
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 4, pp. 114–148. DOI:10.46586/tches.v2021.i4.114-148

Over 100x Faster Bootstrapping in Fully
Homomorphic Encryption through

Memory-centric Optimization with GPUs
Wonkyung Jung1, Sangpyo Kim1, Jung Ho Ahn1, Jung Hee Cheon1,2 and

Younho Lee3

1 Seoul National University, Seoul, Republic of Korea,
{jungwk,vnb987,gajh,jhcheon}@snu.ac.kr

2 Crypto Lab. Inc, Seoul, South Korea,
3 SeoulTech, Seoul, Republic of Korea, younholee@seoultech.ac.kr

Abstract. Fully Homomorphic encryption (FHE) has been gaining in popularity as
an emerging means of enabling an unlimited number of operations in an encrypted
message without decryption. A major drawback of FHE is its high computational
cost. Specifically, a bootstrapping step that refreshes the noise accumulated through
consequent FHE operations on the ciphertext can even take minutes of time. This
significantly limits the practical use of FHE in numerous real applications.
By exploiting the massive parallelism available in FHE, we demonstrate the first
instance of the implementation of a GPU for bootstrapping CKKS, one of the most
promising FHE schemes supporting the arithmetic of approximate numbers. Through
analyzing CKKS operations, we discover that the major performance bottleneck is
their high main-memory bandwidth requirement, which is exacerbated by leveraging
existing optimizations targeted to reduce the required computation. These observa-
tions motivate us to utilize memory-centric optimizations such as kernel fusion and
reordering primary functions extensively.
Our GPU implementation shows a 7.02× speedup for a single CKKS multiplication
compared to the state-of-the-art GPU implementation and an amortized bootstrapping
time of 0.423us per bit, which corresponds to a speedup of 257× over a single-threaded
CPU implementation. By applying this to logistic regression model training, we
achieved a 40.0× speedup compared to the previous 8-thread CPU implementation
with the same data.
Keywords: Fully Homomorphic Encryption · Bootstrapping · Logistic regression ·
GPU · Kernel fusion

1 Introduction
Homomorphic encryption (HE) enables one to perform operations on encrypted data
without decrypting them and the result can be decrypted only with the secret key. As
HE reveals nothing about the input or output except for the corresponding sizes during
the computation step, it has been spotlighted as a core technology for applications such
as privacy-preserving computations. HE schemes in the early stages had restrictions
on the number and type of operations. After Gentry’s breakthrough, however, these
restrictions were removed, leading to Fully Homomorphic Encryption (FHE), where
unlimited operations are allowed with the help of a bootstrapping operation [Gen09].

CKKS (Cheon-Kim-Kim-Song), an FHE scheme based on the ring learning with
errors (RLWE) problem, is also a method that has recently attracted attention given its
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efficient approximate computation [CHK+19]. As opposed to other FHE schemes, this
scheme is equipped with rounding operations as well as the addition and multiplication of
real numbers as primitive operations, thus providing efficient fixed-point arithmetic on
ciphertexts. Its advantage is prominent in the fields of privacy-preserving data analysis and
machine learning. In a secure genome analysis competition iDash, for instance, most of
the winners and runner-ups on the HE track have employed CKKS since 2017 [WTW+18,
KJT+20, JHK+20]. However, its performance is still far from satisfactory for industry
practitioners [Cra19, YZLT19, ZLX+20, BHS19, HLF+19]. Bootstrapping, the most
inefficient operation in CKKS, requires, for instance, more than 60 seconds in a conventional
PC environment [CHK+18] on a 128-bit security parameter set.

In this paper, we address these challenges by improving the performance of CKKS with
a Residue Number System (RNS) [CHK+19], one of the most efficient FHE schemes for
many applications. Furthermore, we strive to maximize the parallelization of RLWE-based
FHE operations by exploiting a high-performance commodity platform, the GPU. That is,
all of the operations of CKKS are implemented here to run on GPUs, including the HE
multiplication and bootstrapping steps, which are correspondingly the most frequently
used primitive operation and the slowest one.

Through an analysis, we discover that RLWE-based FHE operations have high memory
bandwidth and capacity requirements. Most RLWE-based FHE schemes require many
evaluation keys for manipulating ciphertexts (e.g., multiplication key and rotation keys); the
key sizes are large as each is a ciphertext of a certain value related to the secret key. When
examining the multiplication operation of CKKS (HMULT), we observe that the arithmetic
intensity (OP/B, operation per byte) of HMULT’s primary functions is low. Hence, they
are not bottlenecked by the limited number of arithmetic units (compute-bound) but by
the limited memory bandwidth (memory-bound) on modern GPUs. In particular, Tensor-
product and Inner-product operations during key-switching exhibit very low arithmetic
intensity levels (lower than 3 OP/B in Figure 2(b)). We also identify that most existing
performance optimization techniques incur further increases in the memory bandwidth
and capacity requirements; these include RNS-decomposition [BEHZ16a], efficient mod-
up/down operations [CHK+19], improved linear transformation [HHC19], and efficient
bootstrapping [HK20]. In particular, using a large decomposition number (dnum) greatly
increases the memory capacity and bandwidth requirement.

These key observations lead us to devise memory-centric optimizations to improve the
performance of CKKS on GPUs substantially. First, we fuse the functions that compose an
individual HE operation, such as HMULT (intra-HE-fusion), and those across HE operations
(inter-HE-fusion), by which we reduce accesses to the main memory (global memory)
on the GPU. Second, in contrast to earlier work that involves a tradeoff between the
computation cost and the multiplicative level (the number of subsequent HMULT operations
on a ciphertext) [HK20], we also consider the main-memory bandwidth and capacity
requirements while finding the optimal dnum for HMULT.

Owing to the aforementioned memory-centric optimizations, our HMULT and rescaling
implementations perform 7.02× and 1.36× better, respectively, against a recently published
result [BHM+20] while using an identical GPU generation. We are the first to report the
performance of bootstrapping in CKKS implemented on a GPU after applying recently
proposed algorithm-level optimizations [HK20]. The proposed GPU implementation
exceeds the speed of a single-thread CPU implementation by 257×. The wall-clock time
for bootstrapping is reduced to 526.96ms in a 173-bit security parameter set with 65,536
slots and with 19-bit precision bit, which translates into 0.423us in terms of the amortized
time per bit. Our result is superior by orders of magnitude to recent works that produce
298us [HK20] and 519us [CCS19] with 128-bit security parameter sets. To demonstrate the
effectiveness of the proposed optimizations at an application level, we implement Logistic
Regression identically to an earlier study [HHCP19] on a GPU. The evaluation confirms
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that compared to the implementation on an 8-threaded CPU, there is a 40.0× improvement
(from 31.0 to 0.775 seconds per iteration) in speed when training with the same data used
in the aforementioned earlier work [HHCP19].

Finally, we propose what is termed the ‘amortized FHE-mult’ time as a new unit
of measurement for comparing HE multiplication performance. Amortized FHE-mult
refers to the average time required per multiplication when an unlimited number of
HMULTs are possible by bootstrapping. We calculate this time by measuring the average
HMULT time plus the bootstrapping time divided by the maximum number of subsequent
multiplications between two bootstrapping operations. The amortized FHE-mult time of
our implementation is 24.35 ms, with which we believe that practical privacy-preserving
applications can be developed.

2 Background
2.1 Notation for Homomorphic Encryption
We follow the notation definition in an earlier study [HK20] with minor modifications. For
a polynomial ring R = Z[X]/(XN + 1), where N is a power-of-two integer, we denote
the residue ring modulo an integer q as Rq = R/qR. χkey is the distribution of the
secret key and χerr is the error distribution over R. a $←− S means that a is sampled
from set S uniformly or distribution S. We denote closed and open intervals using
parentheses and brackets (e.g., [a, b) = {n ∈ Z|a ≤ n < b}). [·]q denotes the modular
reduction by q, respectively. We represent an element in R as m(X) =

∑N−1
i=0 miX

i and
an element in Rq as [m(X)]q =

∑N−1
i=0 [mi]qXi. We extend this notation for the RNS basis.

For Ci = {q0, . . . , qi}, where the {qj}0≤j≤i values are coprime to each other, we define
[s(X)]Ci as ([s(X)]q0 , · · · , [s(X)]qi) ∈

∏i
j=0Rqj . We denote two disjoint subsets of set Y

as SY and S ′Y . � denotes Hadamard multiplication. A concatenation of two vectors or
sets is denoted as ||. L(`) represents the maximum (current) level of a ciphertext, the
number of multiplications one can perform on the ciphertext without decryption. Let
q̂`,j =

∏`
i=0∧i6=j qj , where we omit the first subscript ` when ` = L.

2.2 Polynomial Arithmetic in CKKS
Each ciphertext of CKKS is represented as a pair of polynomials of degree < N in
RQ = ZQ[X]/(XN + 1) and a FHE operation consists of polynomial operations. Given
that polynomial degree N is very high (e.g., degree N = 216 or 217) and the coefficient size
is very big (e.g., logQ = 2, 000), this type of polynomial arithmetic is very costly in FHE.
For example, FHE-mult [CLP17, Cry20, HS14] becomes slower by a factor of thousands
in terms of latency, compared to the native multiplication in the unencrypted domain.

Due to the high multiplication cost between polynomials, RLWE-based FHE schemes
[BEHZ16a, CHK+19, BPA+19] typically have their own variants with the Residue Number
System (RNS) [GHS12] to reduce their computational cost. First, by exploiting the Chinese
Remainder Theorem (CRT), they represent each big-integer coefficient as a set of residues,
each being a coefficient modulo a distinct prime number. Multiplication between two
big integers is translated into point-wise multiplication between the two sets of residues,
avoiding expensive multi-word arithmetic.

Second, they use Number Theoretic Transform (NTT) [AB75, Har14] and its inverse
transformation (iNTT) for polynomial ring multiplication. NTT is a variant of Discrete
Fourier Transform (DFT) [CCF+67] performed on a finite field of integers. Let ωqi be the
primitive N -th root of unity in Rqi . For a polynomial [a(X)]qi ∈ Rqi , the NTT function
NTT([a(X)]qi) returns ([a(ω0

qi)]qi , · · · , [a(ωN−1
qi )]qi)∈ (Z∗qi)

N . The inverse NTT function
iNTT takes the output of NTT and returns [a(X)]qi .
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A naïve multiplication of the two polynomials a(X) =
∑N−1
i=0 aiX

i, b(X) =
∑N−1
i=0 biX

i

∈ Rqi outputs a polynomial c(X) =
∑N−1
i=0 ciX

i ∈ Rqi whose coefficients (c0, . . . , cN−1)
are a negacylic convolution of two sequences (a0, . . . , aN−1) and (b0, . . . , bN−1). The
negacyclic convolution is replaced with two NTTs performed on each integer sequence, one
element-wise modular multiplication between the two sequences in the NTT domain and
one iNTT on the output of the element-wise multiplication. Because the computational
complexity levels of NTT and iNTT are O(N logN) and the element-wise multiplication
is O(N), the total complexity is reduced from O(N2) to O(N logN).

For a polynomial with a RNS basis Ci = {q0, ..., qi}, NTT and iNTT are applied to each
modulus. We extend the notations NTT(·) and iNTT(·); given [a(X)]Ci , we denote [a]Ci =
NTT([a(X)]Ci)=(a(0), a(1), · · · , a(i)), where a(j) = NTT([a(X)]qj ). Similarly, we denote
iNTT([a]Ci)=[a(X)]Ci . Then, [a(X)]Ci · [b(X)]Ci equals iNTT([a]Ci � [b]Ci). Henceforth, we
omit the subscript for simplicity (e.g., a� b).

2.3 RNS Basis Conversion and Decomposition

We target a recent RNS variant of the CKKS scheme [HK20]; it is an improved version
of [CHK+19], which reduces the operation complexity by adopting a generalized key-
switching technique through RNS decomposition. Throughout this paper, we refer to this
scheme as CKKS.

We describe RNS basis decomposition for the generalized key-switching and the basis
conversion in CKKS. Fast basis conversion (Conv) converts the RNS basis of a polynomial
into a new basis that is coprime to the original basis [CHK+19, BEHZ16a]. It is used
in approximate modulus raising (ModUp) and approximate modulus reduction (ModDown),
extending and shrinking the RNS basis of a polynomial, respectively.

Let B = {p0, . . . , pk−1}, Ci = {q0, . . . , qi} for i ∈ [0, L], where {pj}j∈[0,k), {qj}j∈[0,L] are
coprime to each other. Let Q̂′′′j =

∏
qi∈SCL

qi ×
∏
pi∈SB∧i 6=j pi and Q̂

′′
j =

∏
qi∈SCL∧i 6=j

qi ×∏
pi∈SB pi. Conv(see Algorithm 1) changes the basis of an input polynomial [a(X)]SCL∪SB

to S ′CL ∪ S
′
B approximately [BEHZ16a, CHK+19].

Given an integer dnum, let α = (L+ 1)/dnum (for simplicity, we assume that (L+ 1)
is divided into dnum). The parameter dnum divides the basis CL into the bases {C′i =
{qj}j∈Ai=[iα,iα+α)}, each having α primes [HK20].

For a given level ` of a ciphertext, let β be d(`+ 1)/αe ≤ dnum. Before key-switching,
CKKS [HK20] first decomposes the RNS basis C` of a polynomial into {C′i}i∈[0,β), each
of which is then extended to basis Dβ where Di is defined as B

⋃
(
⋃

0≤j<i C′j). After
key-switching, the basis is reduced to C`.

We define P =
∏k−1
i=0 pi, Q

′=
∏αβ−1
i=`+1 qi, Q̂=PQ′, {Q′j =

∏(j+1)α−1
i=jα qi}j∈[0,dnum), and

Q̂j =
∏dnum−1
i=0∧i 6=j Q

′
i. The decomposition algorithm (Dcomp), ModUp, and ModDown are shown

in Algorithm 3, Algorithm 2, and Algorithm 4, respectively.
Please refer to Appendix D for more details.

Algorithm 1: ConvSCL∪SB→S′CL∪S
′
B

([a(X)]SCL∪SB) (Fast basis conversion)

1 for qi ∈ S ′CL ∪ S
′
B // we use qi to represent all the elements in S ′B

2 [ã(X)]qi ←
[∑

qj∈SCL
[[a(X)]qj · Q̂′′j−1]qj · [Q̂′′j ]qi

]
qi

3 [ā(X)]qi ←
[∑

pj∈SB [[a(X)]pj · Q̂′′′j −1]pj · [Q̂′′′j ]qi
]
qi

4 [ã(X)]qi ← [ã(X)]qi + [ā(X)]qi
5 end for
6 return [ã(X)]S′B∪S′CL = [ã(X)]S′B ||[ã(X)]S′CL
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Algorithm 2: ModUpC′
i
→Dβ ([a]C′

i
)

1 ([a(X)]C′
i
)← iNTT([a]C′

i
)

2 (ã(j))j∈Ai = (a(j))j∈Ai
3 [ã(X)]Dβ−C′i ← ConvC′

i
→Dβ−C′i ([a(X)]C′

i
)

4 (ã(j))j∈([0,k+αβ−1]−Ai) ← NTT([ã(X)]Dβ−C′i)
5 return [ã]Dβ = (ã(0),· · · , ã(k+αβ−1))

Algorithm 3: Dcomp(d=(d(0),· · ·,d(`)))
1 d(j) ← 0 ∀j ∈ [`+ 1, αβ − 1]
2 d

(i)
j ←d(jα+i) · [Q′]qjα+i · [Q̂j−1]qjα+i ∀i ∈ [0, α− 1],∀j ∈ [0, β − 1].

3 dj ← (d(i)
j )i∈[0,α−1] ∀j ∈ [0, β − 1]

4 return ~d = (dj)j∈[0,β−1]

Algorithm 4: Approximate Modulus Reduction
1 procedure ModDownDβ→C`(b̃

(0), b̃(1), ... , b̃(k+αβ−1))
2 [b̃]Dβ−C` ← (b̃(0), ... , b̃(k−1),b̃(k+`), ..., b̃(k+αβ−1))
3 [b̃(X)]Dβ−C` ← iNTT([b̃]Dβ−C`)
4 [ã(X)]C` ← ConvDβ−C`→C`([b̃(X)]Dβ−C`)
5 [ã]C` ← NTT([ã(X)]C`)
6 for 0 ≤ j ≤ ` do
7 b(j) = [Q̂−1]qj ·

(
b̃(k+j) − ã(j)) (mod qj)

8 end
9 return (b(0), ..., b(`))

10 end procedure

2.4 Description of CKKS operations
We compactly describe CKKS [HK20] and its core operations. Let Qi =

∏i
j=0 qj . QL

is termed the ciphertext modulus. CKKS encodes message ~z, a vector of N/2 complex
numbers, into a polynomial m(X) ∈ RQ, called plaintext. We refer to each position of a
complex value in a message as a slot. The encoding step is as follows: (1) performing the
inverse Discrete Fourier Transform (iDFT) on ~z, (2) extracting the real and imaginary
parts to concatenate the two, and (3) scaling up by multiplying with a scalar value ∆
(called the scaling factor), followed by a rounding operation. A larger ∆ increases the
message precision but also requires larger primes qi ∈ CL, lowering the security bit with
others being equal. Typical values of ∆ range from 240 to 250.

Let a secret key be s(X) $←− χkey and a plaintext be m(X), whose corresponding NTT
representations are s = [s]CL ← NTT([s(X)]CL) andm = [m]CL ← NTT([m(X)]CL). Let an
evaluation key be evk = (evki)i∈[0,dnum), where evki = (evk(j)

i = (a(j)
evki

, b
(j)
evki

))j∈[0,k+L] ∈∏k−1
n=0((Z∗pn)N )2 ×

∏L
n=0((Z∗qn)N )2 such that (a(j)

evki
, b

(j)
evki

) are a pair of polynomials in the
NTT domain.

We represent a level ` ciphertext ct as a pair of polynomials in the NTT domain
(a, b) ∈ (

∏`
j=0 (Z∗q`)

N )2 rather than the RNS domain ([a(X)]C` , [b(X)]C`). CKKS encrypts
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m(X) as a level L ciphertext ct = (a, b) ← RLWE(s,m)1, where (a $←−
∏L
j=0(Z∗qj )

N , b ←

a� s + e + m) and e $←− χerr. More information is provided in Subsection D.2.
An FHE-mult between two ciphertexts (HMULT) followed by rescaling, a function

adjusting the scaling factor ∆ of the message, reduces one level of the ciphertext. For an
HE circuit reducing the input ciphertext level by d, we refer to d as the multiplicative
depth.

We provide the details of HMULT and the other FHE operations in Algorithm 5 - 9.
CMULT(ct,m) returns (ma,mb), where (a, b) ← ct. HMULT (HADD) multiplies (adds) ct0
by (and) ct1. RESCALE performs the rescaling operation for ct. HROTATE(ct, sn, ebk)
rotates the message of ct according to the rotation index sn, which is translated into
a Frobenius map in the corresponding plaintext: m(X) → m(X5sn). The function
FrobeniusMap(m, sn) performs m(X) 7→ m(X5sn) in the NTT domain [HK20]. For
the given {m(i) = (m(i)

j )j∈[0,N−1]}i∈[0,`], it generates {m′(i) = ((m(i)
π−1
n (j))j∈[0,N−1]}i∈[0,`],

where πn(x) = ([5n(2x+ 1)]2N−1)/2, which is a permutation. KeySwitch decomposes the
input polynomial [d]C` into [dj ]C′

j
, where j ∈ [0, β), extends the moduli of the decomposed

parts using ModUp, multiplies them by an evaluation key, and finally reduces the moduli to
the original level ` using ModDown. Throughout the paper, we refer to step 3 in Algorithm 9
as the Inner-product.

Algorithm 5: HMULT(ct0,ct1,evk)
1 ct0 → (a0, b0),ct1 → (a1, b1)
2 d2 ← (a0 � a1), d0 ← (b0 � b1)
3 d1 ← (a1 � b0 + b1 � a0)
4 (c′0, c′1)← KeySwitch(d2, evk)
5 return ctmult = (d1 + c′0, d0 + c′1)

Algorithm 6: HROTATE(ct,sn,evk)
1 ct → (a, b)
2 a′ ← FrobeniusMap(a,sn)
3 b′ ← FrobeniusMap(b,sn)
4 (a′′, b′′)← KeySwitch(a′,evk)
5 return ct′ = (a′′, b′ + b′′)

Algorithm 7: HADD(ct0,ct1)
1 ct0 → (a0, b0),ct1 → (a1, b1)
2 d0 ← (a0 + a1)
3 d1 ← (b0 + b1)
4 return (d0, d1)

Algorithm 8: RESCALE(ct)
1 ct→ ([a]C` , [b]C`)
2 a′(j) ← [q−1

` (a(j)−NTT([iNTT(a(`))]qj ))]qj ,j∈[0,`−1]
3 b′(j) ← [q−1

` (b(j)−NTT([iNTT(b(`))]qj ))]qj ,j∈[0,`−1]
4 return ([a′]C`−1 , [b′]C`−1)

Algorithm 9: KeySwitch([d]C` ,evk) performs key-switching over d
1 ~d ← Dcomp(d), (dj)j∈[0,β−1] ← ~d

2 [d̃j ]Dβ =(d̃(0)
j ,d̃(1)

j ,· · · ,d̃(k+αβ−1)
j )← ModUp([dj ]C′

j
) for j ∈ [0, β − 1]

3 ([c0]Dβ , [c1]Dβ ), where (c(i)0 , c
(i)
1 ) = Σβ−1

j=0 d̃
(i)
j � evk(i)

j for i ∈ [0, k + αβ − 1]
4 ([c0]C` , [c1]C`) ← (ModDown([c0]Dβ ),ModDown([c1]Dβ ))
5 return ([c0]C` , [c1]C`)

2.5 Bootstrapping in CKKS
Before the level of a ciphertext is depleted by consecutive operations, bootstrapping must be
performed on the ciphertext to increase its level and to allow more FHE operations on the
ciphertext. We briefly explain the CKKS bootstrapping algorithm here [CHK+18, HK20].
Modulus Raising: Let ct be a ciphertext given by encrypting the plaintext m(X). Let
the current modulus of ct be q = q0 having a zero level. Our goal is to increase the
modulus (or, level). First, the modulus of ct is increased to QL, the modulus of a freshly

1The process of encryption using a public key rather than a private key is different from this, but the
form of the result is the same. However, there is a difference that the size of the included error increases.
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Figure 1: Flow diagram of (a) the original CKKS bootstrapping algorithm [CHK+18] and
(b) ours adopting cosine evaluation in [HK20] and slim bootstrapping in [CH18].

encrypted ciphertext, producing ct′. Although the level is increased, it adds the error
polynomial q · I(X) to the plaintext: Decrypt(ct′) = t(X) = m(X) + q · I(X), where I(X)
is a polynomial whose coefficients are integers bounded to a small integer K, which is
determined by the secret key distribution. To remove the error, we apply the approximate
modulo operation in a homomorphic manner.
CoefficientToSlot: Let the plaintext t(X) = t0 + t1X + t2X

2 + . . .+ tN−1X
N−1 be the

decryption of ct′ in Modulus Raising and its decoding be ~z. The goal of CoefficientToSlot
is to compute ct1 and ct2, which contain messages ~z1 = (t0, t1, . . . , tN/2−1) and ~z2 =
(tN/2, tN/2+1, . . . , tN−1), respectively. ct1 and ct2 are computed by evaluating the encoding
circuit, the linear transformation on ct:

~z1 = 1/N · (VT
~z + VT~z), ~z2 = 1/N · (WT

~z + WT~z)

where

V =


1 ω0 · · · ω

N
2 −1

0

1 ω1 · · · ω
N
2 −1

1
...

...
. . .

...
1 ωN

2 −1 · · · ω
N
2 −1
N
2 −1

 and W =


ω
N
2

0 ω
N
2 +1

0 · · · ωN−1
0

ω
N
2

1 ω
N
2 +1

1 · · · ωN−1
1

...
...

. . .
...

ω
N
2
N
2 −1 ω

N
2 +1
N
2 −1 · · · ω

N−1
N
2 −1

 .

Instead of performing two linear transformations, the relationships iV = W and
VT

~z = VT~z are exploited, requiring only one linear transform to produce VT
~z; the

following homomorphic conjugation and addition/subtraction compute the other terms.
Approximated modulo operation: For the two ciphertexts ct1 and ct2, we want
to perform modular reduction on each element of their messages: (ti mod q) for all
i. However, because the modular reduction operation is not available in FHE, twofold
approximation of the modulo operation is used instead. First, the modulo q operation is
approximated as a scaled sine function, such as f(t) = q/2π sin(2πt/q) [CHK+18]. This
exploits the facts that each value ti in message ~z1 and ~z2 is distributed near q · I for an
integer I ∈ (−K,K) for a small K, and the scaled sine function resembles the modulo
operation near q · I. Second, as the sine function is also not available in FHE, it is
approximated as a polynomial. We adopted a recent bootstrapping algorithm from [HK20].
First, it approximates not the sine but the cosine function by shifting ct1 and ct2. Also,
it uses polynomial interpolation with the Chebyshev polynomial basis to approximate the
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cosine function in addition to adopting the double-angle formula. We use one of their
parameter sets for bootstrapping; we evaluate a 31-degree polynomial and then apply the
double-angle formula three times, approximating f(t) = cos(24πt). With applying the
cosine evaluation to ct1 and ct2, we obtain two output ciphertexts ct′1 and ct′2 whose
messages are ~z′1 and ~z′2, respectively. Our cosine evaluation step has a multiplicative depth
of 11.
SlotToCoefficient: This is the opposite of CoefficientToSlot. With ct′1 and ct′2, we
compute an output ciphertext, ctfresh, which contains message ~zfresh, by evaluating a
linear transformation, as shown below:

~zfresh = V~z′1 + W~z′2 = V(~z′1 + i~z′2)

Here, ~zfresh is approximately equal to the message of ct before Modulus Raising.
We also adopt the additional technique of slim bootstrapping from [CH18], which re-

orders the bootstrapping process (see Figure 1) from (Modulus Raising, CoefficientToSlot,
Cosine evaluation, SlotToCoefficient) to (SlotToCoefficient, Modulus Raising, Coefficient-
ToSlot, Cosine evaluation). By postponing Modulus Raising, the computational cost
of SlotToCoefficient decreases as the ciphertext level of the input to SlotToCoefficient
decreases.

We also use efficient CoefficientToSlot and SlotToCoefficient proposed in [HHC19].
That study adopts the Cooley-Tukey FFT algorithm [CT65] for linear transform in
CoefficientToSlot and SlotToCoefficient. The DFT algorithm can be expressed in the
form of multiplication between DFT matrix D and input vector ~v. The computational
complexity of directly computing D · ~v is O(N2). By adopting the Cooley-Tukey FFT
algorithm, D can be decomposed into log2N block-diagonal sparse matrices, reducing the
total complexity to O(N logN).

For a given radix r and degree N , they decompose Vrev, which is a row-permuted
V, into logr(N/2) block-diagonal sparse matrices {V(r)

i }1≤i≤logr(N/2) such that Vrev =
V(r)

1 V(r)
2 . . .V(r)

logr(N/2). Each decomposed block-diagonal sparse matrix V(r)
i is a matrix

having 2r − 1 (when i > 1) or r (when i = 1) diagonals, with all other element values
being zero. We refer to each diagonal of index i from matrix M as a length-N/2 vector,
diagi(M) such that diagi(M) = (M(0, i),M(1, i+ 1), . . . ,M(N/2− 1, N/2 + i− 1)) where
M(i, j) refers to the (i, j) element of M. The same decomposition technique applies to
CoefficientToSlot as well. For more details, see Appendix B.

An important characteristic of the (2r − 1) (or, r) diagonals of each decomposed
block-diagonal sparse matrix is that their indices form an arithmetic progression. Using
this property, [HHC19] adopts the Baby-step Giant-step algorithm, as in [HS15, CH18,
CHK+18], reducing the number of FHE rotations required during each multiplication
between a block-diagonal sparse matrix and a vector that is encrypted as a ciphertext.
Baby-step Giant-step algorithm: Each multiplication between a block-diagonal sparse
matrix and the input vector is performed in a homomorphic-friendly way, exploiting
the Baby-step Giant-step algorithm (BSGS) [HS15, CH18, CHK+18]. BSGS computes
the matrix-vector multiplication via the summation of the products of plaintexts, each
being an encoded diagonal, and the shifted input vectors, each being the message of a
correspondingly rotated ciphertext.

Let a predetermined block-diagonal sparse matrix with n diagonals be M and the input
vector be ~v, the message of the ciphertext ct. Let roti(~v) be an input vector shifted by i,
the message of HROTATE(ct, i, evk). For l and t such that l · t = n, BSGS computes
M · ~v as shown below, where the common difference of the arithmetic progression is one:
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M · ~v =
n−1∑
i=0

diagi(M)� roti(~v) =
l−1∑
i=0

t−1∑
j=0

diagti+j(M)� rotti+j(~v)

=
l−1∑
i=0

rotti(
t−1∑
j=0

rot−ti(diagti+j(M))� rotj(~v))

(1)

Given a radix r, by choosing l and t near
√
n, the number of rotations required for

each SlotToCoefficient and CoefficientToSlot is reduced from O(r logr n) to O(
√
r logr n),

as each block-diagonal sparse matrix has 2r − 1 (or, r) diagonals. We can choose any l
and t with flexibility by adding zero diagonals [HHC19].

3 CKKS: Baseline implementation
3.1 Basic HE operations
We provide here the pertinent details of the baseline CPU and GPU implementation of
CKKS. For readers unfamiliar with contemporary GPU architectures, we recommend
reading Appendix A. There are four groups of functions that compose operations in CKKS:
(1) element-wise RNS operations between polynomials, such as multiplication in the NTT
domain, addition, and subtraction; (2) NTT and iNTT; (3) fast basis conversion (Conv)
used in ModUp and ModDown [BEHZ16a, CHK+19]; and (4) Inner-product in key-switching.
Throughout this paper, we use double-word (i.e., 64-bit) moduli such that {qi}i∈[1,L] are
52-bit and {q0, p0, ..., pk} are 62-bit. Also, we layout input and output data contiguously
in memory in a degree-first manner (i.e., a chunk of N residues of a(i) are continuous for
each i) so that the data become NTT-friendly [CLP17, HS14, CHK+19].
RNS operation: We refer to an RNS operation as a binary operation that takes residues
as input and performs an element-wise operation on them, such as multiplication, addition,
and subtraction. In our CPU implementation, each CPU thread takes two vectors with N
residues (i.e., a(i), b(i) ∈ Rqj ) at a time and performs N RNS operations, as in [CLP17].
Then, the thread (or another thread in a multi-threaded, multi-core environment) takes
another pair of two vectors with N residues, until (`+ 1)×N RNS operations are complete
by all threads. In contrast, our GPU implementation follows an earlier method in [BPA+19];
we launch (`+ 1)×N threads for a single GPU kernel. Letting each GPU thread perform
a single RNS operation, we exploit the massive thread-level parallelism available from
modern GPUs, which can run hundreds of thousands of threads concurrently.
NTT and iNTT: For NTT and iNTT, in both CPU and GPU implementation, we
exploit the David Harvey’s NTT algorithm [Har14] along with the in-place Cooley-Tukey
algorithm, which is commonly used in other works [CLP17, Sho16, HS14].

For the CPU implementation of NTT, we use the same approach as in the RNS
operation, where each thread takes N residues (i.e., a(i) for a given i) at a time, and
perform N -point NTT. For the GPU implementation, we use the hierarchical NTT
implementation [KJPA20], which heavily exploits shared memory in GPUs while adopting
an earlier approach in [GLD+08]. Specifically, for every (i)NTT with N residues, we use 8
per-thread (i)NTT kernels, as described in [KJPA20], where each thread in a kernel loads
eight residues into the registers at a time. We launch kernels each performing radix-256
or radix-512 (i)NTT, where radix-k divides an N -point transformation into k interleaved
N/k-point transformations. It uses shared memory as storage for the temporal output of
each (i)NTT stage so that the N residues are loaded from and stored to global memory
only once per kernel [GLD+08]. We launch two sequential GPU kernels for practical values
of N ranging from 216 to 217. See Appendix C for more details.
ModUp and ModDown: First, we explain the implementation of fast basis conversion.
Given an input polynomial a(X) and RNS bases S1 = SCL ∪ SB and S2 = S ′CL ∪ S

′
B,
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Algorithm 10: Baseline implementation of Inner-product in key-switching
1 evki := (aevki , bevki), i = 0, 1, . . . , β − 1
2 d := {d(0)

2 , d
(1)
2 , ..., d

(β−1)
2 }

3 procedure Inner-product(accum, evk,d)
4 accum = d

(0)
2 · evk0 // partial sums

5 for i in [1, β) do
6 accum += d

(i)
2 · evki

7 end
8 b′accum = BarrettModReduction(baccum)
9 a′accum = BarrettModReduction(aaccum)

10 return (a′accum, b′accum)
11 end procedure

a fast basis conversion ConvS1→S2([a(X)]S1) consists of two steps. Step 1 multiplies
each input residue by Q̂′′j−1 mod qj (or Q̂′′′j−1 mod pj) for the corresponding j. Then,
step 2 computes each output residue via a multiply-accumulate (MAC) operation on
|S1| input residues each multiplied by (Q̂′′j mod qj(pj)) or (Q̂′′′j mod qj(pj)) for the
corresponding qj (or pj) ∈ S1, followed by a modular reduction with pi (or qi) ∈ S2 (see
Conv in Subsection 2.3).

In the CPU implementation of fast basis conversion, each thread takes N residues
that are coefficients of [a(X)]qj(or pj), where qj (or pj) ∈ S1 serve as inputs, and performs
the step 1. After all threads complete the first step, step 2 begins, where each thread
computes N output residues; the inner-most loop, which performs MAC followed by
modular reduction, computes one output residue at a time.

The GPU implementation of the fast basis conversion consists of two kernels (see Ap-
pendix C for details). The first kernel (called the scaling kernel) for step 1 launches
|S1|×N threads where each thread multiplies an input residue by a corresponding constant
Q̂′′j
−1(Q̂′′′j−1) mod qj (pj). The second kernel for step 2 launches |S2| ×N threads where

a thread takes |S1| residues of a coefficient as inputs to compute one output. Throughout
the accumulation, the partial sum resides in the registers held by the threads. When the
accumulation process is completed, the thread performs modular reduction on the result.
A prior work [BPA+19] implements fast basis conversion on a GPU but performs modular
reduction right before the partial sum overflows; in contrast, we accumulate the partial
sum into three double-word values (which are stored in the register file).

Both ModUp and ModDown exploit fast basis conversion, performing iNTT on the inputs
of fast basis conversion and NTT on the outputs. The difference between them lies in
the RNS operations coming after NTT. ModUp concatenates the output of NTT to its input
with the original basis to extend the basis. ModDown (see Algorithm 4) subtracts the
original input from the output of NTT and scales by Q̂−1 mod qj (line 7). Because the
subtraction and scaling after NTT are element-wise RNS operations, our CPU and GPU
implementations use an identical approach when executing them as explained above.
Inner-product in key-switching: The baseline implementation of Inner-product in
key-switching is shown in Algorithm 10. It includes the lazy modular reduction technique
adopted in FHE libraries [CLP17, Cry20]. This technique performs wide MAC operations
(i.e., the partial sum being 128-bit) instead of doing modular reduction β times.

In our CPU implementation, a thread loads three vectors of N residues, one from d
(i)
2

and two from evki for i ∈ [0, β) and then performs multiplication (line 4) or MAC (line
6) in an element-wise manner. This is repeated β times, followed by Barrett’s modular
reduction [Bar87] (lines 8 and 9). Our baseline GPU implementation launches three types
of kernels: one for multiplication (line 4), another for MAC (line 6), and the third for
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Algorithm 11: Evaluation of BSGS in Equation 1
1 ct :=(input ciphertext)
2 out :=(zero-initialized output ciphertext)
3 ptxt := {mi,j}i∈[0,l),j∈[0,t) // precomputed plaintexts

4 procedure
5 for j in [1, t) do
6 ctj = HROTATE(ct, j)
7 end
8 for i in [0, l) do
9 accum = CMULT(ct,mi,0)

10 for j in [1, t) do
11 temp = CMULT(ctj ,mi,j)
12 accum = HADD(temp,accum)
13 end
14 temp = HROTATE(accum, ti)
15 out = HADD(accum,out)
16 end
17 return out
18 end procedure

modular reduction (lines 8 and 9). Each of the three launches (αβ + k)N threads. In the
first and the second kernel, each thread takes three residues as inputs, one from d

(i)
2 and

two from evki. Then the thread multiplies the first input by the others, accumulates them
into two 128-bit partial sums, and stores them as in the CPU implementation case. The
last kernel reduces the 128-bit partial sums to 64-bits using Barrett’s modular reduction.

3.2 Baby-step Giant-step
Let a matrix M be predetermined with l diagonals whose indices form arithmetic pro-
gression, and let vector ~v be encrypted as a ciphertext ct. In CKKS, the evaluation of
BSGS in Equation 1, where rot−ti(diagti+j(M)) is encoded as a plaintext mi,j for each
0 ≤ i < l, 0 ≤ j < t, is done as shown in Algorithm 11. This requires a distinct rotation
key for each rotation index j, but we skip the notation here for simplicity.

We describe the implementation of the HE operations required in BSGS. CMULT is
performed as two element-wise RNS operations as described in the previous section.
HROTATE is mostly similar to HMULT for its key-switching, except that it includes a Frobenius
map (see Section 2), which is a permutation in the NTT domain. For the implementation
of the permutation with index n, where the {j}[0,N)-th residue of a given input {a(i)}[0,`]
is moved into the πn(j)-th position, each CPU thread executes in-place permutation on N
residues, whereas the GPU performs out-of-place permutation by launching (`+ 1)×N
threads such that the (i×N + j)-th thread takes the j-th residue of a(i).
Hoisting: Halevi et al. [HS18] suggested reducing the computation cost of BSGS by
applying hoisting. Hoisting reduces the required number of ModUp operations, when
multiple HROTATE operations with different rotation indices are performed on the same
ciphertext. Specifically, it restructures the HROTATE algorithm to perform ModUp first,
before the Frobenius map. Below is the computation order in HROTATE with hoisting:

1. (PrecomputeModUp) Perform iNTT, fast basis conversion, and NTT on a of a cipher-
text ct = (a, b).

2. (FastRotate) Perform the Frobenius map with rotation index i. Skip ModUp. Perform
Inner-product, ModDown, and remaining functions required for HROTATE.
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The modified HROTATE consists of two steps. When one needs to rotate a single
ciphertext with different rotation indices, we perform ModUp only once on a ciphertext,
after which we perform multiple FastRotate instead of HROTATE. The error bound of
FastRotate remains identical to that of HROTATE; the error bound is proportional to the
infinity norm ‖ã‖∞, where ã is the reconstructed output of ModUp [CHK+19], and hoisting
preserves the infinity norm (i.e., it changes only the order of the coefficients).

By applying the hoisting, one PrecomputeModUp is required immediately before the
line 5 of Algorithm 11, whereas HROTATE in line 6 changes to FastRotate, reducing the
required number of ModUp operations from (t− 1) + (l− 1) to 1 + (l− 1). We evaluate the
performance improvement of bootstrapping with hoisting in Section 6.

4 Bottleneck Analysis of FHE-Mult
In this section, we show that the major FHE operations in CKKS are primarily limited by
the global memory bandwidth of GPUs.

4.1 Function-level Operation Complexity and Memory Access Analysis
First, we show the operational complexity and the number of global memory accesses of each
function during a multiplication of CKKS (HMULT). We evaluate the operational complexity
in terms of the number of integer multiplications and additions, as in [TLW19]. First, we
count the number of modular multiplications (ModMuls) as well as the other operations
and then convert the ModMuls into the number of multiplications and additions. We count
one Barrett’s ModMul [Bar87] (Shoup’s ModMul [Sho16]) as four (three) multiplications
and three (two) additions, using the methodologies explained in [TLW19]. For simplicity,
we assume that the two input ciphertexts have the same level `, with β = (`+1)/α without
the ceiling function.

Prior work [HK20] showed the operation complexity of HMULT in CKKS for various
values of dnum in terms of the number of ModMuls and showed that it is practical to
choose a moderate dnum; however, they did not consider the high memory bandwidth
requirement, which directly affects into the performance of HMULT, especially on GPUs.
We assume that each modulus {qi}0≤i≤L and {pj}0≤j<k is of the double-word type (8
bytes). We count the global memory accesses in unit of eight bytes. Also, we consider
subtraction as signed addition.
Tensor-product: We exploit the Karatsuba algorithm [KO62], which is commonly used
in many HE libraries [HS14, Cry20, CLP17]. It computes a1�a0, b1�b0, (a0+a1)�(b0+b1)
first and then computes (d2, d1, d0) (see Subsection 2.4) from them, reducing the number
of polynomial multiplications from 4 to 3 at cost of three additions, which is inexpensive.
This results in 3(`+ 1)N ModMuls, 4(`+ 1)N additions in total. For the memory accesses,
four input polynomials are loaded and three output polynomials are stored such that
4(`+ 1)N reads and 3(`+ 1)N writes take place.
RNS-Decomposition: There are αβN = (` + 1)N ModMuls and 2(` + 1)N memory
accesses in total for reads and writes (see Dcomp in Subsection 2.3).
NTT & iNTT: For a single execution of (i)NTT on the N residues of each {a(i)}i∈[0,`],
there are logN stages, resulting in (N logN)/2 ModMuls and N logN additions. The
number of global memory accesses can be as high as 2N logN for the loading and storing
the input and output, respectively, and N for the loading twiddle factors.

However, there are two more factors that affect the total number of memory accesses:
the cache memory size of the processor and Shoup’s ModMul [Sho16]. If the cache is large
enough to accommodate the length-N input of (i)NTT, it does not have to access the
global memory at each stage, reducing the memory accesses by up to a factor of 1/ logN .
Modern server-class CPUs have last-level cache memory of dozens of megabytes [AFK+19],
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Table 1: Operation complexity and memory accesses required in HMULT with ciphertexts
having level l < L and degree N . We converted the number of ModMuls into multiplications
(muls) and additions (adds) to count total integer operations. α = (L + 1)/dnum and
β = (`+ 1)/α.

# of ModMuls # of muls and adds # of total integer ops
Memory accesses

(each 8B)
Tensor-product 3(`+ 1)N 4(`+ 1)N 25(`+ 1)N 7(`+ 1)N

RNS-decomposition (`+ 1)N - 7(`+ 1)N 2(`+ 1)N
NTT β(αβ + k)N(logN)/2 β(αβ + k)N(logN) 7β(αβ + k)N(logN)/2 β(αβ + k)(2N +N logN)
iNTT (2αβ + k)N(logN)/2 (2αβ + k)N(logN) 7(2αβ + k)N(logN)/2 (2αβ + k)(2N +N logN)

Inner-product 2(αβ + k)N (4β − 2)(αβ + k)N (4β + 12)(αβ + k)N (11β − 4)(αβ + k)N
Conv (ModUp) β(αβ + k − α)N 2αβ(αβ + k − α)N (7β + 2αβ)(αβ + k − α)N (αβ + αβ2 + kβ)N

Conv (ModDown) 2αβN 4kαβN (4k + 14)αβN 2(αβ + k)N

easily achieving such a reduction in memory accesses. In contrast, GPUs have a much
smaller last-level cache of a few megabytes [NVI17] and can scarcely accommodate the
input/output of (i)NTT. Therefore, the number of memory accesses required on a GPU to
load an input polynomial of (i)NTT is between 2N logN and 2N .

Our baseline (i)NTT implementation [KJPA20] launches two GPU kernels, each of
which performs radix-

√
N (i)NTT, resulting in 2N logN/ log

√
N accesses for the input

and output. Rather than Barrett’s algorithm [Bar87], we adopt Shoup’s ModMul, as
implemented in [KJPA20], which is commonly used for (i)NTT to reduce the operational
complexity of ModMuls [CLP17, HS14]. Using Shoup’s method adds extra N memory
accesses as it demands a precomputed value for each ModMul. iNTT is performed at
the front of ModUp and ModDown, each being done β times for αN residues and once for
(αβ + k)N residues (see Subsection 2.3). NTT is performed on the output of the basis
conversion in ModUp and ModDown, each done β times for (αβ + k−α)N residues and once
for αβN residues.
ModUp: Because we count the operations in (i)NTT separately, we consider only fast
basis conversion in ModUp and ModDown here. With the lazy modular reduction technique,
one needs to perform modular reduction only once after computing a sum of product,
as stated in Section 3. Therefore, αβ(αβ + k − α)N multiplications, αβ(αβ + k − α)N
additions, and β(αβ + k − α)N modular reductions are required in total. The number of
memory accesses is αβN for reads and β(αβ + k)N for writes in total.
Inner-product: As in ModUp, lazy modular reduction is applied to Inner-product in
key-switching, resulting in 2β(αβ + k)N multiplications, 2(β − 1)(αβ + k)N additions,
and 2(αβ + k)N modular reductions. The required memory accesses are 2β(αβ + k)N for
loading {evki}0≤i<β , β(αβ + k)N for loading {d2,i}0≤i<β , and finally, 4(β − 1)(αβ + k)N
and 4β(αβ + k)N for loading and storing accum in Algorithm 10, respectively.
ModDown: There are k(αβ)N multiplications, k(αβ)N additions, and (αβ)N modular
reductions for each of the two polynomials (a′accum and b′accum), which are the output of
Inner-product. Meanwhile, there exist kN memory accesses for the loading of the input
and (αβ + k)N for the storing of the output for each of the two polynomials.

We summarize the overall operational complexity and number of memory accesses
required in Table 1.

For given values of L, `, and N , the value of dnum that minimizes the total num-
ber of modular multiplications and plain multiplications is (L + 1)

√
8`+ 7 logN + 32

/((` + 1)
√

7 logN + 22). The global memory access count is minimized when dnum
= ((L+ 1)

√
logN)/((` + 1)

√
logN + 14). Prior work [HK20] chooses dnum that mini-

mizes the number of ModMuls. However, this could be sub-optimal if an FHE operation is
mostly bottlenecked by the global memory bandwidth, which is especially true in GPUs
compared to CPUs. Figure 2(a) shows the HMULT time with various dnum values on our
baseline CKKS implementation, both with CPUs and GPUs. As stated above, because
modern server-class CPUs have a last-level cache of several dozens of megabytes that can
accommodate one or two polynomials in FHE operations, the last-level cache absorbs
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Figure 2: (a) HMULT time with 8-threaded CPU (CPU-8T) and our baseline GPU imple-
mentation when (N , L) = (65536, 24). (b) A roofline model of multiplication in CKKS
with our baseline GPU implementation when (N , L, dnum) = (216, 45, 45). The number
of integer instructions is measured with NVIDIA Nsight compute [NVI20].

most of the DRAM traffic. This makes the execution time of HMULT directly proportional
to the number of arithmetic operations. In contrast, GPUs have smaller caches and
the execution time is for this reason determined instead by the global memory accesses,
becoming susceptible to the memory bandwidth and making it preferable to use a smaller
dnum for fewer memory accesses.

4.2 Memory-bandwidth Bottleneck of FHE Operations on GPUs
A single ModMul operation is translated into different instructions depending on the type
of machine. To understand the actual operational characteristics of HMULT on GPUs, we
provide a roofline plot [HP17] of CKKS multiplication in our baseline GPU implementation
in Figure 2(b). We measured the integer operation throughput and DRAM access counts
using a profiling tool provided by NVIDIA Nsight Compute [NVI20].

Most operations in HMULT are not compute-bound but are instead global-memory-
bandwidth bound. Among these operations, Inner-product has the lowest operation in-
tensity, severely bounded by the global memory bandwidth. The operational intensity
of Inner-product is even lower than that of the addition operations because the baseline
Inner-product implementation accumulates the i-th product d(i)

2 · evki into accum (lines
4-7 in Algorithm 10), whose elements are 128 bits (quad-word) long, incurring numerous
memory accesses.

We observe that Inner-product in key-switching is a major bottleneck when attempting
to accelerate HMULT because it has an extremely low operational intensity despite its
large number of memory accesses, especially with a large dnum. Figure 3 presents the
execution time, global memory (DRAM) bandwidth, and instruction throughput (SM
utilization) of HMULT with our baseline GPU implementation. For most functions, these
DRAM bandwidth utilization rates are higher than those of SM utilization, in good
agreement with the low operational intensity shown in the roofline plot (Figure 2)(b).
Also, although NTT performs most of the modular multiplications required in HMULT,
Inner-product dominates by 54.5% the overall execution time. Because Inner-product is
the most memory-intensive operation in HMULT, it utilizes SM in GPU at only 3.4%. The
second-most time-consuming function, NTT, also exhibits high global memory utilization
(71.0%) and low SM utilization (38.4%) rates.

One of the factors contributing to the large number of memory accesses in Inner-product
is the use of a large dnum, as the sizes of the evaluation keys are proportional to dnum
({swki}0≤i<dnum). Throughout this paper, we adopt the generalized key switching strategy
in [HK20], which prefers the use of smaller dnum values, reducing the sizes of the keys and
thus amortizing the global memory bandwidth bottleneck of Inner-product when run on a
GPU. Moreover, we apply memory-centric optimizations that are commonly applicable



128 Over 100x Faster Bootstrapping in Fully Homomorphic Encryption

0
10
20
30
40
50
60
70
80
90

100

Key-switching NTT ModUp Add/Sub/Scale iNTT Tensor product ModDown

U
til

iz
a

tio
n

 (
%

)

DRAM bandwidth SM

In
n

er
-

p
ro

d
uc

t

N
T

T

C
o

n
v

(M
o

d
U

p
)

A
d

d/
S

u
b

/
S

ca
le

iN
T

T

Te
n

so
r-

p
ro

d
uc

t

C
o

n
v

(M
o

d
D

o
w

n
)

(a) Utilization

Inner-product

NTT

Conv (ModUp)

Add/Sub/Scale

iNTT

Tensor-product

Conv (ModDown)

54.5%35.5%

(b) Execution time breakdown

Figure 3: Execution time, DRAM utilization, and SM utilization of a single FHE-mult on
our baseline GPU implementation of CKKS with (N , L, dnum) = (216, 45, 45).

to GPUs, such as operation fusion (kernel fusion [QRHT19]) in both an intra- and an
inter-FHE manner, which significantly reduces the bandwidth requirement.

5 Memory-centric optimizations for FHE on GPUs
Kernel fusion is a technique that fuses multiple GPU kernels into one kernel. Typical GPU
kernels operate in three steps: they load the input data from DRAM into shared memory
or registers, compute the data, and store the output data. Kernel fusion combines multiple
kernels, and by reusing data in the register file or shared memory, this strategy reduces
the number of global memory accesses between kernels. By judiciously applying various
kernel fusion methods both in an intra- and inter-FHE-operation manner, we significantly
reduce the number of memory accesses required for memory-intensive FHE operations.

5.1 Intra-FHE-operation Fusion
There are a number of opportunities for kernel fusion inside a single FHE operation. More
specifically, we show that the major FHE operations in CKKS such as multiplication,
rotation, and rescaling have ample opportunities to adopting kernel fusion to reduce the
number of memory accesses. Below, we describe how we exploit the kernel fusion technique
to those FHE operations.
Fusing the scaling kernel in ModUp with batched iNTT: We suggest and apply
two optimizations to ModUp. First, we batch β iNTT kernels in ModUps that are invoked
β times per KeySwitch. Each execution of the fast basis conversion in ModUp follows
iNTT([a]C′

i
), as described in Subsection 2.3. When dnum is large enough, the input size

of each iNTT (LN/dnum = αN) decreases; one cannot maximally exploit thread-level
parallelism in GPUs because the throughput of an iNTT kernel decreases due to the kernel
call overhead [BVMA18, KJPA20]. Instead of launching numerous small iNTT kernels,
we fuse them into a single, large iNTT kernel that takes (αβ)N input residues, and launch
the large kernel once.

Second, we fuse the scaling kernel of Conv in ModUp (which multiplies either [Q̂
′′−1
j ]qj

or [Q̂
′′′−1
j ]pj ; see Subsection 2.3), with the preceding batched iNTT kernel. Because the

scaling kernel has low arithmetic intensity and becomes memory-bound, fusing it with its
preceding batched iNTT kernel removes most of the required memory accesses. Specifically,
because we perform 8 per-thread iNTT for the batched iNTT kernel, each thread holds
eight double-word output elements in its registers, before storing them into the global
memory. We multiply each of the eight output elements with its corresponding [Q̂

′′−1
j ]qj or

[Q̂
′′′−1
j ]pj , right before storing them into global memory. This eliminates 2αβN memory

accesses in total.
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speedup of line 9-13 in Algorithm 11 with batching plaintext-ciphertext MAC for various
t. The red line represents the maximum speedup, 11/3. (N , L, dnum) = (217, 29, 3).

Fusing Inner-product in key-switching: Inner-product in key-switching (see Algo-
rithm 10) requires (11β − 4)(αβ + k)N memory accesses in total (see Table 1). Most
required global memory accesses come from reading and writing accum multiple times.
Because each element of accum is 128 bits long, these operations account for most of the
memory accesses.

To reduce the number of memory accesses, we fuse the three types of kernels in Algo-
rithm 10, which are described in Subsection 3.1, into a single kernel that performs all of the
multiplication, mult-and-add, and reduction operations. In the fused kernel, each thread
holds the partial sum in its registers until the last mult-and-add operation is complete.
This simple but effective approach reduces the number of total memory accesses required
from (11β − 4)(αβ + k)N to (3β + 2)(αβ + k)N .
Fusing element-wise operations in ModDown with NTT: We fuse two element-
wise operations in ModDown, subtraction and scaling with [Q̂−1]qj for each j (lines 6-8
in Algorithm 4), with a preceding NTT (line 5). Prior to the fusion step, we call one
kernel for subtraction and one for scaling. Similar to the kernel fusion we apply to ModUp,
these two operations are applied immediately before storing the NTT’s output into global
memory, removing 2(`+ 1)N global memory accesses during the subtraction and 2(`+ 1)N
during the scaling steps overall.

This fusion strategy in ModDown is also applicable to the rescaling operation, as RESCALE
can be understood as ModDown that drops a prime (i.e., ModDownC`→C`−1) on both instances
of input ([a]C` , [b]C`)← ct. Therefore, we also apply this fusion step when rescaling and
evaluate its performance after fusion in Section 6.

5.2 Inter-FHE-operation Fusion
Most of the bootstrapping time is spent evaluating linear transformation. Therefore, we
suggest optimizations applicable to linear transformation, i.e., batching plaintext-ciphertext
multiply-accumulate (MAC) operations.
Breakdown on bootstrapping: Figure 4(a) shows the execution time breakdown of
bootstrapping with one of the representative parameter sets in Section 6, after applying
all intra-FHE-operation fusion steps in the previous section. Approximately 62.7% of the
bootstrapping time is spent evaluating linear transforms, SlotToCoefficient and Coefficient-
ToSlot, which are respectively homomorphic decoding and encoding processes. We focus
on these two functions and accelerate their core algorithm, BSGS (see Equation 1).
Batching plaintext-ciphertext multiply-accumulate (MAC): As described in Sub-
section 2.5, the core operation of SlotToCoefficient and CoefficientToSlot is a series of
multiplications between block-diagonal sparse matrices, whose diagonals are encoded into
plaintexts, and a vector, which is a ciphertext, using the BSGS algorithm (Equation 1).

Our key observation is that the inner-most sum of BSGS (lines 10-13 in Algorithm 11)
exhibits a severe memory bandwidth bottleneck on a GPU, similar to Inner-product (lines
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5-7 in Algorithm 10). For a given ciphertext of level `, the number of required memory
accesses of the innermost sum of Algorithm 11 is 5t(`+1)N for t CMULT and 6(t−1)(`+1)N
for t− 1 HADD. We fuse the kernels for CMULT and HADD in lines 9-13 of Algorithm 11 into a
single kernel, reducing the total memory accesses of (11t− 6)(`+ 1)N to (3t− 1)(`+ 1)N .
We refer to this fusion as batching plaintext-ciphertext MAC.

As CMULT and HADD in Algorithm 11 are memory-bound, the reduction of the number
of memory accesses is translated into a speedup of as many as asymptotically 11/3 times
with batching plaintext-ciphertext MAC. We benchmark the speedup of line 9-13 in
Algorithm 11 with our GPU implementation for various values of t in Figure 4(b). Even
with t = 2, we obtain a 2.66× speedup. On the other hand, the overall execution time
of BSGS is as follows. Let fspeedup(t) = (11t − 6)/(3t − 1). Then, the execution time
of Algorithm 11 becomes (l + t− 2) (HROTATE time) + {l · t (CMULT time) + (t− 1)(l − 1)
(HADD time)}/fspeedup(t).

We can model the speedup of each execution of BSGS in CoefficientToSlot and SlotTo-
Coefficient. For a given radix r, because each block-diagonal sparse matrix (except for the
first one, which is initially multiplied with the input first) has 2r − 1 diagonals, we should
select proper values of l and t in Equation 1 such that l · t > 2r− 1, with both l and t near√

2r − 1. Following [HHC19], we select a proper radix r first. For N = 216, we set r to 25,
resulting in three matrix-vector multiplications, each with radix 25 (because N/2 = (25)3).
For N = 217, as log r = 5 does not divide log(N/2) without a remainder, we perform three
matrix-vector multiplications, each with radix 25, 25, and 26. Thus, we can determine the
total time of CoefficientToSlot (the same applies to SlotToCoefficient) when N = 216 as
follows: (total time of each baby-step giant-step in SlotToCoefficient) = 14 (HROTATE time)
+ {64 (CMULT time) + 49 (HADD time)} /fspeedup(8), where fspeedup(8) = 3.56.

6 Evaluation
We present the performance improvement in FHE operations in CKKS with our inter-
and intra-FHE-optimizations, the effect of generalized key-switching, and hoisting 2. All
experiments were performed on a single NVIDIA Tesla V100 [NVI17] GPU with CUDA
11.2 and an Intel Xeon Gold 6234 @3.3GHz CPU with eight cores [Int20]. We also put
all the evaluation keys and constants into the global memory for both the CPU and
GPU implementations. We used all parameters that meet the stipulation of security
bit λ > 80, as calculated from the LWE estimator [APS15]. Our parameter sets used
for evaluating the performance of bootstrapping add 2−19 mean errors to the input
message after bootstrapping; these values are small enough so as not to hinder most
applications [HK20, CCS19, HHC19, CHK+18].
Performance of individual FHE operations: Table 2 summarizes the latency of the
FHE operations on a single-threaded CPU, our GPU implementation, and PrivFT [BHM+20],
the state-of-the-art implementation of CKKS [CHK+19] on a GPU. Because PrivFT is
closed-source, we compared the latency of each operation provided by the corresponding
paper using the same GPU. Also, we compared the performance on the parameter set with
the largest level in [BHM+20] considering the practical use of FHE. This parameter set
with a large level represents parameter sets suitable for applications that do not require
bootstrapping.

First, by applying all of the intra-FHE-operation fusion techniques, our optimized GPU
implementation beats the baseline CPU implementation by 152×, 153×, 229×, and 135× in
HMULT, HROTATE, RESCALE, and HADD, respectively. Second, compared to PrivFT [BHM+20],
even without the optimizations, our baseline implementation outperforms PrivFT by 1.67×

2 The GPU implementations of the inter- and intra-FHE-optimizations are available in https://github.
com/scale-snu/ckks-gpu-core.

https://github.com/scale-snu/ckks-gpu-core
https://github.com/scale-snu/ckks-gpu-core
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Table 2: Execution time of FHE operations in our single-threaded CPU implementation,
GPU implementation without (baseline) and with (fused, fusedL, and fusedH) our
optimizations, and PrivFT [BHM+20].

Execution time (ms) Speedup
CPU GPU

1 thread base fused fusedL fusedH PrivFT [BHM+20]
N 216 216 216 216 217 216

logPQ 2366 2366 2366 2364 3220 2360*
logQ 2305 2305 2305 1693 2305 2300
L 44 44 44 32 44 44

dnum 45 45 45 3 3 45
λ 98 98 98 100 128 98

HMULT 2644.8 33.51 17.4 2.96 7.96 55.884 7.02×
HROTATE 2578.9 32.93 16.83 2.55 6.6 - -
RESCALE 145.4 0.846 0.635 0.49 1.20 1.632 1.36×

HADD 28.12 0.208 0.208 0.162 0.378 0.188 0.50×
CMULT 26.22 0.177 0.177 0.135 0.318 0.170 0.54×

* We estimate log P as 60 since the paper does not provide the value.

Table 3: Bootstrapping time of our baseline implementation and ones that incrementally
adopt MF, IF, and MDF together (Intra-FHE-fusion), batching plaintext-ciphertext MAC
(Batching), and hoisting (Hoisting).

Parameter
Execution time (ms)

Speedup (vs.
set CPU 1 thread)

(N , Level, dnum) CPU GPU
(logPQ, λ) 1 thread Baseline Intra-FHE fusion Batching Hoisting
(216, 34, 5)

79444 428.94 377.78 351.09 328.25 242×(2222, 106)
(217, 29, 3)

135400 719.87 623.92 568.2 526.96 257×(2150, 173)

in HMULT. Our memory-centric optimizations are effective such that we realize a speedup
of 3.21× in HMULT (fused), compared to that of PrivFT.

We also demonstrated the impact of choosing a proper value of dnum in the GPU
implementation. Because using a smaller dnum decreases the multiplicative level with a
fixed logPQ and security bit, we show two parameter sets having either the same logPQ
with fewer levels (fusedL), or the same level with higher logPQ and N values to ensure
high security of 128 bits (fusedH). Comparing the result of fusedH with PrivFT, which
does not exploit generalized key-switching, we improved the performance by 7.02× in HMULT.
In the fusedH case, HADD, RESCALE, and CMULT become slower because the ciphertext size
is larger than in fused; however, the execution time of HMULT and HROTATE generally
dominates by one order of magnitude. Compared to the method that uses maximum dnum
(fused), fusedL obtains speedups of 5.88× and 6.6× in HMULT and HROTATE, respectively.
Our results thus demonstrate the importance of memory-centric optimizations and the
proper selection of dnum when accelerating CKKS.
Performance of bootstrapping: We evaluate the performance of bootstrapping with
our intra- and inter-FHE-operation fusion strategy with hoisting [HS18] in Table 3. For this
evaluation, we select two parameter sets with small dnum and moderate levels, which rep-
resent bootstrap-friendly parameter sets suited for applications demanding bootstrapping.
First, our baseline GPU implementation already provides up to a 185× speedup compared
to implementation on a CPU. Using a small dnum value increased the performance gap
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Figure 5: Performance of each single FHE operation without fusion (Baseline) and
incrementally adopting fusion. FastRotate represents the implementation that applies
hoisting after MDF. (N , logQ, L) = (216, 2305, 44).

between the CPU and GPU implementations by relieving the memory bandwidth bottle-
neck on the GPU. Second, intra-FHE-operation fusions lead to a speedup of up to 1.15×
compared to the Baseline case. Moreover, batching plaintext-ciphertext MAC and hoisting
provide an additional speedup of up to 257× in total compared to the single-thread CPU
implementation. In both parameter sets, we found similar speedups on each optimization.
Speedup breakdown: Using a small dnum significantly reduces the Inner-product time
by a factor of 7.48 and 7.50 in our baseline GPU implementation of HMULT and HROTATE,
respectively (see Figure 5(a) and (b)). As the number of memory accesses required by
Inner-product is reduced to become proportional to dnum, the portion of the Inner-product
time changes from 54.6% (55.8%) when dnum= 45 to 29.8% (33.5%) when dnum= 3 in
HMULT (HROTATE).

After reducing memory accesses using a small dnum value, we analyze the effect of
each intra-FHE-operation fusion (Figure 5(b)). We refer to the three intra-FHE-operation
fusions listed in Subsection 5.1 as ModUp Fusion (MF), Inner-product Fusion (IF), and
ModDown Fusion (MDF). Figure 5(b) shows the execution time breakdown when we
applied MF, IF, and MDF incrementally. MF increases the overall performance of HMULT
and HROTATE by 1.02× and 1.03×, respectively. The speedup is relatively small, as the
size of iNTT in ModUp is small, taking up a small portion in the overall execution time. On
top of MF, IF significantly decreases the execution time of Inner-product by reducing the
number of memory accesses by up to a factor of 11/3, resulting in a 3.75× (3.75×) speedup
in Inner-product and a 1.35× (1.41×) speedup in total for HMULT (HROTATE). Lastly, MDF
increases the overall performance by 1.46×, 1.54×, and 1.32× correspondingly for HMULT,
HROTATE, and RESCALE compared to the baseline.

We also evaluate the effectiveness of hoisting [HS18] in HROTATE, shown as a distinct
column in Figure 5(b). With hoisting, FastRotate outperforms HROTATE with MDF by
1.65×, as it does not require ModUp or multiple NTT/iNTT executions. The execution
time for permutation (Frobenius map in the NTT domain) increases by 2.32× as the size
of the permutation becomes larger by precomputing ModUp; however, the performance
benefit outweighs the cost as permutation only accounted for 4% in HROTATE with MDF.
Performance of Baby-step Giant-step: Figure 6(a) shows the performance improve-
ment in BSGS with batching plaintext-ciphertext MAC and hoisting with various values of
t. Batching plaintext-ciphertext MAC improves the performance up to 1.25×. Moreover,
applying hoisting results in a speedup of up to 1.45×, while providing no benefit when
t = 2 as we perform only one FastRotate and thus cannot save any ModUp.
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Figure 6: (a) Speedup of evaluation of BSGS (Algorithm 11) with batching plaintext-
ciphertext MAC (Batching) and hoisting over t. (b) Amortized FHE-mult time
(Tmult,Amortized) for a given logPQ ≈ 2450 and N = 216 (97-bit security).

Amortized FHE-mult time: We propose a new metric for performance that reflects
the performance of actual applications requiring bootstrapping: amortized FHE-mult time.
It considers both the bootstrapping cost and the number of multiplications between two
consecutive bootstrapping operations. Let one perform consecutive HMULT until the level of
a ciphertext is depleted, perform bootstrapping, and then repeat this process. We define
the amortized FHE-mult time as Tmult,amortized = Tmult + Tboot

Lboot
, where Tmult is the average

time of HMULT between two bootstrapping operations, Tboot is the bootstrapping time, and
Lboot is the number of HMULT operations between bootstrappings.

Figure 6(b) shows the amortized FHE-mult time of our best-performing and baseline
GPU implementation with various values of dnum for a given security bit. In both
implementations, the amortized time becomes minimal when dnum = 4 (24.35 ms and
43.5 ms for the optimized and baseline cases, respectively). However, our optimized
implementation greatly reduces the performance gap between the optimal dnum and the
large value (dnum = 8), as it significantly amortizes the memory bandwidth pressure by
applying memory-centric optimizations. This makes high dnum values more attractive for
those who want more security with the parameter sets that consider bootstrapping.

Our optimized implementation of CKKS outperforms the baseline by 1.68×, 1.78×,
1.79×, and 2.46× with dnum values of 2, 3, 4, and 8, respectively. By adopting generalized
key-switching as well as memory-centric optimizations, the amortized FHE-mult time of
our optimized GPU implementation even outperforms the single multiplication time of
PrivFT [BHM+20], which does not support bootstrapping.

Performance of Logistic Regression: Our optimized GPU implementation of CKKS
achieves a similar level of performance improvement in complex applications requiring
bootstrapping. As a target application, we evaluated the execution time required to train a
logistic regression model. We used a methodology from [HHCP19], which trains a binary
classification model with non-RNS CKKS [CKKS17]. Moreover, we used the same dataset
(the subset of MNIST labeled as 3 and 8), learning rate, weight update algorithm, and the
circuit that approximates a Sigmoid function as a cubic polynomial.

In [HHCP19], the authors exploited the gradient descent algorithm to find the weight vec-
tor w that minimizes the negative log-likelihood function NL(w) = −1/m·logP (w), where
m is the batch size, P (w) = Πm

i=1pw(xi)yi ·(1−pw(xi))1−yi and pw(xi) = S(IP(w, (1,xi))).
Here (1,xi) is a concatenation of 1 and vector xi, IP(w, (1,xi)) is the inner product be-
tween the two vectors, and S(x) is a Sigmoid function, which is approximated as a cubic
polynomial [HHCP18].

Given learning rate α and gradient ∆wNL(w), training is an iterative process that
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Table 4: Performance of training a binary classification model with 8-threaded CPU
implementation (CPU-8T) and our optimized GPU implementation with parameter set
(N , ∆, logPQ, L, dnum) = (217, 251, 2395, 35, 3).

Accuracy (%) Execution time per mini-batch (ms)
Bootstrapping Others Total

CPU-8T 96.4 15 284.7 15 760.3 31 045.0
GPU 96.4 328.7 446.3 775.0

Speedup 46.5× 35.3× 40.0×

updates the weight w to w′ such that

w′ = w− α ·∆wNL(w), ∆wNL(w) = −1/m ·
m∑
i=1
S(−IP(zi,w)) · zi

where zi = y′i · (1,xi), and y′i = 2yi − 1 ∈ {−1, 1}. We packed the training data into
ciphertexts such that each sample of training data is packed to a ciphertext, with each
ciphertext holding (N/2)/f ′ training samples, where f ′ is the smallest power of two, which
is greater than the number of features f . As in [HHCP19], we compress each patch
of 2×2 pixels in the MNIST dataset [Lec98] into their arithmetic means, resulting in
f = (28/2)× (28/2) = 196.

We apply our implementation of CKKS to a circuit [HHCP19] that exploits non-RNS
CKKS, resulting in five multiplicative depths per training iteration. We use a parameter
set of N = 217, ∆ = 251, logPQ = 2395, L = 35, and dnum= 3. Because the level in our
parameter set is 35, each bootstrapping operation consumes 16 levels and leaves 19 levels,
requiring a bootstrapping for every 3 iterations.

Table 4 shows the execution time of our 8-threaded CPU and the best-performing
GPU implementation for a single iteration of training the binary classification model. We
showed the amortized time per iteration (i.e., the total learning time divided by the number
of iterations). We achieve 96.4% accuracy and 0.99 AUROC (area under the receiver
operating characteristics) with 30 iterations, identical to the outcome in [HHCP19]. Our
GPU implementation outperforms the CPU implementation by 40.0× overall, resulting in
a sub-second iteration per mini-batch, whereas the earlier work [HHCP19] reported four
minutes of execution time per iteration with an 8-threaded CPU with non-RNS CKKS
implementation [Cry20].

7 Related work
To the best of our knowledge, PrivFT [BHM+20] is the only method that accelerates
the RNS-variant of CKKS using a GPU, exploiting the libraries from their previous
works [BPA+19, BVMA18] that implemented the RNS-variants [BEHZ16a, HPS19a] of
the Brakerski-Fan-Vercauteren (BFV) scheme [Bra12, FV12]. A prior work [JLK+21]
accelerates CKKS on GPUs, but they did not target the RNS-variant. All of them did not
implement bootstrapping.

An open-source library called cuFHE [Ver18] implemented a TFHE scheme [CGGI16,
CGGI17], including the bootstrapping of TFHE, which is the fastest bootstrapping method,
though it accommodates at most up to several bit plaintext per ciphertext. We conducted
benchmarking on the GPU we used throughout the evaluation and obtained a bootstrapping
time of 0.5 ms per binary gate in cuFHE. Our bootstrapping implementation, as shown
in Table 3, exhibits a per-slot bootstrapping time of 8 us, resulting in a 62.5× speedup.
NTT vs. DGT: Recent works [BVMA18, ANA21] suggest adopting Discrete Gaussian
Transform (DGT), which exploits Gaussian primes and transforms the N -size datapath
in NTT into N/2-size datapath. DGT saves N/2 twiddle factors, which can amortize
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the bandwidth requirement in GPUs. However, it requires an extra twisting step (an
element-wise multiplication) prior to transformation, trading the savings in twiddle factors
with N/2 additional twisting factors.
Applicability to other schemes: Our memory-centric optimizations are partially appli-
cable to the BFV [BPA+19] and TFHE [CGGI20] schemes, which include operations with
low arithmetic intensities. Both schemes include dot product between a polynomial and a
key-switching key during key-switching, whose arithmetic intensity is low enough to benefit
from the kernel fusion in Inner-product. For BFV, the fusion in ModUp and ModDown is
available when the same RNS decomposition methods are used [HPS19b, BEHZ16b] as
in [HK20]. TFHE has an operation called Cmux [CGGI20], which consists of Hadamard
multiplications, permutations, and additions between ciphertexts. Because Cmux is consec-
utively and repeatedly used (e.g., in BlindRotate [CGGI20]), we believe plaintext-ciphertext
MAD batching will be effective. A comprehensive performance characterization of HE oper-
ations in BFV and TFHE, which is required for understanding the bandwidth requirements
of the corresponding GPU implementations, will be our future work.

8 Conclusion
In this paper, we demonstrated the first GPU implementation of the bootstrapping of
CKKS. We showed that the global memory bandwidth bottleneck is the key challenge
in accelerating RLWE-based FHE operations with GPUs. Also, we found that the
decomposition number (dnum) in a parameter set significantly impacts the performance;
raising dnum significantly increases both the number of global memory accesses and the
capacity required for Inner-product during key-switching. Based on the observation of the
high memory bandwidth requirement, we devised memory-centric optimizations for our
GPU implementation, in this case kernel fusion and a proper choice of dnum. Also, by
applying our batching plaintext-ciphertext MAC in bootstrapping, we realized a per-slot
bootstrapping time of 8 us with 19-bit precision, which corresponds to a 257× speedup
over the single-threaded CPU implementation. Finally, we demonstrated the effectiveness
of our solutions by training a logistic regression model, which obtains a speedup of 40.0×
with our single GPU implementation compared to the 8-threaded CPU implementation.
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A An Overview of GPU Architecture
We briefly explain the architecture of modern GPUs. Typical GPUs exploit massive
thread-level parallelism (TLP) by exploiting many scalar, in-order processors that run
concurrently. A GPU consists of dozens of hardware units called Streaming Multiprocessors
(SM ), each of which can run thousands of threads concurrently. Threads in a GPU are
grouped into a unit called thread block. Threads in a thread block share the resource
assigned to the thread block, such as register file and a user-configurable scratchpad
memory, called shared memory, typically sized several dozens of KBs [NVI17, NVI21].

Threads in a thread block are again grouped into a unit of 32 threads, called warp.
All the threads in a warp execute an instruction at a time in a lockstep manner. An SM
can hold multiple thread blocks at a time. Each SM holds multiple warp schedulers, each
selecting one or more warps ready for issuing an instruction at the cycle. The latency of an
instruction executed by a warp is hidden by other warps selected by the warp schedulers.
Thus, GPU is well suited to well-parallelizable programs and can run a massive number of
threads in a throughput-oriented manner. A group of thread blocks is grouped into a unit
called grid. The number of thread blocks in a grid and the number of threads in a thread
block is specified by the execution unit of GPU called kernel, a user-specified function
called by CPU.

Our target GPU architecture is NVIDIA Tesla V100 GPU [NVI17], which we use for
all the experiments in this paper. It features 80 SMs that can run up to 163,840 threads
concurrently. Compared to a modern server-class CPU that typically has a last-level cache
sized dozens of MBs, a GPU has a smaller cache but provides higher main memory (global
memory) bandwidth. We evaluated the performance of our CPU implementation of CKKS
with Intel Xeon Gold 6234 [Int20] that has 24.75 MBs of last-level cache per socket, which
is large enough to accommodate one or two polynomials with typical HE parameters. In
contrast, Tesla V100 has a last-level cache of 6 MBs but is equipped with a large global
memory bandwidth of 900 GB/s, being suitable for throughput-oriented programs.

B Matrix Decomposition in CoefficientToSlot/SlotToCoefficient
The matrix decomposition of V in Subsection 2.5 with Cooley-Tukey algorithm [CT65] in
the previous work [HHC19] is as follows. For the bit-reversing (permutation) matrix R,
let Vrev = VR. With a radix of 2, the following equations hold:

Vrev =
log2(N/2)∏

i=1
V(2)
i ,

V(2)
i =
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where In is an n× n identity matrix and Wn is an n× n diagonal matrix whose (i, i)-th
element is ω5i

4n for 0 ≤ i < n. With the decomposition, each V(2)
i has two (i = 1) or

three (i 6= 1) diagonals. A decomposition with a higher radix with r > 2 is obtained by
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multiplying the matrices together:
log2(N/2)∏

i=1
V(2)
i =

logr(N/2)∏
i=1

(
log2(r)∏
j=1

V(2)
ri+j) =

logr(N/2)∏
i=1

V(r)
i

where each V(r)
i has r (when i= 1) or 2r − 1 (i 6= 1) diagonals. For the complete proof,

please refer to [HHC19].
Then, SlotToCoeff and CoeffToSlot directly use the bit-reversed matrix Vrev for their

evaluations. CoeffToSlot is modified to output bit-reversed results ~t1 and ~t2:

~t1 = R~z1 = 1
N

(Vrev
T
~z + Vrev~z)

~t2 = R~z2 = 1
N

(−iVrev
T
~z + iVrev~z).

In the same way, SlotToCoeff takes bit-reversed inputs but outputs a non-bit-reversed
result because the inputs are reversed again: ~z = Vrev(~t1 + i~t2).

C GPU implementation of NTT and fast basis conversion
We describe 8 per-thread NTT implementation [KJPA20] that we used throughout this
paper. Because iNTT is symmetric with NTT, we only show the case of NTT. Figure 7(a)
and (b) show the data access pattern of the two kernels composing an NTT execution. In
the two kernels, a thread block loads R1 or R2 residues that are selected from N residues
corresponding to a prime. The residues loaded to the register file can be considered as
a 3-D data cube (Figure 7(c)), where an index of the residues, idx, maps to (x, y, z) =
(idx% R

64 , (idx%R
8 )/ R64 , idx/

R
8 ) so that the x dimension comes first.
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(c) Execution of an NTT kernel

Figure 7: Data access pattern of a thread block in (a) the first kernel and (b) the second
kernel of N -size 8 per-thread NTT implementation with GPU [KJPA20], where N = R1 ·R2.
(c) The thread block, which consists of R/8 threads, performs radix-R NTT on the loaded
data cube, where a thread performs an NTT with a size of 8 three times (¶, ¸ , º). Also,
synchronization of a thread block for storing the output to shared memory is shown (·,
¹).
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Algorithm 12: Implementation of fast basis conversion in GPU
1 S := {qi}i∈[0,l)
2 S ′ := {q′i}i∈[0,l′) s.t. S ∩ S

′ = ∅
3 q̂i = (

∏l−1
j=0 qj)/qi,

4 in := [a(X)]S s.t. a(X) =
∑N−1
i=0 aiX

i

5 out := [a′(X)]S′ = ConvS→S′([a(X)]S) s.t. a′(X) =
∑N−1
i=0 a′iX

i

6 procedure FastBasisConversionStep1 // launch lN threads
7 idx = blockDim.x * blockIdx.x + threadIdx.x
8 i = idx / N
9 j = idx % N

10 [aj ]qi = ShoupModMulqi([aj ]qi , [q̂
−1
i ]qi)

11 end procedure
12 procedure FastBasisConversionStep2 // launch l′N threads
13 idx = blockDim.x * blockIdx.x + threadIdx.x
14 i = idx / N
15 j = idx % N
16 accum = [aj ]q0 · [q̂0]q′

i

17 for m in [1, l) do
18 accum += [aj ]qm · [q̂m]q′

i

19 end
20 [a′j ]q′i = BarrettModReductionq′

i
(accum)

21 end procedure

Then the thread block, which consists of TR
8
threads, performs NTT along the z axis

first (using the twiddle factors inside the global memory), stores the outputs to shared
memory, synchronizes, loads the stored data in shared memory to the register file, and
repeats for the y and x axes. Because each thread performs up to 8-point NTT, we call
this as 8 per-thread NTT.

Bank conflicts in shared memory occurs with the naïve implementation. To reduce the
bank conflicts, we add appropriate offsets to the base address of the shared memory space
allocated for each kernel (i.e., padding to the shared memory) as in [GLD+08].

Algorithm 12 shows the implementation of the fast basis conversion on GPU. It consists
of two kernels, where each index of data that a thread processes (idx) is characterized
by the index of the corresponding thread block (blockIdx.x), dimension of the block
(blockDim.x), and thread index inside the warp (threadIdx.x).

We recommend more interested readers to check out the code in https://github.com/scale-
snu/ckks-gpu-core.
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D Details on CKKS subroutines
This section provides supplementary explanations for the subroutines referred in the main
body of the paper to enhance the understanding of the CKKS method, with the required
mathematical background.

D.1 Notation in HE
Table 5 summarizes the symbols and their descriptions used throughout this paper.

Table 5: Notation for HE used in this paper.
i, j, log2N ∈ N qi, pi Prime numbers
R Z[X]/(XN + 1) Rqi Zqi [X]/(XN + 1)
B {p0, . . . , pk−1} Ci {q0, . . . , qi}
Di (B

⋃
(
⋃

0≤j<i C′j) m(X) Coefficient-wise representation of
∑N−1

i=0
miX

i∈R

[s(X)]qj Coefficient-wise mod qj [a]qj a mod qj
� Hadamard multiplica-

tion
[s(X)]Ci ([s(X)]q0 ,··· ,[s(X)]qi )

Qi
∏i
j=0 qj L Maximum level of ciphertext

Q̂j
∏dnum−1
i=0∧i 6=j Q

′
i ` Current level of ciphertext

q̂j
∏L
i=0∧i 6=j qj χkey Secret key distribution [CKKS17]

P
∏k−1
i=0 pi ωqi Primitive Nth root of unity in Rqi

α (L+ 1)/ dnum β d(`+ 1)/αe
{Q′j}j∈[0,dnum] {

∏(j+1)α−1
i=jα

qi}j∈[0,dnum) [a,b] {n∈Z|a≤n≤b}

C′i {qiα, . . . , qiα+α−1}. ct Ciphertext whose form is given as (a,b)∈(
∏

i
(Z∗qi )N )2

Q′
∏αβ−1
i=`+1 qi Q̂ P ·Q′

SY ,S′Y subsets of Y s.t. SY ∩
S′Y =φ, where Y ∈{B,CL}

Q̂′′′j
∏

qi∈SCL
qi×
∏

pi∈SB∧i6=j
pi

Ai [iα, iα+ α− 1] Q̂′′j
∏

qi∈SCL∧i6=j
qi×
∏

pi∈SB
pi

πn(a) A permutation on [0,N−1]. a 7→ ([5n(2a + 1)]2N− 1)/2. Please refer to D.3 for more info.
dnum RNS-decomposition number [HK20] Please refer to D.7 for more information.
slot Position of a plaintext in a ciphertext that contains a vector of plaintexts
χerr Error distribution used for encryption and key generation [HK20].
k Number of prime moduli used for ModUp/ModDown.
NTT([s(X)]qi ) NTT op. returning s(i)= ([s(ω0

qi
)]qi , ··· , [s(ωN−1

qi
)]qi) ∈(Z∗qi )

N

NTT([s(X)]Ci ) Executes (NTT([s(X)]qi ))qi∈Ci then returns s=[s]Ci=(s(0),··· ,s(i))

iNTT([s]Ci ) Inverse NTT op. returning [s(X)]Ci=([s(X)]qj )j∈[0,i−1]

a
$←− S a is (uniformly) sampled from the distribution (or a set) S.

evk Key-switching key of the form (evk0,...,evkdnum−1),where
evki=(evk(j)

i
)j∈[0,k+L] ∈

∏k−1
n=0

((Z∗pn )N )2 ×
∏L

n=0
((Z∗qn )N )2

D.2 RLWECi(s,m)
CKKS uses RLWE instances for key generation and encryption. For example, to encrypt
a plaintext polynomial m(X) ∈ RQ, CKKS first generates (a(X), b(X)), which is a pair
of elements in RQ where a(X) $←− RQ, b(X) ← a(X) · s(X) + e(X), and e(X) $←− χerr.
After generating the pair, by adding m(X) to b(X) we complete the encryption. Here,
e(X) ∈ RQ, and since the absolute value of a coefficient of e(X) is about several tens
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at maximum with very high probability [CKKS17], the bit lengths of e(X)’s coefficients
are very short. s(X) ∈ RQ is the secret key, and only with this, m(X) + e(X) can be
recovered through (a(X), b(X)) · (−s(X), 1).

We can use CRT to convert an element in RQ` into one in
∏`
j=0Rqj . By applying NTT

further, finally it can be expressed as an element in
∏`
j=0(Z∗qj )

N . That is, the following
relations are preserved through CRT and NTT:

a(X) ∈ RQ` (aqj (X))j∈[0,`] ∈
∏`
j=0Rqj (a(j))j∈[0,`] ∈

∏`
j=0(Z∗qj )

N
CRT

iCRT

NTT

iNTT

The algorithm RLWECi(s,m) in the main body of the text generates an RLWE instance
in NTT domain (a, b) ∈ (

∏`
j=0(Z∗qj )

N )2 with s and m, each of which is a secret key s(X)
and message m(X) in NTT domain, respectively; the output (a, b) can be converted from
and to (a(X), b(X)) in (RQ`)2.

D.3 FrobeniusMap(a,n)
This algorithm performs Frobenius map function in NTT domain for HROTATE. In CKKS,
a vector ~z of complex numbers of dimension M ≤ N/2 can be converted into a plaintext
polynomial m(X) ∈ RQ`

~z ∈ CM τ−1

−−→ (mQ(X)) ∈ Q(X)/(XN + 1) b∆·e−−−→ m(X) ∈ RQ` (2)

where τ : zi 7→ mQ(ζi) and ~z = (zi)i∈[0,N−1], ζi = ζ5i , ζ = exp(−2πi/4M), and
b∆·e : a 7→ b∆ · ae. In this case, ζM = ζ0 = ζ. We define the result obtained by
substituting ζi for X in mQ(X) as the value of the i-th slot.

Now we consider the slot rotation operation. For example, assuming that the rotation
by n slots is performed in mQ(X), the resultant polynomial m′Q(X) ∈ Q[X]/(XN + 1)
should preserve mQ(ζi) = m′Q(ζi+n). That is, the value in the (i + n)-th slot of m′Q(X)
should be the same as the one in the i-th slot of mQ(X). Because ζi+n = ζ5i+n = ζ5n

i , we
need to compute m′Q(X) = mQ(X5−n) from mQ(X).

The above relation holds on ciphertexts. For example, to rotate the hidden message
in a ciphertext (a(X), b(X) = a(X) · s(X) +m(X) + e(X)) ∈ R2

Q`
by n slots, we need to

derive (a(X5−n), b(X5−n) = a(X5−n) · s(X5−n) +m(X5−n) + e(X5−n)) from (a(X), b(X)).
Let us consider a(X) (because the same applies to b(X)). As described in the previous

section, we can convert a(X) to (a(j))j∈[0,`] ∈
∏`
j=0(Z∗qj )

N through CRT and NTT. Let’s

focus on one element a(i) =
(A)︷ ︸︸ ︷

([a(ω0)]qi , · · · , [a(ωN−1)]qi) ∈ (Z∗qi)
N where ωj is ωjqi in the

main body of the text (j ∈ [0, N − 1]). In order to rotate the hidden message by n

slot, we need to calculate

(B)︷ ︸︸ ︷
([a(ω5−n

0 )]qi , · · · , [a(ω5−n
N−1)]qi), which is the result of applying

NTT to [a(X5−n)]qi . Fortunately, Equation (A) above is a permutation of Equation (B)

(i.e., (B)=
(C)︷ ︸︸ ︷

([a(ωπ−1
n (0))]qi , · · · , [a(ωπ−1

n (N−1))]qi)). Here, πn : [0, N − 1] → [0, N − 1] is a
permutation that satisfies ω5n

j = ωπn(j).
Now let’s discuss FrobeniusMap(a,n). a = (a(j))j∈[0,N−1] ∈ (Z∗qj )

N . It is a subroutine
to calculate the rotation result by n-slots for all a(j)s in a by the way described in Equation
(C).
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D.4 ConvSCL∪SB→S′
CL
∪S′

B
([a(X)]SCL∪SB)

This subroutine refers to the fast basis conversion algorithm [CHK+19, BEHZ16a]. Given
the result of modular operations with the prime numbers in SCL ∪ SB for a polynomial
a(X), the purpose of the algorithm is to produce the result of modular operations on the
coefficients of a(X) with the different prime numbers in S ′CL ∪ S

′
B.

More precisely, given [a(X)]SCL∪SB as an element in
∏
qi∈SCL

Rqi ×
∏
pj∈SB Rpj , the

algorithm converts it into an element [a(X)]S′CL∪S′B in
∏
qi∈S′CL

Rqi ×
∏
pj∈S′B

Rpj with
the prime numbers given in S ′CL ∪ S

′
B.

To obtain the result above, one can simply use iCRT for the coefficient of [a(X)]SCL∪SB
and then perform the modular reduction operation on the coefficient using each of the
prime modulus values to represent the target rings in the result. However, if the number of
target rings is large, many long-precision operations should be conducted, which exhibits
huge computation cost. For example, if iCRT is performed to (aqj (X))qj∈C` which is an
element of RC` , the result, A(X) ∈ R, can be calculated with the following formula:

A(X)← (
∑̀
j=0

(((q̂−1
j mod qj) · [a(X)]qj ) mod qj) · (q̂j)) mod Q`, (3)

where q̂j =
∏
i∈[0,`]∧i 6=j qi. The bit length of q̂j is much larger than that of the primes

that are single- or double-word, increasing the computation cost.
The fast basis conversion algorithm directly retrieves [a(X)]S′CL∪S′B by computing the

following equation for each q′i ∈ S ′CL ∪ S
′
B:

(
∑̀
j=0

(((q̂−1
j mod qj) · [a(X)]qj ) mod qj) · (q̂j mod q′i)) mod q′i. (4)

The algorithm uses the fact that only the prime numbers in a specific set are used to
represent polynomial rings used in CKKS. The prime numbers used are all elements of
CL ∪ B. Thus, if we pre-compute [Q̂′′−1

j ]qj , [Q̂′′j ]qj for all qj ∈ CL, and [Q̂′′′−1
j ]pj , [Q̂′′′j ]pj for

all pj ∈ B in advance, we obtain the result with much less computation cost compared
to using iCRT. Line 2-4 of Algorithm 1 of the main body of this paper are the main
computation steps for the above formula. Because the bit lengths of [Q̂′′j ]qi and [Q̂′′′j ]qi are
at most that of a single prime number, they can be performed efficiently.

In Equation 4, ‘ mod pi’ operation is performed without performing the last ‘mod Q`’
in Equation 3. Thus, there is a difference in the result compared to executing modular
reduction by pi to the result of running Equation 4. However, since the calculation result
is returned to RQ` through modDown in the future, the error can be ignored.

D.5 ModUpC′
i→Dβ([a]C′

i
)

This algorithm takes [a]C′
i
∈
∏i·α+α−1
j=i·α (Z∗qj )

N as input and changes its basis to Dβ including
the existing basis C′i using the fast basis conversion: [a]Dβ ∈

∏i·α+α−1
j=0 (Z∗qj )

N×
∏k−1
j=0 (Z∗pj )

N .
The input [a]C′

i
is one of the decomposed part of [a]C` after the RNS decomposition that

will be described later.
Specifically, in the basis conversion, ConvC′

i
→Dβ−C′i([a]C′

i
) is performed and the result

is concatenated with the input [a]C′
i
to finally obtain the result. Since the input of Conv

operates only on a polynomial element of coefficient-wise representation, iNTT is performed
to convert [a]C′

i
into [a(X)]C′

i
∈
∏
qj∈C′i

Rqj before executing Conv.
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D.6 ModDownDβ→C`(b̃(0), b̃(1),· · · ,b̃(k+αβ−1))
Suppose P =

∏
ri∈Dβ−C` ri and Q =

∏
ri∈C` ri. In this paper, the elements of Dβ − C`

are expressed in the form of either pi or qj , However, we use ri instead to simplify the
expression.

If iNTT and iCRT are executed for each coefficient of the input b̃(0), b̃(1),· · · ,b̃(k+αβ−1),
it can be expressed as [b̃(X)]PQ ∈ RPQ. ModDown basically does the following equations
but in RNS domain:

t(X) ← [b̃(X)]PQ − [b̃(X)]PQ mod P
b(X) ← t(X)/P

ModDown performs the above formula on RNS with ([b̃(X)]ri)ri∈Dβ ∈
∏
ri∈Dβ Rri , which

is approximately [b̃(X)]PQ after applying CRT.
For ri ∈ Dβ − C`, ([b̃(X)]ri − [b̃(X)]ri mod P ) mod ri equals to zero. Therefore, the

output becomes ([b(X)]ri)ri∈C` where

[b(X)]ri = [P−1(

(D)︷ ︸︸ ︷
[b̃(X)]PQ mod ri−

(E)︷ ︸︸ ︷
([b̃(X)]PQ mod P ) mod ri)]ri .

(D) is the same as the provided input [b̃(X)]ri . (E) should be calculated using
the fast basis conversion (ConvDβ−C`→C`(·)). The evaluation of (E) is [b′(X)]ri∈C` =
ConvDβ−C`→C`(([b̃(X)]ri)ri∈Dβ−C`). In conclusion, the following formula can be derived
from the above:

(F)︷ ︸︸ ︷
[b(X)]ri = [P−1([b̃(X)]ri − [b′(X)]ri)]ri (5)

ModDown first converts the inputs (b̃(0), b̃(1),· · · ,b̃(k+αβ−1)) to ([b̃(X)]ri)ri∈Dβ using
iNTT and evaluates ([b̃(X)]ri)ri∈Dβ . Finally, it performs subtractions and multiplication
with P−1 to obtain the desired result.

Please be aware that in the description of ModDown in Algorithm 4, NTT is executed
before executing (F). Since Equation (F) still holds although we replace X to ωj (j ∈
[0, N − 1]), it is possible to execute (F) after applying NTT; thus, we obtain b(i) =
([b(ω(j)

qi )])j∈[0,N−1]) for every i ∈ [0, `].

D.7 RNS Decomposition (Dcomp(d = (d(0), · · · , d(`))))

Recall Q` =
∏`
i=0 qi. Suppose there are two elements A and B in Z∗Q` . We can calculate

Z on the equation below.

Z =
∑̀
i=0

((A · q̂−1
i ) mod qi) · (q̂i ·B)) mod Q` (6)

We can see that Z mod qi = A ·B mod qi is satisfied for all qi (i ∈ [0, L]). Therefore,
Z mod Q` = AB mod Q` by CRT.

The above relationship holds true also for A(X), B(X) ∈ RQ` and Z(X) ∈ RQ` , which
are corresponding to A, B, and Z, respectively. Since we are using an RNS-variant of
CKKS, suppose that (A(X) · q̂−1

i ) mod qi) · (q̂i · B(X)) is performed in
∏`
j=0Rqj after

applying CRT on A(X) and B(X). Then, the term q̂i ·B(X) mod qj becomes all zero for
all j where j 6= i. Eventually, the following relationship is satisfied:



148 Over 100x Faster Bootstrapping in Fully Homomorphic Encryption

∑`
i=0((A(X) · q̂−1

i ) mod qi) · (q̂i ·B(X))) mod Q`
CRT−−−→ (((A(X) · q̂−1

i ) mod qi) · (q̂i ·B(X)) mod qi)i∈[0,`], (7)

where CRT−−−→ refers to applying CRT.
This method can be applied to the multiplication on ciphertexts to increase the

maximum level for a fresh ciphertext on the same parameter set compared to where the
method is not applied. We call the above technique as RNS-decomposition.

Instead of performing decomposition on each of individual prime numbers {qi}i∈[0,`],
the above method can be applied per group of primes, after grouping L prime numbers used
in the scheme. Han et al. [HK20] define the parameter α as the number of prime numbers
in a group, which can be calculated by (L + 1)/dnum, where dnum, the decomposition
number, is an arbitrarily chosen parameter; dnum is normally selected from the set of
the divisors of L+ 1. Then, the above Equation 7 changes to work with groups of prime
numbers as below.

∑β−1
i=0 ((A(X) · Q̂−1

i ) mod Qi) · (Q̂i ·B(X))) mod Qαβ

CRT−−−→ (

(G)︷ ︸︸ ︷
((A(X) · Q̂−1

i ) mod qiα+j) ·(Q̂i ·B(X)) mod qiα+j)i∈[0,β−1],j∈[0,α−1], (8)

where α, β ∈ Z, β = d `+1
α e, and Q̂i =

∏α·i+α−1
j=α·i qj (i ∈ [0, β − 1]). We have to set A(X)

mod q`+1 = · · · = A(X) mod qi·α+α−1 = 0 such that Equation 8 also holds true when
i · α < ` < i · α+ α− 1.

Now we provide the description on Dcomp(d = (d(0), · · · , d(`))) in Section 2. It executes
the process (G) in Equation 8 above in NTT domain. We omitted the description on other
parameters such as α, dnum, `, L in the description of Dcomp.
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