
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 4, pp. 388–411. DOI:10.46586/tches.v2021.i4.388-411

Low-Latency Keccak at any Arbitrary Order

Sara Zarei1 , Aein Rezaei Shahmirzadi2 , Hadi Soleimany1 ,
Raziyeh Salarifard3 and Amir Moradi2

1 Shahid Beheshti University, Cyber Research Center, Tehran, Iran
sarazareei.94@gmail.com,h_soleimany@sbu.ac.ir

2 Ruhr University Bochum, Horst Görtz Institute for IT Security, Bochum, Germany
firstname.lastname@rub.de

3 Shahid Beheshti University, Faculty of Computer Science and Engineering, Tehran, Iran
r_salarifard@sbu.ac.ir

Abstract. Correct application of masking on hardware implementation of cryp-
tographic primitives necessitates the instantiation of registers in order to achieve
the non-completeness (commonly said to stop the propagation of glitches). This
sometimes leads to a high latency overhead, making the implementation not neces-
sarily suitable for the underlying application. As a concrete example, this holds for
Keccak. Application of d+ 1 Domain Oriented Masking (DOM) on a round-based
implementation of Keccak leads to the introduction of two register stages per round,
i.e., two times higher latency. On the other hand, Rhythmic-Keccak, introduced
in CHES 2018, unrolls two rounds to half the latency compared to an unprotected
ordinary round-based implementation. To that end, td + 1 masking is used which
requires a notable area, and – apart from the difficulty to construct – its extension to
higher orders seems beyond the bounds of feasibility.
In this paper, we focus on d+ 1 masking and introduce a methodology which enables
us to stay with the latency of an unprotected round-based implementation, i.e., one
register stage per round. While being secure under glitch-extended probing model,
we provide a general design where the desired security order can be easily adjusted
without any effect on the above-given latency. Compared to the Rhythmic-Keccak,
the synthesis results show that our first-order design is able to accomplish the entire
operations of Keccak-f [200] in the same period of time while decreasing the area by
74.5%. Notably, our implementations achieve around 30% less delay compared to the
corresponding original DOM-Keccak designs.
Keywords: Keccak · Masking · Threshold Implementation · Domain-Oriented
Masking · Hardware Implementation · Low Latency

1 Introduction
Side-Channel Analysis (SCA) attacks are a devastating class of threats for many security-
critical devices, which can reveal sensitive information with a high success rate and low
costs. These kinds of physical attacks exploit the information gained from the cryptographic
algorithm implemented on the target device, such as power consumption, electromagnetic
radiation, and timing information. This highlights the importance of the physical security
of cryptographic devices, even though their underlying primitives are mathematically
secure. One of the prominent and distinct approaches is Differential Power Analysis (DPA).
It exploits the dependencies between the power consumption of the victimâĂŹs device and
the processed intermediate values to reveal the secret key [KJJ99]. As every electronic
device consumes power to operate, unprotected implementations are highly susceptible
to DPA attacks. After its official publication [KJJ99], the scientific community has

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-04-15 Accepted: 2021-06-15 Published: 2021-08-11

https://doi.org/10.46586/tches.v2021.i4.388-411
https://orcid.org/0000-0001-8971-0145
https://orcid.org/0000-0002-9549-268X
https://orcid.org/0000-0002-3961-4988
https://orcid.org/0000-0003-1323-6680
https://orcid.org/0000-0002-4032-7433
mailto:sarazareei.94@gmail.com, h_soleimany@sbu.ac.ir
mailto:aein.rezaeishahmirzadi@rub.de, amir.moradi@rub.de
mailto:r_salarifard@sbu.ac.ir
http://creativecommons.org/licenses/by/4.0/

S. Zarei et al. 389

dedicated a considerable body of research to improve SCA attacks. As a result, there
are a wide range of more sophisticated attacks targeting both software and hardware
implementations like Correlation Power Analysis (CPA) [BCO04], Mutual Information
Analysis (MIA) [GBTP08], and Moments-Correlating DPA (MC-DPA) [MS16]. Hence,
it is necessary to integrate sound countermeasures to protect the implementations of
cryptographic primitives against SCA.

Compared to other ad-hoc or circuit-level countermeasures, masking schemes have
attracted the most attention from both academia and industry, due to their sound theoret-
ical basis. Masking schemes intend to make the physical properties of the target device
independent of the processed sensitive data. To this end, sensitive intermediate values are
randomized by means of secret sharing. Namely, a sensitive variable is split into a certain
number of independent shares so that an adversary can reproduce the original sensitive
variable if and only if he can achieve all shares of the variable. Various masking schemes
have been proposed in the literature to mitigate SCA attacks. Seminal contributions
have been made by Ishai et al. [ISW03] and Trichina [Tri03], where a first-order secure
AND gate is presented. However, it has been demonstrated that these schemes fail to
provide security in hardware implementations, given that different sources of leakage exist
in hardware. The reason behind this is a known fact in hardware platforms called glitches,
which is related to the propagation delay patterns of CMOS circuits. Extensive studies
have been devoted over the last years to introduce hardware-oriented masking designs that
are secure in the presence of glitches. Nikova et al. proposed an implementation strategy
called Threshold Implementation (TI) [NRS11], which can provide protection against SCA
attacks in presence of glitches. The authors introduced a design methodology and some
properties to meet in order to make an implementation provably secure, considering the
physical defaults in hardware platforms. The scheme was initially used to fulfill first-order
security and successfully applied to several algorithms [PMK+11, MPL+11]. Later, it was
generalized to higher-orders by Bilgin et al. [BGN+14], while its limitations have been
addressed in [Rep15].

Several hardware masking schemes have been introduced [RBN+15, GMK16], requiring
only d+1 shares to achieve dth-order security, in contrast to TI which requires td+1 shares
to achieve the same order of security for a function with the algebraic degree t. In TI,
especially for first-order security, there can exist realizations where no fresh randomness is
needed. However, fresh randomness should usually be applied to construct a secure d+ 1
masked implementation, e.g., as illustrated in [GMK16] by introducing DOM. Further,
in [RBN+15], it has been shown that the first-order 2-share secure masked realization
of all six 4-bit quadratic bijections (these six classes are presented in [BNN+15]) can be
achieved without using any fresh masks. Later, the authors of [SM21] have presented a
technique allowing them to provide first-order secure implementation of various ciphers (up
to cubic function) with no fresh randomness. Despite the significant progress in providing
provable first-order masked hardware implementations, their generalization to higher order
appeared to be challenging. In classical TI, the required number of td+ 1 inputs shares
might be unaffordable in small embedded devices as the implementation cost increases
significantly for higher orders. d+ 1 schemes like DOM mitigate such a demand allowing
to obtain more efficient constructions at higher orders, which seems to be increasingly
important considering the need for protected implementation of standard cryptographic
primitives (such as AES and Keccak).

Keccak is a family of flexible cryptographic primitives based on the sponge construction
with variable input size and arbitrary output size [BPVA+11, BDPA13]. In 2012, the
National Institute of Standards and Technology (NIST) announced that the Secure Hash
Algorithm-3 (SHA-3) will be standardized based on Keccak. The specifications of the
SHA-3 hash standard are published in FIPS PUB 202 [Dwo15]. Besides, Keccak can be
used to build a wide range of cryptographic primitives including those which take a secret

390 Low-Latency Keccak at any Arbitrary Order

key as an argument which makes it relevant to SCA attacks. Below, we briefly review the
previous works regarding the masked hardware realizations of Keccak.

1.1 Related Works
A handful of first-order implementations of Keccak have been introduced in the literature
while the number of works considering higher orders is quite limited. The first TI of Keccak
was proposed by the original designers [BDPVA10]. The implementation was claimed
to accomplish the first-order security employing three shares. Bilgin et al. [BDN+13]
showed that such a design neglects the uniform sharing of the Keccak χ function, so
that a mandatory condition for security is not satisfied. An elementary fix is to refresh
the output sharing, known as re-masking [BDN+13]. Hence, the masked 5-bit S-box (χ)
requires 10 fresh random bits per S-box evaluation (per clock cycle), which is a considerable
number when taking the whole Keccak state into account. As an alternative, the authors
of [BDN+13] made use of specific properties of χ to decrease the demand for fresh random
bits to 4 bits per S-box. The other solution they provided to fulfill the uniformity was
to use a distinctive construction making use of four shares, hence naturally a higher area
overhead, but no need to inject any fresh randomness.

Daemen pursued another direction aiming to achieve uniformity for the entire nonlinear
layer instead of satisfying uniformity for the individual S-boxes. In a nutshell, he proposes
to use the shares of the neighbor S-box(es) for re-masking the output of a 3-share (non-
uniform) S-box [Dae17]. His new mechanism called “Changing of the Guards” can construct
uniform TI for the entire layer of bijective S-boxes. This method was later applied to
AES [WM18], KETJE [ANR19], ASCON and Keyac [SD17] to achieve uniformity in
first-order secure designs.

Gross et al. presented DOM implementation of Keccak [GSM17a]. Their design is
extendable to higher orders more straightforwardly than the previous ones and also has a
smaller area overhead. It uses d+ 1 shares, 5d(d+ 1)/2 fresh randomness for each instance
of χ, and two register stages for a dth-order secure implementation. Later, Arribas et
al. [ABP+18] indicated a flaw in such a design violating the essential property of non-
completeness, hence not achieving the desired security level. Based on this observations,
the design of Gross et al. was then updated in [GSM17b] to address the reported issue.
The authors of [ABP+18] also proposed a two-round unrolled architecture to construct
first-order TI of Keccak, which accomplishes two Keccak rounds in one clock cycle, resulting
in a decreased overall latency.

1.2 Our Contributions
Latency and area are two critical criteria to evaluate the efficiency of masked hardware
implementations. These designs inevitably have to utilize extra registers to prevent glitch
propagation, which is essential to fulfill non-completeness. Doing so increases both the
latency and area of the resulting implementations. The complication intensifies when it
comes to higher orders, that usually leads to an exponential increase in the area overhead
due to a rapid increase in the number of input shares.

With respect to this fact, we aim at constructing a compact low-latency masked
implementation of Keccak. Our design is generic, i.e., extendable to any arbitrary protection
order, while being secure under glitch-extended probing model. More precisely, our
construction is based on DOM, in which the minimum number of d + 1 input shares is
employed. However, the challenge to tackle is to keep the latency as low as an unprotected
implementation. The challenges correspond to the critical security concerns related to the
possible share dependencies that may occur in the absence of register stages. We overcome
this challenge by introducing an alternative approach that benefits from the Keccak
intrinsic specification. In short, our low-latency round-based masked implementation of

S. Zarei et al. 391

Keccak uses d+ 1 shares (for dth-order provable security) and requires one clock cycle per
round. Compared to state of the art, it is the only design with such a low latency at higher
orders while keeping the number of shares at minimum, leading to smaller area overhead.
The security of our new approach and the generic design is verified in two ways: first,
using the recently-introduced verification tool SILVER [KSM20] under the glitch-extended
probing model, and second, by FPGA-based experimental evaluations, namely the Welch’s
t-test.

1.3 Outline

The rest of this paper is organized as follows. Section 2 gives a brief description of Keccak
and a short introduction to TI and DOM schemes, as well as a review on probing security
notion. In Section 3, we first summarize the existing low-latency masked implementation
of Keccak and analyze its limitations to achieve higher-order security. Subsequently,
we demonstrate our methodology to build a generic low-latency realization of Keccak.
Section 4, reports the performance figure of our constructions and compares them with the
related works. Then, it presents the result of security evaluations, and finally, in Section 5,
we conclude this paper by summarizing our conducted research.

2 Preliminaries

This section provides some concepts needed throughout this paper. It starts with a short
description of Keccak followed by an overview of TI and DOM schemes. A brief explanation
about the probing security notion is also given, which is a common approach in evaluation
of masking schemes.

2.1 Keccak Algorithm

Keccak is a family of cryptographic hash functions that follows the sponge construc-
tion [BPVA+11, BDPA13]. The underlying permutation is denoted by Keccak-f [b], where
b is refereed to the state size. The parameter b is equal to 25 × W , where W = 2L

and 0 ≤ L ≤ 6. Thus, the state size b is chosen from a set of seven values, i.e.,
b ∈ {25, 50, 100, 200, 400, 800, 1600}. The state is represented by a 3-dimensional 5× 5×W
array, which is denoted as A[5][5][W]. Every bit of the state at position (x, y, z) is rep-
resented by A[x][y][z]. The structure of the permutations follows a so-called Matryoshka
principle where the security analysis of Keccak with small sizes can be transferred to the
instances with larger size and vice-versa. The number of rounds is determined by the state
size b and can be calculated as nr = 12 + 2L where L = log2(b

25).
Each round consists of five steps: R = ι ◦ χ ◦ π ◦ ρ ◦ θ, where χ is the only non-

linear operation with the algebraic degree two. The linear operations θ, ρ, and π cause
diffusion in different directions while ι adds a constant value to the state, depending on
the round number. Equation (1) describes the such five operations in which all additions
and multiplications are performed in GF (2).

392 Low-Latency Keccak at any Arbitrary Order

θ : A[x, y, z]← A[x, y, z]⊕
⊕4

y′=0 A[x− 1, y′, z]⊕
⊕4

y′=0 A[x+ 1, y′, z − 1],

ρ : A[x, y, z]← A

[
x, y, z − (t+ 1)(t+ 2)

2

]
;

if x = y = 0→ t = −1

else 0 ≤ t < 24 and
(

0 1
2 3

)t(1
0

)
=
(
x
y

)
in GF (5)2×2

π : A[x, y]← A[x′, y′] :
(
x
y

)
=
(

0 1
2 3

)(
x′

y′

)
,

χ : A[x]← A[x]⊕ (A[x+ 1]⊕ 1)A[x+ 2],

ι : A← A⊕RC[ir], where RC[ir] is the round constant in round ir.

(1)

The notations are in line with those used in [ABP+18]. For more details on Keccak we
refer the reader to the original articles [BPVA+11, BDPA13].

2.2 Masking Schemes
In masking schemes, each sensitive variable x is split into several shares. The minimum
number of input shares should be at least d+ 1 to achieve dth-order security. In such a
setting, observing any set of d wires should not reveal any information about the variable x.

Among all proposed methodologies, Boolean masking is the most-studied and most-
widely applied countermeasures against SCA attacks. Our focus in this paper is also on
Boolean masking in which the value x is divided to s shares as x = x0 ⊕ x2 ⊕ · · · ⊕ xs−1
where s− 1 variables (x0, x2, . . . , xs−1) are drawn from a uniform distribution at random
and the variable xs is computed as xs = x0 ⊕ · · · ⊕ xs−2 ⊕ x. The application of Boolean
masking on linear functions (over GF (2)) is simple as the same function can be applied on
each set of shares individually. However, the challenging part is how to realize a masked
variant of non-linear functions. It becomes more challenging when the algebraic degree of
the given function gets larger or higher order of security is desired.

2.2.1 Threshold Implementation

TI [NRS11] is the first implementation strategy with immunity against a common phe-
nomenon in CMOS technology called glitches. Let us consider the target function f(X) = Y
with arbitrary input and output size, but the same number of input and output shares
(for the sake of simplicity, s shares). In TI, the target function f(.) is split into a set of
so-called component functions fi∈{0,...,s−1}. The masked realization of f(.) should provide
the shared output Y = 〈Y0, . . . , Ys−1〉 by receiving the input shares X = 〈X0, . . . , Xs−1〉
such that the following properties are fulfilled.

• Correctness: This property guarantees that the masked form of the function operates
correctly on all possible input shares. Namely, it implies that Y =

⊕
∀i Yi =⊕

∀i fi(X) for all X satisfies Y = f(X =
⊕
∀i Xi).

• Non-completeness: To resist against a dth-order SCA attack, the masking of the
target function should be a dth-order non-complete. It means that each d (or less)
combination of component functions fi∈{0,...,s−1} should be independent of at least
one input share.

S. Zarei et al. 393

× ×

r

× ×

FF FF

a0

x0

domain 0

b0 a1

x1

domain 1

b1

calculation

resharing

compression

Figure 1: First-order DOM-indep multiplier.

• Uniformity: It implies that shared output Y should not be distinguishable from
Y being uniformly shared, provided that the shared input X is a uniform sharing
of X. Note that the output of a masked function is usually used as the input of
other masked functions. Hence, not satisfying this property may cause leakage in
subsequent functions.

A strategy called direct sharing has been introduced in [NRS11] to trivially achieve
non-completeness in which the number of of input shares sin and output shares sout can
be calculated as

sin ≥ t d+ 1, sout ≥
(

sin

t

)
, (2)

where t and d stand for the algebraic degree of the target function and the desired
security order, respectively. However, achieving uniformity is usually less trivial and more
challenging as there is no solid methodology to fulfill it except remasking in which fresh
masks are used to refresh the sharing. For instance, a uniform TI of a simple 2-input
AND gate [NRS11] or χ function of Keccak without remasking has not been reported
yet [BDN+13].

2.2.2 Domain Oriented Masking

DOM [GMK16] attains dth-order security in hardware as well but using d+ 1 input shares
compared to td+ 1 in TI. According to the DOM scheme, the component functions and
shares are divided into d+1 independent sets, called domains. The main idea is to maintain
this independence throughout the whole implementation.

Linear operations can be performed straightforwardly as the independent domains are
not combined during their execution. For nonlinear operations, the idea is to write the
target function as a series of 2-input AND (multiplication) and XOR operations. As stated,
XORs are easy to mask, while the authors of [GMK16] have provided a methodology
to achieve a masked variant of 2-input multiplier at any arbitrary order d. The DOM-
indep multiplier, where it is supposed that the sharing of the given inputs are completely
independent of each other, consists of three steps: calculation, resharing, and compression.
Focusing on first-order security d = 1, as the calculation step, the AND operation over two
shared inputs a = a0 ⊕ a1 and b = b0 ⊕ b1 generates four terms a0b0, a0b1, a1b0 and a1b1.
Naturally, the terms are of two kinds: either they preserve the independence of domains
(a0b0 and a1b1) or violate it (a0b1 and a1b0). Note that domains are expressed in black,
and blue colors in Figure 1. In order to be able to XOR some of such terms and generate

394 Low-Latency Keccak at any Arbitrary Order

output shares x = x0⊕x1 = a b, the cross-domain terms (expressed in red color in Figure 1)
should be re-masked using fresh randomness, i.e., resharing step. As shown in Figure 1,
each term (cross-domain ones after being refreshed) are stored in registers to avoid the
propagation of the glitches or let say to maintain non-completeness. Registers which store
the inner-domain terms are represented with the dotted line in the figure. The reason is
that they are optional and can be ignored. However, they are usually used to create a
pipeline stage. The compression layer XORes each two register outputs and generates the
output shares x0 and x1. Generally speaking, for a dth-order DOM multiplier, d(d+ 1)/2
fresh masks are required.

2.3 Probing Security
The probing security is a model used to evaluate the security of masking schemes, firstly
introduced by Ishai et al. [ISW03]. According to this model, a dth-order attack corresponds
to d independent probes that an attacker puts on the target circuit. A design is called
dth-order secure if any combination of up to d of the intermediate values observed by
those probes does not result in reproducing sensitive information. Note that d-probing is
a stronger attacker model compared to the dth-order DPA attack as the attacker observes
noisy signals in DPA. Therefore, although looking simple, the model allows the highest
access level to the intermediate values. Hence, if a design is d-probing secure, it is claimed
to be provably secure against any DPA attack up to the dth order under certain leakage
assumptions.

The probing model works properly in the software implementations where the in-
structions are performed sequentially. Omitting the leakage may originate from micro-
architecture, each instruction can be seen as an atomic gate, i.e., the output is ready after
a certain time regardless of the delay of its inputs. However, this high-level of abstrac-
tion excludes the physical defaults like glitches inherently happening in CMOS hardware
implementations. To the best of our knowledge, robust probing model [FGP+18a] is the
best-revised variant of the d-probing model, considering the physical defaults of hardware
implementations. The mode is extended to cover glitches and assumes that any probe
placed on any point of a circuit reveals information about not only that probed wire but
also all the intermediate values in the path back to the synchronization point, i.e., registers.
Since our main focus in this paper is hardware implementation of masking schemes, we
consider such a glitch-extended probing model in our designs and evaluations. To this
end, we further use the recently-introduced open-source verification tool SILVER [KSM20]
under robust probing model to assess the security of our constructions.

3 Generic Low-Latency Keccak Design
In this section, we first briefly review the low-latency TI-Keccak presented in [ABP+18].
Then, we discuss the difficulties encountered in its generalization from first order to higher
orders. We focus on the costs and benefits of the DOM scheme with an emphasis on
using it as an underlying secure structure for Keccak. Subsequently, we introduce our
idea to realize a low-latency implementation of the original DOM-Keccak. The security
order of our design can arbitrarily be adjusted while attaining a lower area compared to
the [ABP+18]. We investigate the associated challenges and present our corresponding
solutions.

3.1 Rhythmic Keccak: Two-Round Unrolled TI-Keccak
A recent study by Arribas et al. [ABP+18] provides a method to reduce the number of
clock cycles in the masked realization of Keccak. Their method unrolls two rounds without

S. Zarei et al. 395

State
Reg.

π ◦ ρ ◦ θ ι ◦ χ π ◦ ρ ◦ θ ι ◦ χ output

Mux

input

R1
(2d)th-order secure

R2
dth-order secure

Figure 2: Two-rounds unrolled architecture of TI-Keccak.

placing any registers in between to accelerate the execution of the function. Figure 2
illustrates the outline of their suggested structure. They construct a two-round unrolled
implementation of a first-order secure Keccak by eliminating the state register of the
second round. The implementation achieves a halved number of clock cycles which results
in reduced latency.

Register omission can pose potential challenges in hardware masking schemes. These
challenges seem to be more severe in the DOM scheme rather than TI due to using the
minimum number of input shares. DOM’s security is based on the fact that the domains
should be kept independent and registers are used to avoid propagation of glitches. Hence,
for the sake of simplicity, Arribas et al. preferred utilizing the TI scheme with 5 and 6 input
shares to realize a first-order implementation. They pointed out that the composition of
nonlinear masked functions without any intermediate register can cause share combination,
i.e., violating non-completeness, and the design may exhibit leakage. To cope with this
issue, the authors maintained the non-completeness with the provision that the security
order of the first non-linear masked function should be at least two times that of the
successive function when no register is placed in between. We should highlight that this is
only a necessary condition and still the extended-glitch probing security should carefully be
examined. For example, if a two-round unrolled implementation of Keccak is expressed as
F = R2 ◦R1, the first-order non-completeness property of F states that any combination
of two input shares of R2 is required to be independent of the secrets. In other words,
any combination of two output shares of R1 must be independent of the input. Then, the
security of the implementation should be checked by following the propagation of output
bits to the input bits backwards under the glitch-extended probing model. The authors
presented two first-order secure designs by applying the aforementioned idea; one with
5 input shares (5 → 10 → 5) and the other one with 6 input shares (6 → 6 → 6). The
results demonstrated that the latter yields a more compact implementation compared to
the former.

Extension to Higher Orders. A similar technique as described above can be used to
provide dth-order security for the implementation of an n-round unrolled Keccak. Simply
put, each round Ri should be implemented with the security order of (d × 2n−i) where
1 ≤ i ≤ n. For instance, the required security order for R1 and R2 is equal to 4 and 2 to
achieve a second-order secure two-rounds unrolled design. Likewise, the required security
order for R1 and R2 is equal to 6 and 3 to achieve a third-order secure one.

Using this approach, there exist two serious limitations while implementing these higher-
order secure multi-round unrolled designs of Keccak. The first challenge arises from the
difficulty of finding non-complete and efficient sharings for the 5-bit χ function. According
to Equation (2), one can determine the minimum number of input shares required to
fulfill the dth-order non-completeness in TI. Given that χ is a quadratic function, i.e.,
with the algebraic degree of 2, the minimum number of input shares for a 4th-order and

396 Low-Latency Keccak at any Arbitrary Order

Mux

input

π ◦ ρ ◦ θ
d+ 1 d+ 1

Reg.1 ι ◦ χd+ 1 (d+ 1)2

Refreshing

Reg.2

Compression

(d+ 1)2 d+ 1 output

Figure 3: Round function of the original DOM-Keccak with two register stages.

6th-order secure χ function is 2 × 4 + 1 = 9 and 2 × 6 + 1 = 13 shares, respectively. In
addition, every of such masked implementations of χ should satisfy the uniform sharing at
their output. Finding such implementations with uniform output sharing is a non-trivial
and intricate task for low number of shares [BNN+12, Bil15]. Although it seems that
having a higher number of shares than td+ 1 to achieve dth-order security would ease to
satisfy the uniformity of output sharing, no uniform masked implementation of χ with the
aforementioned numbers of shares has been reported yet. Alternatively, fresh randomness
should be added, i.e., mask refreshing, to maintain the uniformity of their output sharing.

The second important drawback is that even supposing that non-complete and uniform
masked realization of χ with 9 and 13 shares are found, the implementation costs would be
considerably high. Note that the area overhead and the latency of a masked implementation
grows approximately quadratically with respect to the number of shares [FGP+18b].

3.2 Original DOM-Keccak

Gross et al. [GSM17a] presented the first- and second-order secure implementation of
Keccak using DOM. Their design contained two register stages, leading to the latency of
two clock cycles per Keccak round. The first register stage, so-called state register, was
placed before the linear operations, and the other one after the refreshing layer of the
DOM multiplier used in χ function. Later, it has been shown in [ABP+18] that these
designs do not maintain non-completeness. One fix is to relocate the state register, as
shown in Figure 3, which maintains the same latency. Hence, the original authors have
updated their design in [GSM17b] and GitHub accordingly.

Although this design – requiring two clock cycles per round – has a higher latency
compared to the equivalent TI designs, it has a notably smaller area, which makes it more
appropriate particularly at higher orders. This fact motivates us to develop a tweaked
design to decrease the latency. Indeed, we intend to take the advantage of the small
number of shares in DOM and overcome its high latency. To this end, our goal is to use
a single register stage in each round, achieving a lower latency compared to the original
DOM implementation and lower area compared to the Rhythmic TI-Keccak while being
adjustable to any arbitrary protection order.

3.3 Our Single Register per Round Realization

Lowering the latency of the original DOM-Keccak to one clock cycle per round implies
removing one of the two registers of the architecture depicted in Figure 3. To this end,
we relocate the compression layer in such a way that the round function needs only one
register layer. Namely, the compression layer is performed after the linear operation θ,
and hence, it should be instantiated (d+ 1)2 times instead of d+ 1.

https://github.com/hgrosz/keccak_dom

S. Zarei et al. 397

3.3.1 Composability Issue

The first linear operation following the χ function is the θ operation in the next round.
The specification of θ reveals that composing χ and θ functions without any register in
the middle potentially leaks information.

As expressed in Equation (1), θ is defined such that it adds the summation of ten bits
as a parity to each processed bit. One of these ten bits is exactly adjacent to the processed
bit. Thus, the θ function includes the XOR of every two adjacent output bits of each χ
instance. In the following, we demonstrate a potential security failure that can occur if
χ and θ are composed without any register and any compression layer. Let us denote
five inputs of a χ instance by 〈a, b, c, d, e〉 and its outputs by 〈a′, b′, c′, d′, e′〉 as shown in
Equation (3).

a′ = a⊕ bc
b′ = b⊕ cd
c′ = c⊕ de
d′ = d⊕ ea
e′ = e⊕ ab

(3)

In order to show the security issue, we exemplarily focus on the first- and second-order
cases. Note that, in this setting, the masked form of χ receives d + 1 input shares and
provides (d+1)2 output shares. Following the DOM principle, the component functions and
output shares of the masked χ are as defined as given below. The dashed line categorizes
the output shares, which are combined in the subsequent compression layer, after being
refreshed (fresh randomness) and stored in a register layer.

First-order output shares
output share a′ b′ c′ d′ e′

0 b0c0 ⊕ a0 c0d0 ⊕ b0 d0e0 ⊕ c0 e0a0 ⊕ d0 a0b0 ⊕ e0
1 b0c1 c0d1 d0e1 e0a1 a0b1

2 b1c0 c1d0 d1e0 e1a0 a1b0
3 b1c1 ⊕ a1 c1d1 ⊕ b1 d1e1 ⊕ c1 e1a1 ⊕ d1 a1b1 ⊕ e1

Second-order output shares
output share a′ b′ c′ d′ e′

0 b0c0 ⊕ a0 c0d0 ⊕ b0 d0e0 ⊕ c0 e0a0 ⊕ d0 a0b0 ⊕ e0
1 b0c1 c0d1 d0e1 e0a1 a0b1
2 b0c2 c0d2 d0e2 e0a2 a0b2

3 b1c0 c1d0 d1e0 e1a0 a1b0
4 b1c1 ⊕ a1 c1d1 ⊕ b1 d1e1 ⊕ c1 e1a1 ⊕ d1 a1b1 ⊕ e1
5 b1c2 c1d2 d1e2 e1a2 a1b2

6 b2c0 c2d0 d2e0 e2a0 a2b0
7 b2c1 c2d1 d2e1 e2a1 a2b1
8 b2c2 ⊕ a2 c2d2 ⊕ b2 d2e2 ⊕ c2 e2a2 ⊕ d2 a2b2 ⊕ e2

Let us focus on output share 1 in the first-order case. When it enters to the θ operation,
as stated above the adjacent output bits are XORed. The below-given expressions show
that both shares of some input variables appear in the corresponding XOR. In other words,
placing a glitch-extended probe exemplary on a′1 ⊕ b′1 would propagate to both c0 and c1,
hence violating the non-completeness and potential information leakage. This is due to

398 Low-Latency Keccak at any Arbitrary Order

the absence of any register layer between χ and θ.

a′1 ⊕ b′1 = b0c1 ⊕ c0d1
b′1 ⊕ c′1 = c0d1 ⊕ d0e1
c′1 ⊕ d′1 = d0e1 ⊕ e0a1
d′1 ⊕ e′1 = e0a1 ⊕ a0b1
e′1 ⊕ a′1 = a0b1 ⊕ b0c1

The same can be seen for the second order. For example, an instance of θ placed on the
output share 1 would reveal both c0 and c1. Hence, placing a second probe on c2 would
violate the desired second-order security.

3.3.2 Solving the Non-completeness Issue

Our solution is a realignment of component functions such that all component functions
of an instance of χ which belong to (or let say generate) an output share, receive only a
single share of every input. Therefore, placing any linear function (including θ) on output
shares of χ would not combine more than one input share. Hence, the non-completeness
would be maintained. In the following, we explain the underlying idea in more detail.

Below, our solutions for the first and second order are given. Note that, compared
to what has been given in Section 3.3.1, we just reordered the component function for
each output bit. The functionality is exactly the same, but it can be seen that in each
output share (i.e., in each row of the below-given tables), at most one share of each input
variable shows up. For example, in contrast to what has been shown before, output share 1
contains only {a1, b0, c1, d0, e1}. Therefore, any linear function which follows these masked
realizations of χ would not violate the (first- and higher-order) non-completeness. Hence,
we can easily compose masked χ and θ without any security issue.

First-order solution
output share a′ b′ c′ d′ e′

0 b0c0 ⊕ a0 c0d0 ⊕ b0 d0e0 ⊕ c0 e0a0 ⊕ d0 a0b0 ⊕ e0
1 b0c1 c1d0 d0e1 ⊕ c1 e1a1 a1b0 ⊕ e1
2 b1c0 ⊕ a1 c0d1 ⊕ b1 d1e0 e0a1 ⊕ d1 a1b1
3 b1c1 c1d1 d1e1 e1a0 a0b1

Second-order solution
output share a′ b′ c′ d′ e′

0 b0c0 ⊕ a0 c0d0 ⊕ b0 d0e0 ⊕ c0 e0a0 ⊕ d0 a0b0 ⊕ e0
1 b0c1 c1d0 d0e1 ⊕ c1 e1a1 a1b0 ⊕ e1
2 b0c2 c2d0 d0e2 ⊕ c2 e2a2 a2b0 ⊕ e2
3 b1c0 ⊕ a1 c0d1 ⊕ b1 d1e0 e0a1 ⊕ d1 a1b1
4 b1c1 c1d1 d1e1 e1a2 a2b1
5 b1c2 c2d1 d1e2 e2a0 a0b1
6 b2c0 ⊕ a2 c0d2 ⊕ b2 d2e0 e0a2 ⊕ d2 a2b2
7 b2c1 c1d2 d2e1 e1a0 a0b2
8 b2c2 c2d2 d2e2 e2a1 a1b2

Extension to Higher Orders. Without losing generality, we can follow a rule for im-
plementing the χ function such that it meets our security requirement. We refer to our
solution for the first order as an example. Let us represent the share index of input
variables given to the component functions by a table so-called index configuration as

S. Zarei et al. 399

shown below1. It indeed reflects the share index of each input variable that is involved in
the calculation of each output share.

Table 1: Index configuration of our first-order solution
output share a b c d e

0 0 0 0 0 0
1 1 0 1 0 1
2 1 1 0 1 0
3 0 1 1 1 1

For example, the first row indicates that {a0, b0, c0, d0, e0} are only involved in the
generation of the first output share. Similarly, the component functions of the second output
share receive {a1, b0, c1, d0, e1} as their inputs. Note that based on this configuration,
the place of all quadratic monomials of the χ function becomes clear. However, there
is freedom for the linear monomials. For example, in our first-order solution, based on
the Table 1, linear monomial a0 (in output a′) can be generated by the first or the last
component function.

This strategy can be easily extended to any arbitrary order. Since the index configura-
tion table inherently implies that only one share from each input is given to the component
functions of an output share, the only fact which we need to consider is to make sure that
the correctness of the masking is maintained. More precisely, looking at Equation (3),
the χ function involves all quadratic monomials between every two adjacent variables.
Therefore, the index configuration should assure that every (rotate-wise) two adjacent
columns cover all possible combinations between sharing indexes. For example, every
two adjacent columns of the above-given index configuration in Table 1 cover all (0, 0),
(0, 1), (1, 0) and (1, 1) cases. This would allow, for example, the generation of all quadratic
monomials aibj for ab as a term in e′ (see Equation (3)).

Our observation is that the configuration of four adjacent columns can be easily fixed
by alternating between two cases. This can be seen in Table 1, where columns associated
to b and d are equal, and the same holds for c and e. However, that of a is different from
all others, as it should provide all possible combinations with b as well as with e. Following
this principle, we introduce our solution for any arbitrary order. In the index configuration
given in Table 2, we denote the number of shares by s required for security at order s− 1.2
As stated, the configuration of columns b and d are straightforward. The same holds for
that of c and e. This means that all possible combinations (i, j) for 0 ≤ i, j < s between
columns (b, c), (c, d) and (d, e) are covered.

For the column a, we actually take the first s elements as in the column c. For every
next s elements in a, we just rotate them one element upwards. A pseudo-code is given in
Algorithm 1 which illustrates this process. This guarantees all possible combinations (i, j)
between columns (a, b) and between columns (e, a), hence achieving our requirements. As
stated before, no special condition should be considered for the linear monomials. The
index configuration inherently allows multiple choices for the place of the linear monomials.
For example, b0 can be covered by the component functions of any of the first s output
shares.

We would like to highlight a few side points about our solution:

• The expressed index configuration is not unique. There may be other solutions to
distribute input shares to the χ component functions while achieving the same goal.

1A similar table representation has been used in [BKN19].
2As d is used as an input to the χ function, we represent the security order here by s− 1 which is inline

with the notations given in Section 2.2.1.

400 Low-Latency Keccak at any Arbitrary Order

Table 2: Index configuration of our dth-order solution
output share a b c d e

i = 0

j = 0 0 0 0 0 0 0
j = 1 1 1 0 1 0 1
j = 2 2 2 0 2 0 2

...
...

...
...

...
...

...
j = s− 1 s− 1 s− 1 0 s− 1 0 s− 1

i = 1

j = 0 s 1 1 0 1 0
j = 1 s+ 1 2 1 1 1 1

...
...

...
...

...
...

...
j = s− 2 2s− 2 s− 1 1 s− 2 1 s− 2
j = s− 1 2s− 1 0 1 s− 1 1 s− 1

i = 2

j = 0 2s 2 2 0 2 0
...

...
...

...
...

...
...

j = s− 3 3s− 3 s− 1 2 s− 3 2 s− 3
j = s− 2 3s− 2 0 2 s− 2 2 s− 2
j = s− 1 3s− 1 1 2 s− 1 2 s− 1

· · ·
· ·
· ·
· ·

i = s− 1

j = 0 s(s− 1) s− 1 s− 1 0 s− 1 0
j = 1 s(s− 1) + 1 0 s− 1 1 s− 1 1
j = 2 s(s− 1) + 2 1 s− 1 2 s− 1 2

...
...

...
...

...
...

...
j = s− 1 s2 − 1 s− 2 s− 1 s− 1 s− 1 s− 1

• Although developed for θ, if the masked χ function is realized based on our solution,
any linear function can be placed right after the χ without having any impact on the
security level. This can be justified with respect to being secure in the glitch-extended
probing model. The ordering, in which the component functions are sorted in our
solution, guarantees the appearance of at most one input share in all component
functions of each output share. Hence, neither θ nor any other linear operation would
have any effect on the non-completeness.

• This is a solution dedicated to the χ function, and it cannot be straightforwardly
extended to any (even quadratic) function.

Algorithm 1 Generating index configurations for output bits in χ function
Require: security order (s− 1).
Ensure: index configurations αi,j , βi,j , γi,j , δi,j , εi,j satisfying aαi,j , bβi,j

, cγi,j , dδi,j
, eεi,j in the row

identified by i and j in Table 2
1:
2: for i = 0 to (s− 1) do
3: for j = 0 to (s− 1) do
4: αi,j ← (i+ j) mod s
5: βi,j = δi,j ← i
6: γi,j = εi,j ← j
7: end for
8: end for

S. Zarei et al. 401

Mux. 1

input ‖{0}

θ
(d+ 1)2 (d+ 1)2

M
ux.

2

(d+ 1)2

Reg.
(d+ 1)2 d+ 1

Compression
output

π ◦ ρ d+ 1
ι ◦ χ

Refreshing

(d+ 1)2

Figure 4: Our generic low-latency DOM-Keccak.

3.3.3 Design Architecture

Figure 4 presents our general design architecture for the low-latency DOM-Keccak, which
has only one register stage per round. Compared to the original DOM-Keccak, the
compression layer has been moved after the application of θ. To this end, the θ function
should be instantiated (d+ 1)2 times, since χ turns d+ 1 input shares to (d+ 1)2. However,
since the primary input of the Keccak-f is first given to the diffusion layer (see Section 2.1),
we need to pad the sharing of the primary input with 0 to make (d+ 1)2 shares. Note that,
this should be done with special care considering the subsequent compression layer to avoid
multiple primary input shares to be combined (XORed). We provide more information
about the compression layer in Section 3.4, but as a matter of fact, we need to make sure
that every i-th subsequent d + 1 shares of the result of padding contains only the i-th
share of the primary input.

Further, at the last round, the primary output is provided by the χ function followed
by the round constant addition, i.e., ι, which in our design has (d+ 1)2 shares. Therefore,
we instantiated another multiplexer, identified as Mux. 2, which bypasses the θ function.
This allows us to take the primary output directly from the compression layer which turns
the number of shares back to d+ 1. Note that the added multiplexer is a relatively large
module, b(d+ 1)2 instances for Keccak-f [b] with b-bit state. As an alternative solution, a
dedicated b(d+ 1)2-bit register and a compression layer can be instantiated for the primary
output, which is expected to have a higher area overhead.

Compared to the original DOM-Keccak, our design instantiates b(d+ 1) less registers,
but in return uses b

(
d(d + 1) + (d + 1)2) more multiplexers (for Mux. 1 and Mux. 2,

respectively3) and more importantly needs to use (d + 1)2 instances of the θ function
compared to d + 1 instances in original DOM-Keccak (see Figure 3). Note that θ is a
relatively large module (XORes ten bits, for each bit of the p-bit state), and the number
of extra θ instances and multiplexers, which our design needs, increase exponentially with
d. Therefore, the area overhead of our low-latency DOM-Keccak may be comparable to
that of the original DOM-Keccak for low security order. However, we expect this to be
not the case at higher orders. We present detailed performance results in Section 4.

3.4 Refreshing and Compression Layers
We close this section with a brief discussion on the refreshing and compression layers
we have used in our design. In short, with some small differences, they follow the same
concept as in DOM [GMK16]. Inner-domain component functions, i.e., those which include
quadratic monomials with the same sharing index, are not blinded with a fresh mask. In

3Any multiplexer of MUX. 1, where of its inputs is tied to ‘0’, is simplified to an AND gate, i.e., smaller
area compared to a multiplexer.

402 Low-Latency Keccak at any Arbitrary Order

contrast, analogous cross-domain component functions, e.g., aibj and ajbi for 0 ≤ i 6= j < s,
are blinded by the same fresh mask, i.e., aibj ⊕ ri,j and ajbi ⊕ rj,i while ri,j = rj,i. As
an example, the below-given table illustrates this procedure for the first order. Note that
since a single fresh mask bit is required for each output share, we present r0,1

k = r1,0
k by

rk∈{0,...,4}. We further provided a general algorithm for any arbitrary order for the entire
component functions of the χ function including the place of each monomial as well as
fresh masks in Algorithm 2.

First-order solution after refreshing
output share a′ b′ c′ d′ e′

0 b0c0 ⊕ a0 c0d0 ⊕ b0 d0e0 ⊕ c0 e0a0 ⊕ d0 a0b0 ⊕ e0
1 b0c1⊕r0 c1d0⊕r1 d0e1 ⊕ c1⊕r2 e1a1 a1b0 ⊕ e1⊕r4
2 b1c0 ⊕ a1⊕r0 c0d1 ⊕ b1⊕r1 d1e0⊕r2 e0a1 ⊕ d1⊕r3 a1b1
3 b1c1 c1d1 d1e1 e1a0⊕r3 a0b1⊕r4

A careless combination layer would split the output shares into two groups and combine
output shares (0, 1) and (2, 3). While this does not pose an issue for a′, b′, c′, and e′, it
is not a valid compression for d′. Therefore, right before the compression, we need to
rearrange the output shares of d′ in order to keep its compression valid. The rearrangement
can be done for example following the DOM concept. This is shown below. Note that such
a rearrangement is done after the application of θ, but it can be done either before the
register or afterwards (see Figure 4).

First-order solution before compression
output share a′ b′ c′ d′′ e′

0 b0c0 ⊕ a0 c0d0 ⊕ b0 d0e0 ⊕ c0 e0a0 ⊕ d0 a0b0 ⊕ e0
1 b0c1⊕r0 c1d0⊕r1 d0e1 ⊕ c1⊕r2 e0a1 ⊕ d1⊕r3 a1b0 ⊕ e1⊕r4
2 b1c0 ⊕ a1⊕r0 c0d1 ⊕ b1⊕r1 d1e0⊕r2 e1a1 a1b1
3 b1c1 c1d1 d1e1 e1a0⊕r3 a0b1⊕r4

The same holds for higher orders. In other words, the compression of the shares of
all state bits except those corresponding to the output bit d′ in every χ instance, are
straightforwardly done by XORing every s = d+ 1 consecutive shares. For d′, we need to
apply a rearrangement before the same compression. In short, if we denote the rearranged
output shares by d′′, we can write d′′k = d′(k mod s)×s+bk/sc for 0 ≤ k < s2 − 1.

We would like to highlight that the above-given construction for the shared χ function
in addition to the θ operation being applied on each share before the compression layer
allows us to remove the register stage at the beginning of the χ function. In other words,
the diffusion property of θ plays an important role. Otherwise, the composition of two pure
shared χ functions would necessitate the instantiation of a register stage at the beginning
of each χ function.

4 Evaluations
In this section, we evaluate our low-latency DOM-Keccak in two aspects: first, we present
the results of ASIC implementation of the first- to fifth-order secure designs to analyze
the performance. To serve the purpose, we compare our results with the related works.
Next, we evaluate the security of our design with experimental analyses, including the
SILVER verification tool and the t-test. Similar to the state of the art, we focus on the
implementation of one of the small Keccak-f permutations with the state size b = 200,
and the round number nr = 18 accordingly.

S. Zarei et al. 403

Algorithm 2 Generating composable output shares in χ function for the low-latency
DOM-Keccak
Require: security order (s− 1), input shares a, b, c, d, e, each s shares
Ensure: output shares a′, b′, c′, d′, e′, each s2 shares

1: for i = 0 to (s− 1) do . filling fresh mask matrices
2: for j = i+ 1 to (s− 1) do . for only i 6= j while ri,j = rj,i

3: ri,j0 = rj,i0
$← F2

4: ri,j1 = rj,i1
$← F2

5: ri,j2 = rj,i2
$← F2

6: ri,j3 = rj,i3
$← F2

7: ri,j4 = rj,i4
$← F2

8: end for
9: end for

10: for i = 0 to (s− 1) do
11: for j = 0 to (s− 1) do
12: k ← i× s+ j
13: if i = 0 , j = 0 then
14: a′k ← bicj ⊕ a[(i+j) mod s]
15: b′k ← cjdi ⊕ bi
16: c′k ← diej ⊕ cj
17: d′k ← eja[(i+j) mod s] ⊕ di
18: e′k ← a[(i+j) mod s]bi ⊕ ej
19: end if

20: if i = 0 , j 6= 0 then
21: a′k ← bicj⊕ri,j0
22: b′k ← cjdi⊕ri,j1
23: c′k ← diej ⊕ cj⊕ri,j2
24: d′k ← eja[(i+j) mod s]

25: e′k ← a[(i+j) mod s]bi ⊕ ej⊕r
[(i+j) mod s],i
4

26: end if

27: if i 6= 0 , j = 0 then
28: a′k ← bicj ⊕ a[(i+j) mod s]⊕r

i,j
0

29: b′k ← cjdi ⊕ bi⊕ri,j1
30: c′k ← diej⊕ri,j2
31: d′k ← eja[(i+j) mod s] ⊕ di⊕r

[(i+j) mod s],j
3

32: e′k ← a[(i+j) mod s]bi
33: end if

34: if i 6= 0 , j 6= 0 then
35: if i = j then
36: a′k ← bicj
37: b′k ← cjdi
38: c′k ← diej
39: else
40: a′k ← bicj⊕ri,j0
41: b′k ← cjdi⊕ri,j1
42: c′k ← diej⊕ri,j2
43: end if

44: d′k ← eja[(i+j) mod s]⊕r
[(i+j) mod s],j
3

45: if (i+ j) mod s = 0 then
46: e′k ← a[(i+j) mod s]bi⊕r

[(i+j) mod s],i
4

47: else
48: e′k ← a[(i+j) mod s]bi⊕r

[(i+j) mod s],i
4

49: end if
50: end if
51: end for
52: end for

404 Low-Latency Keccak at any Arbitrary Order

Table 3: Synthesis result of different Keccak-f [200] designs, using NanGate 45 nm standard
cell library.

Design Security Total Area CPD∗ Freq. Latency Delay Rand.
Order (kGE) (ns) (MHz) (cycles) (ns) (bits)

Our Constructions

Low-Latency

1 17.90 1.14 877 18 20.52 200
2 39.97 1.14 877 18 20.52 600
3 70.84 1.16 862 18 20.88 1200
4 111.76 1.17 854 18 21.06 2000
5 160.19 1.19 840 18 21.42 3000

Related Works [ABP+18]
Original DOM 1 17.50 0.77 1300 36 27.72 200
Original DOM 2 35.22 0.83 1205 36 29.88 600
Low-Latency TI 1 70.12 2.29 436 9 20.61 −
∗ Critical Path Delay

4.1 Performance Analysis
We implemented our design (Figure 4) by an HDL (Verilog) code, and used Synopsys
Design Compiler with the NanGate 45 nm Open Cell Library to synthesize it. The
-no_autoungroup flag was set during the synthesis to keep the hierarchy of the design, and
avoid optimizations affecting the security requirements, i.e., maintaining non-completeness.
The implementation results are shown in Table 3.

The given results reveal that the first and second-order implementations of our design
have about 26%, and 31% less delay compared to the equivalent original DOM implementa-
tions. Our design has approximately a constant delay in higher orders. At the same time,
the area consumption of the first-order implementation of our design is about 74.5% less
than that of the low-latency TI-Keccak, whereas their delay are almost equal. Note that
with delay in Table 3 we refer to the time required to accomplish the entire Keccak-f [200]
operation. Further, the number of random bits given in the table demonstrates the required
fresh random bits for each round, which are indeed the same in our design and the original
DOM.

4.2 Experimental Analyses
As stated before, we have verified the security of our constructed masked χ function at
different security orders by means of SILVER [KSM20] under glitch-extended probing
model. Since the entire design (even only a round function) is out of the feasibility limits
of SILVER and any other known relevant verification tools, we have no other choice than
examining our full constructions by experimental analyses. To this end, we made use of a
Spartan-6 FPGA-based evaluation platform (SAKURA-G [GIS14]), and collected power
consumption traces of our designs following the measurement strategy and procedure
explained in [SM15] to conduct fixed-versus-random t-test.

While monitoring the AC-amplified voltage drop over a 1Ω shunt resistor placed on
the VDD path of the target FPGA, the underlying design under test was being operated
by a stable and jitter-free clock at a frequency of 6MHz. The power consumption traces
have been collected by sampling the aforementioned signal at a sampling frequency of
500MS/s. As given in Section 3, our constructions – independent of the selected security
order – need one clock cycle per Keccak round, i.e., 18 cycles for Keecak-f [200]. Therefore,
we made sure to cover all corresponding clock cycles in our measured power traces. An

S. Zarei et al. 405

0 1 2 3 4 5
Time [s]

P
ow

er

(a) A sample trace

0 1 2 3 4 5
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(b) 1st-order t-test

0 1 2 3 4 5
Time [s]

0

100

200

t-
st

at
is

tic
s

(c) 2nd-order t-test

0 1 2 3 4 5
Time [s]

-5
0
5

10
15

t-
st

at
is

tic
s

(d) 3rd-order t-test

0 1 2 3 4 5
Time [s]

0

1

2

3

4

5

T
im

e
[

s]

 50

100

150

200

250

t-
st

at
is

tic
s

 4.5

(e) 2nd-order bivariate t-test

0
5
4

1

3

T
im

e
[

s]

2

2

1

T
im

e
[

s]

Time [s]
5

3

0 43210

4
5

 4.5

10

15

20

t-
st

at
is

tic
s

(f) 3rd-order multivariate t-test

Figure 5: Experimental analysis of our two-share Keccak-f [200] design using 100 million
traces.

example can be seen in Figure 5a. As a side note, our constructions require fresh masks
updated at every clock cycle (see Table 3). Therefore, we instantiated Pseudo-Random
Number Generators (PRNGs) to supply such fresh randomness. To this end, we made
use of the FPGA-optimized construction illustrated in [MMW18], which realizes a 31-bit
Linear Feedback Shift Register (LFSR) with the feedback polynomial x31 + x28 + 1 by
means of only three 6-to-1 Look-Up Tables (LUTs). More precisely, for each required fresh
mask bit, we instantiated an LFSR seeded randomly at the power up of the device and
updated at every clock cycle.

We conducted various forms of fixed-versus-random t-test – also known as
TVLA [CDG+13] – as the analysis scheme. It is a well-known leakage assessment tech-
nique that is able to detect SCA leakages in measurements collected from cryptographic
implementations. Starting with our first-order design (d=1), we performed the ordinary
t-test on each sample point individually (i.e., univariate), whose corresponding result
shown in Figure 5b confirms its first-order security. However, this does not hold true
when conducting high-order t-tests. For higher orders, we made the traces mean-free (for

406 Low-Latency Keccak at any Arbitrary Order

0 1 2 3 4 5
Time [s]

P
ow

er

(a) A sample trace

0 1 2 3 4 5
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(b) 1st-order t-test

0 1 2 3 4 5
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(c) 2nd-order t-test

0 1 2 3 4 5
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(d) 3rd-order t-test

0 1 2 3 4 5
Time [s]

0

1

2

3

4

5

T
im

e
[

s]

1

2

3

4

t-
st

at
is

tic
s

(e) 2nd-order bivariate t-test

0
5
4

1

3

T
im

e
[

s]

2

2

1

T
im

e
[

s]

Time [s]
5

3

0 43210

4
5

1

2

3

4

t-
st

at
is

tic
s

(f) 3rd-order multivariate t-test

Figure 6: Experimental analysis of our three-share Keccak-f [200] design using 100 million
traces.

each group of fixed and random individually). Afterwards, each mean-free sample point is
squared (resp. cubed) before calculating the t-statistics for univariate second-order (resp.
univariate third-order) t-tests (see Figure 5c and Figure 5d).

For the bivariate second-order t-test, we should perform an individual t-test for each
combination of every two possible sample points by multiplying the corresponding mean-
free power values. In our experiments, each power trace contains 2 500 sample points.
This translates to 2 500 × 2 500/2 = 3 124 000 individual t-tests, which is a very time
intensive computation even using large machines (e.g., with 24 CPU cores). Since our
constructions make use of fresh masks (updated every clock cycle), the bivariate leakage is
expected to be present for a combination between sample points which are not far from
each other. Therefore, we limited our bivariate analysis to the sample points with at most
3 clock cycles distance. This strongly reduces the amount of computations and allows us
to accomplish it in a reasonable time frame. The corresponding results shown in Figure 5e
conform the existence of second-order bivariate leakages, as expected.

S. Zarei et al. 407

0 1 2 3 4 5
Time [s]

P
ow

er

(a) A sample trace

0 1 2 3 4 5
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(b) 1st-order t-test

0 1 2 3 4 5
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(c) 2nd-order t-test

0 1 2 3 4 5
Time [s]

-4

-2

0

2

4

t-
st

at
is

tic
s

(d) 3rd-order t-test

0 1 2 3 4 5
Time [s]

0

1

2

3

4

5

T
im

e
[

s]

1

2

3

4

t-
st

at
is

tic
s

(e) 2nd-order bivariate t-test

0
5
4

1

3

T
im

e
[

s]

2

2

1

T
im

e
[

s]

Time [s]
5

3

0 43210

4
5

1

2

3

4

t-
st

at
is

tic
s

(f) 3rd-order multivariate t-test

Figure 7: Experimental analysis of our four-share Keccak-f [200] design using 100 million
traces.

For the third-order multivariate analysis, the situation is even worse. If we limit the
maximum distance between the sample points to e.g., 3 clock cycles, the number of possible
combinations of three sample points is way above the feasibility threshold. It can be
seen in Figure 5c to Figure 5e, that the amount of leakage associated to a clock cycle
is approximately the same for the entire clock cycle. Therefore, an appropriate sample
point per clock cycle should suffice for such analyses. This is actually known as memory
effect in power consumption measurements due to the low-pass filter inherently built by
the elements involved in the measurement setup, e.g., the shunt resistor, the chip package,
and the Printed Circuit Board (PCB) [MM13]. Therefore, we down-sampled the traces by
taking a sample point for each clock cycle (carefully selected at the middle of the cycle).
Note that such a down sampling and restricting the bivariate analysis to a small period of
time has been done in the sate of the art as well [CRB+16]. The result of this analysis
is shown by a 3D pyramid in Figure 5f indicating a few tuples (of three points) whose
combination (mean-free product) leads to a detectable leakage. Note that higher-order
univariate and multivariate leakages are expected in case of this first-order design. We

408 Low-Latency Keccak at any Arbitrary Order

showed the detailed results of such analyses as a proof of functionality of our setup.
We have conducted the same analyses on our second- and third-order designs (d=2

and d=3 respectively)4. The corresponding results are depicted in Figure 6 and Figure 7
respectively. As an interesting fact, none of such analyses at any order and any variate
shows a detectable leakage. This is due to the high noise originating from a high number of
fresh masks updated at every clock cycle. More precisely, 600 and 1200 LFSRs are clocked
at the same time in second-order and third-order designs, respectively (see Table 3). Such
a high amount of noise makes the prediction of higher-order statistical moments with a
limited number of measurements challenging, hence hardening the detection of higher-order
leakages [PRB09]. Note that we have verified the correctness of our setup and its ability
to detect univariate and multivariate higher-order leakages using our first-order design
(Figure 5).

5 Conclusions
This research made several noteworthy contributions to the state-of-the-art protected
implementations of Keccak, which are particularly beneficial for developing feasible
low-latency higher-order hardware masking of this cryptographic primitive. First, we
identified some challenges when extending the known techniques for protecting the im-
plementations of Keccak to higher orders. Next, we described a methodology to ad-
dress these challenges. We made use of the specifications of the Keccak structure to
adopt the concept of DOM in a low-latency architecture and decrease the number of
clock cycles by 50% compared to the state-of-the-art original DOM implementation.
Naturally, our design achieves a lower delay and hence a higher throughput while
its area footprint is comparable to that of original DOM-Keccak. More importantly,
compared to the only-known low-latency design, i.e., Rhythmic-Keccak, our construc-
tion needs significantly less area while being easily extendable to higher orders. We
have provided a parametric Verilog design for Keccak-f [200], accessible through https:
//github.com/Chair-for-Security-Engineering/Low-Latency_Keccak, where the de-
sired security order can be easily adjusted.

Acknowledgments
The work described in this paper has been supported in part by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
- EXC 2092 CASA - 390781972 and through the project 406956718 SuCCESS.

References
[ABP+18] Victor Arribas, Begül Bilgin, George Petrides, Svetla Nikova, and Vincent

Rijmen. Rhythmic Keccak: SCA Security and Low Latency in HW. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):269–290, 2018.

[ANR19] Victor Arribas, Svetla Nikova, and Vincent Rijmen. Guards in action: First-
order SCA secure implementations of KETJE without additional randomness.
Microprocess. Microsystems, 71, 2019.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis
with a Leakage Model. In CHES 2004, volume 3156 of Lecture Notes in
Computer Science, pages 16–29. Springer, 2004.

4Larger designs – including the LFSRs as the PRNG – could not fit into the target FPGA of our
platform.

https://github.com/Chair-for-Security-Engineering/Low-Latency_Keccak
https://github.com/Chair-for-Security-Engineering/Low-Latency_Keccak

S. Zarei et al. 409

[BDN+13] Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen,
and Gilles Van Assche. Efficient and First-Order DPA Resistant Implementa-
tions of Keccak. In CARDIS 2013, volume 8419 of Lecture Notes in Computer
Science, pages 187–199. Springer, 2013.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science,
pages 313–314. Springer, 2013.

[BDPVA10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Build-
ing power analysis resistant implementations of Keccak. In Second SHA-3
candidate conference, volume 142. Citeseer, 2010.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-Order Threshold Implementations. In ASIACRYPT 2014,
volume 8874 of Lecture Notes in Computer Science, pages 326–343. Springer,
2014.

[Bil15] Begül Bilgin. Threshold implementations : as countermeasure against higher-
order differential power analysis. PhD thesis, University of Twente, Enschede,
Netherlands, 2015.

[BKN19] Dusan Bozilov, Miroslav Knezevic, and Ventzislav Nikov. Optimized Threshold
Implementations: Minimizing the Latency of Secure Cryptographic Accelera-
tors. In CARDIS 2019, volume 11833 of Lecture Notes in Computer Science,
pages 20–39. Springer, 2019.

[BNN+12] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, and Georg
Stütz. Threshold Implementations of All 3 ×3 and 4 ×4 S-Boxes. In
CHES 2012, volume 7428 of Lecture Notes in Computer Science, pages 76–91.
Springer, 2012.

[BNN+15] Begül Bilgin, Svetla Nikova, Ventzislav Nikov, Vincent Rijmen, Natalia N.
Tokareva, and Valeriya Vitkup. Threshold implementations of small S-boxes.
Cryptogr. Commun., 7(1):3–33, 2015.

[BPVA+11] Guido Bertoni, Michaël Peeters, Gilles Van Assche, et al. The Keccak Refer-
ence. 2011.

[CDG+13] Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe, Gary Ken-
worthy, Pankaj Rohatgi, et al. Test vector leakage assessment (TVLA)
methodology in practice. In International Cryptographic Module Conference,
volume 20, 2013.

[CRB+16] Thomas De Cnudde, Oscar Reparaz, Begül Bilgin, Svetla Nikova, Ventzislav
Nikov, and Vincent Rijmen. Masking AES with d+1 Shares in Hardware.
In CHES 2016, volume 9813 of Lecture Notes in Computer Science, pages
194–212. Springer, 2016.

[Dae17] Joan Daemen. Changing of the Guards: A Simple and Efficient Method for
Achieving Uniformity in Threshold Sharing. In CHES 2017, volume 10529 of
Lecture Notes in Computer Science, pages 137–153. Springer, 2017.

[Dwo15] Morris J Dworkin. SHA-3 standard: Permutation-based hash and extendable-
output functions. Technical report, 2015.

410 Low-Latency Keccak at any Arbitrary Order

[FGP+18a] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[FGP+18b] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable Masking Schemes in the Presence
of Physical Defaults & the Robust Probing Model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[GBTP08] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual
Information Analysis. In CHES 2008, volume 5154 of Lecture Notes in
Computer Science, pages 426–442. Springer, 2008.

[GIS14] Hendra Guntur, Jun Ishii, and Akashi Satoh. Side-channel attack user
reference architecture board SAKURA-G. In GCCE 2014, pages 271–274.
IEEE, 2014.

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-Oriented Mask-
ing: Compact Masked Hardware Implementations with Arbitrary Protection
Order. In TIS@CCS 2016, page 3. ACM, 2016.

[GSM17a] Hannes Groß, David Schaffenrath, and Stefan Mangard. Higher-Order Side-
Channel Protected Implementations of KECCAK. In DSD 2017, pages
205–212. IEEE Computer Society, 2017.

[GSM17b] Hannes Groß, David Schaffenrath, and Stefan Mangard. Higher-Order Side-
Channel Protected Implementations of Keccak. IACR Cryptol. ePrint Arch.,
2017:395, 2017.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private Circuits: Securing
Hardware against Probing Attacks. In CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis.
In CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

[KSM20] David Knichel, Pascal Sasdrich, and Amir Moradi. SILVER - Statistical
Independence and Leakage Verification. In ASIACRYPT 2020, volume 12491
of Lecture Notes in Computer Science, pages 787–816. Springer, 2020.

[MM13] Amir Moradi and Oliver Mischke. On the Simplicity of Converting Leakages
from Multivariate to Univariate - (Case Study of a Glitch-Resistant Masking
Scheme). In CHES 2013, volume 8086 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2013.

[MMW18] Lauren De Meyer, Amir Moradi, and Felix Wegener. Spin Me Right Round
Rotational Symmetry for FPGA-Specific AES. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2018(3):596–626, 2018.

[MPL+11] Amir Moradi, Axel Poschmann, San Ling, Christof Paar, and Huaxiong Wang.
Pushing the Limits: A Very Compact and a Threshold Implementation of
AES. In EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer
Science, pages 69–88. Springer, 2011.

[MS16] Amir Moradi and François-Xavier Standaert. Moments-Correlating DPA. In
Theory of Implementation Security - TIS@CCS 2016, pages 5–15. ACM, 2016.

S. Zarei et al. 411

[NRS11] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure Hardware Imple-
mentation of Nonlinear Functions in the Presence of Glitches. J. Cryptology,
24(2):292–321, 2011.

[PMK+11] Axel Poschmann, Amir Moradi, Khoongming Khoo, Chu-Wee Lim, Huaxiong
Wang, and San Ling. Side-Channel Resistant Crypto for Less than 2, 300 GE.
J. Cryptol., 24(2):322–345, 2011.

[PRB09] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical Analysis of
Second Order Differential Power Analysis. IEEE Trans. Computers, 58(6):799–
811, 2009.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating Masking Schemes. In CRYPTO 2015, volume
9215 of Lecture Notes in Computer Science, pages 764–783. Springer, 2015.

[Rep15] Oscar Reparaz. A note on the security of Higher-Order Threshold Implemen-
tations. IACR Cryptol. ePrint Arch., 2015:1, 2015.

[SD17] Niels Samwel and Joan Daemen. DPA on hardware implementations of Ascon
and Keyak. In CF 2017, pages 415–424. ACM, 2017.

[SM15] Tobias Schneider and Amir Moradi. Leakage Assessment Methodology - A
Clear Roadmap for Side-Channel Evaluations. In CHES 2015, volume 9293
of Lecture Notes in Computer Science, pages 495–513. Springer, 2015.

[SM21] Aein Rezaei Shahmirzadi and Amir Moradi. Re-Consolidating First-Order
Masking Schemes Nullifying Fresh Randomness. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2021(1):305–342, 2021.

[Tri03] Elena Trichina. Combinational Logic Design for AES SubByte Transformation
on Masked Data. IACR Cryptol. ePrint Arch., 2003:236, 2003.

[WM18] Felix Wegener and Amir Moradi. A First-Order SCA Resistant AES Without
Fresh Randomness. In COSADE 2018, volume 10815 of Lecture Notes in
Computer Science, pages 245–262. Springer, 2018.

	Introduction
	Related Works
	Our Contributions
	Outline

	Preliminaries
	Keccak Algorithm
	Masking Schemes
	Probing Security

	Generic Low-Latency Keccak Design
	Rhythmic Keccak: Two-Round Unrolled TI-Keccak
	Original DOM-Keccak
	Our Single Register per Round Realization
	Refreshing and Compression Layers

	Evaluations
	Performance Analysis
	Experimental Analyses

	Conclusions

