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Abstract. In both hardware and software, masking can represent an effective means of
hardening an implementation against side-channel attack vectors such as Differential
Power Analysis (DPA). Focusing on software, however, the use of masking can present
various challenges: specifically, it often 1) requires significant effort to translate any
theoretical security properties into practice, and, even then, 2) imposes a significant
overhead in terms of efficiency. To address both challenges, this paper explores the
use of an Instruction Set Extension (ISE) to support masking in software-based
implementations of a range of (symmetric) cryptographic kernels including AES: we
design, implement, and evaluate such an ISE, using RISC-V as the base ISA. Our
ISE-supported first-order masked implementation of AES, for example, is an order
of magnitude more efficient than a software-only alternative with respect to both
execution latency and memory footprint; this renders it comparable to an unmasked
implementation using the same metrics, but also first-order secure.
Keywords: side-channel attack, masking, RISC-V, ISE

1 Introduction
The threat of implementation attacks. Evolution of the technology landscape, for
example improvement in storage, computational, and communication capability, has
produced a corresponding evolution in user-facing platforms and applications that we now
routinely depend on. Many such cases are now deemed security-critical, as a result of trends
such increased connectivity (cf. IoT), outsourced computation (cf. cloud computing), and
use of identity-, location-, and finance-related data. Within this setting, cryptography often
represents a transparent enabler: cryptographic solutions are routinely tasked with ensuring
the secrecy, robustness, and provenience of our data (when communicated and/or while
stored), plus the authenticity of interacting parties. While mature theoretical foundations
often underpin such solutions, their secure realisation in practice can remain difficult.
Cryptographic implementations represent an important component of the attack surface;
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in an attack landscape of increasing breadth and complexity (where “attacks only get
better”), the threat of implementation attacks is particularly acute.

The premise of an implementation attack is that by considering a concrete imple-
mentation, versus an abstract specification say, theoretical security properties (however
strong) can potentially be bypassed. At a high level, they are often divided into active
(e.g., fault injection) or passive (i.e., side-channel) classes. Differential Power Analysis
(DPA) [KJJ99, MOP07] is a concrete example1 of a side-channel attack with particular
relevance to embedded devices. Following an optional profiling phase, a typical DPA
attack performs an initial, online acquisition phase: (passive) monitoring by the attacker
yields traces of power consumption during computation of some target operation by the
target device. The underlying assumption is that both operations (e.g., addition versus
multiplication) and the operands they process (e.g., higher versus lower Hamming weight)
contribute to features, or leak information, then evident in the traces. Such features are
harnessed by a subsequent, offline analysis phase, which attempts to recover security-critical
information (e.g., key material) they relate to.

Challenges in realisation of countermeasures. Techniques for mitigating implementation
attacks are becoming increasingly well understood. At a high level, examples pertinent to
DPA are often classified as based on hiding [MOP07, Chapter 7] and/or masking [MOP07,
Chapter 10]. The latter, which is our focus, can be viewed as a lower-level analogy of the
more typically higher level “computing on encrypted data” concept. For a target operation
normally invoked as r = f(x), application of a given masking scheme demands that 1) x
is masked (resp. encrypted) to yield x̃, 2) alternative computation is applied to x̃, i.e.,
r̃ = f̃(x̃), such that it acts on the underlying x in a manner compatible with f , then 3) r̃
is unmasked (resp. decrypted) to yield r; any leakage stemming from the computation of
f̃ will now relate to x̃ rather than x, so the latter cannot be directly recovered as would
likely be the case using f .

In common with other countermeasures, masking can be utilised at various levels in
either hardware and/or software: for example, algorithm-level (e.g., to a block cipher such
as AES [Mes01]), system-level (e.g., across the datapath of a processor core [GJM+16,
MGH19]), and gate-level (e.g., in secure logic style such as MDPL [PM05]) techniques
are all viable. For a concrete implementation that uses such techniques, however, at
least two significant challenges must be addressed. First, it must translate theoretically
modelled security properties into practice. This challenge is neatly illustrated by the
contrast between a theoretically, provably secure masking scheme proposed by Rivain
and Prouff [RP10], versus attacks on a practical implementation thereof by Balasch et
al. [BGG+14]. Second, it must do so while satisfying other quality metrics such as demand
for high-volume, low-latency, high-throughput, low-footprint, and/or low-power.

An ISE-assisted approach to masking. Instruction Set Extensions (ISEs) [GB11, BGM09,
RI16] have proved to be an effective implementation technique within the context of cryptog-
raphy. The idea is to identify, e.g., through benchmarking, a set of additional instructions
that allow the target operation to leverage special-purpose, domain-specific functionality
in the resulting ISE, versus general-purpose functionality in the base Instruction Set Archi-
tecture (ISA), and thereby deliver improvement with respect to pertinent quality metrics.
ISEs are particularly effective for embedded devices, because they afford a compromise
improving footprint and latency versus a software-only option while also improving area
and flexibility versus a hardware-only option.

There is an increasingly accepted argument (see, e.g., [RKL+04, RRKH04, BMT16])
that security should be considered as a first-class metric at design-time, rather than a

1Although our focus is specifically on DPA, we note that associated attack and countermeasure
techniques apply more generally, e.g., to classes such as EM.
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problem to be addressed in a reactive, post hoc manner. In line with such an argument,
this paper explores use of an ISE as a means of supporting masking in software-based
implementations of cryptography: we design, implement, and evaluate such an ISE using
RISC-V as the base ISA. We suggest there are (at least) three reasons an ISE-based
approach may be attractive versus alternatives (e.g., a dedicated IP module). First, use of
masking in software-only implementations will impose a significant overhead, e.g., with
respect to execution latency and demand for high-quality randomness; our ISE can help
mitigate this problem. Second, an ISE is well positioned to act as an interface with respect to
security properties. For example, there is increased evidence (see, e.g., [CGD18, GMPO19])
that secure use of masking in software-only implementations is complicated by the lack of
guarantees regarding leakage that stems from the underlying micro-architecture; our ISE
can help mitigate this problem, e.g., by adopting an approach similar to the augmented ISA
(or aISA) of Ge et al. [GYH18] and constraining the micro-architecture to meet properties
demanded by the ISA. Third, the design of masking schemes is a relatively fast-paced field,
with novel designs and techniques appearing regularly. Our ISE mitigates this problem
by following a RISC-like ethos: it provides a suite of general-purpose “building block”
operations, that can be used to support a wide range of cryptographic constructions (e.g.,
block ciphers) and higher-level masking schemes.

We note that, concurrently with our work, Kiaei and Schaumont [KS20] published a
proposal that is similar in some respects. We detail the differences between their and our
work in Section 2.3, but, in short, we a) enrich the ISE with a wider set of operations,
b) provide an implementation of the ISE within an existing RISC-V compliant micro-
architecture, and c) evaluate it, with respect to efficiency and security properties, using a
suite of representative kernels.

Organisation. Section 2 surveys related work. Section 3 introduces the ISE design.
Section 4 looks at the ISE from a hardware perspective, outlining and then evaluating
an implementation of the ISE set within the context of an existing RISC-V compliant
micro-architecture. Section 5 looks at the ISE from a software perspective, focusing on
how it is utilised: we evaluate the ISE when used to implement a range of (symmetric)
cryptographic kernels including AES. Finally, Section 6 concludes our work presenting
potential directions for future work.

2 Background

2.1 RISC-V

RISC-V (see, e.g., [AP14, Wat16]) is an open ISA specification. It adopts strongly RISC-
oriented design principles (so is similar to MIPS) and can be implemented, modified,
or extended by anyone with neither licence nor royalty requirements (as opposite to
MIPS, ARM, and x86). A central tenet of the ISA is modularity: a general-purpose base
ISA can be augmented with some set of special-purpose, standard or non-standard (i.e.,
custom) extensions. As a result of these features, coupled with the surrounding community
and availability of supporting infrastructure such as compilation tool-chains, a range of
(typically open-source) RISC-V implementations exist.

We focus without loss of generality on extending RV32I [RV:19, Section 2], i.e., the
32-bit integer RISC-V base ISA. Let GPR[i], for 0 ≤ i < 32, denote the i-th entry of the
general-purpose register file. RISC-V uses XLEN to denote the word size; we adopt the
same approach, but by focusing on RV32I assume a focus on XLEN = 32.
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2.2 Masking
Masking is based on the concept of secret-sharing. In 1999, Chari et al. [CJRR99] leveraged
this concept as a countermeasure against side-channel attacks. However, use of the term
masking first appeared in 2000 when Messerges [Mes01] described the use of a “random
mask to obscure the calculation made by the fundamental operations” of AES candidates.

A given masking scheme specifies a non-standard representation of data, where each
variable x is represented by (or split into) n separate shares, and a non-standard imple-
mentation of functions, which operate on said representations. The shares representing
some x must fulfil two properties: 1) they must be uniformly distributed, and 2) every
subset of shares has to be statistically independent from x. An implementation of such a
scheme is said to resist a t-th order attack (e.g., under the probing model of Ishai, Sahai,
and Wagner [ISW03]), if knowledge of t < n shares cannot be used to recover x.

2.2.1 Representation

A masking scheme can be classified as Boolean (or additive) or arithmetic (or multiplicative).
If xi denotes the i-th share for 0 ≤ i < n, the shares representing x satisfy x0⊕x1⊕· · ·⊕xn−1
under Boolean masking, and x0 + x1 + · · ·+ xn−1 (mod 2w) under arithmetic masking.
Consider the specific case of n = 2, and let x̂ = (x0, x1) denote the representation of
some x under Boolean masking, i.e., as two shares x0 and x1: this demands x = x0 ⊕ x1.
Likewise, let x̄ = (x0, x1) denote the representation of some x under arithmetic masking:
this demands x = x0 + x1 (mod 2w), noting that, without loss of generality, we set
w = XLEN = 32.

2.2.2 Hardware-oriented implementation

Classical. Goubin and Patarin [GP99] formalised the idea of replacing each intermediate
variable of the computation that is dependent of the inputs or outputs (thus potentially
exploitable by an attacker), by a combination of sub-variables. The recovery of the original
variable would be possible only when all the sub-variables are combined together. This
approach is secure if the function selected for implementing the combination operation
allows one to perform computation with the sub-variables without computing the original
variable. The two functions analysed are XOR (cf. additive masking) and modular
multiplication (cf. multiplicative masking).

Threshold Implementation (TI). Threshold Implementation (TI), presented by Nikova
et al. [NRR06], is a countermeasure that is provable secure against first-order attacks (even
in the presence of glitches). TI requires use of shares with three properties: correctness,
incompleteness, and uniformity. Correctness means that the computation performed on
the shares should be correct, i.e., composition of the results of the operations carried
out on each shares has to be equal to the shared representation of the original result.
Incompleteness means that the computation performed is independent of at least one
share (for first-order security). To guarantee the security of the scheme, masks must be
uniformly distributed. Uniformity is usually the most difficult property to guarantee, but
can be relaxed by using non-uniform functions if their randomness is refreshed frequently.

Domain-Oriented Masking (DOM). Domain-Oriented Masking (DOM) is presented
by Gross et al. [GMK16]. The main objective of their work was to guarantee security
against t-th order attacks using n = t + 1 shares, reaching the same level of security of
TI, but incurring in less area overhead (when implemented in hardware) and requiring
less randomness. To achieve this, the authors concentrate their effort in the design of the
DOM-dep multiplier, that is a dedicated masked multiplier implementing the proposed
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scheme in an efficient and secure way. The approach is evaluated using the AES algorithm
as a case of study, which is analysed upto a 15-th order security level.

2.2.3 Software-oriented implementation

Although masking can be applied to more general classes of computation, consider applica-
tion to block ciphers specifically. The main challenge when applying masking in software
is to implement the round functions in such a way that the shares can be processed
independently from each other, while it still must be possible to recombine them at the end
of the execution to get the correct result. This is fairly easy for all linear operations, but
can introduce massive overheads for the non-linear parts of a block cipher, e.g., S-boxes
or modular additions/subtractions. Furthermore, all round transformations need to be
executed twice (namely for x0 and x1, where x = x0 ⊕ x1), which imposes additional
overhead. Another problem is that a basic 2-share masking scheme is vulnerable to a
so-called second-order attack where an attacker combines information from two leakage
points. Such a second-order attack can, in turn, be thwarted by second-order masking,
in which each sensitive variable is concealed with two random masks and, consequently,
represented by three shares.

Depending on the algorithmic properties of a block cipher, a masking scheme can have
to protect Boolean operations (e.g., XOR, shift) or arithmetic operations (e.g., modular
addition). When a block cipher involves both Boolean and arithmetic operations, it is
necessary to convert the masks from one form to the other to obtain the correct ciphertext
(or plaintext). Examples of symmetric algorithms that involve arithmetic as well as
Boolean operations include the widely-used hash functions SHA-2, Blake, and Skein, and
any ARX-based block cipher (e.g., Speck). In essence, the basic operations performed
by common block ciphers can be divided into three categories depending on how costly
they are to mask in software: 1) linear operations (e.g., XOR, NOT, shift, rotation), 2)
non-linear Boolean operations (e.g., AND, OR), and 3) non-linear arithmetic operations
(e.g., modular addition, and inversion in F28).

As mentioned before, linear operations like XOR and rotation are fairly easy to mask
in software since one just has to apply the operation to each pair of shares individually.
The XOR of a constant to a set of shares can be performed by XOR’ing it to a single
share. Similarly, the logical NOT operation is masked by applying NOT to one of the
shares. Computing a non-linear Boolean function on the shares assuring all variables
processed are independent of sensitive variables is more complicated and introduces higher
computational overheads. The simplest non-linear Boolean operations is the logical AND,
which can be masked in different ways, whereby the different approaches proposed in
the literature differ by the amount or randomness and the number of underlying basic
operations. The first proposal for a first-order masked AND gate came from Trichina and
was published more than 15 years ago [Tri03]. This so-called “Trichina AND-gate” consists
of four basic AND operations, four XORs, and requires additional fresh randomness to
ensure that the shares are statistically independent of any sensitive variable. Biryukov et
al. introduced an improved expression for masked AND in [BDCU17], that consists of only
seven basic operations and does not require an additional random variable since the shares
are inherently refreshed. Furthermore, on ARM micro-controllers, the masked AND can
be performed using only six basic instructions. Biryukov et al. also presented a masked
OR operation, which consists of only six basic operations (and six basic instructions on
ARM) and does not require fresh randomness.

Highly non-linear arithmetic operations, such as modular addition or inversion in a
binary field, are the most costly operations when it comes to masking in software. There
are two basic options for implementing a masked addition (or subtraction) in software;
the first consists of converting the Boolean shares to arithmetic shares, then performing
the addition on the arithmetic shares, and finally converting the arithmetic shares of
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the sum back to Boolean shares. The second option is to perform the modular addition
directly on Boolean shares without conversion. Both options have in common that a
straightforward software implementation has a complexity that increases linearly with
the length of the operands to be added. Coron et al. presented in [CGTV15] a recursive
formula for arithmetic addition on Boolean shares with logarithmic complexity. This
approach is based on the Kogge-Stone adder (a special variant of a carry-lookahead adder)
and uses masked AND, masked XOR, and masked shift as sub-operations. Biryukov et al.
presented an improved Kogge-Stone adder that uses the more efficient masked operations
from [BDCU17] and is able to perform a 32-bit addition on Boolean shares between 14%
and 19% faster than the Kogge-Stone adder of Coron et al.

2.3 Related work

Gross et al. [GJM+16] propose a SCA-protected processor design based on the open-source
V-scale RISC-V processor. The starting point is the experience gained with the study of
DOM (introduced in the previous section) which is leveraged to modify the CPU to make
it resistant against side-channel attacks. The authors split the processor in a protected and
an unprotected part, and realise an ALU protected using the domain oriented approach
to carry the needed basic operations. Experimental results show an increased resistance
against side-channel attacks and a scale of the system almost linear with the order of
protection.

Protection against power analysis attacks for the RISC-V processor have been also
proposed by De Mulder et al. [MGH19]. The proposed solution aims at protecting
against first-order power and electromagnetic attacks. The protection is achieved using a
combination of known masking techniques and a masked access to memory. The second
mask for accessing the memory is generated on the fly within the boundary of the CPU,
and thus, at least in principle, robust. The leakage reduction is demonstrated by a number
of practical experiments.

The use of instruction set extensions to increase the resistance of a processor against
power analysis attacks has been explored also in the past. Tillich and Großschädl [TG07]
evaluated the resistance against side-channel attacks of a processor extended with custom
instructions for AES and proposed to implement the most security-critical operation of
masking using a DPA-resistant logic style. A design flow for automatically implementing
an instruction set extension using a protected logic style was presented by Regazzoni et
al. [RCS+09] and evaluated on OpenRISC. The selection of the instructions was driven by
a security metric and the protected logic style used was a MOS transistor-based current
mode logic.

The most relevant work to our own is probably that of Kiaei and Schaumont [KS20].
They propose to extend the RISC-V processor with dedicated instructions to mitigate
side-channel attacks, focusing in particular on DOM. Our paper shares the core idea of
extending the instruction set of a processor to achieve side-channel resistance, but provides
novel contributions. Firstly, our instructions are not limited to the case of DOM, but are
suitable for implementing masking countermeasures in general and can protect a wide range
of algorithms. Secondly, our instructions are integrated in the core allowing us to provide
a quantitative analysis of the achieved robustness and of the performance overhead. Lastly,
we show that it is possible to achieve security of masking using dedicated instructions
without the need of duplicating the datapath to strongly separate the secure and insecure
zone. To the best or our knowledge, previous works on instruction set extension for
accelerating masking and for side-channel security in general, have always proposed to
have such strong differentiation.
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3 A design perspective
Concept. Focusing without loss of generality on use of Boolean masking, the ISE targets
inclusion of instructions to support 1) binary masked operations, i.e., r̂ = x̂	 ŷ for some set
of 	, 2) unary masked operations, i.e., r̂ = �x̂ for some set of �, and 3) various auxiliary
operations, such as conversion into, from, and between masked representations. The set of
supported operations should be general-purpose in the sense they are useful for a range of
cryptographic constructions and masking schemes; they often have an equivalent in, and
so represent close to a “drop in” replacement for instructions in the base ISA by including,
e.g., 	 ∈ {∧,∨,⊕, +,−} and � ∈ {¬} to mirror the unmasked Boolean operations already
available. Doing so is complicated, however, by the fact that for n = 2 shares we have

r̂ = x̂	 ŷ =⇒ (r0, r1) = (x0, x1)	 (y0, y1),

for example. That is, doing so increases the number of register indexes required, and,
therefore, pressure on instruction encoding: an unmasked binary (resp. unary) operation
requires 3 (resp. 2) register indexes, whereas a masked equivalent requires 6 (resp. 4).
The same scenario is articulated by Lee et al. [LYS04], who describe and use the term
Multi-word Operand, Multi-word Result (MOMR) to characterise and thereby distinguish
cryptographic operations from the general case. There are various ways to satisfy this
requirement: we use an implied approach, where two indexes are encoded as one, i.e.,
(i, i + 1) 7→ i. For example, the even-odd index pair (2, 3) is encoded as the first, even index
2; the second, odd index 3 is then implicit rather than explicit. This is a limited instance of
the Register File Extension for Multi-word and Long-word Operation (RFEMLO) approach
proposed by Lee and Choi [LC08].

The ISE itself constitutes 22 additional instructions, which can be divided into 4 feature
classes. Table 1 offers a high-level summary of these instructions, with the underlying
operations captured in an algorithmic format by Appendix B to avoid repetition inline; we
discuss their design in detail below.

Notation. The RISC-V naming convention [RV:19, Section 27] for ISEs uses a string of
single-character identifiers to specify features realised in an implementation. We adopt a
variant of this approach, where, for example, ISE[CBA] denotes a concrete implementation
of the ISE that supports the C, B, and A feature classes but not the F feature class.

We attempt to describe a given software implementation as precisely and clearly as
possible, through consistent use of the following terminology. An unmasked implementation
of some functionality represents an insecure (in the sense it includes no masking-based
countermeasures) baseline, as realised using the base ISA only. In contrast, an ISA-masked
or ISE-masked implementation will secure the associated unmasked baseline via masking,
as realised using either the base ISA only or base ISA plus ISE respectively.

Conversion (C-class). The ISE includes a suite of instructions that support conversion of
operands under Boolean masking to/from arithmetic masking. For example, the instruction

mask.b2a (rd1,rd2), (rs1,rs2)

uses the input x̂ = (x0, x1) = (GPR[rs1], GPR[rs2]) so x = x0 ⊕ x1; it computes the
output r̄ = (r0, r1) = (GPR[rd1], GPR[rd2]) = Bool2Arith((x0, x1)) so r = r0 + r1
(mod 2w) = x.

Operations under Boolean masking (B-class). The ISE includes a suite of instructions
that support Boolean masking. They allow masking, unmasking, remasking, and application
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C
lass

Syntax
Sem

antics
1

C
mask.a2b

(rd1,rd2),
(rs1,rs2)

7→
(GPR[rd1],GPR[rd2])

←
B

ool2A
rith((GPR[rs1],GPR[rs2]))

2
mask.b2a

(rd1,rd2),
(rs1,rs2)

7→
(GPR[rd1],GPR[rd2])

←
A

rith2B
ool((GPR[rs1],GPR[rs2]))

3

B

mask.b.mask
(rd1,rd2),

rs1
7→

(GPR[rd1],GPR[rd2])
←

B
oolM

ask(GPR[rs1])
4

mask.b.unmask
rd1,

(rs1,rs2)
7→

GPR[rd1]
←

B
oolU

nm
ask((GPR[rs1],GPR[rs2]))

5
mask.b.remask

(rd1,rd2),
(rs1,rs2)

7→
(GPR[rd1],GPR[rd2])

←
B

oolR
em

ask((GPR[rs1],GPR[rs2]))
6

mask.b.not
(rd1,rd2),

(rs1,rs2)
7→

(GPR[rd1],GPR[rd2])
←

B
oolN

O
T

((GPR[rs1],GPR[rs2]))
7

mask.b.and
(rd1,rd2),

(rs1,rs2),
(rs3,rs4)

7→
(GPR[rd1],GPR[rd2])

←
B

oolA
N

D
((GPR[rs1],GPR[rs2]),(GPR[rs3],GPR[rs4]))

8
mask.b.ior

(rd1,rd2),
(rs1,rs2),

(rs3,rs4)
7→

(GPR[rd1],GPR[rd2])
←

B
oolIO

R
((GPR[rs1],GPR[rs2]),(GPR[rs3],GPR[rs4]))

9
mask.b.xor

(rd1,rd2),
(rs1,rs2),

(rs3,rs4)
7→

(GPR[rd1],GPR[rd2])
←

B
oolX

O
R

((GPR[rs1],GPR[rs2]),(GPR[rs3],GPR[rs4]))
10

mask.b.slli
(rd1,rd2),

(rs1,rs2),
imm

7→
(GPR[rd1],GPR[rd2])

←
B

oolSLL((GPR[rs1],GPR[rs2]),imm)
11

mask.b.srli
(rd1,rd2),

(rs1,rs2),
imm

7→
(GPR[rd1],GPR[rd2])

←
B

oolSR
L((GPR[rs1],GPR[rs2]),imm)

12
mask.b.rori

(rd1,rd2),
(rs1,rs2),

imm
7→

(GPR[rd1],GPR[rd2])
←

B
oolR

O
R

((GPR[rs1],GPR[rs2]),imm)
13

mask.b.add
(rd1,rd2),

(rs1,rs2),
(rs3,rs4)

7→
(GPR[rd1],GPR[rd2])

←
B

oolA
dd((GPR[rs1],GPR[rs2]),(GPR[rs3],GPR[rs4]))

14
mask.b.sub

(rd1,rd2),
(rs1,rs2),

(rs3,rs4)
7→

(GPR[rd1],GPR[rd2])
←

B
oolSub((GPR[rs1],GPR[rs2]),(GPR[rs3],GPR[rs4]))

15

A

mask.a.mask
(rd1,rd2),

rs1
7→

(GPR[rd1],GPR[rd2])
←

A
rithM

ask(GPR[rs1])
16

mask.a.unmask
rd1,

(rs1,rs2)
7→

GPR[rd1]
←

A
rithU

nm
ask((GPR[rs1],GPR[rs2]))

17
mask.a.remask

(rd1,rd2),
(rs1,rs2)

7→
(GPR[rd1],GPR[rd2])

←
A

rithR
em

ask((GPR[rs1],GPR[rs2]))
18

mask.a.add
(rd1,rd2),

(rs1,rs2),
(rs3,rs4)

7→
(GPR[rd1],GPR[rd2])

←
A

rithA
dd((GPR[rs1],GPR[rs2]),(GPR[rs3],GPR[rs4]))

19
mask.a.sub

(rd1,rd2),
(rs1,rs2),

(rs3,rs4)
7→

(GPR[rd1],GPR[rd2])
←

A
rithSub((GPR[rs1],GPR[rs2]),(GPR[rs3],GPR[rs4]))

20
F

mask.f.sqr
(rd1,rd2),

(rs1,rs2)
7→

(GPR[rd1],GPR[rd2])
←

F
ieldSqr((GPR[rs1],GPR[rs2]))

21
mask.f.mul

(rd1,rd2),
(rs1,rs2),

(rs3,rs4)
7→

(GPR[rd1],GPR[rd2])
←

F
ieldM

ul((GPR[rs1],GPR[rs2]),(GPR[rs3],GPR[rs4]))
22

mask.f.aff
(rd1,rd2),

(rs1,rs2),
(rs3,rs4)

7→
(GPR[rd1],GPR[rd2])

←
F

ieldA
ff((GPR[rs1],GPR[rs2]),(GPR[rs3],GPR[rs4]))
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of operations to (masked) operands: these operations include NOT, AND, OR, XOR, left-
and right-shift, right-rotate, addition, and subtraction. For example, the instruction

mask.b.add (rd1,rd2), (rs1,rs2), (rs3,rs4)

uses the inputs x̂ = (x0, x1) = (GPR[rs1], GPR[rs2]) and ŷ = (y0, y1) = (GPR[rs3], GPR[rs4])
so x = x0 ⊕ x1 and y = y0 ⊕ y1; it computes r̂ = (r0, r1) = (GPR[rd1], GPR[rd2]) =
BoolAdd((x0, x1), (y0, y1)) so r = r0 ⊕ r1 = x + y.

Operations under arithmetic masking (A-class). The ISE includes a suite of instructions
that support arithmetic masking. They allow masking, unmasking, remasking, and
application of operations to (masked) operands: these operations include addition and
subtraction. For example, the instruction

mask.a.sub (rd1,rd2), (rs1,rs2), (rs3,rs4)

uses the inputs x̄ = (x0, x1) = (GPR[rs1], GPR[rs2]) and ȳ = (y0, y1) = (GPR[rs3], GPR[rs4])
so x = x0 + x1 (mod 2w) and y = y0 + y1 (mod 2w); it computes r̄ = (r0, r1) =
(GPR[rd1], GPR[rd2]) = ArithSub((x0, x1), (y0, y1)) so r = r0 + r1 (mod 2w) = x− y.

Operations for field arithmetic (F-class). Arithmetic operations in the finite field F28

play an essential role in many symmetric cryptosystems, most notable the AES [DR02].
For example, the SubBytes transformation of the AES performs an inversion of an element
of F28 , followed by an affine transformation. The MixColumns transformation can be
interpreted as multiplications of polynomials whose coefficients are elements of F28 . Besides
the AES, many other symmetric cryptosystems involve arithmetic operations in F28 ; these
include the block ciphers SM4 and Camellia, the hash function Grøstl, the authenticated
encryption algorithms COMET and Saturnin (which made it into the second round of the
current NIST lightweight cryptography standardisation project), and many more.

When it comes to masking of the AES (and AES-like or AES-inspired designs), two
basic approaches received particular attention in the recent literature. The first approach
uses a bit-sliced implementation as starting point and applies masking to the underlying
logical operations [SS16]. Such masked bit-sliced implementations are attractive because
they can reach relatively high throughput; for example, Schwabe and Stoffelen [SS16]
report an encryption time of 7422.6 cycles per block for first-order masked AES on a
Cortex-M4 micro-controller when encrypting 256 consecutive blocks. However, the main
disadvantage of bit-slicing is that it can only be applied to non-feedback modes of operation
like counter mode. In addition, bit-slicing introduces a disproportionately high overhead
when the amount of data to be encrypted is small, as is often the case for applications that
run on constrained devices. An alternative approach is the well-known masking technique
of Rivain and Prouff [RP10], which is provably secure in the probing model and can be
straightforwardly extended to higher orders. The Rivain-Prouff masking technique requires
performing the inversion in F28 through a sequence of multiplication and squarings along
with mask refreshings to inject independent randomness. When properly implemented,
the Rivain-Prouff masking can meet the strong theoretical security promises in practice,
but introduces a massive penalty in execution time. For example, a first-order masked
implementation of AES-128 on an ARM Cortex-M3 micro-controller is between 40 and 60
times slower than unprotected reference implementation [GR17].

The B-class instructions described above, most notably mask.b.xor and mask.b.and,
can be applied for Boolean masking of bit-sliced implementations of any symmetric
cryptosystem, including the AES. However, given the mentioned limitations of bit-slicing
(most notably the restriction to non-feedback modes of operation), which carry over
to masked bit-slicing, it makes sense to define an ISE to support the masking of non-
bitsliced implementations of the AES. The SubBytes transformation deserves particular
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attention since it includes inversion in F28 , which is non-linear and, therefore, extremely
costly to mask. Rivain and Prouff [RP10] proposed to mask SubBytes by performing
a sequence of masked multiplications and squarings in F28 , followed by a masked affine
transformation. The masked multiplication and squaring are, in turn, composed of
“ordinary” multiplications and squarings in F28 , which are usually implemented using look-
up tables (cf. [GR17, Section 3]). However, look-up tables add to the memory footprint
and may enable cache attacks when executed on devices with a data cache. Said problems
can be easily overcome by defining instructions for multiplication, squaring, and affine
transformation in F28 . These operations are ubiquitous in symmetric cryptography (cf.
SM4, Camellia, Grøstl, etc.), which means ISEs for masked multiplication, masked squaring,
and masked affine transformation are in line with the general design concept described at
the beginning of this section, namely to support operations that are general-purpose and
useful for a wide range of cryptographic constructions. For example, the instruction

mask.f.mul (rd1,rd2), (rs1,rs2), (rs3,rs4)

executes a masked 4-way SIMD Within a Register (SWAR) multiplication in F28 , inter-
preting the operand in each source register as four elements of F28 . This instruction is
basically a “packed” version of the masked F28 multiplication described by Rivain and
Prouff [RP10]; a more formal specification of mask.f.mul can be found in Appendix B. Also
the mask.f.sqr and mask.f.aff instruction execute a masked squaring and masked affine
transformation in a 4-way SWAR-parallel fashion, which means they operate on four bytes
in parallel, whereby each byte is interpreted as an element of F28 . In essence, mask.f.mul
and mask.f.aff can be seen as 32-bit versions of the x86 instructions GF2P8MULB [X8618,
Pages 3-447–3-448] and GF2P8AFFINEQB [X8618, Pages 3-445–3-446]. Both mask.f.mul and
mask.f.sqr use the irreducible polynomial of the AES, namely p(x) = x8 + x4 + x3 + x + 1.
Nonetheless, these instructions can still be used for e.g., SM4 and other cryptosystems
that use a different irreducible polynomial, since the corresponding field-representations
are isomorphic.

4 A hardware perspective: ISE realisation
In this section we consider the ISE from a hardware perspective, i.e., how the ISE is
realised. Section 4.1 outlines the implementation of a masked ALU module, and integration
of said module into an existing RISC-V compliant micro-architecture. Section 4.2 then
presents synthesis results, including area, plus analysis of per-instruction (versus whole
kernel) execution properties including execution latency, memory footprint, and leakage.

In common with the ISA, our ISE defines an interface; this implies a degree of
flexibility with respect to any implementation of it. As a result, we stress that ours is an
implementation rather than the (only possible) implementation: alternative approaches
that yield incremental improvements may be viable, and in fact may be necessary to
support integration with different micro-architectures.

4.1 Implementation
4.1.1 Implementation of a masking-specific ALU

Each operation underlying an ISE instruction is evaluated using a masked ALU module,
an illustrative block diagram of which is shown in Figure 1: it accepts two 2-share
inputs (s2_opr_a, s2_opr_b) and (s2_opr_c, s2_opr_d) and produces one 2-share output
(s3_opr_a, s3_opr_b), where, for both input and output, only 1 share may be used in
specific cases such as masking and unmasking. Internally, the ALU can be viewed as a
collection of submodules which cater for four cases, namely 1) support for random bit
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Figure 1: A block diagram illustrating submodules of the masked ALU module, and
their internal organisation. Note that, for clarity, we use 2-share connections (i.e., each
connection communicates two, 32-bit shares) throughout and omit all connections stemming
from the two RBG instances: these are used by almost all other components.

generation, 2) support for B-class instructions, 3) support for A-class instructions, and 4)
support for F-class instructions, which we expand upon below.

High-level implementation strategy. The masked ALU supports a variety of operations,
each of which could be classified as either linear or non-linear. Whereas linear operations
(e.g., masked XOR) can operate independently on the shares involved, the same is not true
of non-linear operations (e.g., masked AND): because they involve operations which allow
interaction between shares, their leakage-free implementation demands care with respect to
glitches, i.e., transient changes to the state of a signal before it finally becomes stable. Per
Section 2.2, various implementation strategies, such as TI [NRR06] and DOM [GMK16],
can be used to address this challenge. We opt for a DOM-based strategy, which, at a
high level, requires the application of two principles: 1) separation of a given module
into domains, each of which operates on associated shares and is therefore inherently
robust against glitches, and 2) insertion of latching and remasking steps, which cater for
cross-domain operations by preventing glitches and therefore associated leakage. Based
on these principles, we apply several general strategies throughout the implementation of
given operation:

1. By default, insertion of an additional latching step within a given module would
imply an additional clock cycle of latency; this would then be reflected in the latency
of instruction execution, and thus instruction throughput overall. To avoid this
overhead, we use double-pumped clocking. As a result of the short critical paths
involved, we can make use of both positive (for input and output registers) and
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Figure 2: Two circuit diagrams which capture the DOM-based implementation of selected
operations: note 1) the inclusion of remasking steps, and 2) double-pumped approach
to clocking, whereby the input and output (resp. latching step) registers are enabled by
positive (resp. negative) clock edges.



S. Gao, J. Großschädl, B. Marshall, D. Page, T. Pham F. Regazzoni 295

negative (for registers associated with the additional latching step) clock edges and
thus avoid additional latency.

2. Although remasking steps are only required if/where cross-domain operations exist,
the relative abundance of randomness (versus in software) means we are able to insert
additional remasking steps elsewhere: this is a conservative decision with respect to
leakage, and allows the ALU to be more modular by removing various assumptions
about use of and interaction between modules.

3. The general DOM-based strategy includes more specific variants termed DOM-indep
and DOM-dep, which cater for cases where the inputs are known to be independent
or dependent respectively. We carefully select between these variants depending
on the context, and so avoid leakage but also optimise the implementation where
possible.

Although it is possible to apply tools such REBECCA [BGI+18], maskVerif [BBC+19], and
SILVER [KSM20] to formally verify properties of some smaller, isolated modules within the
masked ALU, we faced various challenges when doing so in general: these included 1) the
general complexity, e.g., total number of gates, and 2) the use of an iterative rather than
combinatorial architecture for the Kogge-Stone [KS73] adder supporting Boolean masked
addition and subtraction. Our strategy is therefore most fairly described as “glitch free by
construction then empirical validation”, rather than as “glitch free by formal verification”
for example.

RBG submodule. The RBG submodule generates random masks for (re)masking oper-
ations: at most two such masks are required by the ALU for any given operation, so it
includes two instances. Each instance uses a hybrid design, motivated by the trade-off
between area, throughput, and randomness quality, which includes both pseudo- and
true-random components.

The basis for this design is a 32-bit Linear Feedback Shift Register (LFSR), which uses
a feedback function selected [GA] to generate a maximal length pseudo-random sequence
of 232 − 1 outputs. The LFSR is free-running in the sense it is updated every clock cycle,
rather, for example, than per use of the masked ALU. The LFSR state in some i-th
clock cycle is used as is to form the output and hence a 32-bit mask; the state is not
architecturally visible, and therefore cannot be read from or written to by software.

In principle at least, the inherently deterministic behaviour of such an LFSR could
be exploited in an attack. To address this fact we add selected non-determinism by
injecting a single true-random bit into the feedback function. This bit is generated by
an implementation of the ES-TRNG design due to Yang et al.[YRG+18], which relies on
the timing jitter of a ring oscillator; we employ a third-order parity filter to post-process
the raw output. As well as enhancing the security characteristics of the LFSR, doing so
also acts as a way to seed it: one simply stalls for some n clock cycles, after which n
true-random bits have been injected into and so act to seed the LFSR state.

B-class submodule. The B-class submodule is realised by a set of fairly independent
modules which collectively provide functionality in support of the B-class instructions.
The internal organisation of said modules is area-optimised, in the sense that, if and where
appropriate, 1) common functionality is reused between operations, and 2) functionality
supporting a given operation can be iterative (or multi-cycle) versus combinatorial (or
single-cycle). The BoolMask module computes Boolean masking and remasking. The
BoolShift module computes Boolean masked left-shift, right-shift, and right-rotate. The
BoolBitwise module computes bitwise operations, including Boolean masked NOT, XOR,
and AND; Boolean masked OR is computed using the Boolean masked AND module by
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applying De Morgan’s law. Boolean masked addition and subtraction are computed by
the BoolBitwise and BoolAdder modules, which are combined to form an iterative Kogge-
Stone [KS73] adder. The former realises the pre-processing step, while the latter realises
the iteration, and post-processing steps. A set of registers is used to latch the output of
each i-th step of iteration ready for use in the subsequent, (i + 1)-th step. Finally, the
BoolConv module reuses Boolean masked addition and subtraction to allow conversion
between Boolean and arithmetic masking.

The Boolean masked AND operations in the BoolBitwise and BoolAdder modules are
supported by DOM-dep and DOM-indep implementations respectively. The former case
must be pessimistic because the inputs are externally generated (so may be dependent);
the latter case can be optimistic because the inputs are internally generated (so can be
guaranteed independent), and, as a result, is more efficient. Figure 2a describes the former,
i.e., a DOM-dep, Boolean masked AND module: this clearly demonstrates points in our
high-level implementation strategy, namely the use of 1) two domains (essentially the left-
and right-hand side of the circuit), 2) one latching step (driven by the negative edge of
clk), 3) two remasking steps (one at the input to the latching step using RBG1, one at the
module output using RBG2).

A-class submodule. The A-class submodule is realised by a set of fairly independent
modules which collectively provide functionality in support of the A-class instructions.
The ArithAdder module computes arithmetic masked addition and subtraction.

F-class submodule. The F-class submodule is realised by a set of fairly independent
modules which collectively provide functionality in support of the F-class instructions. The
FieldAffine module computes a (packed) masked field transform (or matrix-vector product).
The FieldMult module computes a (packed) masked field multiplication.

Both Boolean masked (packed) masked field multiplication and squaring operations in
the FieldMult module are supported by a DOM-indep implementation. Figure 2b describes
the implementation, which follows that described by Rivain and Prouff [RP10, Section 3.1],
using instances an optimised design [fSN] for the constituent (unmasked) multiplications in
F28 ; the multiplexers before the F28 multipliers are controlled to allow either multiplication
or squaring.

Although DOM-indep assumes the inputs are independent, the major reason for
dependency would be where the inputs are equal: this is allowed via a separate control-
path, i.e., a Boolean masked (packed) masked field squaring operation. Table 4 captures
this assumption, which then forms part of the hardware/software interface: responsibility
for 1) correct selection between multiplication and squaring, and 2) satisfaction of the
independence assumption for multiplication lies with software. We stress that it is possible
to opt for a DOM-dep implementation instead, which then shifts the trade-off toward
usability (by removing said assumption) at the cost of efficiency.

4.1.2 Integration of the masked ALU into a RISC-V compliant micro-architecture

The masked ALU described in Section 4.1.1 was integrated into the SCARV2 core, a
micro-controller class 5-stage pipelined micro-architecture that implements RV32IMCB,
i.e., the RV32I base ISA plus the M(ultiply) [RV:19, Chapter 7], C(ompressed) [RV:19,
Chapter 16] and (draft) B(it manipulation) [RV:19, Chapter 17]3 standard extensions. We
supplement this baseline core with an instruction

rbgsamp rd 7→ GPR[rd] $←− {0, 1}XLEN,

2https://github.com/scarv/scarv-cpu
3 See also https://github.com/riscv/riscv-bitmanip

https://github.com/scarv/scarv-cpu
https://github.com/riscv/riscv-bitmanip
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Figure 3: A block diagram illustrating integration of the masked ALU into the SCARV
core. Note that registers and wires are coloured blue (resp. red) to reflect their relationship
with the 0-th (resp. 1-st) share of intermediate, in-flight values; green modules represent
the memory interface, careful use of which is important to ensure leakage-free transfer of
shares between general-purpose registers and memory.
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which samples XLEN bits from an underlying Random Bit Generator (RBG)4 and stores
the result into a general-purpose register. This is important, because it allows efficient
generation of masks in software which uses the base ISA, i.e., it does not artificially penalise
the base ISA versus the ISE with respect to generation of randomness.

A block diagram of the core is show in Figure 3. Note that the core is interfaced with
a 64 kB RAM (left) and a 1 kB ROM (top); both have single-cycle access latencies.

Support for paired register file access. Per Section 3, the masked ISE design demands
a general-purpose register file which can support paired read (resp. write) access: for
masked operands, an index i implies a need to read from (resp. write to) both GPR[i] (i.e.,
the 0-th share) and GPR[i + 1] (i.e., the 1-st share).

Due to the indexing scheme, restructuring the register file to support such access
was fairly straightforward. Specifically, the odd and even registers were split into two
groups (or sub-files), each one using a dedicated 16-to-1 multiplexer tree to support read
access. This approach means a) both elements of a pair can be accessed in parallel, b)
there is no interaction between elements within the multiplexer tree, and c) an underlying
implementation based on either flip-flops or latches or SRAM is feasible. For single-register
reads, an additional 2-to-1 multiplexer in the decode stage selects between either the odd
or even group based on the least-significant bit of the index. For base ISA instructions
rs1 is stored in s2_opr_a and rs2 is stored in s2_opr_b. For ISE instructions the 0-th
(resp. 1-st) share of rs1 is stored in s2_opr_a (resp. s2_opr_c), whereas the 0-th (resp.
1-st) share of rs2 is stored in s2_opr_b (resp. s2_opr_d); for the SCARV core at least,
this meant adding an additional pipeline register, i.e., s2_opr_d.

Mitigating the impact of accidental share combination. We found that although im-
plementation of a leakage-free masked ALU was straightforward in isolation, integration
with the core presented some more subtle challenges from a leakage perspective. In
particular, given the masked representation of some x, i.e., x̃ = (x0, x1), potential sources
for accidentally share combination, i.e., interaction between x0 and x1, occur throughout
the execution pipeline. One way to address this challenge (see, e.g., [KS20, Figure 1]), is
by executing base ISA and ISE instructions using separate insecure and secure datapaths.
We instead opted to address it in an integrated datapath, employing two mechanisms.

At an intra-component level, note that the interleaved mapping of shares to pipeline
registers is an intentional design decision: the mapping acts to prevent both shares of either
rs1 or rs2 entering a functional unit other than the masked ALU, and so eliminates the
potential for accidental share combination within such components. At an inter-component
level, we adopt a representation where the 1-st share is bit-reversed; this is applied to both
the register file and pipeline registers. As a result, any accidental share combination, e.g.,
switching between shares in the forwarding network, will cause non-corresponding bits of
those shares to interact: the 0-th bit of the 0-th share will interact with the (XLEN− 1)-
th bit of the 1-st share rather than the 0-th bit of the 1-st share, for example. The
representation is managed dynamically and automatically in hardware, so is transparent to
software. Instructions from the base ISA unreverse their operands before being stored in
the s2_opr_a and s2_opr_b pipeline registers. Instructions from the ISE unreverse their
operands before entering the execute stage, immediately before the masked ALU; the 1-st
share is rereversed immediately after the masked ALU, before entering the multiplexer
tree that selects the next value stored in the s3_opr_b pipeline register. This mechanism
is inexpensive to realise in hardware: it requires 1) a 1-bit flag per general-purpose and
pipeline register to track reversed’ness, and 2) a 2-to-1 multiplexer per pipeline register to
realise (un)reversal where required.

4Note that this mechanism is distinct from the random bit generator(s) used by the masked ALU,
although uses the same design.
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Table 2: Synthesis results for the ISE, as integrated into the SCARV core: the rows
capture 1) the baseline core with no ISE, 2) the baseline core plus ISE with C, B, and A
classes, and 3) the baseline core plus ISE with C, B, A, and F classes. Note that timing
slack is quoted for a frequency of f = 50 MHz. for FPGA, while the ASIC designs have
been all synthesized imposing a clock of 4ns.

Implementation FPGA ASIC
LUTs FFs Timing slack GE

SCARV core 4229 (1.0×) 2141 (1.0×) 3.417 ns 35887 (1.0×)
SCARV core + ISE[CBA] 6602 (1.56×) 2606 (1.24×) 1.012 ns 46152 (1.29×)
SCARV core + ISE[CBAF] 7676 (1.82×) 2670 (1.25×) 1.833 ns 52016 (1.45×)

We prevent the accidental unreversing of shares in the decode stage by gating the
unreverse enable control signal with a negative edge triggered flip-flop. The flip-flop prevents
glitches in the control signal, and is updated if and only if an unreversed representation is
required.

Overall, these mechanisms allow selective sharing of datapath components in a leakage-
considerate manner: they reduce area versus the alternative, while also avoiding leakage
plus added latency that may stem from forwarding between base ISA and ISE instructions.

Verifying functional correctness. Functional correctness of some Design Under Test
(DUT), in our case the baseline core plus ISE, is a property which captures whether
execution of instructions complies with their specification. There are essentially two
options for checking this property: 1) given known input, check whether a specific output
is produced, and 2) given known input, check whether a relationship holds between said
input and the output produced.

The first option offers the strongest assurance that instruction execution matches the
associated specification, and enables co-simulation of the DUT with a golden reference
model (e.g., QEMU or OVPSim) or formal specification. However, the nature of masking
and thus ISE support for it demands that input and output shares are randomised: a
relationship between the input and output shares is specified, but their concrete values
are not. As a result, use of co-simulation based verification requires auxiliary input (or
“hints”) to ensure the model and DUT are synchronised: this becomes complex to maintain,
even for simple DUTs. We therefore employed the second option, specifically Bounded
Model Checking (BMC), to prove relationships between input and output shares are always
correct without a need to know their value. For example, for the instruction

mask.b.xor (rd1,rd2), (rs1,rs2), (rs3,rs4)

we prove the relationship r = x⊕ y holds for x = BoolUnmask((GPR[rs1], GPR[rs2])),
y = BoolUnmask((GPR[rs3], GPR[rs4])), and r = BoolUnmask((GPR[rd1], GPR[rd2])).
The baseline core was already formally verified using the riscv-formal5 framework, which
we extended to support paired register file access. This enabled verification of the base
ISA instructions, ISE instructions, and interaction between them (having included checks
for access consistency).

4.2 Evaluation
Experimental platform. The augmented SCARV core was implemented on a SASEBO-
GIII [HKSS12] side-channel analysis platform, which houses two FPGAs: a Xilinx Kintex-7
(model xc7k160tfbg676) target FPGA, and a Xilinx Spartan-6 (model xc6slx45) support
FPGA. We use the former exclusively, synthesising stand-alone designs for it using Xilinx
Vivado 2019.2; default synthesis settings are used, with no effort invested in synthesis or

5https://github.com/SymbioticEDA/riscv-formal

https://github.com/SymbioticEDA/riscv-formal
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(a) AND
(and instruction).

(b) AND
(mask.b.and function).

(c) AND
(mask.b.and instruction).

(d) XOR
(xor instruction).

(e) XOR
(mask.b.xor function).

(f) XOR
(mask.b.xor instruction).

(g) Addition
(add instruction).

(h) Addition
(mask.b.add function).

(i) Addition
(mask.b.add instruction).

(j) Left-shift
(slli instruction).

(k) Left-shift
(mask.b.slli function).

(l) Left-shift
(mask.b.slli instruction).

Figure 4: Comparison of leakage for selected instructions as executed on the SCARV
core, for unmasked (left), ISA-masked (middle), and ISE-masked (right) cases. Each case
relates to a set of 100, 000 power consumption traces: the green plot shows the average of
said traces, whereas the blue plot shows the (absolute) t-statistic stemming application of
TVLA-based leakage detection to them.
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Table 3: Comparison of a) cycle count (i.e., execution latency), b) instruction count (i.e.,
number of instructions executed), and c) instruction footprint (measured in bytes), for
both unmasked (using the base ISA) and masked (using the base ISA and ISE) variants
of individual, underlying operations. Entries marked − are not applicable, e.g., because
there is no need for mask or unmask operations in the unmasked variant. Note for cycle
counts, we count entire rising-edge to rising-edge clock cycles: this means operations
such as BoolAND which use double-pumped clocking take one cycle, despite a need for
additional latching steps.
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Bool2Arith − 249 6 − 205 1 − 380 4
Arith2Bool − 268 6 − 220 1 − 440 4
BoolMask − 3 1 − 3 1 − 12 4
BoolUnmask − 1 1 − 1 1 − 4 4
BoolRemask − 3 1 − 3 1 − 12 4
BoolNOT 1 1 1 1 1 1 4 4 4
BoolAND 1 7 1 1 7 1 4 28 4
BoolIOR 1 6 1 1 6 1 4 24 4
BoolXOR 1 3 1 1 3 1 4 12 4
BoolSLL 1 5 1 1 5 1 4 20 4
BoolSRL 1 5 1 1 5 1 4 20 4
BoolROR 1 8 1 1 8 1 4 32 4
BoolAdd 1 225 6 1 193 1 4 336 4
BoolSub 1 244 6 1 211 1 4 408 4
ArithMask − 3 1 − 3 1 − 12 4
ArithUnmask − 1 1 − 1 1 − 4 4
ArithRemask − 3 1 − 3 1 − 12 4
ArithAdd 1 2 1 1 2 1 4 8 4
ArithSub 1 2 1 1 2 1 4 8 4
FieldSqr 284 229 1 115 185 1 52 604 4
FieldMul 261 393 1 121 339 1 541180 4
FieldAff 28 704 1 21 144 1 50 400 4

Table 4: For each masked underlying operation as implemented using the ISE, a description
of a) the number of fresh masks used, and b) whether dependent inputs are allowed (3),
i.e., the ALU will apply any remasking required, disallowed (7), i.e., the user must apply
any remasking required, or not applicable (−), i.e., either 0 or 1 masked input(s) is used.

Operation Randomness Constraints
Bool2Arith 13 −
Arith2Bool 13 −
BoolMask 1 −
BoolUnmask 0 −
BoolRemask 1 −
BoolNOT 1 −
BoolAND 2 3
BoolIOR 2 3
BoolXOR 1 3
BoolSLL 1 −
BoolSRL 1 −
BoolROR 1 −
BoolAdd 12 3
BoolSub 12 3
ArithMask 1 −
ArithUnmask 0 −
ArithRemask 1 −
ArithAdd 0 3
ArithSub 0 3
FieldSqr 1 −
FieldMul 1 7
FieldAff 1 −
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post-implementation optimisation. The FPGA uses a 200 MHz differential external clock
source, which is transformed into a 25 MHz internal clock signal for use by the core itself.

A standard pipeline of components is attached to the SASEBO-GIII, allowing acquisition
of power consumption traces. These components include a MiniCircuits BLK+89 D/C
blocker, a MiniCircuits SLP-30+ 32 MHz low-pass filter, an Agilent 8447D amplifier (with
a 100 kHz to 1.3 GHz range, and 25 dB gain), and a PicoScope 5000 series oscilloscope; the
latter is configured to use a 250 MHz sample frequency, and 12-bit sampling resolution.
Coordination of the acquisition process is managed by a workstation connected to each
component: it is tasked with 1) configuration of the FPGA with a synthesised bit-stream,
2) upload of software, as generated by a RISC-V capable instance of the GNU tool-chain6
including GCC 8.2.0, to the core via a simple boot-loader, 3) communication of input
and output to and from the core via a UART-based connection, and 4) configuration and
download of traces from the oscilloscope.

Initial experiments with the baseline core highlighted some noise inherent in the
acquisition pipeline. This noise was removed post-acquisition using a software-based filter.
Specifically, a Butterworth [But30] low-pass filter with 5 taps and a 8 MHz cut-off frequency
was used; the 8 MHz cut-off was selected so as to maximise detectable leakage during
execution of base ISA instructions.

Synthesis results. Table 2 summarises hardware implementation cost, with cases for 1)
the baseline core with no ISE, 2) the baseline core plus ISE with C, B, and A classes, and
3) the baseline core plus ISE with C, B, A, and F classes. We consider two implementation
targets: the first is FPGA-based, specifically the target outlined in Section 4.2, the second
is ASIC. The ASIC design have been synthesized with Synopsys Design Compiler using as
target technological library the Nangate 45 nm library. All the ASIC designs have been
synthesized imposing a clock of 4ns and setting the optimization effort to “high”.

Without support for F-class instructions, the area overhead of the ISE is fairly modest
for the ASIC target (i.e., 1.29× cells) but significantly higher for the FPGA target (e.g.,
1.56× LUTs). With support for F-class instructions, this overhead further increases.
Although motivated by a sensible use-case and hence trade-off, support for the (packed)
finite field operations is clearly costly with respect to area; where support for F-class
instructions is required, however, this cost can be reduced by adopting multi- versus
single-cycle implementations of said operations (i.e., via a different time-area trade-off).
The area overhead differs significantly between ASIC target and FPGA target. Also,
the masked ALU does not appear on the critical path, but including it still results in a
reduction in timing slack for FPGA. We believe this is due to routing of the additional
signal, rather than the ALU implying any additional depth.

Execution results. Primarily, Table 3 captures 1) the execution latency and 2) the
memory footprint7, of instruction sequences which realise the underlying operations in
Table 1 or unmasked analogies thereof. For example, the row for BoolAND includes
ISA-masked and ISE-masked implementations of that exact operation; the associated
unmasked implementation relates to a standard Boolean AND operation, which we deem
a suitable unmasked analogue and therefore include for comparison.

There are two clear conclusions: one could argue that both are obvious, up to a point,
because both stem from a “shift” of functionality from software into hardware. First, in
the majority of cases an ISE-masked implementation is close to the associated unmasked
implementation e.g., use of masking with support from an ISE does not significantly increase

6See, e.g., https://github.com/riscv/riscv-gnu-toolchain
7 We use the standard term “footprint” to mean “amount of memory required”. As such, “data footprint”

and “instruction footprint” capture the amount of memory required to house data-related (i.e., the ELF
.data and .bss segments) and instruction-related (i.e., the ELF .text segment) resources respectively,
with “memory footprint” then a catch-all for all such resources.

https://github.com/riscv/riscv-gnu-toolchain
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execution latency or memory footprint versus an unmasked case. Several exceptions exist,
of course: for example the multi-cycle Kogge-Stone adder means BoolAdd and BoolSub
require 6 cycles versus 1. Second, in the majority of cases an ISE-masked implementation
is significantly lower than the associated ISA-masked implementation, e.g., use of masking
with support from the ISE significantly reduces execution latency and memory footprint
versus use of the ISA alone. For certain operations, e.g., BoolAdd and BoolSub, the
former is two orders of magnitude lower than the latter.

Leakage results. Using our FPGA-based target, we were able to perform a (preliminary)
leakage evaluation. For each underlying operation, we constructed 1) a masked leakage
micro-benchmark using the ISE, and 2) an unmasked leakage micro-benchmark using the
base ISA, where, in both cases, the implementation was wrapped in an isolating prelude
(resp. epilogue) formed from NOPs plus instructions required to write input (resp. read
output). Using randomised input, we then generated 100, 000 power consumption traces
using each micro-benchmark; these traces were used for T-test and Hamming weight based
correlation analysis on the unmasked inputs and outputs. Selected results are captured
in Figure 4. In essence, these result helped us gain confidence that an ISA-masked
implementation does not leak in isolation, versus an unmasked implementation which
leaks strongly.

For our purposes this was enough to begin evaluating larger specific kernels, which is the
focus later in Section 5. However it is important to note that a rigorous, general verification
exercise (aligned with standard practice for functional correctness versus leakage) would
need to consider interaction between adjacent and non-adjacent (for pipeline forwarding)
ISE and base ISA instructions. The number of such instructions and their resulting
interactions is large; this suggests the verification effort may be intractable, and, either
way, much higher than for a dedicated accelerator. Note that the problem is not necessarily
solved by adopting an implementation with separate insecure and secure datapaths, because
the interaction between ISE and base ISA instructions forms the bulk of the verification
problem space. The problem could, nonetheless, be interpreted as an implicit argument
for such separate datapaths, or against general-purpose support for masking altogether.

5 A software perspective: ISE utilisation

In this section we consider the ISE from a software perspective, i.e., how the ISE is utilised.
Section 5.1 outlines various implementation challenges with respect to use of the ISE, which
collectively inform and explain our implementation strategy. Section 5.2 then harnesses
that strategy to evaluate the ISE using a range of (symmetric) cryptographic kernels,
all implemented using assembly language: due to the importance of AES we focus on it
specifically, but also demonstrate the generality of the ISE using other kernels selected to
span different operations, structures, etc.

We stress that all such implementation challenges were addressed manually. Estimating
the effort of doing so for different cases, e.g., for a masked implementation using the ISA
verses the ISE, is difficult; our non-empirical impression is that a) producing a functioning
masked implementation using the ISE is less effort than using the ISA, and b) securing
such an implementing, i.e., eliminating residual leakage, involves a similar process in each
case but is easier using the ISE because the implementation is shorter. Either way, it is
clear that some level of automation would be valuable in all cases and thus represents an
important future direction.
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5.1 Implementation
Inlining and unrolling. In general terms, the use of function inlining (and loop unrolling)
involves a trade-off between execution latency (e.g., overhead with respect to the calling
convention) and instruction footprint. This issue is particularly acute in the specific case
of software-based masking, because a masking scheme is often (necessarily) presented in
terms of underlying operations (or “gadgets”) which are naturally realised as functions:
aggressive inlining can cause the instruction footprint to exceed the available memory, for
example, whereas the opposite increases the execution latency.

Table 3 already illustrates that use of the ISE is an effective solution to this problem,
in that the footprint of each underlying operation is limited to 1 instruction (having been
“inlined into hardware”). Where the ISE is not used, however, we adopted a consistent
strategy by 1) favouring execution latency over instruction footprint by allowing use of
entire available memory, but 2) focusing any inlining (or unrolling) on the functions with
small footprint and/or execution latency (e.g., the implementation of BoolAND but not
BoolAdd).

Register pressure. Use of general-purpose registers to store shares inevitably increases
register pressure, whether or not the ISE is used. However, the fact that a stricter even-odd
indexing requirement is enforced when using the ISE renders the register allocation problem
more complex. In theory, this could be viewed as a burden on the register allocator used
by a compiler. However, we note that leakage free software must usually be written in
assembly language anyway: as such, we did not encounter the problem in practice. Use of
RISC-V as the base ISA reduced the problem further in fact, versus ARM for example,
due to the larger general-purpose register: in the majority of kernels, we were able to
minimise or even avoid spilling entirely.

Register access scheduling. The transfer of shares between memory and general-purpose
registers requires careful scheduling of memory access, e.g., lw and sw, instructions. For
example, it was necessary to re-order instruction sequences such that given the masked
representation of some x, i.e., x̃ = (x0, x1), a load of x0 was not directly followed by a load
of x1: doing so prevents accidental share combination, and thus Hamming distance leakage,
in the memory interface. Where this was not possible, or not fully effective, we attempted
to use fence-like instructions (see, e.g., [SSB+19]) to load or store “dummy” random value
to flush residual state; we note that a dedicated mechanism such as FENL [GMPP20]
could serve the same purpose with potentially less overhead.

Implicit register access. Before implementing the reversed representation detailed in
Section 4.1, we found storing loop-counters or pointers in even-indexed registers could
remove some instances of leakage. We believe this is because all ISE instruction encodings
include even register indexes, so only explicitly accessing even-numbered registers using
the base ISA can remove the possibility of glitching between odd and even register. We
also found that enabling the use of compressed [RV:19, Chapter 16] instruction encoding
could introduce some instances of leakage. We believe this is due to a race condition when
decoding mixed sequences of 32- and 16-bit instructions: the register index produced by
the decoder can glitch, as the correct location in the instruction buffer is disambiguated.
We resolved the problem by disabling compressed instruction encoding, and aligning all
functions to a 4-byte boundary.

We note that both observations are related to the neighbour leakage effect detailed by
Papagiannopoulos and Veshchikov [PV17], and suggest implicit register access as a more
general, descriptive term for this class of micro-architectural leakage.
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Speculative execution. Despite being micro-controller class, the SCARV core still im-
plements some degree of speculative execution. It has no branch-predictor and resolves8
decisions re. control-flow late in the pipeline: instructions immediately following a taken
branch will be partially executed, therefore, before being squashed. In some cases (e.g.,
a mask.b.unmask instruction immediately following a loop), this resulted in accidental
share combination; we resolved the problem by either reordering or padding instruction
sequences to avoid speculatively executing the leakage source.

5.2 Evaluation
5.2.1 AES

Unmasked. By design, AES (Rijndael) is suited to be implemented on various hard-
ware/software platforms. As the minimal operation unit is one byte, in an 8-bit processor,
one can opt for a byte-oriented implementation [DR02]. If the target platform has a
32-bit processor, Bertoni et al.’s proposal helps to “pack” the 16 bytes of the state into
four 32-bit words [BBF+02]. Instead of the standard column-based indexing, they pro-
posed [BBF+02, Section 3.1] to store each word as one row in the state matrix. The benefit
of such transposition is that both ShiftRows and MixColumns can be executed in parallel,
making the most of the 32-bit datapath. The only drawback of their approach is from
the KeySchedule: the KeySchedule is designed to work efficiently with the column-based
indexing, so it is not straightforward to see how it works with the row-based indexing.
In their original proposal, Bertoni et al. found a workaround that can directly work on
the transposed key state matrix: the four S-boxes still have to execute sequentially, but
the following linear transformation can be as parallel as possible (although less trivial
to interpret). For unmasked implementations, we found that this approach is slightly
better than executing the KeySchedule in a column-based matrix then converted to a
row-based matrix each round. Further optimisation is possible if the target device provided
a larger memory. Specifically, the T-table based approach [DR02] performs the whole AES
encryption round as a few table look-ups and XORs, which leads to much more efficient
implementations (Table 5a). AES encryption can be even more efficient with dedicated
support from an ISE. The x86, ARM, MIPS, POWER, and SPARC architectures all have
dedicated instructions for accelerating AES, most of which re-use SIMD or Vector register
files to accommodate the entire 128-block size. The standardisation process for RISC-V
AES-specific acceleration instructions is ongoing at the time of writing, with the current
proposals outlined in [MNSW21].

ISA-masked. Meanwhile, not all implementations above are easy to mask: for instance,
each T-table usually takes 1 kB memory. A 2-share masked T-table has 22·8 entries:
depending on the specific platform, such memory cost might be infeasible. On the
other hand, the T-tables are specific to AES: considering the potential usage in other
cryptographic applications, masking the finite field operations seems to be a better option.
For easier comparison with the ISE version, we implement the ISA-based masked S-box
in a byte-wise manner, rather than a masked T-table. Considering the register pressure
(Section 5.1), the word-oriented approach [BBF+02] is preferred, as we can store the entire
AES state in registers. The AES function takes 15 additional stack load/store operations;
afterwards, only the S-box takes 2 inner-loop stack load/store operations. Avoiding further
stack access not only improves the efficiency of our implementation but also alleviates
the pain of “leakage debugging”, which often turns out to be quite demanding, even for
professional side-channel researchers.

We have faithfully implemented the Rivain-Prouff scheme [RP10] using the base ISA.
Since the base ISA does not provide any instruction for finite field multiplication or

8 One could describe this as an “assume always not-taken” branch prediction strategy.
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(a) Unmasked: Bertoni et al. [BBF+02]

(b) ISA-masked: Rivain-Prouff [RP10]

(c) ISE-masked

Figure 5: Comparison of leakage for unmasked, ISA-masked, and ISE-masked implementa-
tions of (the Encrypt kernel of) AES as executed on the SCARV core. Each case relates to
a set of 100, 000 power consumption traces: the green plot shows the average of said traces,
whereas the blue plot shows the (absolute) t-statistic stemming application of TVLA-based
leakage detection to them.
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Table 5: Comparison of a) cycle count (i.e., execution latency), b) instruction count (i.e.,
number of instructions executed), c) instruction footprint (measured in bytes), and d) data
footprint (measured in bytes), for unmasked, ISA-masked, and ISE-masked implementations
of various cryptographic kernels as executed on the SCARV core. Instruction and data
footprint entries with only one value represent the total size for Encrypt, Decrypt, and
KeySchedule.

Implementation Kernel
Instruction

count
Cycle
count

Instruction
footprint

Data
footprint

Unmasked: Bertoni et al. [BBF+02]
KeySchedule 668 842
Encrypt 1932 2427 2148 524
Decrypt 2265 2761

Unmasked: T-tables [DR02, Section 4.2]
KeySchedule 430 515
Encrypt 938 1016 1936 5120
Decrypt 938 1037

Unmasked: V3 ISE [MNSW21]
KeySchedule 219 312
Encrypt 238 291 730 10
Decrypt 239 286

ISA-masked: Rivain-Prouff [RP10]
KeySchedule 18319 22509
Encrypt 59823 64200 14416 1356
Decrypt 61459 65811

ISE-masked:
KeySchedule 1389 1528 756
Encrypt 1012 1113 968 84
Decrypt 1229 1690 1100

(a) AES cases.
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SM4 Encrypt 1570 46727 1863 2367 50919 2825 192 6040 536 398 1446 164
Sparx KeySchedule 444 14366 694 608 15465 1178 120 2176 246 0 0 0
Sparx Encrypt 718 12810 945 875 13677 1283 352 4196 608 0 0 0
Sparx Decrypt 717 13681 938 828 14502 1350 360 4632 580 0 0 0
Speck KeySchedule 208 5777 256 265 6229 446 658 12748 952 0 0 0
Speck Encrypt 185 6020 249 256 6489 453 612 13316 924 0 0 0
Speck Decrypt 185 6506 249 242 6975 462 666 15260 924 0 0 0
ChaCha20 Round 1268 72439 1793 1583 77823 3882 476 37224 1777 0 0 0

(b) Non-AES cases (i.e., SM4, Sparx, Speck, and ChaCha20).
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inversion, we compute the field inversion as the 254-th power, which takes 4 masked
multiplications, 3 squares, 1 power-by-16, and 2 mask refreshing gadgets. Each (byte-wise)
multiplication can be efficiently implemented as 2 table look-ups on the logarithm table
and one table look-up on the extended exponential table ([GR17, Section 3.2]). As Rivain
and Prouff stated, since we are operating on a field of characteristic 2, both square and
power-by-16 are linear operations that can be carried out on each share separately [RP10].
In our ISA-based implementation, we simply use 2 additional 256B tables for square
and power-by-16. The affine transformation in the S-box, on the other hand, can be
implemented as x ⊕ (x ≪ 1) ⊕ (x ≪ 2) ⊕ (x ≪ 3) ⊕ (x ≪ 4) ⊕ 63(16). Although
this is suboptimal since there is not an instruction designed for “rotation shift within
one byte”, we can implement this specific transformation using ∼ 30 ALU instructions
without any additional memory cost. In summary, the ISA-based implementation uses five
256 B look-up tables, while the randomness cost is the same as the original Rivain-Prouff
scheme [RP10] (6 bytes per S-box). As a comparison, Goudarzi and Rivain implemented
the same scheme on the ARM architecture: for a 2-share masking scheme, their AES
encryption takes around 62 kilo-cycles (versus 64 kilo-cycles in Table 5). Considering their
implementation relies heavily on the “free shift” (i.e., the “flexible second operand”) in
ARM instructions [GR17], we believe our ISA-based implementation is efficient enough as
a comparison reference.

ISE-masked. With our extended instructions (i.e., mask.f.mul and mask.f.sqr), one
can easily replicate the Rivain-Prouff inversion. Since the mask.f.sqr already combines a
mask refreshing procedure, there is no need to do additional refreshing. As a consequence,
our implementation does use more randomness than the original Rivain-Prouff scheme:
however, considering the randomness is generated each cycle on the hardware anyway, one
can argue such cost does not count as “extra”. Besides, for engineers who do not necessarily
have a deep understanding in masking proofs, our mask.f.sqr reduces the risk caused
by ignoring the independent assumption, which might be worthwhile when implementing
anything other than Rivain-Prouff AES. Alternatively, one can also implement all linear
transformations with mask.f.aff. Although this is a general approach, using mask.f.aff
takes extra memory accesses to load the affine matrix, which becomes suboptimal compared
with mask.f.sqr in the AES context. For usages other than AES, mask.f.aff might
be the only option. Note that in this case, it is essential to perform mask refreshing
(with mask.b.remask) as the security proof required, since mask.f.aff does not perform
refreshing by itself.

As expected, the extended instructions bring significant performance boost: as we can
see in Table 5, the ISE version is even faster than the unprotected ISA version. This is
because all table accesses in the ISA version have to be executed in sequence, whereas
with the extension, those operations can be executed in parallel. Decryption takes slightly
longer, as we compute the inverse MixColumns based on the existing MixColumns [DR02].
Again, we are aware of various existing implementation trade-off options and the fact
that our choice is unlikely to be the best in every aspect. Nonetheless, for this paper, our
purpose is simply demonstrating the potential of such instruction extensions, instead of
setting up a speed record for masked implementations on RISC-V.

5.2.2 SM4

SM4 is a block cipher designed by Shu-Wang Lu that is mandated in the Chinese na-
tional standard for wireless LAN WAPI (Wired Authentication and Privacy Infrastruc-
ture) [LJH+07]. It has also been standardised by the International Organisation for
Standardisation (ISO) in 2017. SM4 is a 32-round unbalanced Feistel network with a block
size and key size of 128 bits. The structure of SM4 shows certain similarities with the
AES; most notably, it uses an 8-bit S-box that can be algebraically expressed through
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an affine transformation, an inversion in F28 , followed by another affine transformation.
However, the irreducible polynomial of SM4 is p(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1,
which differs from the irreducible polynomial of the AES. This 8-bit S-box is the only
non-linear component of SM4.

Despite these differences, SM4 can follow the same (or very similar) approaches
for implementation and optimisation as described above for the AES. An unmasked
implementation for a 32-bit platform usually holds the 16-byte state in four 32-bit words
and performs the S-box operation through a simple table look-up. Similar to the AES,
it is possible to speed up SM4 by using a T-table, which comes at the expense increased
memory requirements. A masked implementation can use the Rivain-Prouff technique for
inversion in F28 , exactly as already described for the AES. The main difference is that
the SM4 S-box performs an affine transformation before and after the inversion. Finally,
an ISE-masked masked implementation can use the two F-class instructions mask.f.mul
and mask.f.sqr described in Section 3 perform a 4-way multiplication and squaring of
elements of F28 , despite the fact that SM4 uses a different irreducible polynomial.

The two F-class instructions mask.f.mul and mask.f.sqr are based on the irreducible
polynomial of the AES, which is p(x) = x8 + x4 + x3 + x + 1. Nonetheless, it is possible
to these instructions for a masked implementation of SM4 (and any other cipher with an
alternative irreducible polynomial, e.g., Camellia) since polynomial basis representations
of F28 with different irreducible polynomials are isomorphic to each other. Consequently,
there exists a one-to-one mapping of field elements between these field-representations,
and converting an element from one representation of F28 to another one requires just the
computation of a vector-matrix product vM , i.e., an (8×8)-bit change-of-basis matrix M is
left-multiplied by an 8-bit vector v that represents an element of F28 . [IEE00, Section A.7]
describes in detail how this change-of-basis matrix M can be computed given two irreducible
polynomials p1(x) and p2(x) as input. A Magma implementation of this computation can
be found in Section C. In short, the first step is to find a root r(x) of p1(x) with respect to
p2(x); i.e., this root r(x) is an element of F28 with the property p1(r) ≡ 0 mod p2. Then,
the rows of the change-of-basis matrix M are simply the coefficients of the polynomials
r(x)i mod p2(x) for 0 ≤ i ≤ 7. For example, the change-of-basis matrix for converting
elements of the SM4-field to the corresponding elements of the AES-field is as follows:



1 1 1 1 1 1 0 1
0 1 1 0 0 1 1 1
1 1 1 1 1 0 1 0
1 0 0 0 0 1 1 0
0 0 1 1 0 1 0 0
0 1 1 0 1 0 0 1
0 0 1 0 0 0 1 1
0 0 0 0 0 0 0 1


(1)

The change-of-basis matrix for conversion in the opposite direction (i.e., from AES to SM4
representation) is the inverse of the above matrix. It is not necessary to perform these
conversions before and after each execution of mask.f.mul and mask.f.sqr; instead, it
is more efficient to convert the plaintext/ciphertext block at the beginning of an encryp-
tion/decryption, then perform all arithmetic operations in F28 with the AES representation
(using mask.f.mul and mask.f.sqr), and finally convert the resulting ciphertext/plaintext
back to the SM4 representation.

The execution times of unmasked and masked implementation (with and without
ISE) are summarised in Table 5. Similar to the AES, the ISE-masked version of SM4 is
significantly faster than the ISA-masked implementation and has a similar execution time
as the unmasked implementation.



310 An Instruction Set Extension to Support Software-Based Masking

5.2.3 Other cases

To demonstrate the generality and effectiveness of the ISE, we implemented the Speck [BSS+13]
and Sparx [DPU+16] block ciphers, plus the ChaCha20 [Ber08] stream cipher. These were
chosen because their ARX nature made them good candidates to evaluate the complete set
of proposed masking ISE instructions. For Speck and Sparx, the KeySchedule, Encrypt,
and Decrypt functions were all realised in unmasked, ISA-masked, and ISE-masked
implementations. For ChaCha20, we focus on only the round function.

As can be seen in Table 5b, the base ISA masked implementations suffer enormous
increased latency. We found that masked add/subtract operations cause the most dominant
part of the performance overhead. Moreover, the masked add/subtract operations require a
number of intermediate variables that amplifies the register pressure discussed in Section 5.1.
With Boolean masked instruction extension including mask.b.add and mask.b.sub, the
ISE masked implementations, as expected, gain more than one order of magnitude overhead
reduction in terms of instruction count and cycle count in comparison to the base ISA
alternatives.

6 Conclusion
Summary. In this paper, we presented the design, implementation, and evaluation of
an ISE to support software-based masking. In the same way as other instruction set
extensions, ours represents an intermediate point of the design space between software-only
and hardware-only solutions. Software only solutions are by nature flexible, but they often
incur in a too high overhead in terms of efficiency. Hardware only solutions are generally
fast, but they are not flexible and their performance improvement could be overshadowed
by the overhead caused by the data transfer to and from the co-processor.

Accepting the inherent overhead caused by our instructions, which is anyway smaller
than the one of a complete co-processor, our evaluation suggests the ISE can support
efficient, secure first-order masked implementations of various kernels. Our ISE-supported
first-order masked implementation of AES, for example, is an order of magnitude more
efficient than a software-only alternative with respect to both execution latency and memory
footprint.

In contrast to a hardware co-processor, our ISE allows one to maintain the flexibility
typical of software and avoid any requirement to communicate data between the processor
and accelerator (since the additional instructions are integrated in the processor itself). Fur-
thermore, our instructions are designed to suit several cryptographic algorithms. Achieving
the same design goals with a hardware co-processor would have not been possible.

That said, however, implementing the ISE highlighted various challenges which demand
care. For example, compared with whole-core masking [GJM+16, MGH19] or segregated
secure and insecure datapaths [KS20], it is challenging to ensure non-interaction between
shares: even if the masked ALU is modular and so physically separate, the unmasked
datapath may require some changes to ensure this property. It is challenging to both a)
identify when and where change is required, and b) implement such change, because the
ISE becomes more invasive as a result. Likewise, utilising the ISE is not as straightforward
as one may expect intuitively. For example, one must contend with increased register
pressure while simultaneously considering the security properties of loading/storing shares
from/to memory; doing so is not trivial.

Future work. Beyond any incremental improvements, such as increasing the number and
diversity of kernels we evaluate, various higher-level directions represent either important
and/or interesting future work:



S. Gao, J. Großschädl, B. Marshall, D. Page, T. Pham F. Regazzoni 311

• Our ISE directly supports masked operations for n = 2 shares. The question remains,
however, how such support generalises: for example, 1) how to bootstrap higher-
order masking schemes using an ISE, such as ours, that includes first-order oriented
building blocks, and/or 2) how such an ISE can be altered to enhance generality
with respect to said order.

• It is plausible to consider extending the ISE to assist with various challenges with
respect to utilisation. For example, one can imagine enforcing secure register access
scheduling via ISE-supported, and so “share aware” memory access instructions.

• Belaïd et al. [BDM+20] present Tornado, a tool capable of deriving secure masked
implementations from a high-level description. [BDM+20, Section 3.1] states the
model of computation assumed, which includes a number of masked “gadgets” whose
form implies that Tornado could be retargeted to an ISE-enabled platform.

• Instructions such as mask.b.add and mask.a.add perform arithmetic with an as-
sumed word size of XLEN. However, consider a case where XLEN = 32 but we
implement a kernel which demands masked arithmetic modulo 2w for some w 6= 32,
e.g., w = 16 or w = 64. Doing so may be problematic, because the masked operation
lacks any direct support for, e.g., management of carries.

• Alkim et al. [AEL+20] propose an ISE for finite field arithmetic, specifically arithmetic
modulo q for some small q, to support post-quantum designs such as Kyber and
NewHope. One could imagine realising a masked variant of their ISE (i.e., masked
arithmetic in Fq) as an additional class of instructions within ours, motivated by the
long-term importance of post-quantum cryptography.

• Ge et al. [GYH18] pitch their aISA as “a new hardware-software contract”, and,
as a result, weaken the abstraction afforded by an ISA of some associated micro-
architecture. To meet the required security properties, our ISE demands care with
respect to implementation (in hardware) and utilisation (in software). Per the aISA,
one could therefore question how much the ISE can (or if it even should) dictate
details of an associated micro-architectural implementation. Exploration of this
question, e.g., suitable requirements and how to specify them, seems an interesting
challenge.
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A Instruction encodings

Table 6: Instruction encodings (C-class: conversion).
012345678910111213141516171819202122232425262728293031

0000000 0000 0 rsm1 0 000 rdm 0 10110 11 mask.b2a
0000000 0000 0 rsm1 1 000 rdm 0 10110 11 mask.a2b

Table 7: Instruction encodings (B-class: operations under Boolean masking).
012345678910111213141516171819202122232425262728293031

0000000 0001 0 rs1 000 rdm 0 10110 11 mask.b.mask
0000000 0001 1 rsm1 0 000 rd 10110 11 mask.b.unmask
0000000 0001 1 rsm1 1 000 rdm 0 10110 11 mask.b.remask
1000000 0000 0 rsm1 0 010 rdm 0 10110 11 mask.b.not
1000000 rsm2 0 rsm1 0 111 rdm 0 10110 11 mask.b.and
1000000 rsm2 0 rsm1 0 110 rdm 0 10110 11 mask.b.ior
1000000 rsm2 0 rsm1 0 100 rdm 0 10110 11 mask.b.xor
1000000 rsm2 0 rsm1 0 000 rdm 0 10110 11 mask.b.add
1000000 rsm2 0 rsm1 0 001 rdm 0 10110 11 mask.b.sub
110000 shamt rsm1 0 000 rdm 0 10110 11 mask.b.slli
110000 shamt rsm1 0 001 rdm 0 10110 11 mask.b.srli
110000 shamt rsm1 0 010 rdm 0 10110 11 mask.b.rori

Table 8: Instruction encodings (A-class: operations under arithmetic masking).
012345678910111213141516171819202122232425262728293031

0000000 0010 0 rs1 000 rdm 0 10110 11 mask.a.mask
0000000 0010 1 rsm1 0 000 rd 10110 11 mask.a.unmask
0000000 0010 1 rsm1 1 000 rdm 0 10110 11 mask.a.remask
0100000 rsm2 0 rsm1 0 000 rdm 0 10110 11 mask.a.add
0100000 rsm2 0 rsm1 0 001 rdm 0 10110 11 mask.a.sub

Table 9: Instruction encodings (F-class: operations for field arithmetic).
012345678910111213141516171819202122232425262728293031

1000000 0001 0 rs1 0 010 rdm 0 10110 11 mask.f.sqr

1110000 rsm2 0 rsm1 0 000 rdm 0 10110 11 mask.f.mul
1110000 rsm2 0 rsm1 0 010 rdm 0 10110 11 mask.f.aff



S. Gao, J. Großschädl, B. Marshall, D. Page, T. Pham F. Regazzoni 317

B Additional algorithms

Data: The masked value x̂ = (x0, x1).
Result: The masked value r̄ = (r0, r1) such that r = r0 + r1 (mod 2w) = x.
function Bool2Arith((x0, x1)) begin

t
$←− {0, 1}w

(s0, s1)← BoolAdd((x0, x1), (t, 0))
r1 ← t
r0 ← s0 ⊕ s1
return(r0, r1)

end
Algorithm 1: Bool2Arith: convert from Boolean to arithmetic masking.

Data: The masked value x̄ = (x0, x1).
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x.
function Arith2Bool((x0, x1)) begin

t
$←− {0, 1}w

x1 ← x1 ⊕ t
(r0, r1)← BoolSub((x0, 0), (t, x1))
return(r0, r1)

end
Algorithm 2: Arith2Bool: convert from arithmetic to Boolean masking.

Data: The value x.
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x.
function BoolMask((x0, x1)) begin

t
$←− {0, 1}w

r1 ← t
r0 ← x⊕ t
return(r0, r1)

end
Algorithm 3: BoolMask: apply mask operation (under Boolean masking).
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Data: The masked value x̂ = (x0, x1).
Result: The value r = r0 ⊕ r1 = x.
function BoolUnmask((x0, x1)) begin

r ← x0 ⊕ x1
return r

end
Algorithm 4: BoolUnmask: apply unmask operation (under Boolean masking).

Data: The masked value x̂ = (x0, x1).
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x.
function BoolRemask((x0, x1)) begin

t
$←− {0, 1}w

r1 ← x1 ⊕ t
r0 ← x0 ⊕ t
return(r0, r1)

end
Algorithm 5: BoolRemask: apply remask operation (under Boolean masking).

Data: The masked value x̂ = (x0, x1).
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = ¬x.
function BoolNOT((x0, x1)) begin

r1 ← ¬x1
r0 ← x0
return(r0, r1)

end
Algorithm 6: BoolNOT: apply NOT operation (under Boolean masking).

Data: The masked values x̂ = (x0, x1) and ŷ = (y0, y1).
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x ∧ y.
function BoolAND((x0, x1), (y0, y1)) begin

r1 ← (x1 ∧ y1)⊕ (x1 ∨ ¬y0)
r0 ← (x0 ∧ y1)⊕ (x0 ∨ ¬y0)
return(r0, r1)

end
Algorithm 7: BoolAND: apply AND operation (under Boolean masking).

Data: The masked values x̂ = (x0, x1) and ŷ = (y0, y1).
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x ∨ y.
function BoolIOR((x0, x1), (y0, y1)) begin

r1 ← (x1 ∧ y1)⊕ (x1 ∨ y0)
r0 ← (x0 ∨ y1)⊕ (x0 ∧ y0)
return(r0, r1)

end
Algorithm 8: BoolIOR: apply OR operation (under Boolean masking).
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Data: The masked values x̂ = (x0, x1) and ŷ = (y0, y1).
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x⊕ y.
function BoolXOR((x0, x1), (y0, y1)) begin

t
$←− {0, 1}w

r0 ← t⊕ x0 ⊕ y0
r1 ← t⊕ x1 ⊕ y1
return(r0, r1)

end
Algorithm 9: BoolXOR: apply XOR operation (under Boolean masking).

Data: The masked values x̂ = (x0, x1) and ŷ = (y0, y1)
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x + y.
function BoolAdd((x0, x1), (y0, y1)) begin

(a0, a1)← BoolXOR((x0, x1), (y0, y1))
(p0, p1)← (a0, a1)
(g0, g1)← BoolAND((x0, x1), (y0, y1))
for i = 1 upto log2 w do

(h0, h1)← BoolSLL((g0, g1), 2i−1)
(u0, u1)← BoolSLL((p0, p1), 2i−1)
(h0, h1)← BoolAND((p0, p1), (h0, h1))
(g0, g1)← BoolXOR((g0, g1), (h0, h1))
(p0, p1)← BoolAND((p0, p1), (u0, u1))

end
(h0, h1)← BoolSLL((g0, g1), 1)
(r0, r1)← BoolXOR((a0, a1), (h0, h1))
return(r0, r1)

end
Algorithm 10: BoolAdd: apply addition operation (under Boolean masking).

Data: The masked values x̂ = (x0, x1) and ŷ = (y0, y1)
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x− y

function BoolSub((x0, x1), (y0, y1)) begin
(a0, a1)← BoolXOR((x0, x1), (y0, y1))
(p0, p1)← (a0, a1)
(g0, g1)← BoolAND((x0, x1), (y0, y1))
(u0, u1)← BoolAND((p0, p1), (0, 1))
(g0, g1)← BoolXOR((g0, g1), (u0, u1))
for i = 1 upto log2 w do

(h0, h1)← BoolSLL((g0, g1), 2i−1)
(u0, u1)← BoolSLL((p0, p1), 2i−1)
(h0, h1)← BoolAND((p0, p1), (h0, h1))
(g0, g1)← BoolXOR((g0, g1), (h0, h1))
(p0, p1)← BoolAND((p0, p1), (u0, u1))

end
(h0, h1)← ((g0 � 1) ‖ 0, (g1 � 1) ‖ 1)
(r0, r1)← BoolXOR((a0, a1), (h0, h1))
return(r0, r1)

end
Algorithm 11: BoolSub: apply subtraction operation (under Boolean masking).
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Data: The masked value x̂ = (x0, x1), and an integer 0 ≤ i < w.
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x� i.
function BoolSLL((x0, x1), i) begin

t
$←− {0, 1}i

r1 ← (x1 � i) ‖ t
r0 ← (x0 � i) ‖ t
return(r0, r1)

end
Algorithm 12: BoolSLL: apply left-shift operation (under Boolean masking).

Data: The masked value x̂ = (x0, x1), and an integer 0 ≤ i < w.
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x� i.
function BoolSRL((x0, x1), i) begin

t
$←− {0, 1}i

r1 ← t ‖ (x1 � i)
r0 ← t ‖ (x0 � i)
return(r0, r1)

end
Algorithm 13: BoolSRL: apply right-shift operation (under Boolean masking).

Data: The masked value x̂ = (x0, x1), and an integer 0 ≤ i < w.
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x ≫ i.
function BoolROR((x0, x1), i) begin

r1 ← x1 ≫ i
r0 ← x0 ≫ i
return(r0, r1)

end
Algorithm 14: BoolROR: apply right-rotate operation (under Boolean masking).

Data: The value x.
Result: The masked value r̄ = (r0, r1) such that r = r0 + r1 (mod 2w) = x.
function ArithMask((x0, x1)) begin

t
$←− {0, 1}w

r1 ← t
r0 ← r0 + t (mod 2w)
return(r0, r1)

end
Algorithm 15: ArithMask: apply mask operation (under arithmetic masking).

Data: The masked value x̄ = (x0, x1).
Result: The value r = r0 + r1 (mod 2w) = x.
function ArithUnmask((x0, x1)) begin

r ← x0 − x1 (mod 2w)
returnr

end
Algorithm 16: ArithUnmask: apply unmask operation (under arithmetic masking).
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Data: The masked value x̄ = (x0, x1).
Result: The masked value r̄ = (r0, r1) such that r = r0 + r1 (mod 2w) = x.
function ArithRemask((x0, x1)) begin

t
$←− {0, 1}w

r1 ← x1 + t (mod 2w)
r0 ← x0 + t (mod 2w)
return(r0, r1)

end
Algorithm 17: ArithRemask: apply remask operation (under arithmetic masking).

Data: The masked values x̄ = (x0, x1) and ȳ = (y0, y1).
Result: The masked value r̄ = (r0, r1) such that r = r0 + r1 (mod 2w) = x + y.
function ArithAdd((x0, x1), (y0, y1)) begin

r1 ← x1 + y1 (mod 2w)
r0 ← x0 + y0 (mod 2w)
return(r0, r1)

end
Algorithm 18: ArithAdd: apply addition operation (under arithmetic masking).

Data: The masked values x̄ = (x0, x1) and ȳ = (y0, y1).
Result: The masked value r̄ = (r0, r1) such that r = r0 + r1 (mod 2w) = x− y.
function ArithSub((x0, x1), (y0, y1)) begin

r1 ← x1 + y1 (mod 2w)
r0 ← x0 + y0 (mod 2w)
return(r0, r1)

end
Algorithm 19: ArithSub: apply subtraction operation (under arithmetic masking).

Data: The masked value x̂ = (x0, x1).
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x2.
function FieldSqr((x0, x1)) begin

r0 ← 0
r1 ← 0
for i← 0 to w

8 − 1 do
xi0 ← (x0 � 8 · i) ∧ FF (16)
xi1 ← (x1 � 8 · i) ∧ FF (16)

ti
$←− {0, 1}8

ri1 ← t⊕ (xi1 ⊗ xi1)
ri0 ← t⊕ (xi0 ⊗ xi0)
r0 ← r0 ⊕ (ri0 � 8 · i)
r1 ← r1 ⊕ (ri1 � 8 · i)

end
return(r0, r1)

end
Algorithm 20: FieldSqr: apply packed F28 squaring operation (under Boolean masking).



322 An Instruction Set Extension to Support Software-Based Masking

Data: The masked values x̂ = (x0, x1) and ŷ = (y0, y1).
Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = x⊗ y.
function FieldMul((x0, x1), (y0, y1)) begin

r0 ← 0
r1 ← 0
for i← 0 to w

8 − 1 do
xi0 ← (x0 � 8 · i) ∧ FF (16)
xi1 ← (x1 � 8 · i) ∧ FF (16)
yi0 ← (y0 � 8 · i) ∧ FF (16)
yi1 ← (y1 � 8 · i) ∧ FF (16)

ti
$←− {0, 1}8

ri1 ← t⊕ (xi1 ⊗ yi1)⊕ (xi1 ⊗ yi0)⊕ (xi0 ⊗ yi1)
ri0 ← t⊕ (xi0 ⊗ yi0)
r0 ← r0 ⊕ (ri0 � 8 · i)
r1 ← r1 ⊕ (ri1 � 8 · i)

end
return(r0, r1)

end
Algorithm 21: FieldMul: apply packed F28 multiplication operation (under Boolean
masking).

Data: The masked values x̂ = (x0, x1) and a pair M = (M0, M1) which combine to
specify the (8× 8)-element transformation matrix.

Result: The masked value r̂ = (r0, r1) such that r = r0 ⊕ r1 = Mx.
function FieldAff((x0, x1), (M0, M1)) begin

M ←M1 ‖ M0
r0 ← FieldAff’(x0, M)
r1 ← FieldAff’(x1, M)
return(r0, r1)

end
Algorithm 22: FieldAff: apply packed F28 affine transform operation (under Boolean
masking).

Data: A 32-bit value x and a 64-bit matrix M .
Result: A 32-bit value r.
function FieldAff’(x, M) begin

r ← 0
for i = 0 upto 7 do

c← (M � 8 · i) ∧ FF (16)
c← c · ((x� i) ∧ 01010101(16))
r ← r ⊕ c

end
return r

end
Algorithm 23: FieldAff’: apply packed F28 affine transform step.
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C Magma example for basis conversion
The following Magma code shows how one can compute a change-of-basis matrix and
demonstrates the conversion of field elements between the SM4 representation (which
uses the irreducible polynomial p(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1) and the AES
representation (irreducible polynomial p(x) = x8 + x4 + x3 + x + 1).

///////////////////////////////////////////////////////////////////////////////
// Convert an integer to a binary polynomial (i.e. a polynomial over GF(2)). //
///////////////////////////////////////////////////////////////////////////////

function IntToPoly(a)
P<x> := PolynomialRing(GF(2));
s := Intseq(a, 2);
r := 0;

for i := 1 to #s by 1 do
r := r + s[i]*x^(i-1);

end for;

return P!r;
end function;

///////////////////////////////////////////////////////////////////////////////
// Convert a binary polynomial to a vector (i.e. a sequence of coefficients //
// in GF(2)) of a given length. When the degree of polynomial ‘a‘ is larger //
// than ‘len‘ then the vector contains only the first ‘len‘ coefficients. //
///////////////////////////////////////////////////////////////////////////////

function PolyToVector(a, len)
s := [ ];

for i := 0 to len-1 by 1 do
s := [ Coefficient(a, i) ] cat s;

end for;

r := Vector(GF(2), len, s);
return r;

end function;

///////////////////////////////////////////////////////////////////////////////
// Convert a vector (i.e. a sequence of coefficients in GF(2)) to a binary //
// polynomial of a given degree. When the length of sequence ‘a‘ is larger //
// than ‘deg‘ then the polynomial contains only the first ‘deg‘ elements. //
///////////////////////////////////////////////////////////////////////////////

function VectorToPoly(a, deg)
P<x> := PolynomialRing(GF(2));
d := Min(deg, Ncols(a));
r := 0;

for i := 0 to d-1 by 1 do
r := r + a[d-i]*x^i;

end for;

return P!r;
end function;

///////////////////////////////////////////////////////////////////////////////
// Compute a root for basis conversion, i.e. for the conversion of elements //
// of GF(2^n) with irreducible polynomial ‘f1‘ to elements of GF(2^n) with //
// irreducible polynomial ‘f2‘. The root r(x) is an element of GF(2^n) with //
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// the property that f1(r) mod f2 = 0 (see Section A.7.3 of IEEE P1363). //
///////////////////////////////////////////////////////////////////////////////

function BasisConvRoot(f1, f2)
P<x> := PolynomialRing(GF(2));
d := Degree(f1);

if (Degree(f2) ne d) then
printf "BasisConvRoot: f1(x) and f2(x) must have same degree!";
return P!0;

end if;

i := 0; s := P!1;
while ((s ne P!0) and (i le 2^d - 1)) do

i := i + 1;
r := P!IntToPoly(i);
s := (Evaluate(f1, r)) mod f2;

end while;

return r;
end function;

///////////////////////////////////////////////////////////////////////////////
// Compute a change-of-basis matrix as described in Section A.7.3 of IEEE //
// P1363. The first parameter ‘r‘ is a root for basis conversion; the second //
// parameter ‘f‘ is the irreducible polynomial of the target field (e.g. //
// when converting field-elements from SM4 to AES then ‘f‘ has to be the //
// irreducible polynomial of the AES). //
///////////////////////////////////////////////////////////////////////////////

function BasisConvMatrix(r, f)
P<x> := PolynomialRing(GF(2));
d := Degree(f);
M := ZeroMatrix(GF(2), d, d);

for i := 0 to d-1 by 1 do
s := r^i mod f;
M[d-i] := PolyToVector(s, d);

end for;

return M;
end function;

///////////////////////////////////////////////////////////////////////////////
// Compute vector-matrix product v*M, i.e. the matrix ‘M‘ is left-multiplied //
// by the vector ‘v‘. The length of vector ‘v‘ must match the number of rows //
// of matrix ‘M‘. Note that the vector-matrix product is the same as the //
// matrix-vector product using the transposed matrix. //
///////////////////////////////////////////////////////////////////////////////

function VectorMatrixProd(v, M)
s := [ ];

for i := 1 to Ncols(M) by 1 do
si := GF(2)!0;
for j := 1 to Nrows(M) by 1 do

si := si + v[j]*M[j,i];
end for;
s := s cat [ si ];

end for;

r := Vector(GF(2), Ncols(M), s);
return r;

end function;
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///////////////////////////////////////////////////////////////////////////////
// Basis conversion by computation of the vector-matrix product (see Section //
// A.7.1 of IEEE P1363 for a detailed description). //
///////////////////////////////////////////////////////////////////////////////

function BasisConv(a, M)
d := Nrows(M);

v := PolyToVector(a, d);
r := VectorMatrixProd(v, M);
r := VectorToPoly(r, d);

return r;
end function;

///////////////////////////////////////////////////////////////////////////////
// Example to demonstrate the conversion of elements from the SM4-field to //
// the corresponding elements from the AES-field. First, a multiplication in //
// the SM4-field is performed. Thereafter, the operands are converted to the //
// AES-field, then multiplied using the irreducible polynomial of the AES, //
// and finally the result is converted back to the SM4-field. //
///////////////////////////////////////////////////////////////////////////////

procedure ExampleConvSM4AES()
P<x> := PolynomialRing(GF(2));
SM4Poly := P!(x^8 + x^7 + x^6 + x^5 + x^4 + x^2 + 1);
AESPoly := P!(x^8 + x^4 + x^3 + x + 1);

print "Example conversion SM4 -> AES and vice versa";
print "--------------------------------------------";
print "Operands in SM4-field:";
a := IntToPoly(0x57);
b := IntToPoly(0x83);
print "a(x) =", a;
print "b(x) =", b;
print "Product c(x) = a(x)*b(x) mod", SM4Poly;
c := a*b mod SM4Poly;
print "c(x) =", c;

r := BasisConvRoot(SM4Poly, AESPoly);
M := BasisConvMatrix(r, AESPoly);
// print "Matrix:", M;
I := M^(-1);

print "Converted operands in AES-field:";
ac := BasisConv(a, M);
bc := BasisConv(b, M);
print "a(x) =", ac;
print "b(x) =", bc;
print "Product c(x) = a(x)*b(x) mod", AESPoly;
cc := ac*bc mod AESPoly;
print "c(x) =", cc;
print "Product c(x) re-converted to SM4-field";
c := BasisConv(cc, I);
print "c(x) =", c;

end procedure;

///////////////////////////////////////////////////////////////////////////////
// Execute the example for basis conversion. //
///////////////////////////////////////////////////////////////////////////////

ExampleConvSM4AES();
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