 clock cycles)

Cortex-M4 memory
(bytes)Scheme Name

KeyGen Encaps Decaps KeyGen Encaps Decaps

Florete 439 814 953 18252 18420 18420

Espada 2343 2568 2497 2896 2120 2000

Sable 745 1004 1028 6184 5992 5496

Saber† 846 1098 1112 7488 6560 6568

NTT-Saber [CHK+20] 658 864 835 27440 29080 30176

Kyber∗ 763 923 862 3276 2964 2988

NTRUhrss701∗ 153104 377 869 27560 7400 20552

NTRUhps2048677∗ 143734 821 815 28504 9036 19728

Frodo∗ 79325 79699 79145 26600 51976 72592

5 Hardware acceleration
The design of new cryptographic schemes prioritizes the security first and foremost.
Efficiency also plays an important role in the design decisions, but it is usually considered
in theoretical terms, i.e., algorithmic complexity, which often leads to software efficiency.

488 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

The short development cycle of software allows fast prototyping and a better feedback
loop between developers and designers. However, as we explained in Sec. 1, one of the
motivations of this work is to show that hardware efficiency can also be taken into account
as part of the design cycle of cryptographic schemes with a successful outcome.

HW/SW vs full HW design strategies: There are two approaches towards hard-
ware acceleration. A HW/SW co-design implements only the most computationally
expensive operations on hardware to provide more flexibility and reduce the design cycle at
the expense of not achieving the highest performance. A full HW implementation achieves
the highest performance but it requires a longer development cycle. The purpose of the
hardware implementations is to demonstrate the benefits of our design decisions rather
than providing thoroughly optimized processors for the highest performance. Therefore,
we choose a HW/SW co-design approach.

If we look at Table 9 in Appendix D, we can observe that the two critical operations
in our schemes are polynomial multiplication followed by hashing. As we discussed
in Sec. 3 and 4.2, pseudo-random number generation is based on Keccak to make our
schemes fairly comparable to the state-of-the-art. At this moment there is a lack of
transparency regarding the choice of pseudo-random number generators (PRNG). NIST
encourages to use one of the NIST standardized symmetric-key schemes but never specified
Keccak. It is quite possible that in the future more efficient constructions may replace
the Keccak based PRNG, both in our schemes as well as in NIST finalists. Also, KEMs
like Kyber [ABD+21] or Saber [BMD+20] have proposed alternative constructions in their
recent NIST submissions using pseudo-random number generators based on AES-CTR
named Kyber90s and Saber90s, respectively. Including a Keccak hardware, e.g., the
official implementation [Kec], incurs in the same area overhead for any scheme because the
functions used are identical. Hence, it does not provide a scientific added value when it
comes to comparing different schemes among them. On the other hand, including a Keccak
module in hardware would benefit the overall performance of the schemes in the same way
that a full hardware implementation outperforms SW/HW co-design approaches.

Since our design decisions were centered around improving the polynomial multipli-
cation in our KEMs, our goal is to demonstrate the improvements in our cryptographic
designs using off the shelf and state-of-the-art implementations of polynomial multipli-
cations in hardware. Future works exploring different hardware architectures exploiting
more specific properties of each scheme can come later as it has always happened when
designing new schemes. In fact, it is very common in the literature to focus on optimizing
the polynomial multiplication exclusively when researching on accelerating lattice-based
cryptography [ACC+20, CHK+20, KRS18, LS19, MKV20, MTK+20]. Also there is a lot
of precedence of outsourcing the most computationally expensive components to hardware
accelerators in elliptic-curve or Rivest-Shamir-Adleman cryptography [GFSV09, LXJL11].
Lastly, with our implementations we also demonstrate that different trade-offs between
area and performance in hardware implementations can be achieved by exploring the
design space of the cryptographic scheme rather than by exploring different hardware
architectures.

HW/SW interface: We implement our hardware on a Xilinx Zynq device that
integrates FPGA and ARM processors. The communication between them is based on the
AXI interface. The commands are transferred in parallel as a single word of 64-bits, that
indicates the base address for the memory accesses and the operation performed. The
overhead introduced by the commands is negligible since it is only 0.2µs per command.
The data is transferred in a stream free from addressing information and we use the DMA
provided by Xilinx to achieve high performance on bulky data transfers. The data transfer
of one polynomial (of 256 coefficients), one vector and one matrix takes 2.7µs, 4.4µs and
14.9µs, respectively. While this overhead is relevant when compared to the multiplication
time in hardware (see Table 6), it can be avoided by having a full hardware implementation.

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 489

However, as we explained before, our goal is to demonstrate how to achieve efficiency by
design rather than providing high performance architectures for given schemes. Also, as we
show in Sec. 5.4, our co-processors are effective in accelerating the polynomial arithmetic
and set the base around which a full hardware implementation shall be built.

5.1 Florete on hardware
Following a complexity theory analysis, schemes built upon ideal lattices are inherently
efficient by design. As we have described in Sec. 3.2, generating an RLWR sample in
Florete requires a 768× 768 polynomial multiplication, that in turn can be decomposed
into 5 256 × 256 polynomial multiplications applying Toom-Cook 3-way. This means
45% less multiplications than a module lattice-based scheme offering the same security
level, e.g., Saber or Kyber, which require 9 256 × 256 polynomial multiplications for
matrix-vector multiplication. However, this comes at the price of a large memory overhead
in software. The challenge in hardware is to maintain the benefit in performance over
module lattice-based schemes while achieving a comparable area.

The first decision when designing an accelerator for Florete is whether to break down
the big 768 × 768 polynomial multiplication into smaller polynomial multiplications or
implement a schoolbook algorithm. If we opt for the former, we only need to implement
the Toom-Cook 3-way evaluation and interpolation to wrap up the 256× 256 polynomial
multiplier, which can be implemented as the existing architectures in the literature. If we
opt for the latter, the resulting hardware will be 3 times slower and 3 times bigger than
the state-of-the-art 256× 256 polynomial multipliers [DFAG19, RB20]. Moreover, since
we are following a HW/SW co-design approach rather than an full hardware approach, we
can first apply Toom-Cook 3-way on software, and then reuse any 256× 256 polynomial
multiplier available in the literature to perform the 5 multiplications on hardware. This
allows a more fine grain tuning of the implementation since we can trade-off area for
speed depending on the needs of our application. Fig. 2 summarizes the data flow and
the partition between software and hardware. Instantiating 5 256 × 256 multipliers in
parallel yields to a 5 times larger area while achieving the same performance for a 768×768
multiplication as for a single 256× 256 multiplication. Alternatively, we can utilize as little
area as for a single 256× 256 multiplication to perform the full 768× 768 multiplication in
5 times more clock cycles. Since we want to show that the improved efficiency is due to
our design of Florete rather than to a carefully optimized implementation, we choose to
instantiate only one 256× 256 polynomial multiplier.

256 x 256

multiplier

A B

a
0

b
0

a
1

b
1

w
0

a
4

b
4

256 x 256

multiplier

w
1

256 x 256

multiplier

w
4

C

HW

ToomCook-3

evaluation

ToomCook-3

interpolation

A= x B

Figure 2: Proposed HW/SW partition for a Florete accelerator

Regarding the choice for the 256× 256 polynomial multiplier, we consider the three
options available in the literature. The first [DFAG19] implements a schoolbook multiplier
that instantiates 256 multiply-and-accumulate (MAC) units in parallel to perform the

490 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

innermost loop in a single clock cycle, thus iterating only over the outermost loop. The
MAC units are implemented using the DSP primitives available in the FPGA. The problem
of this approach is that such a large number of DSP units is only available in the most high
end FPGAs, like the UltraScale+ family of Xilinx where it has been implemented. In more
standard devices the available number of DSPs imposes a limitation for implementing this
approach. The second option [MTK+20] implements a 256×256 multiplier that uses Toom-
Cook 4-way to break down one multiplication into 7 64× 64 polynomial multiplications
that are performed in parallel by compact units. While the performance is worse than
the previous method, the design is very compact and it can be applied directly on any
FPGA requiring only 28 DSP units, and for any coefficient size for both operands. The
third option [RB20] implements a shift register based approach as in the first option, but
eliminates the need of DSP units by taking advantage of the fact that the coefficients
of one operand, the secret vector, are small. Instead, custom MAC units based on a
coefficient-wise shift-and-add are implemented. In addition to this, the latency is halved
by embedding the negacyclic convolution in the multiplication. We cannot take advantage
of this because the result should be unwrapped for the interpolation of Toom-Cook 3-way.
Furthermore, we cannot take advantage of the same shift-and-add MAC units because
prior to the 256 × 256 multiplication the operands grow due to the Toom-Cook 3-way
evaluation. Therefore, we implement a design based on [MTK+20]. Results are discussed
in Sec. 5.4 and compared to other implementations in our suite and in the state-of-the-art.

5.2 Espada on hardware
Module lattices are in general friendly towards parallelization due to the matrix-vector
multiplication. Furthermore, when we use an algorithm to break a large polynomial
multiplication into several smaller polynomial multiplications, e.g., using Toom-Cook, we
are generating new parallelisms. However, the latter comes with a computational overhead
due to the evaluation and interpolation steps of such algorithm. The parameter choices for
Espada seek to exploit the inherent parallelism of matrix-vector multiplication even further
while avoiding the extra cost of breaking down large polynomial multiplications. This
translates into compactness by design in single instruction single data (SISD) processors
as shown in Sec. 4.2. The drawback of Espada with respect to other lattice-based KEMs
is the increased number of polynomial multiplications and randomness requirements. The
challenge in hardware is to exploit the parallelism effectively to bring Espada performance
close to the state-of-the-art.

Fig. 3 shows our proposed architecture to exploit the parallelism of Espada’s matrix-
vector multiplication. For a public matrix of dimension l × l, l polynomial multipliers are
instantiated in parallel. Each of the parallel multipliers is fed with a row of the public
matrix. The second operand. which is the corresponding polynomial of the secret on each
iteration, is the same for all multipliers. Each multiplier reads and writes data to a small
local memory implemented as LUT-based RAM to avoid the large penalization of accessing
in parallel the system memory. This distributed memory is also filled at the same time as
the polynomials are being transferred to the memory to minimize the loading penalization.
The second operand can be sent simultaneously to all multipliers, so it does not incur an
additional overhead. The result accumulated on the i-th multiplier corresponds to the i-th
row-vector product. Note that this architecture exploits the parallelism at matrix-vector
level while still leaves room for a certain trade-off between area and performance with the
design of the 64× 64 polynomial multipliers.

The proposed parameters for achieving a NIST security level 3 with Espada is set as l =
12. While allowing a high degree of parallelization, this also imposes an important constraint
on the design of the 64 × 64 polynomial multipliers. Figure 4 shows a parameterizable
architecture for such multiplier. The number of arithmetic units, implemented with
native DSP primitives for efficiency, can be increased or decreased for achieving a higher

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 491

64 x 64
multiplier

64 x 64
multiplier

64 x 64
multiplier

+

+

+

c0

c1

c11

a0,0a0,1a0,2

a1,0a1,1a1,2

a11,0a11,1a11,2

s0s1s2s11

Figure 3: Parallel architecture for matrix-vector multiplication in Espada

performance or a lower area utilization. In our implementation, this circuit will be
instantiated 12 times in parallel. To guarantee that the FPGA resources will not be
exhausted, we choose 4 DSP units per polynomial multiplier, which add up to 48 overall.
In Sec. 5.4 we include performance and area results and discuss them in detail.

pre-load

MEMORY

ai

DSP

s0+j s1+j sn+j

+

c0

DSP

+

c0

Figure 4: Architecture of the compact 64× 64 polynomial multiplier used for Espada

5.3 Sable on hardware
In contrast with Florete and Espada that are not similar to existing schemes, the design
of Sable is close to Saber. As explained in Sec. 3.4, our contribution here is on the
selection of more efficient parameters for Saber by applying the latest results of research
on lattices. From an implementation point of view, all the existing research on Saber
implementations can be applied directly to Sable. In particular, the implementations
in [DFAG19] and [MTK+20] should be readily available to support Sable parameters
owing to the higher flexibility offered by HW/SW co-designed accelerators. The processor
in [RB20] implements an instruction set architecture (ISA) with a unified sampling module
to give support to LightSaber, Saber and FireSaber parameters. These three parameter
sets sample the secrets from a centered binomial distribution with different η values,
being η = 5, 4, 3, respectively. This module being extended to support also η = 1, such
processor shall also serve for accelerating Sable. Moreover, any arithmetic module of a
Saber processor can be directly reused for Sable after sign-extending the most significant
bit of every secret coefficient.

Although existing Saber co-processors can be reused for Sable, the secrets of our scheme
are smaller. The architectures in [DFAG19] and [MTK+20] are more generic, but the
one proposed in [RB20] exploits the small secrets to achieve high performance without
exhausting the FPGA resources. We optimize their architecture for our parameters, which
allows us to substantially reduce the area requirements without a performance loss. Figure 5
draws our proposed architecture. The dashed box highlights the arithmetic unit, which is
instantiated 256 times for a full parallel multiplication. For the arithmetic unit we use a

492 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

custom architecture which is very efficient for 2 bits secrets. If the least significant bit of
the secret coefficient is zero, the value in the accumulator register does not change, and it
is irrelevant if the other secret bit is 0 or 1. If the least significant bit of the secret is one,
the current coefficient of a will be either add or subtract from the result depending on the
most significant bit of the secret. The multiplier implements 256 arithmetic units for a
fully parallelized multiplication. Our parameters allow us to pack more secret coefficients
in less memory, therefore we can reduce the overhead for loading the secret register. The
negacyclic convolution is performed in-place and the result is stored in the accumulator
registers. These registers can be reset to perform a polynomial multiplication, or preserved
to perform the row-column multiplication in the matrix-vector multiplication saving up the
time spent on the additions. The performance and area figures of our design are discussed
in Sec. 5.4 as for the implementations of Florete and Espada.

s0 s1 s2 s255

si,0

si,1

pre-load

MEMORY

ai

+

c0

0

s0,1

s0,0

s0,1
rstn

s0

+

cj

0

sj,1

sj,0

sj,1

sj
rstn

Figure 5: Parallel architecture of Sable polynomial multiplier

5.4 Results
We have implemented all our hardware designs using the Vivado Design Suite 2018.1 and
targeting the Xilinx ZedBoard Zynq-7000 AP SoC XC7Z020-CLG484 and runnning the
synthesis and implementation with the default strategies. We use the ARM Cortex-A9
CPU running at 666 MHz available in the same chip to send the data and commands to
the hardware accelerator, which in turn runs at 125 MHz for Florete and Espada, and
at 150 MHz for Sable. Table 5 shows a comparison for each scheme in Scabbard when
implemented only on SW or accelerated by the multiplier available in hardware. For
Espada we use the multiplier described in Sec. 5.2, while for Sable we show the speed-ups
that can be obtained by the compact multiplier described in Sec. 5.1 and by the high
speed multiplier described in Sec. 5.3. We include Saber because the implementation
in [MTK+20] also follows a HW/SW co-design approach which allows a fair comparison.
We include the total area requirements of these three HW/SW co-processors in Appendix F.
In the following, we restrict our discussion to the multiplier architectures, which is the only
block implemented on hardware, and allows us a fair comparison to the state of the art.

In Table 6 we show the area requirements of the polynomial multiplier and compare it
with the compact multiplier for Saber in [MTK+20] and the high performance multiplier
for Saber in [RB20]. In particular, we compare the compact designs for Florete and Espada
in rows 1 and 2 with the compact Saber processor from [MTK+20] in row 4, and the high
speed multiplier for Sable in row 3 to the fast Saber multiplier from [RB20] in row 5. We
choose to compare our designs with Saber because it is the most well-known LWR-based
scheme and all our schemes are also based on variants of the LWR problem. Also, note

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 493

Table 5: Performance comparison between schoolbook implementations on software and
the speed-up achieved by the polynomial multiplier on hardware.
∗ using the high speed 256× 256 multiplier † using the compact 256× 256 multiplier

Performance on Zedboard
(SW only) - [µs]

Performance on Zedboard
(HW/SW) - [µs] Speed up

Scheme name

KeyGen Encaps Decaps KeyGen Encaps Decaps KeyGen Encaps Decaps

Espada 51373 55706 58527 9618 10460 9820 5.3 5.3 6.0
Sable∗ 2406 3114 2765 19.5 20.1 27.9
Sable† 47032 62611 77095 2958 3714 3419 15.9 16.9 22.5

Saber [MTK+20] 17659 22438 27001 3273 4147 3844 5.4 5.4 7.0

that we compare the performance of a full matrix-vector multiplication rather than a single
polynomial multiplication because otherwise Florete may seem the least efficient solution
when it is actually the opposite, and Espada may seem an order of magnitude faster due
to the small polynomials and large matrix dimension.

Table 6: Area and performance results of the polynomial arithmetic on hardware for our
schemes and state-of-the-art Saber

Scheme Platform f LUTs FFs DSPs tmvmul
1 Florete [Ours] Zedboard 125 2,878 1,263 38 88 µs
2 Espada [Ours] Zedboard 125 4,150 2,537 48 111 µs
3 Sable [Ours] Zedboard 150 6,084 3,354 0 17 µs
4 Saber [MTK+20] Zedboard 125 2,927 1,279 38 158 µs
5 Saber [RB20] Ultrascale+ 250 17,429 5,083 0 11 µs

Florete and Espada follow two different approaches for improving the efficiency of a
KEM with respect to Saber. Florete is a ring scheme, which means that it is inherently
faster in software, as shown in Table 3 and 4. In hardware this translates into achieving
a higher performance than Saber when using equivalent architectures. We can observe
this by comparing the results of the first and fourth rows in Table 6. The small ring
chosen to build the module-lattice problem in Espada makes it inherently compact on
software, as shown in Table 4. Despite being considerably slower on software than other
schemes, this difference can be mitigated, or even overcome for the comparison with Saber,
thanks to the highly parallelizable matrix-vector multiplication. In this work we have
opted for a compact design of the parallel multipliers which has turn in a reduced area
consumption that still outperforms Saber. We leave as future work the exploration of
high performance architectures for Florete and Espada. Lastly, in Sable we have exploited
the improved parameters to reduce the size of the secrets. To demonstrate the success
of our approach, we have implemented a multiplier architecture that exploits this fact,
similarly to the implementation of Saber in the last row. Comparing the third and fifth
rows, we can observe that our approach greatly reduces the area requirements. As for the
performance, it should be noted that the clock cycles of both designs are nearly equivalent,
but the superior technology of UltraScale+ boards with respect to Zedboards allows a
higher operating frequency which translates into a faster execution time.

6 Conclusion
We have provided a suite of lattice-based KEMs which improves upon almost all of the
practical aspects of state-of-the-art. We alluded many research directions throughout
this work and our techniques can be readily adapted for different schemes. Although we
provide optimal implementations of our schemes and suggest architectures for hardware

494 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

acceleration, we strongly believe that more research is necessary on the implementation
aspects. We also plan to provide different parameter sets to satisfy different security
requirements in the future. In conclusion, we believe this work will open up a new research
direction and it will inspire more people to work further in this direction.

7 Acknowledgements
This work was partially supported by the Research Council KU Leuven: C16/15/058, by
the European Commission through the Horizon 2020 research and innovation programme
under grant agreement Cathedral ERC Advanced Grant 695305 and grant agreement
H2020-DS-LEIT-2017-780108 FENTEC, and by CyberSecurity Research Flanders with
reference number VR20192203. In addition, Angshuman Karmakar is funded by FWO
(Research Foundation âĂŞ Flanders) as junior post-doctorate fellow.

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 495

References
[AAJB+19] Erdem Alkim, Roberto Avanzi, Léo Ducas Joppe Bos, Antonio de la Piedra,

Thomas Pöppelmann, Peter Schwabe, and Douglas Stebila. Newhope :
Algorithm specifications and supporting documentation. Second PQC
Standardization Conference, 2019, University of California, Santa Barbara,
USA, 2019.

[AASA+17] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper, Quynh
Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moodyand Rene Peralta,
Ray Perlner, Angela Robinson, and Daniel Smith-Tone. Status report on
the second round of the nist post-quantum cryptography standardization
process. https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.
pdf, 2017. [Online; accessed 10-Oct-2020].

[ABC19] Erdem Alkım, Yusuf Alper Bilgin, and Murat Cenk. Compact and Simple
RLWE Based Key Encapsulation Mechanism. In Peter Schwabe and Nicolas
Thériault, editors, Progress in Cryptology – LATINCRYPT 2019, pages
237–256, Cham, 2019. Springer International Publishing.

[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-kyber. algorithm specifications and support-
ing documentation. (round 2 submission). https://pq-crystals.org/
kyber/data/kyber-specification-round2.pdf, 2019. [Online; accessed
30-January-2021].

[ABD+21] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-Kyber. algorithm specifications and supporting
documentation. (round 3 submission). https://pq-crystals.org/kyber/
data/kyber-specification-round3-20210131.pdf, 2021. [Online; ac-
cessed 30-January-2021].

[ACC+20] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, HÃĳlya
Evkan, Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben
Niederhagen, Cheng-Jhih Shih, Julian WÃďlde, and Bo-Yin Yang. Polyno-
mial multiplication in ntru prime: Comparison of optimization strategies on
cortex-m4. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(1):217–238, Dec. 2020.

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast
cryptographic primitives and circular-secure encryption based on hard
learning problems. In Shai Halevi, editor, Advances in Cryptology - CRYPTO
2009, pages 595–618, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[ADP18] Martin Albrecht, Amit Deo, and Kenneth Paterson. Cold boot attacks
on ring and module lwe keys under the NTT. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2018(3):173–213, Aug.
2018.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-
quantum key exchange – a new hope. In USENIX Security 2016, 2016.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Cryptology ePrint Archive, Report 2015/046, 2015.
https://eprint.iacr.org/2015/046.

https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8309.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round2.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://eprint.iacr.org/2015/046

496 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

[Bar87] Paul Barrett. Implementing the rivest shamir and adleman public key
encryption algorithm on a standard digital signal processor. In Andrew M.
Odlyzko, editor, Advances in Cryptology — CRYPTO’ 86, pages 311–323,
Berlin, Heidelberg, 1987. Springer Berlin Heidelberg.

[BBG+17] Hayo Baan, Sauvik Bhattacharya, Óscar García-Morchón, Ronald Rietman,
Ludo Tolhuizen, Jose Luis Torre-Arce, and Zhenfei Zhang. Round2: KEM
and PKE based on GLWR. IACR Cryptol. ePrint Arch., 2017:1183, 2017.

[BCLvV16] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and
Christine van Vredendaal. NTRU prime: reducing attack surface at
low cost. Cryptology ePrint Archive, Report 2016/461, 2016. https:
//eprint.iacr.org/2016/461.

[BDK+17] Joppe Bos, LÃľo Ducas, Eike Kiltz, TancrÃĺde Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, and Damien StehlÃľ. CRYS-
TALS – Kyber: a CCA-secure module-lattice-based KEM. Cryptology ePrint
Archive, Report 2017/634, 2017. http://eprint.iacr.org/2017/634.

[BDK+20] Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar,
Josep Balasch, and Ingrid Verbauwhede. A side-channel resistant imple-
mentation of SABER. Cryptology ePrint Archive, Report 2020/733, 2020.
https://eprint.iacr.org/2020/733.

[Ber01] Daniel J. Bernstein. Multidigit multiplication for mathematicians. Online,
2001. https://cr.yp.to/papers/m3.ps.

[BGML+18] Sauvik Bhattacharya, Oscar Garcia-Morchon, Thijs Laarhoven, Ronald
Rietman, Markku-Juhani O. Saarinen, Ludo Tolhuizen, and Zhenfei Zhang.
Round5: KEM and PKE based on GLWR. Cryptology ePrint Archive,
Report 2018/725, 2018. https://eprint.iacr.org/2018/725.

[BMD+20] Andrea Basso, Jose Maria Bermudo Mera, Jan-Pieter D’Anvers, Angshu-
man Karmakar, Sujoy Sinha Roy, Michiel Van Beirendonck, and Fred-
erik Vercauteren. SABER: Mod-LWR based KEM (Round 3 Submis-
sion). https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/
saberspecround3.pdf, 2020. [Online; accessed 30-January-2021].

[BP18] Leon Groot Bruinderink and Peter Pessl. Differential fault attacks on deter-
ministic lattice signatures. Cryptology ePrint Archive, Report 2018/355,
2018. https://eprint.iacr.org/2018/355.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions
and lattices. In EUROCRYPT 2012, pages 719–737, 2012.

[BUC19] Utsav Banerjee, Tenzin S. Ukyab, and Anantha P. Chandrakasan. Sapphire:
A configurable crypto-processor for post-quantum lattice-based protocols
(extended version). Cryptology ePrint Archive, Report 2019/1140, 2019.
https://eprint.iacr.org/2019/1140.

[BZ06] Marco Bodrato and Alberto Zanoni. What about Toom-Cook Matrices
Optimality. Author’s website, 2006. http://marco.bodrato.it/papers/
WhatAboutToomCookMatricesOptimality.pdf.

[CCLS20] Hao Chen, Lynn Chua, Kristin Lauter, and Yongsoo Song. On the con-
crete security of lwe with small secret. Cryptology ePrint Archive, Report
2020/539, 2020. https://eprint.iacr.org/2020/539.

https://eprint.iacr.org/2016/461
https://eprint.iacr.org/2016/461
http://eprint.iacr.org/2017/634
https://eprint.iacr.org/2020/733
https://cr.yp.to/papers/m3.ps
https://eprint.iacr.org/2018/725
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://eprint.iacr.org/2018/355
https://eprint.iacr.org/2019/1140
http://marco.bodrato.it/papers/WhatAboutToomCookMatricesOptimality.pdf
http://marco.bodrato.it/papers/WhatAboutToomCookMatricesOptimality.pdf
https://eprint.iacr.org/2020/539

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 497

[CDH+19] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas HÃĳlsing, Joost
Rijneveld, John M. Schanck, Peter Schwabe, William Whyte, and Zhenfei
Zhang. NTRU algorithm specifications and supporting documentation,.
Second PQC Standardization Conference, 2019, University of California,
Santa Barbara, USA, 2019.

[CHK+20] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. Ntt multiplication for ntt-
unfriendly rings. Cryptology ePrint Archive, Report 2020/1397, 2020.
https://eprint.iacr.org/2020/1397.

[CKLS18] Jung Hee Cheon, Duhyeong Kim, Joohee Lee, and Yongsoo Song. Lizard:
Cut off the tail! A practical post-quantum public-key encryption from LWE
and LWR. In Dario Catalano and Roberto De Prisco, editors, Security
and Cryptography for Networks - 11th International Conference, SCN 2018,
Amalfi, Italy, September 5-7, 2018, Proceedings, volume 11035 of Lecture
Notes in Computer Science, pages 160–177. Springer, 2018.

[CN11] Yuanmi Chen and Phong Q. Nguyen. Bkz 2.0: Better lattice security
estimates. In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in
Cryptology – ASIACRYPT 2011, pages 1–20, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[Coo66] S. A. Cook. On the Minimum Computation Time of Functions. PhD thesis,
Harvard University, 1966. pp. 51-77.

[DDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. LWE
with side information: Attacks and concrete security estimation. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryp-
tology - CRYPTO 2020 - 40th Annual International Cryptology Conference,
CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings,
Part II, volume 12171 of Lecture Notes in Computer Science, pages 329–358.
Springer, 2020.

[DFAG19] Viet B. Dang, Farnoud Farahmand, Michal Andrzejczak, and Kris Gaj.
Implementing and benchmarking three lattice-based post-quantum cryp-
tography algorithms using software/hardware codesign. In International
Conference on Field-Programmable Technology, FPT 2019, Tianjin, China,
December 9-13, 2019, pages 206–214, 2019.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.

[Din12] Jintai Ding. A simple provably secure key exchange scheme based on the
learning with errors problem. IACR Cryptol. ePrint Arch., 2012:688, 2012.

[DKL+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter
Schwabe, Gregor Seiler, and Damien Stehlé. Crystals-dilithium: A lattice-
based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2018(1):238–268, 2018.

[DKRV19] Jan Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Mod-LWR based kem,. Second PQC Standardization
Conference, 2019, University of California, Santa Barbara, USA, 2019.

https://eprint.iacr.org/2020/1397

498 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

[DKSRV18] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Fred-
erik Vercauteren. Saber: Module-LWR based key exchange, CPA-Secure
Encryption and CCA-Secure KEM. In Antoine Joux, Abderrahmane Nitaj,
and Tajjeeddine Rachidi, editors, Progress in Cryptology – AFRICACRYPT
2018, pages 282–305, Cham, 2018. Springer International Publishing.

[DSDGR20] Dana Dachman-Soled, LÃľo Ducas, Huijing Gong, and MÃľlissa Rossi. LWE
with side information: Attacks and concrete security estimation. Cryptology
ePrint Archive, Report 2020/292, 2020. https://eprint.iacr.org/2020/
292.

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid
Verbauwhede. Timing attacks on error correcting codes in post-quantum
schemes. Cryptology ePrint Archive, Report 2019/292, 2019. https://
eprint.iacr.org/2019/292.

[FHK+18] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-fourier lattice-based compact
signatures over ntru, 2018. [Online; accessed 10-October-2020].

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Michael J. Wiener, editor, Advances
in Cryptology - CRYPTO ’99, 19th Annual International Cryptology Con-
ference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
volume 1666 of Lecture Notes in Computer Science, pages 537–554. Springer,
1999.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology — CRYPTO’ 86, pages 186–194, Berlin, Heidelberg,
1987. Springer Berlin Heidelberg.

[GFSV09] Xu Guo, Junfeng Fan, Patrick Schaumont, and Ingrid Verbauwhede. Pro-
grammable and parallel ecc coprocessor architecture: Tradeoffs between
area, speed and security. In Christophe Clavier and Kris Gaj, editors, Cryp-
tographic Hardware and Embedded Systems - CHES 2009, pages 289–303,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[GJY19] Qian Guo, Thomas Johansson, and Jing Yang. A novel CCA attack us-
ing Decryption Errors against LAC. Cryptology ePrint Archive, Report
2019/1308, 2019. https://eprint.iacr.org/2019/1308.

[GMR20] Aurelien Greuet, Simon Montoya, and Guenael Renault. Attack on LAC key
exchange in misuse situation. Cryptology ePrint Archive, Report 2020/063,
2020. https://eprint.iacr.org/2020/063.

[Goo52] I.J. Good. Random motion on a finite abelian group. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 48(2):368âĂŞ368, 1952.

[GPV07] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. Cryptology ePrint Archive,
Report 2007/432, 2007. https://eprint.iacr.org/2007/432.

[HOKG18] James Howe, Tobias Oder, Markus Krausz, and Tim Güneysu. Standard
lattice-based key encapsulation on embedded devices. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):372–393, 2018.

https://eprint.iacr.org/2020/292
https://eprint.iacr.org/2020/292
https://eprint.iacr.org/2019/292
https://eprint.iacr.org/2019/292
https://eprint.iacr.org/2019/1308
https://eprint.iacr.org/2020/063
https://eprint.iacr.org/2007/432

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 499

[JZC+17] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. Post-
quantum IND-CCA-secure KEM without additional hash. IACR Cryptol.
ePrint Arch., 2017:1096, 2017.

[KBMSRV18] Angshuman Karmakar, Jose Maria Bermudo Mera, Sujoy Sinha Roy, and
Ingrid Verbauwhede. Saber on arm. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2018(3):243–266, Aug. 2018.

[Kec] Keccak Team. Hardware resources - Keccak in VHDL. [Online; accessed
08-February-2021].

[KO62] A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by
automatic computers. Proceedings of USSR Academy of Sciences, 145(7):293–
294, 1962.

[KRS18] Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster
multiplication in Z2m [x] on Cortex-M4 to speed up NIST PQC candidates.
Cryptology ePrint Archive, Report 2018/1018, 2018. https://eprint.
iacr.org/2018/1018,.

[KRSS] Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
PQM4: Post-quantum crypto library for the ARM Cortex-M4. https:
//github.com/mupq/pqm4; Accessed 30-January-2021.

[LLZ+18] Xianhui Lu, Yamin Liu, Zhenfei Zhang, Dingding Jia, Haiyang Xue, Jingnan
He, Bao Li, and Kunpeng Wang. LAC: Practical Ring-LWE Based Public-
Key Encryption with Byte-Level Modulus. Cryptology ePrint Archive,
Report 2018/1009, 2018. https://eprint.iacr.org/2018/1009.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. In Henri Gilbert, editor, Advances in
Cryptology – EUROCRYPT 2010: 29th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, French Riviera,
May 30 – June 3, 2010. Proceedings, pages 1–23. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Designs, Codes and Cryptography, 75(3):565–599, Jun
2015.

[LS19] Vadim Lyubashevsky and Gregor Seiler. Nttru: Truly fast ntru using ntt.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2019(3):180–201, May 2019.

[LXJL11] Z. Liu, L. Xia, J. Jing, and P. Liu. A tiny rsa coprocessor based on opti-
mized systolic montgomery architecture. In Proceedings of the International
Conference on Security and Cryptography, pages 105–113, 2011.

[Lyu09] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice
and factoring-based signatures. In Mitsuru Matsui, editor, Advances in
Cryptology – ASIACRYPT 2009, pages 598–616, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[MKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
Time-memory trade-off in Toom-Cook multiplication: an application to
module-lattice based cryptography. IACR Cryptol. ePrint Arch., 2020:268,
2020.

https://eprint.iacr.org/2018/1018
https://eprint.iacr.org/2018/1018
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://eprint.iacr.org/2018/1009

500 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

[Mon85] Peter L Montgomery. Modular multiplication without trial division. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 44(2):519–
521, 1985.

[MTK+20] Jose Maria Bermudo Mera, Furkan Turan, Angshuman Karmakar, Su-
joy Sinha Roy, and Ingrid Verbauwhede. Compact domain-specific co-
processor for accelerating module lattice-based key encapsulation mechanism.
IACR Cryptol. ePrint Arch., 2020:321, 2020.

[NIS17] NIST. Post-quantum cryptography standardization. https:
//csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Post-Quantum-Cryptography-Standardization, 2017. [Online; ac-
cessed 10-Oct-2020].

[Pei14] Chris Peikert. Lattice cryptography for the internet. IACR Cryptol. ePrint
Arch., 2014:70, 2014.

[Pol71] J. M. Pollard. The fast fourier transform in a finite field. Mathematics of
Computation, 25(114):365–374, 1971.

[PPM17] Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel
attacks on masked lattice-based encryption. Cryptology ePrint Archive,
Report 2017/594, 2017. https://eprint.iacr.org/2017/594.

[RB20] Sujoy Sinha Roy and Andrea Basso. High-speed instruction-set coprocessor
for lattice-based key encapsulation mechanism: Saber in hardware. IACR
Cryptol. ePrint Arch., 2020:434, 2020.

[Reg04] Oded Regev. New Lattice-based Cryptographic Constructions, volume 51-6,
pages 899–942. ACM, New York, NY, USA, November 2004.

[RSSS17] Miruna Roşca, Amin Sakzad, Damien Stehlé, and Ron Steinfeld. Middle-
product learning with errors. In Jonathan Katz and Hovav Shacham,
editors, Advances in Cryptology – CRYPTO 2017, pages 283–297, Cham,
2017. Springer International Publishing.

[SC19] Yongha Son and Jung Hee Cheon. Revisiting the hybrid attack on sparse
and ternary secret lwe. Cryptology ePrint Archive, Report 2019/1019, 2019.
https://eprint.iacr.org/2019/1019.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Math. Program.,
66:181–199, 1994.

[Son19] Yongha Son. A note on parameter choices of round5. Cryptology ePrint
Archive, Report 2019/949, 2019. https://eprint.iacr.org/2019/949.

[SSZ19] Ron Steinfeld, Amin Sakzad, and Raymond K. Zhao. Practical MP-LWE-
based encryption balancing security-risk vs. efficiency. Cryptology ePrint
Archive, Report 2019/1179, 2019. https://eprint.iacr.org/2019/1179.

[Too63] A.L Toom. The complexity of a scheme of functional elements realizing the
multiplication of integers. In Soviet Mathematics-Doklady, volume 7, pages
714–716, 1963. http://toomandre.com/my-articles/engmat/MULT-E.PDF.

[TRG17] Ludo Tolhuizen, Ronald Rietman, and Óscar García-Morchón. Improved
key-reconciliation method. IACR Cryptol. ePrint Arch., 2017:295, 2017.

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization
https://eprint.iacr.org/2017/594
https://eprint.iacr.org/2019/1019
https://eprint.iacr.org/2019/949
https://eprint.iacr.org/2019/1179

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 501

A IND-RND security of LWR based KEX
The advantage of the adversary A in distingishing between an output from a pseudo-
random generator (prg) f and a random sample from uniform distribution is [DKSRV18]
defined by

Advprgf (A) =

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = 1 :
r ← U({0, 1}m);

s← f(r) ∈ ({0, 1}n);
b = A(s);

−Pr

[
b = 1 : s← U({0, 1}n)

b = A(s);

]

∣∣∣∣∣∣∣∣∣∣∣∣
,

where n1 ≤ n2. Then f is called a pseudo-random generator if for any adversary A,
Advprgf (A) ≤ negligible.

The advantage of an adversary A against the LWR problem is defined by

AdvLWR(A) =

∣∣∣∣∣∣∣∣∣∣
Pr

(
b′ = 1 : A← U((Rn

q)l×l); s← βη((Rn
q)l);

b′ = A(A, b(p/q)A · se);

)

−Pr
(
b′ = 1 : A← U((Rn

q)l×l); s← βη((Rn
q)l); b← U((Rn

p)l);
b′ = A(A,b);

)
∣∣∣∣∣∣∣∣∣∣
.

As LWR problem is hard, AdvLWR(A) is negligible.

Theorem 4. LWR based KEX is IND-RND secure if q/p ≤ p/(2Bt).

Proof. For proving (Ring/Module)LWR based KEX is IND-RND secure, we need to show
that for every adversary A

Advind-rndKEX (A) ≤ negligible .

It is sufficient to show that, for any adversary A against the KEX, there exists three
adversaries B1,B2,B3 such that

Advind-rndKEX (A) ≤ AdvprgGen(B1) + AdvLWR(B2) + AdvLWR(B3) .

To prove that, we define six indistinguishability games Gi where i = 1, 2, · · · , 6 in Fig. 6.
Let EA

i be the event when adversary A wins the game Gi. The advantage of any
adversary A against the game Gi is defined by AdvGi(A) =

∣∣Pr[EA
i

]
− 1/2

∣∣ . Note
that, AdvG1(A) = Advind-rndKEX (A) . In game G2, the public matrix(in case of ring the
dimension of the matrix is 1 × 1) is generated randomly, not by the pseudo-random
generator genl×ln (). If any adversary B1 can differentiate between these two games, then
it can distinguish between the pseudo-randomly generated polynomial and the randomly
generated polynomial. Hence,

∣∣Pr[EA
1
]
− Pr

[
EA

2
]∣∣ ≤ Advprg(B1) . In game G3, b is

generated uniformly random from (Rn
p)l and (A,b) is a uniformly generated random

sample. But, in game G2, (A,b) is sampled from a LWR distribution. If any adversary B2
can distinguish between these two games, then it can solve the decisional LWR problem.
Therefore,

∣∣Pr[EA
2
]
− Pr

[
EA

3
]∣∣ ≤ AdvLWR(B2) . In game G3, c′ is reduced by εp− εt−B

bits, whereas in Game G4, this number is εq − εp. As (εq − εp) ≤ (εp − εt − B) then
in game G4, we are losing fewer or equal bits. Then the advantage is greater or equal
in game G4. Hence, for any adversary A there exists another adversary A′ such that
AdvG3(A) ≤ AdvG4(A′) . Then,

∣∣∣Pr[EA
3
]
− Pr

[
EA′

3
]∣∣∣ ≤ 0 . In game G5, c′ is generated

from the multiplication of b with l entries from Rn
q and s′ instead of bits(s′, εp, εp). It

will not change the result c′. As p|q, then generating the polynomial b from Ul(Rn
q) in

place of Ul(Rn
p) gives more or at least same advantage to the adversary of game G5 than

502 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

Game G1:

1. seedA ← U({0, 1}256)

2. A← genl×ln (seedA)

3. s, s′ ← βη((Rnq)l)

4. b = bits(A · s + h1, εq, εp)

5. b′ = bits(AT · s′ +
h1, εq, εp)

6. u′ = bT ·bits(s′, εp, εp)+h1

7. c′ = bits(u′, εp − B, εt)

8. k′ = bits(u′, εp, B)

9. k̂ ← U(Rn
2B

)

10. u← U({0, 1})

11. if u = 0:
return(A,b,b′, c′, k′)

12. else:
return(A,b,b′, c′, k̂)

Game G2:

1.

2. A← U((Rnq)l×l)

3. s, s′ ← βη((Rnq)l)

4. b = bits(A · s + h1, εq, εp)

5. b′ = bits(AT · s′ +
h1, εq, εp)

6. u′ = bT ·bits(s′, εp, εp)+h1

7. c′ = bits(u′, εp − B, εt)

8. k′ = bits(u′, εp, B)

9. k̂ ← U(Rn
2B

)

10. u← U({0, 1})

11. if u = 0:
return(A,b,b′, c′, k′)

12. else:
return(A,b,b′, c′, k̂)

Game G3:

1.

2. A← U((Rnq)l×l)

3. s′ ← βη((Rnq)l)

4. b← U((Rnp)l)

5. b′ = bits(AT · s′ +
h1, εq, εp)

6. u′ = bT ·bits(s′, εp, εp)+h1

7. c′ = bits(u′, εp − B, εt)

8. k′ = bits(u′, εp, B)

9. k̂ ← U(Rn
2B

)

10. u← U({0, 1})

11. if u = 0:
return(A,b,b′, c′, k′)

12. else:
return(A,b,b′, c′, k̂)

Game G4:

1.

2. A← U((Rnq)l×l)

3. s′ ← βη((Rnq)l)

4. b← U((Rnp)l)

5. b′ = bits(AT · s′ +
h1, εq, εp)

6. u′ = bT ·bits(s′, εp, εp)+h1

7. c′ = bits(u′, εq −B, εp −B)

8. k′ = bits(u′, εp, B)

9. k̂ ← U(Rn
2B

)

10. u← U({0, 1})

11. if u = 0:
return(A,b,b′, c′, k′)

12. else:
return(A,b,b′, c′, k̂)

Game G5:

1.

2. A← U((Rnq)l×l)

3. s′ ← βη((Rnq)l)

4. b← U((Rnq)l)

5. b′ = bits(AT · s′ +
h1, εq, εp)

6. u′ = bits(bT · s′+h1, εq, εp)

7. c′ = bits(u′, εp−B, εp−B)

8. k′ = bits(u′, εp, B)

9. k̂ ← U(Rn
2B

)

10. u← U({0, 1})

11. if u = 0:
return(A,b,b′, c′, k′)

12. else:
return(A,b,b′, c′, k̂)

Game G6:

1.

2. A← U((Rnq)l×l)

4. b← U((Rnq)l)

5. b′ ← U((Rnp)l)

6. u′ ← U(Rnp)

7. c′ = bits(u′, εp−B, εp−B)

8. k′ = bits(u′, εp, B)

9. k̂ ← U(Rn
2B

)

10. u← U({0, 1})

11. if u = 0:
return(A,b,b′, c′, k′)

12. else:
return(A,b,b′, c′, k̂)

Figure 6: Sequence of games that are used in the proof of Theorem 4

the adversary of G4. Eliminating the last εq − εp bits of u′ will not affect this as they
are not needed further. For any adversary A′ there exists another adversary A′′ such
that AdvG4(A′) ≤ AdvG5(A′′) . Then,

∣∣∣Pr[EA′

4
]
− Pr

[
EA′′

5
]∣∣∣ ≤ 0 . In game G5, (b, u′) is

a LWR problem, but in G6, these are sampled uniformly random from (Rn
q)l and Rn

p

respectively. If there is an adversary B3 who can distinguish these two games, it can
solve the decisional LWR problem. Consequently,

∣∣Pr[EA
5
]
− Pr

[
EA

6
]∣∣ ≤ AdvLWR(B3) .

In game G6, b, b′, u′ all are independently and uniformly sampled. Since k′ is the first B

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 503

bits of u′, then it is also uniformly distributed. Hence,
∣∣∣Pr[EA′′

6
]∣∣∣ = 1/2 . Combining all

of these, we get

AdvG1(A) =
∣∣Pr[EA

1
]
− 1/2

∣∣ ≤ AdvprgGen(B1) + AdvLWR(B2) + AdvLWR(B3) .

B Bound in the error tolerance of the error correction
scheme

Below we establish the bound of error tolerance of the error correction scheme shown
by [Pei14, Din12]. Our proof is a simpler alternative of the proof given by Tolhuizen et
al . [TRG17].
Theorem 2. If x = y + e and |e| ≤ q

2B+1 − q
2B+εt+1 , then

Encode(x) = Encode(Decode(y, HelpDecode(x))).

Proof. We can write x as x = s · q
2B + h · q

2B+εt + g, where 0 ≤ s < 2B, 0 ≤ h < q
2B

and 0 ≤ g < q
2B+εt . Here, HelpDecode(x) = h. Then, Decode(y, h) = y − h q

2B+εt =
x− e− h q

2B+εt = s · q
2B + g − e.

Now, |g − e| ≤ q

2B+εt
− 1 + q

2B+1 −
q

2B+εt+1 = q

2B+1 + q

2B+εt+1 − 1

≤ q

2B+1 + q

2B+1 − 1 as (εt ≥ 1) = q

2B − 1

Hence, |g − e| ≤ q
2B − 1, i.e., |g − e| < q

2B . So, Encode(Decode(y, h)) = s = Encode(x) .

C Extension for NTT-friendly prime fields
A natural extension of our work here is to explore possibilities of instantiating different key-
encapsulation mechanisms for NTT-friendly prime fields. Such schemes can be considered
analogous to ring- or Module-LWE based schemes such as NewHope [AAJB+19] and
Kyber [BDK+17] which have been designed by keeping NTT-friendliness in mind. Also,
there is a concurrent work by Chung et al . [CHK+20] showed how NTT multiplication
can be used to speed-up schemes that uses NTT unfriendly power-of-two fields which
are used in this paper. The central idea is choosing a prime p such that it is able to
contain the largest possible number occurring during the execution of the scheme. For
example, in Saber [DKRV19] if the field elements in Zq are represented as [− q2 ,

q
2) then

the largest possible number can occur during polynomial multiplication in the ring Rn
q

and the absolute magnitude can be at most nq2/4. Hence, if the prime is chosen such that
it satisfies p > nq2/2 and n|(p − 1) and the multiplication is computed in Rn

p then the
correct result in Rn

q can be recovered easily due to the choice of p. Additionally, If we
consider that one of the multiplicand is sampled from a centered binomial distribution βη
and can have values between [−η, η] instead of much larger [− q2 ,

q
2) then a smaller prime

can be chosen. We call this method embedding technique. In this section, we discuss how
the schemes presented in this work can be adapted or modified for NTT-friendly prime
fields.

C.1 Florete
A straightforward approach to extend Florete using embedding strategy is to choose a prime
p which satisfies the inequalities above and facilitates 256× 256 polynomial multiplication

504 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

using NTT. Therefore multiplying two polynomials a, b ∈R768
p = Zp/(x768 − x384 + 1) is

possible by using a Toom-Cook 3-way evaluation to split each of a, b into 5 polynomials of
length 256, multiplying them by NTT, and finally combining the results using Toom-Cook
3-way interpolation. This is followed by a final reduction by the polynomial x768−x384 + 1.
However, this straightforward combination of Toom-Cook 3-way and NTT has many
problems which is unlikely to lead to an efficient multiplication strategy. First, we cannot
use the negacyclic-NTT in this strategy. As the Toom-Cook 3-way interpolation requires
the results of 256 × 256 polynomial multiplication of to be of length 511, i.e., without
the final reduction by x256 + 1. This requires the polynomials after Toom-Cook 3-way
evaluation stage to be zero-padded to double their lengths and passed to the NTT routines.
Due to this the number of memory accesses within the NTT transformations are more and
also requires storing double the amount of twiddle factors. Second, unlike Floret which is
much faster than Saber with Toom-Cook and Karatsuba based polynomial multiplication.
Embedded version of Floret will be slower than embedded version of Saber. In Saber, to
perform a matrix-vector multiplication we need 9 + 3 forward NTT transformations for the
public matrix and the secret. This is followed by 3 inverse-NTT transformations. Whereas
in Floret to multiply two polynomial a, b we need forward 10 forward NTT transformations
and 5 inverse-NTT transformation. Although the number of NTT transformations here
look similar we have to remember that the NTT transformations for Saber is faster than
embedded version of Floret. Moreover, in the overall scheme Saber can save the forward
NTT transformations of the secrets by computing them once and saving them in NTT
formats with little increase in memory requirement. In embedded version of Floret this
cannot be done by without increasing the memory usage by a large amount. Finally, the
the Toom-Cook 3-way evaluation and interpolation is costlier for embedded version of
Floret as the modular reduction is costlier in this scenario. Albeit, this overhead can be
reduced by using some techniques such as converting to Montgomery domain [Mon85] or
Barrett divisions [Bar87], this overhead is significant when compared to the free modular
reduction offered by power-of-two moduli. Hence, to apply the embedding method on
Florete, we don’t think the straightforward method as described above is very suitable.

To apply the embedding method we can apply other better strategies such as i) Good’s
FFT trick [Goo52, ACC+20, CHK+20] and ii) incomplete-NTT [ABC19, LS19]. The
Good’s trick although a better choice than the straightforward embedding technique, it
requires length doubling of the multiplicand polynomials. Also this is more useful for
schemes which uses non-cyclotomic rings such as NTRU [CDH+19].

For schemes like Florete which uses cyclotomic rings we found that the second method
most optimal in our analysis. The main idea of this method is that if ζ1 and ζ2 are
two primitive sixth roots of unity in the underlying field then as x2 − x+ 1 is the sixth
cyclotomic polynomial we have ζ1 + ζ2 = 1 and ζ1 · ζ2 = 1. Using ζ1 and ζ2 we can form
the following CRT (Chinese Remainder theorem) map for our ring,

Zp[x]/(x768 − x384 + 1) = Zp[x]/(x384 − ζ1)× Zp[x]/(x384 − ζ2)

After this step, we can perform 7 layers of standard NTT on each of Zp[x]/(x384 − ζ1) and
Zp[x]/(x384 − ζ2). After this, we are left with 256 3× 3 schoolbook multiplication modulo
x3± 1 and the reverse NTT steps to complete the multiplication in Zp[x]/(x768−x384 + 1).
Another otpimization is that during the first layer CRT map once we calculate the CRT
map modulo x384 − ζ1 we do not need to calculate the CRT map modulo x384 − ζ2 again.
Instead we can utilize the fact that ζ1 + ζ2 = 1 and calculate modulo x384 − 1 + ζ1. This
saves almost half of the modular multiplication with ζ2. For this technique we need the
prime modulus p such that there exists a γ and γ128 = ζ1. As ζ6

1 = 1, this implies γ768 = 1.
Hence additional to satisfying embedding criteria the prime p should satisfy 768|(p− 1).
Using the analysis same as Chung et al . [CHK+20] the smallest such p that can be used
for implementing Florete using embedding strategy is 1179649 = (217 ∗ 32 + 1). As Floret

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 505

is already faster than the Saber and embedded Saber, we firmly believe that applying the
embedding technique to Floret will improve its speed even more.

None of the three methods described above can avoid applying the forward NTT
transformation on the public matrix or polynomial. This is only possible in schemes which
have been designed by keeping NTT-friendliness in mind where the random public matrix
or polynomial can be assumed to be in NTT domain already. However, unlike the first two
methods the last method can be used to skip some application of forward NTT to secret
polynomial by storing the secret in the NTT domain without introducing large overhead
for memory.

C.2 Sable
Applying the embedding strategy to Sable is very straightforward. All the techniques
described by Chung et al . [CHK+20] can be applied to Sable without major changes.
Moreover, due to small q and smaller secret distribution the embedding prime p is smaller
in Sable. This offers smaller memory footprint and better efficiency than Saber. Similar
to Florete we used the analysis described by Chung et al .’s analysis to calculate the
embedding prime for Sable as shown in Table 7. This prime has been chosen such that it
supports the incomplete-NTT as described in the original work, i.e., 6 layers of radix-2
NTT followed by a 4× 4 schoolbook multiplication. We used the implementation provided
by Chung et al . to implement Sable on a Cortex-M4 microcontroller. The results are
presented in Table 8.

Table 7: Comparison of prime used in embedded Sable and embedded Saber.

Scheme name Sable Saber
Security level Low Medium High Low Medium High

Embedding prime p 1049089 1574401 2100097 20972417 25166081 25166081
Representing bits dlog2(prime)e 21 21 22 25 25 25

Table 8: Performance comparison in Cortex-M4 implementation of embedded Sable with
embedded Saber.

Cortex-M4 performance
(X1000 clock cycles)

Cortex-M4 memory
(bytes)Scheme Name KeyGen Encaps Decaps KeyGen Encaps Decaps

Sable 547 741 723 26864 28504 29536
Saber 658 864 835 27440 29080 30176

We also want to note that, here the implementation of Sable has been made with few
changes in the Chung et al .’s [CHK+20] implementation. Therefore, we do not consider
this implementation as fully optimized and it is possible to improve this code for both more
efficiency and smaller memory foot print. Sable uses a smaller modulus q and a smaller
centered binomial distribution parameter η than Saber that implies Sable requires a fewer
amount of pseudo-random numbers than Saber. Moreover, the value of η is 1 in Sable, so
we do not need load_littleendian function (used in implementation of Saber [DKRV19])
to sample the secret by following centered binomial distribution. These two facts have a
major contribution to the speed improvement of Sable. Nevertheless, we presented the
results here to demonstrate the benefits of our design.

C.3 Espada
For Espada, we can also apply the embedding technique. The embedding prime p for
the parameter set of Espada as presented in Table 2 is 75497729 = (28 ∗ 41 ∗ 7193 + 1).

506 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

Again following the argument of Chung et al . [CHK+20] we can use this prime for 4
layers of radix-2 NTT followed by a 4× 4 schoolbook multiplication. As we have shown
in this work, Espada has the smallest memory footprint among all lattice-based KEMs.
Applying embedding technique will further improve the memory footprint since we do not
need to store the intermediate polyonomials and results as we need for 2-levels Karatsuba
implementation used here. Further, we believe that the embedding technique can improve
the speed also of Espada.

C.4 NTT friendly instantiations
For NTT friendly instantiations where the NTT-friendly prime moduli p is fixed during
design phase, we think it will be interesting to an extension of Espada, i.e., a KEM based on
Module-LWE problem where the length of the polynomials are 64. For the other two cases,
there already exists schemes such as compact-LWE described by Alkim et al . [ABC19] and
Kyber [ABD+21] which are very efficient and compact. One thing to note that, Kyber uses
rounding to reduce the length of their ciphertext. This introduces some rounding errors.
However, while calculating the security they do not consider this rounding this rounding
error except for the lower security version of Kyber (l = 2) [ABD+21]. It will be interesting
to see in future if these schemes can be improved by considering the rounding noise and
applying the strategies described here into account while calculating the security.

D Sub-functions performances of our schemes in Cortex-
M4

The Table 9 contains performance breakdown of all our schemes with Saber into two
major sub-functions polynomial multiplication and hash evaluation, and the last column
represents the clock cycles that is required to perform other operations. The only difference
in opt version of all our schemes with the normal one is they use assembly routines to
perform polynomial multiplication instead of simple C code. It is clearly visible that
we got speed-up for Florete than Saber due to the fact that not only it requires less
pseudo-randomness but also it needs less number of 256× 256 polynomial multiplications
in KeyGen and Encaps. This table also shows that the performance of Espada heavily
affected because it requires almost 4 times more pseudo-random numbers and 2 times more
64× 64 polynomial multiplication than Saber. It is comprehensible that we can receive
a certain performance improvement for Espada by using a hash function which is faster
than Keccack (ex. Chacha). Kindly note that the stack memory requirement of Espada is
just 1/3 of the stack memory uses of Saber approximately. The last scheme of our suite
Sable got speed improvement because it demands less amount of pseudo-random numbers
than Saber.

E On the combination of Toom-Cook multiplications in
Florete

Our Ring-LWR based KEM Florete requires 768× 768 polynomial multiplication. One
of our primary motives for designing this scheme was to reuse hardware and software
modules developed for Saber’s 256× 256 polynomial multiplication. Hence, we used as
Toom-Cook 3-way multiplication on top of Saber’s Toom-Cook 4-way + Karatsuba +
schoolbook multiplication algorithm. However, it is not the only way to perform 768× 768
polynomial multiplication. We describe below 5 additional combinations of Toom-Cook,
Karatsuba and schoolbook multiplication to perform this multiplication.

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 507

Table 9: Sub-functions performances of our schemes in Cortex-M4. Basic polynomial
multiplication uses assembly routine in the opt version of schemes.

Cortex-M4 total
performance

(X1000 clock cycles)

Hashing evaluation
in Cortex-M4
(X1000 clock cycles)

Polynomial multiplication
in Cortex-M4
(X1000 clock cycles)

Others operations
in Cortex-M4
(X1000 clock cycles)Scheme name

KeyGen Encaps Decaps KeyGen Encaps Decaps KeyGen Encaps Decaps KeyGen Encaps Decaps
Florete 1178 2292 3170 194 362 258 941 1882 2823 42 48 87

Florete (opt) 439 814 953 194 362 258 202 404 606 42 48 87
Espada 4938 5372 5513 1486 1654 1513 3289 3563 3838 161 153 161

Espada (opt) 2343 2568 2497 1486 1654 1513 645 699 753 210 213 230
Sable 2031 2706 3159 359 501 398 1618 2158 2697 53 46 63

Sable (opt) 745 1004 1028 359 501 398 348 464 580 37 38 49
Saber 846 1098 1112 460 615 499 348 464 580 37 18 31

1. Karatsuba then schoolbook (NoToom in Table 10)

2. Toom-Cook 3-way then Karatsuba then schoolbook (Toom3 in Table 10)

3. Toom-Cook 4-way then Karatsuba then schoolbook (Toom4 in Table 10)

4. Toom-Cook 4-way then Toom-Cook 3-way then Karatsuba then schoolbook (
Toom4Toom3 in Table 10)

5. Toom-Cook 3-way then Toom-Cook 4-way then Karatsuba then schoolbook (
Toom3Toom4 in Table 10)

Table 10: Performance comparison in Cortex-M4 implementation of Florete with 5 different
ways of 768× 768 polynomial multiplication.

Cortex-M4 performance
(X1000 clock cycles)

Cortex-M4 memory
(bytes)

Florete with
different

768× 768
polynomial

multiplication KeyGen Encaps Decaps KeyGen Encaps Decaps

Cortex-M4
performance of
one polynomial
multiplication
(clock cycles)

NoToom 533 1003 1236 12464 12632 12632 296249
Toom3 463 862 1025 16536 16704 16704 226081
Toom4 487 911 1098 17828 17996 17996 250290

Toom4Toom3 443 824 967 18840 19008 19008 206936
Toom3Toom4 439 814 953 18252 18420 18420 202307

Kannwischer et al . [KRS18] provided a software package that can generate optimized
assembly routines for different combinations of Toom-Cook, Karatsuba, and schoolbook
multiplication in Z2m [x] on Cortex-M4. This software can optimally select the number of
levels of Karatsuba multiplication and the final schoolbook multiplication. This software
has options to generate code to perform first 768 × 768 polynomial multiplication only.
To generate the code for the fifth option, we used this software to generate the code to
perform 256× 256 multiplication using Toom-Cook 4-way, Karatsuba and schoolbook. We
then used the Toom-Cook 3-way wrapper from option 2 to implement the 5-th option
of 768× 768 polynomial multiplication efficiently. The required clock cycles to perform
these above mentioned 5 ways of 768 × 768 polynomial multiplication has been shown
in the Table 10. This table also contains time and stack memory needed in the Cortex-
M4 platform for Florete considering the above mentioned 5 different ways of 768× 768
polynomial multiplication. Since, for Florete our goal was to optimize the speed while

508 Scabbard: a suite of efficient learning with rounding key-encapsulation mechanisms

keeping the memory usage as low as possible, the 5-th choice is more logical choice for
768 × 768 polynomial multiplication. However, we also note that the combination of
Toom-Cook 4-way and Toom-Cook 3-way multiplication is very close in performance and
memory usage compared to the other choice.

F Area utilization of the full HW/SW system

Table 11: Area requirements of the HW/SW implementations in the FPGA, including
the processor and interface costs.

Scheme Platform f LUTs FFs DSPs BRAMs
Espada Zedboard 125 8,567 7,869 48 9

Sable (high speed) Zedboard 150 10,561 9,406 0 11
Florete/Sable (compact) Zedboard 125 7,356 7,400 38 11

G Toom-Cook-3 and Toom-Cook-4 multiplication

Algorithm 4: The Toom-Cook 3-way algorithm
Data: Two polynomials A768(x) and B768(x) of length 768.
Result: C1535(x) = A768(x)×B768(x), polynomial of length 1535.

1 //Rewrite the polynomial A768 and B768, where y = x256.
2 A768(x) = A(y) = a256

0 + a256
1 y + a256

2 y2

3 B768(x) = B(y) = b256
0 + b256

1 y + b256
2 y2

4 //Evaluation
5 A256

1 (x) = A(0) = a0
6 A256

2 (x) = A(1) = a0 + a1 + a2
7 A256

3 (x) = A(−1) = a0 − a1 + a2
8 A256

4 (x) = A(−2) = a0 − 2 · a1 + 4 · a2
9 A256

5 (x) = A(∞) = a2
10 B256

1 (x) = B(0) = b0
11 B256

2 (x) = B(1) = b0 + b1 + b2
12 B256

3 (x) = B(−1) = b0 − b1 + b2
13 B256

4 (x) = B(−2) = b0 − 2 · b1 + 4 · b2
14 B256

5 (x) = B(∞) = b2
15 //256× 256 Multiplication
16 c0 = C256

1 (x) = C(0) = Toom-Cook-4(A256
1 (x), B256

1 (x))
17 c1 = C256

2 (x) = C(1) = Toom-Cook-4(A256
2 (x), B256

2 (x))
18 c2 = C256

3 (x) = C(−1) = Toom-Cook-4(A256
3 (x), B256

3 (x))
19 c3 = C256

4 (x) = C(−2) = Toom-Cook-4(A256
4 (x), B256

4 (x))
20 c4 = C256

5 (x) = C(∞) = Toom-Cook-4(A256
5 (x), B256

5 (x))
21 //Interpolation
22 c1 = (c1 − c2)/2
23 c2 = c2 − c0
24 c3 = (c3 − c1)/3
25 c3 = (c2 − c3)/2 + 2 · c4
26 c2 = c2 + c1 − c4
27 c1 = c1 − c3
28 Return C1535(x) = C(y) = c0 + c1y + c2y

2 + c3y
3 + c4y

4

J. Mera, A. Karmakar, S. Kundu, I. Verbauwhede 509

Algorithm 5: Toom-Cook 4-way algorithm (Toom-Cook-4) [DKSRV18, BZ06]
Input: Two polynomials A(x) and B(x) of degree n = 256
Output: C(x) = A(x) ∗ b(x)
// Splitting A(x) into four polynomials of size 64

1 A(y) = A3 · y3 +A2 · y2 +A1 · y +A0 where y = x64

// Splitting B(x) into four polynomials of size 64
2 B(y) = B3 · y3 +B2 · y2 +B1 · y +B0

// Evaluation of the polynomials at y = {0,±1,± 1
2 , 2,∞}.

3 w1 = A(∞) ∗B(∞) = A3 ∗B3
4 w2 = A(2) ∗B(2) = (A0 + 2 ·A1 + 4 ·A2 + 8 ·A3) ∗ (B0 + 2 ·B1 + 4 ·B2 + 8 ·B3)
5 w3 = A(1) ∗B(1) = (A0 +A1 +A2 +A3) ∗ (B0 +B1 +B2 +B3)
6 w4 = A(−1) ∗B(−1) = (A0 −A1 +A2 −A3) ∗ (B0 −B1 +B2 −B3)
7 w5 = A(1

2) ∗B(1
2) = (8 ·A0 + 4 ·A1 + 2 ·A2 +A3) ∗ (8 ·B0 + 4 ·B1 + 2 ·B2 +B3)

8 w6 = A(−1
2) ∗B(−1

2) = (8 ·A0 − 4 ·A1 + 2 ·A2 −A3) ∗ (8 ·B0 − 4 ·B1 + 2 ·B2 −B3)
9 w7 = A(0) ∗B(0) = A0 ∗B0

// Interpolation
10 w2 = w2 + w5
11 w6 = w6 − w5
12 w4 = (w4 − w3)/2
13 w5 = w5 − w1 − 64 · w7
14 w3 = w3 + w4
15 w5 = 2 · w5 + w6
16 w2 = w2 − 65 · w3
17 w3 = w3 − w7 − w1
18 w2 = w2 + 45 · w3
19 w5 = (w5 − 8 · w3)/24
20 w6 = w6 + w2
21 w2 = (w2 + 16 · w4)/18
22 w3 = w3 − w5
23 w4 = −(w4 + w2)
24 w6 = (30 · w2 − w6)/60
25 w2 = w2 − w6
26 return C(y) = w1 · y6 + w2 · y5 + w3 · y4 + w4 · y3 + w5 · y2 + w6 · y + w7;

	Introduction
	Preliminaries
	Learning with errors and its variants
	LWR key-exchange (KEX) protocol
	CCA secure LWR based KEM
	Error correction mechanism
	Polynomial multiplication

	Our suite of LWR based KEMs
	Rounding error : discrete vs. continuous uniform distribution
	Florete: Ring-LWR based KEM
	Espada: Module-LWR based KEM
	Sable: Alternate Saber

	Concrete instantiations
	Security estimation
	Parameters and performance

	Hardware acceleration
	Florete on hardware
	Espada on hardware
	Sable on hardware
	Results

	Conclusion
	Acknowledgements
	IND-RND security of LWR based KEX
	Bound in the error tolerance of the error correction scheme
	Extension for NTT-friendly prime fields
	Florete
	Sable
	Espada
	NTT friendly instantiations

	Sub-functions performances of our schemes in Cortex-M4
	On the combination of Toom-Cook multiplications in Florete
	Area utilization of the full HW/SW system
	Toom-Cook-3 and Toom-Cook-4 multiplication

