
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 4, pp. 27–56. DOI:10.46586/tches.v2021.i4.27-56

Cross-Device Profiled Side-Channel Attack with
Unsupervised Domain Adaptation

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University,
Shanghai, China, {loccs_cp,zcsjtu,luxiangjun,dwgu}@sjtu.edu.cn

Abstract. Deep learning (DL)-based techniques have recently proven to be very
successful when applied to profiled side-channel attacks (SCA). In a real-world profiled
SCA scenario, attackers gain knowledge about the target device by getting access to a
similar device prior to the attack. However, most state-of-the-art literature performs
only proof-of-concept attacks, where the traces intended for profiling and attacking
are acquired consecutively on the same fully-controlled device. This paper reminds
that even a small discrepancy between the profiling and attack traces (regarded as
domain discrepancy) can cause a successful single-device attack to completely fail. To
address the issue of domain discrepancy, we propose a Cross-Device Profiled Attack
(CDPA), which introduces an additional fine-tuning phase after establishing a pre-
trained model. The fine-tuning phase is designed to adjust the pre-trained network,
such that it can learn a hidden representation that is not only discriminative but
also domain-invariant. In order to obtain domain-invariance, we adopt a maximum
mean discrepancy (MMD) loss as a constraint term of the classic cross-entropy loss
function. We show that the MMD loss can be easily calculated and embedded in a
standard convolutional neural network. We evaluate our strategy on both publicly
available datasets and multiple devices (eight Atmel XMEGA 8-bit microcontrollers
and three SAKURA-G evaluation boards). The results demonstrate that CDPA can
improve the performance of the classic DL-based SCA by orders of magnitude, which
significantly eliminates the impact of domain discrepancy caused by different devices.

Keywords: Side-channel Attacks · Profiled Attacks · Deep Learning · Cross-device
Attacks · Domain Adaptation

1 Introduction
1.1 Overview
Side-channel attack (SCA) has drawn a significant amount of attention since Kocher
proposed timing attack [Koc96]. It aims at retrieving the secret values of cryptographic
algorithms from a device or a system through the measurement and analysis of physical
information.

Among all kinds of SCAs, profiled attacks play an essential role. It is considered one
of the most powerful SCAs, at least from the information theory point of view [CRR02].
In such a context, the attacker is able to characterize the device leakage by means of
a full-knowledge (plaintexts/ciphertexts and keys) access to a device that is similar to
the one under attack. The first profiled attack is the template attack (TA) [CRR02],
which builds models with means and covariances. Since then, several works have been
done to make the TA more realistic in practice [RO04, CK13]. As profiled SCAs can be
formulated as classification problems, the application of machine learning techniques (e.g.,

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-04-15 Accepted: 2021-06-15 Published: 2021-08-11

https://doi.org/10.46586/tches.v2021.i4.27-56
mailto:{loccs_cp, zcsjtu, luxiangjun, dwgu}@sjtu.edu.cn
http://creativecommons.org/licenses/by/4.0/

28 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

Support Vector Machine [HGM+11, HZ12, BL12] and Random Forest [LBM14, LPB+15])
is inevitably investigated. More recently, deep learning techniques have been introduced
as more sophisticated tools to perform the profiled attacks [MPP16] and have shown great
success. The SCA community highlights the ability of DL-based SCA since it a) can deal
with the high dimensional input better than classical methods like TA, b) naturally caters
to masking countermeasures [MPP16, PSB+18, ZBHV20, WAGP20], and c) is robust to
misalignment by using specific architectures like Convolutional Neural Networks (CNNs)
[CDP17, KPH+19].

Although having the above mentioned advantages, the performance of DL-based profiled
attacks may be overestimated due to the gap between the experimental setting and reality.
We remark that a major assumption of machine learning is that the training data and
testing data must be sampled from the same domain1. However, in realistic profiled SCA
scenarios, the attack traces must be measured from the target device. Although the target
algorithm can be the same, the embodying hardware platform, software implementation,
and measurement environment can be different. For example, a random process variation
introduced during fabrication, turning on hiding countermeasures on the target device, and
even a different level of noise during measurement can result in two different distributions
of leakage. Unfortunately, most previous works and publicly available datasets do not
consider the domain discrepancy, and simplify the experimental setting using only a
single device for both profiling and attacking (the red route in Figure 1). As a result, a
classification model trained on the profiling device may not generalize well on the target
device under substantial variations in devices, implementations, measurement setups, etc.

Tracestrain TracestestLabels Tracesa�ack

Neural

Network

Cloned

Device

Target

Device

Pre-trained

Model
Labelshypothesis

Key

Experimental
Reality

Pro�ling Phase A�ack Phase

Figure 1: Framework of DL-based profiled attacks.

In this paper, we propose the use of unsupervised domain adaptation as a powerful
tool to enable cross-device profiled attacks. Although the unsupervised domain adaptation
proved to be successful in transferring the knowledge from a source domain to an unlabeled
target domain [LCWJ15, LZWJ16, RMH+19], as far as we are aware, this technique has
not been explored in the SCA community to cope with the domain discrepancy between
the profiling and attack traces. We demonstrate that a limitation of the classic two-phases
profiled attack is it cannot utilize the discrepancy information, which is directly neglected.
Therefore, we introduce an additional fine-tuning phase to enhance the pre-trained model.
To quantify the domain discrepancy, we adopt the maximum mean discrepancy (MMD), a
standard distribution distance metric, as a penalty loss of the classification loss function.
We demonstrate the effectiveness of our strategy in dealing with three types of domain
discrepancies, i.e., the variations in devices, the addition of countermeasure/noise, and
different acquisition settings. The results show that fine-tuning with MMD loss is efficient

1A domain consists of two parts: a feature space and a marginal probability distribution [WKW16]. If
the two domains are different, they have different feature spaces or probability distributions.

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 29

in removing the effect of domain discrepancy in all investigated situations.

1.2 Related Work
The gap between the experimental setting and reality when performing profiled attacks
has already been noticed in the past few years but is still an open topic. The authors
in [RSV+11] performed a study on 20 different devices, showing that the TA may not
work at all when the profiling phase and attack phase are conducted on different devices.
Elaabid et al. [EG12] showed that the variations in measurement setup could also lead to
worse TA results even using the same device. Recently, in [KKKR18], the authors reported
only a 28% success rate on a different keyboard as compared to 100% when profiling
and attacking the same keyboard. In [WdHG+20], the authors conducted profiled power
analysis on the key loading procedure of multiple DST transponders. They concluded that
their cross-device attacks could hardly succeed if only using a single device for profiling.
The authors in [DGD+19, GDD+19, BCH+20] reminded us the portability issue still exists
and should never be neglected in the context of DL-based SCA. Although solutions to make
profiled attacks work on different devices were proposed, e.g., using waveform realignment
and acquisition campaigns normalization [EG12], by choice of compression methods [CK14],
and using multiple devices for profiling [CK14, DGD+19, GDD+19, BCH+20, WdHG+20],
these methods mainly require target-specific preprocessing or are based on a multiple-
profiling-devices assumption.

The SCA community recently noticed that transfer learning might be a feasible way
to transfer the knowledge learned from the profiling device to the target device [GGH20,
TAM20]. However, their focus was on reducing the number of profiling traces. Furthermore,
they still used labeled traces acquired from the target domain, which was not a cross-device
scenario from the perspective of attackers.

1.3 Our Contributions
Herein, we consider how to transfer the pre-trained model to fit the target device with
unsupervised domain adaptation, which, to the best of our knowledge, has not been
explored before in the SCA community. Specifically, we introduce a new approach to
remove the effect of domain discrepancy between profiling and attack traces, which makes
it possible or easier to recover the key of a different device. Our main contributions are as
follows:

1. A cross-device profiled attack (CDPA) strategy. CDPA is the extension of
DL-based profiled attacks, which introduces an additional fine-tuning phase to adjust
the pre-trained model for improving the performance when attacking different devices.
We emphasize that no labeled attack traces are required since the designed fine-tuning
phase focuses on the domain discrepancy instead of the classification task itself.

2. Introducing a new loss function to DL-based SCA. With the MMD loss, our
network is able to focus on the device discrepancy directly without using multiple
profiling devices or task-specific preprocessing. We show that by minimizing the
MMD loss and classification loss simultaneously, the fine-tuned model can learn a
hidden representation that is not only discriminative but also domain-invariant.

3. A benchmark of cross-device SCA with satisfying results. We evaluate the
effect of our strategy on eight Atmel XMEGA 8-bit microcontrollers and three
SAKURA-G evaluation boards. We show that CDPA can significantly improve
the performance of the attacks on different devices, and can even turn an im-
possible attack into a reality. Besides, we also show the potential of CDPA in
removing the effect of adding (simulated) countermeasures/noise and overcoming the

30 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

human error (electromagnetic probe placement). These experiments can be repro-
duced through the following Github repository: https://github.com/CDPA-SCA/
Cross-Device-Profiled-Attack.

1.4 Organization
The rest of this paper is organized as follows. In Section 2, we provide some background
about the DL-based profiled attacks. In Section 3 we propose a cross-device profiled
attack strategy and explore the methodology for removing the effect of domain discrep-
ancy. Section 4 introduces the datasets used in our experiments. Section 5 presents
the experimental results on multiple investigated situations. In Section 6, we provide a
discussion around hyperparameter selection and its effect on our models. Then we give a
brief comparison between CDPA and other promising techniques. Finally, we conclude
this paper in Section 7.

2 Background
2.1 Notations
Throughout this paper we use calligraphic letters as X to denote sets, the corresponding
capital letter X to denote random variables (resp. random vectors X), and the lowercase x
(resp. x) to denote their realizations. The probability space of a set X is denoted by P(X).
If X is discrete, P(X) corresponds to the set of vectors [0, 1]|X | such that the coordinates
sum to 1. Let Pr[X] denote the distribution of X and Pr[X = x] the probability when X
equals x. We use E to denote the expected value and the condition might be subscripted
by a random variable EX , or by a probability distribution E

X∼Pr[X]
to specify under which

probability it is computed.
For profiled attacks, the target sensitive variable is V = f(P,K) where f denotes a

cryptographic primitive (e.g., the SubBytes operation), P denotes a known variable (e.g.,
plaintext or ciphertext) and K denotes a part of the secret key (e.g., a byte) that an
attacker tries to recover. Among all the possible value K may take, k∗ will denote the right
key hypothesis. Side-channel traces will be viewed as discrete realizations of a random
vector x = x1, ..., xD, with D being the number of features. We use y to denote the label of
a trace, which can be performed using the value or hamming weight (HW) of the sensitive
variable V . In particular, we denote Ds = {(xsi , ysi)}

ns
i=1 with ns labeled traces the source

domain measured from the profiling device, and Dt = {(xti)}
nt
i=1 the target domain with nt

unlabeled traces measured from the target device.

2.2 Profiled Side-Channel Attacks
As is shown in Figure 1, a profiled attack generally is composed of two phases: a profiling
phase and an attack phase. During the profiling phase, the attacker first estimates the
distribution:

Pr[X|Y = y], (1)

using the training set Ds = {(xsi , ysi)}
ns
i=1. For example, one of the most popular ways to

estimate the conditional probability is to use a mean vector µy and a covariance matrix Σy,
which is based on the assumption that (X|Y = y) has a multivariate Gaussian distribution.
Then, given a trace xi, the attacker can compute the likelihood for each possible y using
the estimated probability density function. In other words, the attacker eventually gets a
model F (.) : X → P(Y), that can be assimilated to a probability mass function (possibly
after normalization).

https://github.com/CDPA-SCA/Cross-Device-Profiled-Attack
https://github.com/CDPA-SCA/Cross-Device-Profiled-Attack

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 31

In the attack phase, the attacker tries to recover the fixed unknown key k∗ with the
trace set Dt = {(xti)}

nt
i=1 measured from the target device. Specifically, he can calculate

the log-likelihood score over all the attack traces for each k ∈ K:

d[k] =
nt∑
i=1

log(F (xi)[f(pi, k)]). (2)

The attacker then select the subkey kguess leading to the highest log-likelihood score:
kguess = argmaxk∈Kd[k]. The attack is successful if kguess = k∗.

2.3 Neural Networks
Neural networks are nowadays the privileged tool to address the classification problem.
In such a context, a classification task can also be performed in two phases, a training
phase and a testing phase. In the training phase, the neural network aims to construct
a function F (.) : RD → R|Y| that takes input x ∈ RD and outputs vector p ∈ R|Y| of
scores. To construct the function F (.), a loss function is computed that quantifies the
classification error of F (.) over the training batch. Then each trainable parameter is
updated to minimize the loss, which is called backward propagation. After training, the
classification is done by choosing the label y such that y = argmax p[y]. In general, a
neural network consists of three blocks: an input layer, several hidden layers, and an
output layer, which are all composed of multiple neurons. There are many kinds of neural
networks, and the different behavior of them is mainly affected by how these neurons
are connected within (and between) layers. In this paper, we focus on the family of the
CNNs because of their potential in breaking cryptographic implementations protected
with countermeasures [MPP16, CDP17, PSB+18, ZBHV20].

CNNs use three main types of layers: convolutional layers, pooling layers, and fully-
connected layers. Convolutional layers are linear layers that share weights cross space,
whose trainable parameters are several small column vectors called convolutional filters.
Each filter slides over the trace by some amount of units (called stride) and is expected
to extract a kind of characteristic. As inputs go along convolutional layers, higher-level
abstract features are expected to be extracted. To avoid complexity explosion due to the
increase of convolutional layers, the pooling layers are introduced. The most common
pooling functions are the max-pooling and the average-pooling. The max-pooling outputs
the maximum value within a window (called pooling filters), while the average-pooling
outputs the average value within the pooling filters. Finally, fully-connected blocks are
layers where every neuron is connected with all the neurons in the neighborhood layers.

In this paper, we consider simplifying the presentation of CNN by dividing it into two
parts: an encoder part and a classification part. The encoder aims to extract high-level
features from the input to help the decision-making. To achieve this, the main block of
the encoder is a convolutional layer γ followed by an activation function σ. The former
locally extracts information from the input, and the latter provides non-linearity to the
learned classification function. After several (σ ◦ γ) blocks, a pooling layer δ is added to
reduce the complexity of the network. The above block is repeated several times until
obtaining abstract features of reasonable size. Finally, the classification part contains some
fully-connected layers λ that combine the features in different locations to obtain a global
result depends on the entire inputs. To sum up, a common architecture of CNNs can be
characterized by the following formula:

F = s ◦ [λ]n1 ◦ [δ ◦ [σ ◦ γ]n2]n3, (3)

where we use s to denote a softmax layer that is composed of |Y| classes.

32 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

Encoder Classi�er

Pr[Y|X=x]Convolu�onal blocks Fully-connected layers

Label

Figure 2: An example scheme of the CNN architecture.

2.4 DL-based Profiled Attacks
The embedding of deep learning to profiled SCA is easy since it is highly related to the
profiled attacks in the side-channel context. More specifically, the profiling phase of the
profiled SCA corresponds to the training of the neural networks, and the attack phase
can be seen as a series of classification tasks. For each input trace, the pre-trained model
will output a renormalized score vector p in such a way that they define a probability
distribution p ≈ Pr[Y |X = x]. We remark that the computed output does not only provide
the most likely label to solve the classification task, but also the likelihood of all the other
labels. This form of output allows the attacker to rank the key candidates using multiple
traces, as shown in Equation 2. Actually, the whole network Equation 3 could be viewed
as an approximation of the probability density function in Equation 1.

Metrics in Profiled Attacks. To evaluate the performance of the profiled attacks,
a common option is to use Guessing Entropy (GE) or Success Rate (SR). GE is defined
as the average rank of the correct subkey after the attack. More specifically, given nt
attack traces, the attack will output an accumulated score vector d = [d1, d2, ..., d|K|], each
element of which denotes the estimated probability of a candidate subkey. If we sort the
score vector to get a d′ in decreasing order of score, the GE can be defined as the average
position of dk∗ in d′ over multiple experiments. Similarly, the SR is defined as the average
empirical probability that d′[1] = dk∗ .

2.5 Preprocessing techniques
Data preprocessing is very important when building a network model, which can often
determine the training results. In the context of DL-based SCA, the efficiency of prepro-
cessing techniques should never be neglected because they a) make it easier to learn a
classification model that generalizes [MBTL13, CK18], and b) can greatly increase the
convergence rate of the training process [MOM12]. Here we introduce four preprocessing
methods that are most commonly used:

1. Feature Scaling readjusts the value of each dimension of the data (these dimensions
may be independent of each other), so that the final data vector is within the interval
of [a, b]. For each dimension, the general formula for scaling is given as:

x′ = a+ (x−min(x))(b− a)
max(x)−min(x) , (4)

where x ∈ Rns is an original value, and x′ is the scaled value.

2. Feature Standardization aims to make the features of each dimension in the
dataset have zero-mean and unit-variance, which is widely used in many machine

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 33

learning algorithms. The general method is to determine the mean x̄ and standard
deviation σ. Then we subtract the mean from each feature and divide the result by
its standard deviation:

x′ = x− x̄
σ

. (5)

3. Horizontal Scaling is a horizontal version of feature scaling introduced by Wouters
et al.[WAGP20]. Unlike the feature scaling that normalizes the side-channel traces
per sample, it will be applied on a per trace basis.

4. Horizontal Standardization is a horizontal version of feature standardization. It
normalizes each trace using the mean and standard deviation calculated per trace on
all feature dimensions.

Herein, we note that the extreme values in feature scaling (similarly, the mean and
standard deviation in feature standardization) might be improper to transform the attack
traces, especially in the context of cross-device SCA [MBTL13]. Furthermore, the feature
scaling and feature standardization normalize traces on each dimension of features, which
implies that the side-channel traces should be well-aligned. Otherwise, they could confuse
and change the original features of side-channel traces. Therefore, we mainly use the
horizontal version of normalization methods in the rest of this paper.

3 Cross-Device Profiled Attack
Although deep learning techniques seem to be quite suitable for performing the profiled
SCA, the domain discrepancy between the profiling and attack traces is still a bottleneck
restricting the application of the profiled attacks in practice. In fact, an implicit hypothesis
of deep learning techniques is that the training data must be independent and identically
distributed (i.i.d.) with the test data. However, when we adopt deep learning in the
context of profiled SCA, this i.i.d. hypothesis is too strong since attack traces are often
acquired from a different device without control. In such a context, various settings can
easily break the hypothesis and lead to poor performance when we try to attack the target
device. For example,

1. Different Devices. Although the structural changes introduced during the manu-
facturing process are relatively small and the devices produced meet the required
specifications, no two chips are exactly the same. Even for devices of the same type,
the leakage of the side-channel information is inevitably different, which is likely due
to random process variations introduced during fabrication and packaging [MT10].
As a result, attacking a different device may cause a successful single-device-model
attack to completely fail.

2. Different Implementations. Although a common assumption of profiled SCA is
that the profiling device has the same software (or hardware) implementation as
the target device, the attacker cannot take full control of the target device in most
situations. Thus, we consider a more difficult scenario where the owner of the target
device can turn on hiding countermeasures. Consequently, the target device can be
considered a black box with an unknown data distribution, eventually increasing the
difficulty in obtaining the key.

3. Different Settings of Acquisition. Apart from the above two reasons, the domain
discrepancy over multiple measurements occurs because of changes in the measure-
ment setup (e.g., the location of probes, the supply voltage, and the oscilloscope
settings) or environmental changes (e.g., temperature [MMR20]).

34 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

Keeping these in mind, in Section 3.1, we propose a generic attack strategy aiming at
eliminating the effect of domain discrepancy. Section 3.2 elaborates the MMD loss that
enables the networks to learn domain-invariant representations. Finally, in Section 3.3, we
show how to minimize and embed the MMD in a standard CNN model.

3.1 A Cross-Device Profiled Attack Strategy

(a) Traditional profiled attack

(b) CDPA

Train Predict

?
?
?
?
?

L
a
b
e
l

?

PredictFine-tune

T
ra
in

?
?
?
?
?

?

L
a
b
e
l

?
?
?
?
?

?

L
a
b
e
l

?
?
??

: secret key

: original network

: pre-trained network

: �ne-tuned network

: pro�ling trace

: a�ack trace (unlabeled)

Figure 3: Comparison of traditional profiled attack and CDPA.

As described in Section 2.2, a profiled attack is composed of two phases: a profiling
phase and an attack phase. We note that a limitation of the two-phases attack is that it
cannot utilize the information brought by domain discrepancy, which is directly neglected.
Therefore, we propose extending the classic profiled attacks by introducing an additional
fine-tuning phase before the final classification (see Figure 3). Fine-tuning is a widely
adopted technique in transfer learning for deep neural networks where a few epochs of
training are applied to a pre-trained model’s parameters to adapt them to a new task. An
implicit assumption behind fine-tuning is that the source and target task should be related,
which is definitely true in profiled SCA since the classification task should be the same in
the profiling and attack phases. Thus, we could expect that the network parameters are
not far from the optimal values for the target device.

One straightforward approach for fine-tuning is to take a pre-trained network and
then train (part of) its parameters using the data from the target domain. However, in a
realistic SCA scenario, there is no labeled trace measured from the target device. In our
strategy, therefore, the inputs of the fine-tuning phase are the original profiling traces with
known labels, and a limited number of unlabeled traces measured from the target device.
Our network should then capture the discrepancy information of two domains, based on
which we can adjust the trainable parameters to minimize the domain discrepancy and the
classification error simultaneously. Thus, we can expect to obtain a classification model
that is capable of extracting domain-invariant features.

3.2 Methodology for Minimizing the Domain Discrepancy
More formally, the source domain consists of labeled traces Ds = {(xsi , ysi)}

ns
i=1 measured

from the profiling device, and the target has only unlabeled traces Dt = {(xti)}
nt
i=1 measured

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 35

from the target device. The trace x∗i belongs to the topological space X . The corresponding
label is represented by ysi ∈ Y, where |Y| is 9 for the HW and 256 for a byte. Then
our goal is to train a classifier F (.) that can predict the labels {ŷti}

nt
i=1 of the attack

traces, where the data distributions of the source and target domains are different, i.e.,
Pr[Xs, Ys] 6= Pr[Xt, Yt].

We note that minimizing the domain discrepancy can be considered equivalent to the
task of finding a representation that makes the domains appear as similar as possible. In
fact, this problem is called (unsupervised) domain adaptation, which is a branch of transfer
learning and has been well studied in the last few years. Inspired by these state of the arts
[THZ+14, LCWJ15, RMH+19], we introduce the Maximum Mean Discrepancy (MMD)
[GBR+12], a standard distribution distance metric, to measure the similarity between the
source and target domains in a reproducing kernel Hilbert space (RKHS). We hereafter
recall its definition:

Definition 1 (Maximum Mean Discrepancy [GBR+12]). Let Xs and Xt be random
variables defined on a topological space X , with respective Borel probability measures p
and q. Let F be a class of functions f : X → R. The MMD is defined as:

MMD(F , p, q) = sup
f∈F

(
E

Xs∼p
[f(Xs)]− E

Xt∼q
[f(Xt)]

)
. (6)

It has been shown that a unit ball F in a universal RKHSH is rich enough to distinguish
any two distributions, and MMD can be expressed as the distance in H between their
mean embeddings: MMD2(F , p, q) = ‖µp − µq‖2

H [GBR+12]. The MMD can be eventually
calculated using kernel methods. Specifically, for a nonlinear mapping φ(.) associated
with the RKHS Hker and kernel ker(.), where ker(xs,xt) = 〈φ(xs), φ(xt)〉, an empirical
estimate of the MMD can be obtained as:

M̂MD
2
(F ,Xs,Xt) = 1

n2
s

ns∑
i=1

ns∑
j=1

ker(xsi ,xsj) + 1
n2
t

nt∑
i=1

nt∑
j=1

ker(xti,xtj)

− 2
nsnt

ns∑
i=1

nt∑
j=1

ker(xsi ,xtj).
(7)

Having the empirical estimate of MMD, we consider to bound the target error by the
source classification error plus the MMD between the source and target domain:

L = LC(Xs,Ys) + λ · M̂MD
2
(F ,X ls,X lt), (8)

where LC(Xs,Ys) denotes the classification loss2 calculated on the available labeled traces,
M̂MD

2
(F ,X ls,X lt) denotes the distance between the source domain X ls and target domain

X lt , λ > 0 is a penalty parameter. Note that X l∗ is the lth layer hidden representations of
side-channel traces. In this way, we can expect the high-level features in the lth layer are
both discriminative and domain-invariant (see Figure 4). Note that MMD focuses on the
difference in distribution between the learning and attacking datasets, regardless of the
labeling information. Therefore, there are no restrictions on the mask/plaintext/key of the
attack traces and no need to know whether the labels are identical between the profiling
and attack traces. This unsupervised property of MMD exactly fits the realistic profiled
SCA scenarios where the labeling information of the attack traces is never known before
the attack.

2We use cross-entropy loss by default. However, an attacker can also select other loss functions that
are specific to the DL-based SCA, such as the cross-entropy rate introduced in [ZZN+20] and the ranking
loss introduced in [ZBD+20].

36 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

Source domain

Target domain

New domain

Minimize MMD loss

Minimize classifica�on loss

Figure 4: Optimizing an objective that simultaneously minimizes classification error and
MMD loss. We use small circles and triangles to denote different labels (unknown in the
target domain), and use the dotted line to denote the classifier.

We can notice that the behavior of Equation 8 is very similar to what L1 and L2
regularizations do when training a classification model. However, the main purpose of
L1 and L2 regularizations is to prevent overfitting by controlling the complexity of the
model, while MMD regularization aims to minimize the domain discrepancy to make
the domains appear as similar as possible. As mean embedding matching is sensitive to
the kernel choices, instead of using a single kernel function in Equation 7, we consider
the multiple kernel variant of MMD (MK-MMD) proposed in [GSS+12], which leads to
a principled method for optimal kernel selection. Specifically, the characteristic kernel
ker(.) is determined as a convex combination of m radial basis function (RBF) kernels
{kj(x,x′) = e−‖x−x′‖2

/γ}mj=1, by varying bandwidth γ between 2−bm/2cγ0 and 2bm/2cγ0
with a multiplicative step-size of 2. We set the γ0 to be the median distance between
points in the aggregate sample—the median heuristic [GBR+12]. Thus, the kernel is finally
denoted as:

ker(.) =
m∑
j=1

βjkj , (9)

where
∑m
j=1 βj = 1, and βj ≥ 0. In our work, we set βj = 1/m according to [LZWJ16]

and it works well in practice.

3.3 Methodology for Embedding MMD in CNN-based SCA
Then the question arises: how to minimize the new loss function in Equation 8 during the
fine-tuning phase? For one thing, the original network architecture receives only labeled
traces for training, which cannot be directly used to calculate the MMD loss. For another,
we have not decided where to calculate the MMD loss in our network.

First, we have to modify the network architecture such that the MMD loss can be
easily calculated. Herein, we consider extending the pre-trained network as depicted in
Figure 5, which enables us to optimize the classification and MMD loss simultaneously.
Our architecture is composed of a source and a target CNN, with shared trainable weights.
The trainable weights are initialized to be the same as the pre-trained model. For each
fine-tuning iteration, the extended network receives two batches of input traces. One batch
of traces is from the labeled source domain, and the other batch is from the unlabeled
target domain. The two batches of traces are fed to the source CNN and target CNN,
respectively. In particular, the batch of labeled profiling traces is used to compute the
classification loss LC as before, while the MMD loss is computed over two batches of

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 37

hidden representations of both the profiling and attack traces. Then, all the trainable
parameters of the network are updated by minimizing the total loss (see Equation 8) in
the backpropagation algorithm.

Besides, we must determine where to calculate the MMD loss in the network. As
is revealed in [YCBL14], the deep features must transform from generic to task-specific
as one goes up the layers of a deep CNN. In other words, the transferability of the
hidden representation tends to significantly drop in higher layers with increasing domain
discrepancy. Therefore, we decide to minimize the MMD loss on the classifier part (fully-
connected layers). Note that the encoder part (convolutional blocks) of the network is
still trainable during the fine-tuning phase to further adapt to the target domain. We
make the encoder part trainable mainly because we expect the convolutional blocks to
learn shift-invariant features in case the target domain is not well aligned. In [LCWJ15],
authors show that instead of considering a single layer for adaptation, another approach
is to sum up the MMD loss in multiple fully-connected layers. Thus, Equation 8 can be
rewritten as:

L = LC(Xs,Ys) + λ ·
∑
l∈S

M̂MD
2
(F ,X ls,X lt), (10)

where S is the set of target fully-connected layers. During our tests, we observe that this
approach usually leads to better results. Therefore, we adopt Equation 10 as the loss
function of the fine-tuning phase in the rest of this paper.

Figure 5: An architecture for cross-device SCA (fine-tuning phase).

To summarize, an end-to-end cross-device SCA consists of the following three steps:

1. The attacker obtains a set of labeled profiling traces from a profiling device. He
can train a classification model solely with the profiling traces by minimizing the
cross-entropy loss.

2. The attacker then obtains a limited set of unlabeled attack traces from the target
device. The attack traces together with the profiling traces are fed to the fine-tuning
network, with the new loss function defined in Equation 10. He can minimize the
cross-entropy loss with the labeled profiling traces, and minimize the MMD loss with
the additional unlabeled attack traces.

3. The attacker finally uses the fine-tuned model for attack instead of the pre-trained
model.

4 Datasets
Different types of domain discrepancy must be investigated to evaluate the performance of
CDPA. First, we investigate the cross-device scenario with eight Atmel XMEGA 128A1U

38 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

8-bit microcontrollers and three SAKURA-G evaluation boards. Based on these devices,
we build two datasets3 (we refer to the datasets as XMEGA and SAKURA_AES hereafter)
covering the main types of SCA scenarios. Second, we are curious to see if CDPA can deal
with the domain discrepancy caused by the addition of countermeasures/noise. To this end,
we use the ASCAD dataset [PSB+18], by simulating two types of countermeasures/noise:
Gaussian noise and clock jitters. After the simulation, we train the CNN model on the
original dataset but test its performance on the protected/noisy datasets. Finally, we
explore the portability issue when considering the electromagnetic (EM) side-channel
and probe placing by human operators. Therefore, we build another dataset named
XMEGA_EM with the eight XMEGA boards.

• XMEGA provides measurements of an unprotected AES-128 software implementa-
tion written in C language. To build a realistic cross-device dataset, we initialize the
devices with different secret keys (fixed inside the device, see Figure 6a). To perform
the acquisition, we insert a 10 Ω resistor between the microcontroller and GND. Then
measuring the voltage drop across the resistor allows side-channel measurement in
terms of power consumption. During measurement, the microcontroller is clocked at
2MHz and is connected to a Pico 3203D oscilloscope with a sampling rate of 125MS/s.
The power traces are synchronized with a board-generated trigger, and a computer
is used to control the whole measurement setup. For each execution, the computer
generates a random 16-byte plaintext and transmits it to the microcontroller via
UART. Upon receiving the corresponding ciphertext, the software then retrieves the
waveform samples from the oscilloscope and saves them to disks. For each device, we
acquired 25000 power traces for profiling and 5000 traces for the attack. Each trace
consists of 500 points of interest (PoIs), corresponding to the SubBytes operation
of the AES-128 algorithm in the first round. To highlight the difference in leakage
of different devices, we calculate the SNR characterizing the first byte using 20000
traces labeled by the HW of the Sbox output. As clearly shown in Figure 6b, the
leakage differs, and each board has its leakage characteristics. The reason that Device
4 is shifted apparently in time could be explained by the imprecise clock. Expecting
to have 625 points in 10 clock cycles, we only observed 616 points for Device 4. We
use the HW model in the experiments; thus the leakage model is:

Y (k∗) = HW (Sbox[pi ⊕ k∗]), (11)

where pi is a plaintext byte and we chose i = 1. The maximum SNR of this dataset
reaches 2.6231.

key=0x01 key=0x02 key=0x03 key=0x04

key=0x05 key=0x06 key=0x07 key=0x08

(a) SCA boards labeled with different keys

225 250 275 300 325 350 375 400

Posit ion

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
N

R

Device 1

Device 2

Device 3

Device 4

Device 5

Device 6

Device 7

Device 8

(b) SNR comparison, XMEGA

Figure 6: Eight XMEGA boards and their difference from the perspective of SNR.

3The datasets are available at https://github.com/CDPA-SCA/Cross-Device-Profiled-Attack.

https://github.com/CDPA-SCA/Cross-Device-Profiled-Attack

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 39

0 200 400 600 800 1000
Position

0.005

0.010

0.015

0.020

0.025
SN

R
Device 1
Device 2
Device 3

(a) SAKURA_AES

0 100 200 300 400 500 600 700
Position

0.00425

0.00450

0.00475

0.00500

0.00525

0.00550

0.00575

0.00600

SN
R

(b) ASCAD

700 750 800 850 900 950 1000
Position

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

SN
R

Device 1
Device 2
Device 3
Device 4
Device 5
Device 6
Device 7
Device 8

(c) XMEGA_EM

Figure 7: SNRs of several investigated datasets.

• SAKURA_AES is an unprotected AES-128 implemented on Xilinx Spartan-6
FPGA. We acquire the side-channel traces from three SAKURA-G evaluation boards,
which use different secret keys. The AES-128 core is written in a round-based
architecture, which takes 11 clock cycles to perform each encryption. Side-channel
traces are measured by monitoring power waveforms on the core voltage of the
main FPGA. Measurements are sampled using a Teledyne LeCroy Waverunner 610zi
oscilloscope with a sampling rate of 500MS/s. A suitable and commonly used leakage
model is the Hamming Distance (HD) model, which is related to the register writing
in the last round, i.e.,

Y (k∗) =

previous register value︷ ︸︸ ︷
Sbox−1[c2 ⊕ k∗] ⊕

ciphertext byte︷︸︸︷
c6 , (12)

where c2 and c6 correspond to the second and sixth bytes of the ciphertext respectively.
The relation between c2 and c6 is given by the ShiftRows operation of AES. For
each device, the profiling set contains 90000 traces and the test set contains 10000
traces, each trace with 1000 features. The measurements are relatively noisy and the
measured SNR reaches 0.0248 (see Figure 7a).

• ASCAD is introduced in [PSB+18] to provide a benchmark to evaluate deep learning
techniques in the context of SCA. The target platform is an 8-bit AVR microcontroller
(ATmega8515) with an operating frequency of 4MHz, where a masked AES-128 is im-
plemented. All traces are acquired with a sensor attached to an oscilloscope sampling
at 2GS/s. This dataset contains three HDF5 files with different desynchronization
levels. Each file contains 50000 traces for profiling and 10000 traces for the attack.
Each EM trace consists of 700 PoIs corresponding to the masked Sbox for i = 3.
Since the mask is unknown, we use the leakage model as:

Y (k∗) = Sbox[pi ⊕ k∗]. (13)

The SNR for the ASCAD dataset is around 0.8 under the assumption we know the
mask [PSB+18], and it is 0.0061 if the mask is unknown (see Figure 7b).

• XMEGA_EM provides measurements of the previously mentioned XMEGA chips
that run the unprotected software AES-128 encryption. Instead of measuring power
consumption as before, we acquire side-channel traces by measuring the EM radiation
emitted from the chips. This dataset is captured using a Langer LF-U 5 near-field
probe, each time at a similar position but with human error. The side-channel traces
are taken around the target Sbox computation in the first round, with the Teledyne
LeCroy Waverunner 610zi oscilloscope sampling at 250MS/s. The dataset has 35000
traces (for each device) where each trace has 1500 features. We also use the HW of
the Sbox output as the label. Thus the leakage model is the same as Equation 11.
The maximum SNR of this dataset reaches 0.2464 (see Figure 7c).

40 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

We summarize the datasets used in our experiments as shown in Table 1.

Table 1: Statistical information and the partition of all considered datasets.

Dataset # of features Train & Validation Fine-tune Test

XMEGA 500 25000 100 5000
SAKURA_AES 1000 90000 200 10000

ASCAD 700 50000 200 10000
XMEGA_EM 1500 25000 100 10000

5 Experimental Results
5.1 Setttings
All the experiments are implemented in python using the PyTorch library, and are run
on a GPU server equipped with 128GB RAM and a NVIDIA GeForce RTX 3090 with
24GB memory. Since the focus of this paper is cross-device SCA rather than optimizing
the network architectures, we do not dive into the hyperparameter tuning game, but
use similar CNN architectures and hyperparameters based on the state-of-the-art results
[ZBHV20]. Table 2 summarizes the training parameters used in our experiments. The
main difference with previous works is that we introduce a new hyperparameter λ that is
defined in Equation 10. The sensitivity of this hyperparameter is discussed in Section 6.2.
Throughout the experiments, we use NtGE to denote the number of traces needed to reach
a constant GE of 1. To get a good estimation of NtGE , we perform the attack 100 times
with randomly-selected attack traces and N̄tGE is the average value.
Remark 1. We note that the fine-tuning phase requires a set of unlabeled traces that come
from the attack dataset. Therefore, when attacking a different device for the first time, the
amount of traces used for fine-tuning should be counted as the cost of the entire attack.
Fortunately, this cost is affordable since the fine-tuned model can still outperform the
pre-trained model, even taking the fine-tuning cost into consideration. Besides, this cost
is one-time since the fine-tuned model can still be used for attacks even if the secret key
is changed. Note that the number of traces used for fine-tuning can be further reduced,
and there should exist a trade-off between the number of fine-tuning traces and a good
estimate of MMD. In the rest of this paper, we report the performance (N̄tGE) of the
models without counting the traces used for fine-tuning.

Table 2: Choice of hyperparameters.

Datasets Optimizer Learning Rate Activation Function Initialization λ

XMEGA
SAKURA_AES

ASCAD
XMEGA_EM

Adam 0.001 SELU He uniform

0.1
0.05
0.1
0.1

5.2 Study on Different Devices
5.2.1 XMEGA

We first evaluate our methodology on the XMEGA dataset. We use 20000 traces for
training, 5000 traces for validation, 100 traces for fine-tuning, and 5000 traces for attacking.
Since our focus is not to optimize the network architecture, we adopt the 9-classes HW

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 41

model and use a simple CNN structure with three convolutional blocks followed by one
fully-connected layer (see Appendix B Table 4). The hyperparameter λ is set to 0.1, and the
learning rate is set to 0.001. All traces are preprocessed using horizontal standardization.
Finally, we train the model for 100 epochs in the training phase, and another 15 epochs for
fine-tuning. We set the batch size to be the number of traces used for fine-tuning. After
training or fine-tuning, we save the model that achieves the lowest validation loss. For
conciseness, we use Device x-y to denote that we train the model on device x and then try
to recover the key of device y.

1 2 3 4 5 6 7 8

Training Device

1

2

3

4

5

6

7

8

Ta
rg

e
t

D
e

v
ic

e

17 > 500 > 500 > 500 147 257 > 500 > 500

> 500 14 12 > 500 > 500 > 500 > 500 > 500

> 500 16 15 > 500 > 500 > 500 > 500 > 500

> 500 > 500 > 500 12 > 500 > 500 > 500 233

20 > 500 > 500 37 12 25 > 500 22

90 > 500 > 500 30 116 12 > 500 34

> 500 > 500 > 500 > 500 > 500 > 500 12 > 500

88 > 500 > 500 47 50 27 > 500 15

NTGE

0

100

200

300

400

500

(a) N̄T GE , pre-trained model

0 100 200 300 400 500

Num ber of t races

0

50

100

150

200

250

G
u

e
s
s
in

g
 e

n
tr

o
p

y

Device 1-1

Device 1-2

Device 1-3

Device 1-4

Device 1-5

Device 1-6

Device 1-7

Device 1-8

(b) GE, pre-trained model (c) Learning curves (training)

1 2 3 4 5 6 7 8
Training Device

1

2

3

4

5

6

7

8

Ta
rg

et
 D

ev
ice

17 24 30 17 17 15 18 15

27 14 13 85 32 23 17 27

30 17 15 80 27 39 19 36

18 36 38 12 15 15 18 11

15 25 32 29 12 21 22 16

12 19 22 13 14 12 17 22

19 20 18 26 16 17 12 16

14 22 23 17 14 19 17 15

NTGE

0

100

200

300

400

500

(d) N̄T GE , fine-tuned model

0 100 200 300 400 500

Num ber of t races

0

50

100

150

200

250

G
u

e
s
s
in

g
 e

n
tr

o
p

y

Device 1-1

Device 1-2

Device 1-3

Device 1-4

Device 1-5

Device 1-6

Device 1-7

Device 1-8

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

(e) GE, fine-tuned model (f) Learning curves (fine-tune)

Figure 8: Results on XMEGA.

We show the performance of the pre-trained model on different devices in Figure 8a.
It can be observed that the devices show different behaviors when they are attacked.
Specifically, although the value of N̄tGE for the single-device attack given on the diagonal
is very small, it varies widely in the case of cross-device attacks. The matrix in Figure 8a
is not perfectly symmetrical, which implies that the difficulties of task Device x-y and task
Device y-x can be different. Then, we exemplarily present the GE curves of the pre-trained
model (Device 1-y) in Figure 8b. We can observe that the GE for Device 1-2 and Device
1-3 is almost random using 500 attack traces, yet Device 1-4 performs slightly better
although the SNR between Device 1 and Device 4 is shifted also in time (see Figure 6b).
It is not surprising since SNR can only reveal the PoIs and the signal quality, which cannot
be optimal to characterize the real differences between devices. We can also infer from
the results that, due to the shift-invariant nature of CNN, misalignment may not be the
main problem in the cross-device scenarios. Since the bad performance of cross-device
attacks may also be explained by overfitting4 [BCH+20], we draw the learning curves of
the training phase (task Device 1-4) in Figure 8c. We can see that the validation loss is
highly consistent with the training loss when traces are from the same profiling device. In

4Here, overfitting means the deep learning model adapts to the training set too well but loses the ability
to generalize to the validation and test datasets. A simple way to identify overfitting during the training
phase is to compare the loss on the training and validation sets: if the training set loss is much lower than
the validation set loss, then the model overfitted.

42 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

other words, overfitting is not observed when we use the same device to train and attack.
However, the test loss increases apparently when we attack a different device (Device 4).
From the above results, we could infer that the main reason for the poor performance
is that the pre-trained model has learned device-specific features that cannot be safely
generalized to other devices.

By applying the CDPA, the impact of device discrepancy is dramatically reduced. All
the fine-tuned models could stably recover the key of a different device within 100 attack
traces (see Figure 8d and Figure 8e). To further understand how the model learns during
fine-tuning, we show the evolution of the test loss (cross-entropy loss on the target device)
and the validation MMD loss in Figure 8f. We can observe that minimizing the MMD
loss can effectively reduce the test loss on the target device, which confirms the necessity
and effectiveness of our methodology. Besides, the test loss seems to converge faster (in
30 iterations) than the MMD loss. In other words, fine-tuning for a small number of
iterations could be sufficient for getting a well-performed cross-device model, while further
minimizing the MMD loss may not significantly improve the results.

Impact of Preprocessing. To further understand how preprocessing methods affect the
performance of the pre-trained and fine-tuned models, we present more results on the
XMEGA dataset by varying the preprocessing techniques. As depicted in Figure 9, the
portability issue is very obvious when no preprocessing is applied. Although preprocessing
improves the pre-trained models in several cases, the effect of device discrepancy still cannot
be eradicated. As we expected, CDPA improves the cross-device attacks significantly in
all investigated situations.

0 20 40 60 80 100
Number of traces

0

50

100

150

200

250

Gu
es

sin
g

en
tro

py

Device 1-1
Device 1-2
Device 1-3
Device 1-4
Device 1-5
Device 1-6
Device 1-7
Device 1-8

0 20 40 60 80 100
Number of traces

0

50

100

150

200

250

Gu
es

sin
g

en
tro

py

Device 1-1
Device 1-2
Device 1-3
Device 1-4
Device 1-5
Device 1-6
Device 1-7
Device 1-8

0 20 40 60 80 100
Number of traces

0

50

100

150

200

250

Gu
es

sin
g

en
tro

py

Device 1-1
Device 1-2
Device 1-3
Device 1-4
Device 1-5
Device 1-6
Device 1-7
Device 1-8

0 20 40 60 80 100
Number of traces

0

50

100

150

200

250

Gu
es

sin
g

en
tro

py

Device 1-1
Device 1-2
Device 1-3
Device 1-4
Device 1-5
Device 1-6
Device 1-7
Device 1-8

(a) No preprocessing

0 20 40 60 80 100
Number of traces

0

50

100

150

200

250

Gu
es

sin
g

en
tro

py

Device 1-1
Device 1-2
Device 1-3
Device 1-4
Device 1-5
Device 1-6
Device 1-7
Device 1-8

(b) Horizontal scaling

0 20 40 60 80 100
Number of traces

0

50

100

150

200

250

Gu
es

sin
g

en
tro

py

Device 1-1
Device 1-2
Device 1-3
Device 1-4
Device 1-5
Device 1-6
Device 1-7
Device 1-8

(c) Horizontal standardization

Figure 9: Influence of preprocessing on (top) pre-trained models and (bottom) fine-tuned
models.

Results with Different Numbers of Profiling Traces. Increasing the amount of training
data is efficient to prevent overfitting and can help us to obtain a more precise model
[PW17]. Therefore, we investigate whether using more profiling traces can improve the
performance of the pre-trained models in cross-device attack scenarios. We test with
different numbers of profiling traces, and show the attack results of the pre-trained models

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 43

in Figure 10. Interestingly, we can observe that increasing the number of training traces
does not lead to better generalization when targeting different devices. Similar results
were reported in [BCH+20]. This is reasonable since the appended profiling traces are
acquired from the same device, which cannot guarantee an improved performance when
we test on a target device with a different distribution.

0 20 40 60 80 100
Number of traces

0

50

100

150

200

250

Gu
es

sin
g

en
tro

py

Device 1-1
Device 1-2
Device 1-3
Device 1-4
Device 1-5
Device 1-6
Device 1-7
Device 1-8

(a) 5000 profiling traces

0 20 40 60 80 100
Number of traces

0

50

100

150

200

250

Gu
es

sin
g

en
tro

py

Device 1-1
Device 1-2
Device 1-3
Device 1-4
Device 1-5
Device 1-6
Device 1-7
Device 1-8

(b) 10000 profiling traces

0 20 40 60 80 100
Number of traces

0

50

100

150

200

250

Gu
es

sin
g

en
tro

py

Device 1-1
Device 1-2
Device 1-3
Device 1-4
Device 1-5
Device 1-6
Device 1-7
Device 1-8

(c) 20000 profiling traces

Figure 10: Influence of the number of profiling traces on pre-trained models.

5.2.2 SAKURA_AES

Unlike the above described dataset, the SAKURA_AES dataset provides measurements
of an unprotected hardware implementation of AES-128 on FPGA. We use 85000 traces
for training, 5000 traces for validation, 200 traces for fine-tuning, and 10000 traces for
attacking. As before, the learning rate is set to 0.001, and traces are preprocessed using
horizontal standardization. The profiling phase runs for 200 epochs with a batch size of
200. The fine-tuning phase runs for only 15 epochs with the λ set to 0.05. The MMD loss
is computed on the flattened layer and the fully-connected layer.

(a) N̄T GE , pre-trained model (b) GE, pre-trained model (c) Learning curves (training)

(d) N̄T GE , fine-tuned model (e) GE, fine-tuned model (f) Learning curves (fine-tune)

Figure 11: Results on SAKURA_AES.

44 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

Since the SNR of this dataset is relatively small, our pre-trained models require
around 1000 traces to successfully recover the key of the same device (see Figure 11a and
Figure 11b). When we apply the pre-trained models to other devices, the required number
of attack traces is likely to double. As before, no obvious overfitting is detected on the same
device, whereas the test loss (task Device 1-2) increases rapidly as the model learns on
the profiling traces (see Figure 11c). The results after fine-tuning are shown in Figure 11d
and Figure 11e. We can observe that all the cross-device experiments get improved after
applying CDPA. Most fine-tuned models achieve almost similar performance as using the
same device for attacking. Consequently, CDPA is also suitable and efficient for deep
learning-based SCA on hardware implementations.

Remark 2. For the experiments on SAKURA_AES and ASCAD, we adopt batch normal-
ization [IS15] after each convolutional block to make the optimization easier and faster
[STIM18]. In general, batch normalization contains two non-trainable weights that get
updated during the training phase. These are the variables tracking the mean and variance
of the inputs. Whereas, during the fine-tuning phase, the batch normalization layers should
be kept frozen (in inference mode). Otherwise, the updates applied to the non-trainable
weights will suddenly destroy what the model has learned [AAB+15]. In our experiments,
we freeze the batch normalizations using the model.eval() method provided by the PyTorch
library.

5.3 Extended Applications to Other Portability Issues
As mentioned in Section 3, the portability issue exists not only in different devices. The
variance in implementations or settings of acquisition can also lead to bad attacking
performance. To this end, we investigate two other scenarios that are very common
in practice. Our first study simulates different implementations by adding artificial
countermeasures/noise to the original dataset. After the simulation, we train the CNN
model on the original dataset (source domain) and evaluate its performance on the deformed
datasets (target domain). These experiments simulate a complex attack scenario that the
target device is treated as a black box that can turn on side-channel countermeasures.
Finally, we explore the portability issue in the EM analysis, where the measurements are
very sensitive to probe placement (position, distance, and orientation).

5.3.1 Addition of Countermeasures/Noise

Herein, we consider two types of countermeasures/noise including Gaussian noise and clock
jitters. All the experiments are performed based on the ASCAD dataset.

• Gaussian Noise is the most common type of noise existing in side-channel mea-
surements. The source of Gaussian noise can come from data buses, transistors,
oscilloscopes, or even the work environment. To demonstrate the influence of the
addition of noise, we build the target domain by adding a normal-distributed random
value r ∼ N (0, var) to each point of the trace. As a result, Gaussian noise distorted
the shape of the original traces in the amplitude domain (see Figure 12a (top)).

• Clock Jitters is a classical hardware countermeasure implemented by introducing
the instability in the clock [CDP17]. Herein, we simulate the clock jitters following
the work of [WP20] by randomly adding and removing points with a pre-defined
range. Specifically, when scanning each point in the trace, n points will be added to
the trace if n is larger than zero. Otherwise, the following n points will be removed,
where n ∈ [−r, r]. An example of the zoom-in viewed trace after deformation is given
in Figure 12b (top).

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 45

(a) Gaussian noise (b) Clock jitters

Figure 12: Example traces (top) and attack results (bottom).

We use a similar network architecture as the one used in [ZBHV20] for the ASCAD
dataset. Besides, we use 45000 traces for training, 5000 traces for validation, 200 traces for
fine-tuning, and 10000 traces for attacking. The profiling phase runs for 100 epochs on the
original dataset, while the fine-tuning phase runs for 15 epochs, with a batch size of 200.
The attacking results are summarized in Figure 12 (bottom). As we can see, although the
pre-trained model performs well (N̄tGE reaches 345) in the original ASCAD dataset, more
than 5000 traces are required to reach a GE of 0 when the variance of Gaussian noise is
set to 8. After applying the CDPA, the attack performance on the noisy target domain is
significantly improved. We can infer from the results that CNN may not generalize well if
only clean traces are fed to the network. However, fine-tuning using a small number of
(unlabeled) noisy traces can unleash the power of CNNs and drive the network to learn
domain-invariant features. The pre-trained model does not work after adding the clock
jitters, which is not surprising as too much randomness was introduced. Although we still
cannot recover the key within 5000 traces after fine-tuning, the GE curves decrease with
more attack traces.

5.3.2 Portability of Electromagnetic Probe Placement

Apart from power analysis, EM-based SCA is becoming increasingly popular due to its
non-invasive and spatially flexible nature. Note that EM measurements are very sensitive
to probe placement. However, when we consider the realistic profiled attack scenario, the
probe must be moved from the profiling device to the target device. Hence, there is always
a slight difference in the probe placement caused by human error due to the position
distance and orientation.

To investigate the impact of human error, we perform more cross-device experiments
on the XMEGA_EM dataset. This dataset is captured from eight different devices with
different keys, each time at a similar probe position but with human error. We use the
same CNN architecture and training parameters as the XMEGA dataset. The performance

46 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

1 2 3 4 5 6 7 8

Training Device

1

2

3

4

5

6

7

8

Ta
rg

e
t

D
e

v
ic

e
29 > 500 > 500 164 207 39 325 82

> 500 40 72 > 500 > 500 > 500 94 211

> 500 44 38 > 500 > 500 > 500 209 > 500

367 > 500 > 500 42 > 500 93 > 500 177

121 > 500 > 500 115 27 231 64 > 500

50 > 500 > 500 221 281 41 244 94

> 500 > 500 > 500 209 > 500 101 29 98

> 500 > 500 > 500 396 > 500 123 > 500 26

NTGE

0

100

200

300

400

500

(a) N̄T GE , pre-trained model

0 100 200 300 400 500

Num ber of t races

0

50

100

150

200

250

G
u

e
s
s
in

g
 e

n
tr

o
p

y

Device 1-1

Device 1-2

Device 1-3

Device 1-4

Device 1-5

Device 1-6

Device 1-7

Device 1-8

(b) GE, pre-trained model (c) Learning curves (training)

1 2 3 4 5 6 7 8

Training Device

1

2

3

4

5

6

7

8

Ta
rg

e
t

D
e

v
ic

e

29 50 51 26 34 33 42 44

61 40 42 54 44 48 39 44

37 35 38 41 30 39 28 48

77 53 66 42 58 61 48 69

39 46 54 40 27 60 45 72

36 42 40 29 42 41 32 57

30 44 45 40 42 35 29 43

63 40 39 49 41 47 55 26

NTGE

0

100

200

300

400

500

(d) N̄T GE , fine-tuned model

0 100 200 300 400 500

Num ber of t races

0

50

100

150

200

250
G

u
e

s
s
in

g
 e

n
tr

o
p

y

Device 1-1

Device 1-2

Device 1-3

Device 1-4

Device 1-5

Device 1-6

Device 1-7

Device 1-8

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

(e) GE, fine-tuned model (f) Learning curves (fine-tune)

Figure 13: Results on XMEGA_EM.

of the pre-trained model is depicted in Figure 13a and Figure 13b. We can observe that the
result matrix is very similar to the attack result of the XMEGA dataset, but not exactly
the same. This difference is inevitable since the EM traces have different features and
signal quality from the power traces. As we expected, the fine-tuned models outperform
the pre-trained models significantly, which can stably recover the correct key within 80
traces (see Figure 13d and Figure 13e). In Figure 13f, we see that the evolution of MMD
loss is again highly consistent with the test loss (task Device 1-2), which confirms our
previous results.

5.4 Computation Cost

We present the computation cost of training and fine-tuning in Table 3. The learning time
of each epoch is mainly determined by the size of training sets, the batch size, and the
length of raw traces. We can observe that the epoch time for fine-tuning is approximately
twice that of training. This is reasonable since more traces are processed and an additional
MMD loss is calculated in the fine-tuning phase. In addition, the time cost is still affordable.
For example, if we run the fine-tuning phase for 15 epochs, this process can be completed
within two minutes for all considered datasets.

Table 3: Summary of the computation cost.

Dataset Batch size Epoch time (Training) Epoch time (Fine-tuning)

XMEGA 100 0.71 s 1.24 s
SAKURA_AES 200 2.85 s 6.04 s

ASCAD 200 1.47 s 3.52 s
XMEGA_EM 100 0.76 s 1.37 s

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 47

6 Discussion
6.1 Effect of Adaptation Layers
In order to further understand how the location of the adaptation layers affects the output,
we conduct a series of experiments on the XMEGA dataset (task Device1-2) with different
adaptation layers. We use a CNN network whose classifier part has three fully-connected
layers (fc1–fc3). We first fine-tune the network using only a single layer, and then compare
it with the result of using all three layers. As before, our network is fine-tuned for 15
epochs. The results are shown in Figure 14.

0 100 200 300 400 500

Num ber of t races

0

20

40

60

80

100

120

140

160

180

G
u

e
s
s
in

g
 e

n
tr

o
p

y

w/o fine-tune (Baseline)

fc1

fc2

fc3

fc1+ fc2+ fc3

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

(a) Guessing Entropy

fc1+fc2+fc3 fc1 fc2 fc3
Layers for adaptation

0

50

100

150

200

250

300

350

400

N
t G

E

(b) Variation of N̄tGE

Figure 14: Attacking results of different adaptation layers (average over 20 fine-tuned
models).

An obvious observation is that the CDPA still works even a single layer is used for
minimizing the MMD loss. Another observation is that the deeper the layer, the more
difficult it seems to learn domain-invariant features. This is reasonable since the features
obtained in higher layers must depend greatly on the specific dataset, which are not safely
transferable to novel domains. Still, using all the layers of the classifier part is a good
trade-off, which usually brings better results than using a single adaptation layer.

6.2 Effect of the Penalty Parameter λ

The hyperparameter λ in Equation 10 determines how strongly we would like to confuse
the source and target domains. Intuitively, setting the λ too small can cause the MMD
regularizer to have no effect on the learned representation, yet setting the λ too large will
regularize too heavily and may result in a degenerate representation in which all features
are too close together. To further understand the sensitivity of parameter λ, we give an
illustration of the variation of the GE as λ ∈ {0, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100} on
XMEGA (task Device1-4) in Figure 15. The network is fine-tuned for 15 epochs with a
batch size of 200.

We can observe that setting the λ too small (λ = 1e-4) or too large (λ = 100) may
not improve the attack, which is consistent with our analysis. In other cases of λs, all
the fine-tuned models improve the results significantly. Although there is usually a wide
range of λ where the pre-trained models get improved, a good empirical choice is to start
with a relatively small value (e.g., 1e-2), especially when the SNR of the dataset is small.
A smaller value of λ means that the optimizer should put more effort into the tough
classification task. If it is observed that the reduction of MMD loss is not significant or
too slow, we can gradually increase the value of λ to speed up the fine-tuning process.
In practice, we can automatically select the parameter λ on a validation set (consists of
source-labeled traces and target-unlabeled traces) by jointly assessing the cross-entropy

48 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

0 10 20 30 40 50
Number of traces

0

50

100

150

200

250
Gu

es
sin

g
en

tro
py

λ = 0 (Baseline)
λ = 1e-4
λ = 1e-3
λ = 1e-2
λ = 1e-1
λ = 1
λ = 10
λ = 100

(a) Guessing Entropy

1000

2000

1e-4 1e-3 1e-2 1e-1 1 10
λ

0

20

40

60

N
t G

E

(b) Variation of N̄tGE

Figure 15: Attacking results of different λ (average over 20 fine-tuned models).

loss and MMD loss. For example, a small classification loss and a large MMD loss may
indicate that you are using a relatively small λ. On the contrary, a large classification loss
and a very small MMD loss may result from a large value of λ.

6.3 Effect of the Number of Traces for Fine-tuning
Although fine-tuning with MMD loss helps us obtain a robust model, we need a set of attack
traces to estimate the MMD. Despite the fact acquiring multiple unlabeled traces from the
target device is not a strong assumption, it is still meaningful to figure out how many traces
are appropriate in practice when we fine-tune the network. Therefore, we conduct a series
of experiments with the number of traces varying in {100, 300, 500, 700, 900} with a batch
size of 100. Finally, we fine-tune the networks for 15 epochs to ensure that the model can
learn the domain discrepancy well. The results on XMEGA (Device 1-4), SAKURA_AES
(Device 1-2), and ASCAD (with Gaussian noise) are depicted in Figure 16. It can be
observed that 100 traces (as small as the batch size) are sufficient for the fine-tuning phase.
We remark that MMD focuses on the domain discrepancy of the profiling and attack traces
instead of the classification task itself. So, the results are not surprising since 100 unlabeled
traces can provide sufficient information that is distinguishable from the source domain.
From the results on SAKURA_AES and ASCAD, we can conclude that using more traces
could lead to a more stable and robust fine-tuned model. This is reasonable since more
traces help us to obtain a more precise estimate of MMD. The result on XMEGA seems
to be less affected since an unprotected implementation is definitely easier to learn and
transfer.

100 300 500 700 900
Number of attack traces used for fine-tuning

0

5

10

15

20

25

30

35

N
t G

E

(a) XMEGA

100 300 500 700 900
Number of attack traces used for fine-tuning

0

500

1000

1500

2000

2500

3000

3500

N
t G

E

(b) SAKURA_AES

100 300 500 700 900
Number of attack traces used for fine-tuning

0

250

500

750

1000

1250

1500

1750

2000

N
t G

E

(c) ASCAD

Figure 16: Attacking results of different number of fine-tuning traces (average over 20
fine-tuned models).

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 49

6.4 Comparison with Other Promising Techniques
Data Augmentation has been proven successful in enhancing the robustness of CNN models
[CDP17, KPH+19]. For example, artificially generating new profiling traces by deforming
(shifting) those previously acquired can help the network to learn shift-invariant features.
However, data augmentation focuses on enlarging the dataset without considering the
real difference between the profiling and attack traces. So, it is unclear what kind of
augmentation is optimal to introduce, from the perspective of attackers.

The recently introduced denoising convolutional autoencoder (CAE) is promising to
remove noise (e.g., Gaussian noise and desynchronization) of raw traces [WP20]. By
considering the variance between different devices as noise, the CAE may be hopeful
to remove it. However, the training of CAE requires noisy-clean trace pairs, which is
challenging to obtain in realistic settings. Similar to data augmentation, the simulated
noise could not be optimal to characterize the differences between different devices.

Since the bad performance of the pre-trained model could also be explained by overfit-
ting, several intuitive techniques that prevent overfitting may also be helpful to improve
the performance. These techniques typically include restricting model complexity and early
stopping. We, therefore, test two very simple CNN architectures (details in Figure 17)
that differ only in the number of fully-connected layers. We investigate whether a less
complex architecture could lead to better generalization. As shown in Figure 17, the test
loss (on the attack device) increases during training for both CNN architectures. In other
words, using a less complex architecture cannot improve the performance of the pre-trained
model significantly. Besides, in the cross-device scenario, it is difficult to estimate a proper
network setting and to identify overfitting without observing the labeled traces coming
from the target device. As we have shown in the learning curves, the validation loss and
the test loss may behave in the opposite way. Therefore, observing the validation loss may
be insufficient to identify this kind of overfitting, which means early stopping may not be
suitable for cross-device scenarios.

0 20 40 60 80 100
Epoch

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

 o
n

pr
of

ilin
g

de
vi

ce

20

40

60

80

100

120

140

160

Lo
ss

 o
n

at
ta

ck
 d

ev
ice

Training loss on profiling device
Validation loss on profiling device
Loss on attack device

(a) CNN with 1 conv. block (8 filters, ks=50)
and 1 fully-connected layer (20 neurons).

0 20 40 60 80 100
Epoch

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

 o
n

pr
of

ilin
g

de
vi

ce

20

40

60

80

100

120

140

160

Lo
ss

 o
n

at
ta

ck
 d

ev
ice

Training loss on profiling device
Validation loss on profiling device
Loss on attack device

(b) CNN with 1 conv. block (8 filters, ks=50)
and 3 fully-connected layers (20 neurons).

Figure 17: Learning curves for two different groups of CNN hyperparameters on the same
dataset (XMEGA).

Note that we are not the first to utilize additional unlabeled traces to build a stronger
model. The authors in [PHJ+18] investigate the profiled attack in the semi-supervised
learning scenario, where unlabeled traces are classified and then added to the training set to
enhance the pre-trained model. They show that semi-supervised learning significantly helps
TA and its pooled version. However, semi-supervised learning relies on strong assumptions
(e.g., smoothness assumption, cluster assumption, and manifold assumption [vEH20]). If
we consider a target domain with a different distribution, the unlabeled traces is very likely

50 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

to be assigned a wrong guessed label. Consequently, these traces with incorrect labels may
not yield an improvement but destroy what the model has learned.

Apart from the above DL techniques, some special tricks, like zero-mean unit-variance
normalization [MBTL13] and multi-devices profiling [CK14, DGD+19, GDD+19, BCH+20,
WdHG+20] are also helpful to attack a different device. Zero-mean unit-variance normal-
ization is a kind of preprocessing technique but requires the traces to be well-aligned.
Multi-devices profiling is currently one of the most popular methods to overcome the
portability issue. It assumes that a powerful attacker possesses multiple profiling devices
and can capture as many side-channel traces as necessary during the profiling stage. The
end goal is to use the model generated during the profiling phase (with multiple devices)
to recover the secret key from an unseen device. This method is effective since the network
can see more training data with different distributions. Therefore, the more profiling
devices used, the more robust the model becomes. However, it still cannot promise that
one profiling device is very close to the target one. Besides, in realistic settings, possessing
multiple profiling devices cannot always be satisfied. To relaxes the assumption of possess-
ing multiple devices, the proposed CDPA takes advantage of the domain information of
the profiling and attack traces. Instead of introducing more labeled traces to the profiling
set, CDPA focuses directly on the variance between the profiling and target devices by
adopting the MMD loss. The cost of CDPA is a few additional epochs of fine-tuning with
a small number of unlabeled attack traces, which is affordable compared with the cost of
using multiple profiling devices.

7 Conclusion and Future Work
This paper focuses on addressing the open question of portability in profiled SCA, using
transfer learning techniques (specifically, unsupervised domain adaptation). We consider
the issue of portability as domain discrepancy, and we propose a new attack strategy called
CDPA to eliminate it. CDPA introduces a fine-tuning phase before the traditional attack
phase. The kernel idea is to adjust the pre-trained model such that it eventually learns a
representation that is not only discriminative but also domain-invariant. To achieve this,
we adopt the MMD loss as a penalty of the cross-entropy loss function, which can be easily
calculated and embedded in a common CNN architecture.

We evaluate the performance of our strategy on eight XMEGA chips and three SAKURA-
G boards with AES-128 implementations. Consequently, CDPA can improve the attack
performance by > 20× and could even turn an impossible attack into a reality. Besides
considering different devices, we also explore the ability of the CDPA to remove the impact
of adding countermeasures/noise. Our results on the ASCAD dataset show that CNN may
not generalize well if only clean traces are fed. However, fine-tuning using a limited number
of (unlabeled) desynchronized/noisy traces could unleash the power of CNNs and drive
the network to learn domain-invariant features. Finally, we show how portability issues
also arise when considering the EM side-channel and probe placing by human operators.
Subsequently, we demonstrate how CDPA helps the performance in such a scenario.

For future work, it would be interesting to see how CDPA performs in a cross-family
attack scenario, which is a more challenging task. Another direction is to explore other
transfer learning techniques that are more appropriate in the context of SCA. We believe
that this work will pave the way for the realistic study on cross-device profiled SCA.

Acknowledgements
This work is supported by the National Natural Science Foundation of China (No.62072307).
We thank the anonymous reviewers and the shepherd for their valuable suggestions on

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 51

how to improve this paper.

References
[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[BCH+20] Shivam Bhasin, Anupam Chattopadhyay, Annelie Heuser, Dirmanto Jap,
Stjepan Picek, and Ritu Ranjan Shrivastwa. Mind the portability: A warriors
guide through realistic profiled side-channel analysis. In 27th Annual Net-
work and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society, 2020.

[BL12] Timo Bartkewitz and Kerstin Lemke-Rust. Efficient template attacks based
on probabilistic multi-class support vector machines. In Stefan Mangard,
editor, Smart Card Research and Advanced Applications - 11th International
Conference, CARDIS 2012, Graz, Austria, November 28-30, 2012, Revised
Selected Papers, volume 7771 of Lecture Notes in Computer Science, pages
263–276. Springer, 2012.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures -
profiling attacks without pre-processing. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,
Proceedings, volume 10529 of Lecture Notes in Computer Science, pages 45–68.
Springer, 2017.

[CK13] Omar Choudary and Markus G. Kuhn. Efficient template attacks. In
Aurélien Francillon and Pankaj Rohatgi, editors, Smart Card Research and
Advanced Applications - 12th International Conference, CARDIS 2013, Berlin,
Germany, November 27-29, 2013. Revised Selected Papers, volume 8419 of
Lecture Notes in Computer Science, pages 253–270. Springer, 2013.

[CK14] Omar Choudary and Markus G. Kuhn. Template attacks on different devices.
In Emmanuel Prouff, editor, Constructive Side-Channel Analysis and Secure
Design - 5th International Workshop, COSADE 2014, Paris, France, April 13-
15, 2014. Revised Selected Papers, volume 8622 of Lecture Notes in Computer
Science, pages 179–198. Springer, 2014.

[CK18] Marios O. Choudary and Markus G. Kuhn. Efficient, portable template
attacks. IEEE Trans. Inf. Forensics Secur., 13(2):490–501, 2018.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2002, 4th International
Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised Papers,

52 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

volume 2523 of Lecture Notes in Computer Science, pages 13–28. Springer,
2002.

[DGD+19] Debayan Das, Anupam Golder, Josef Danial, Santosh Ghosh, Arijit Ray-
chowdhury, and Shreyas Sen. X-deepsca: Cross-device deep learning side
channel attack. In Proceedings of the 56th Annual Design Automation Con-
ference 2019, DAC 2019, Las Vegas, NV, USA, June 02-06, 2019, page 134.
ACM, 2019.

[EG12] M. Abdelaziz Elaabid and Sylvain Guilley. Portability of templates. J.
Cryptogr. Eng., 2(1):63–74, 2012.

[GBR+12] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf,
and Alexander J. Smola. A kernel two-sample test. J. Mach. Learn. Res.,
13:723–773, 2012.

[GDD+19] Anupam Golder, Debayan Das, Josef Danial, Santosh Ghosh, Shreyas Sen,
and Arijit Raychowdhury. Practical approaches toward deep-learning-based
cross-device power side-channel attack. IEEE Trans. Very Large Scale Integr.
Syst., 27(12):2720–2733, 2019.

[GGH20] Christophe Genevey-Metat, Benoît Gérard, and Annelie Heuser. On what to
learn: Train or adapt a deeply learned profile? IACR Cryptol. ePrint Arch.,
2020:952, 2020.

[GSS+12] Arthur Gretton, Bharath K. Sriperumbudur, Dino Sejdinovic, Heiko Strath-
mann, Sivaraman Balakrishnan, Massimiliano Pontil, and Kenji Fukumizu.
Optimal kernel choice for large-scale two-sample tests. In Peter L. Bartlett,
Fernando C. N. Pereira, Christopher J. C. Burges, Léon Bottou, and Kilian Q.
Weinberger, editors, Advances in Neural Information Processing Systems 25:
26th Annual Conference on Neural Information Processing Systems 2012.
Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States, pages 1214–1222, 2012.

[HGM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
J. Cryptogr. Eng., 1(4):293–302, 2011.

[HZ12] Annelie Heuser and Michael Zohner. Intelligent machine homicide - breaking
cryptographic devices using support vector machines. In Werner Schindler and
Sorin A. Huss, editors, Constructive Side-Channel Analysis and Secure Design
- Third International Workshop, COSADE 2012, Darmstadt, Germany, May
3-4, 2012. Proceedings, volume 7275 of Lecture Notes in Computer Science,
pages 249–264. Springer, 2012.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Francis R. Bach
and David M. Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37
of JMLR Workshop and Conference Proceedings, pages 448–456. JMLR.org,
2015.

[KKKR18] K Kim, TH Kim, T Kim, and S Ryu. Aes wireless keyboard: Template attack
for eavesdropping. Black Hat Asia, Singapore, 2018.

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 53

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan
Hanjalic. Make some noise. unleashing the power of convolutional neural
networks for profiled side-channel analysis. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2019(3):148–179, 2019.

[LBM14] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Power analysis
attack: an approach based on machine learning. Int. J. Appl. Cryptogr.,
3(2):97–115, 2014.

[LCWJ15] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning
transferable features with deep adaptation networks. In Francis R. Bach and
David M. Blei, editors, Proceedings of the 32nd International Conference on
Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37
of JMLR Workshop and Conference Proceedings, pages 97–105. JMLR.org,
2015.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier Markowitch,
and François-Xavier Standaert. Template attacks vs. machine learning re-
visited (and the curse of dimensionality in side-channel analysis). In Stefan
Mangard and Axel Y. Poschmann, editors, Constructive Side-Channel Analy-
sis and Secure Design - 6th International Workshop, COSADE 2015, Berlin,
Germany, April 13-14, 2015. Revised Selected Papers, volume 9064 of Lecture
Notes in Computer Science, pages 20–33. Springer, 2015.

[LZWJ16] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan. Unsuper-
vised domain adaptation with residual transfer networks. In Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain, pages 136–144, 2016.

[MBTL13] David P. Montminy, Rusty O. Baldwin, Michael A. Temple, and Eric D. Laspe.
Improving cross-device attacks using zero-mean unit-variance normalization.
J. Cryptogr. Eng., 3(2):99–110, 2013.

[MMR20] Thorben Moos, Amir Moradi, and Bastian Richter. Static power side-channel
analysis - an investigation of measurement factors. IEEE Trans. Very Large
Scale Integr. Syst., 28(2):376–389, 2020.

[MOM12] Grégoire Montavon, Genevieve B. Orr, and Klaus-Robert Müller, editors.
Neural Networks: Tricks of the Trade - Second Edition, volume 7700 of
Lecture Notes in Computer Science. Springer, 2012.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Claude
Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security, Privacy, and
Applied Cryptography Engineering - 6th International Conference, SPACE
2016, Hyderabad, India, December 14-18, 2016, Proceedings, volume 10076 of
Lecture Notes in Computer Science, pages 3–26. Springer, 2016.

54 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

[MT10] Roel Maes and Pim Tuyls. Process variations for security: Pufs. In Ingrid
M. R. Verbauwhede, editor, Secure Integrated Circuits and Systems, Integrated
Circuits and Systems, pages 125–141. Springer, 2010.

[PCP20] Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek. Strength in
numbers: Improving generalization with ensembles in machine learning-based
profiled side-channel analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(4):337–364, 2020.

[PHJ+18] Stjepan Picek, Annelie Heuser, Alan Jovic, Karlo Knezevic, and Tania Rich-
mond. Improving side-channel analysis through semi-supervised learning.
In Begül Bilgin and Jean-Bernard Fischer, editors, Smart Card Research
and Advanced Applications, 17th International Conference, CARDIS 2018,
Montpellier, France, November 12-14, 2018, Revised Selected Papers, volume
11389 of Lecture Notes in Computer Science, pages 35–50. Springer, 2018.

[PSB+18] Emmanuel Prouff, Rémi Strullu, Ryad Benadjila, Eleonora Cagli, and Cécile
Dumas. Study of deep learning techniques for side-channel analysis and
introduction to ASCAD database. IACR Cryptol. ePrint Arch., 2018:53,
2018.

[PW17] Luis Perez and Jason Wang. The effectiveness of data augmentation in image
classification using deep learning. CoRR, abs/1712.04621, 2017.

[RMH+19] Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and Younès
Bennani. Advances in Domain Adaptation Theory. Elsevier, 2019.

[RO04] Christian Rechberger and Elisabeth Oswald. Practical template attacks. In
Chae Hoon Lim and Moti Yung, editors, Information Security Applications,
5th International Workshop, WISA 2004, Jeju Island, Korea, August 23-25,
2004, Revised Selected Papers, volume 3325 of Lecture Notes in Computer
Science, pages 440–456. Springer, 2004.

[RSV+11] Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. A formal study of power variability issues and
side-channel attacks for nanoscale devices. In Kenneth G. Paterson, editor,
Advances in Cryptology - EUROCRYPT 2011 - 30th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes
in Computer Science, pages 109–128. Springer, 2011.

[STIM18] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.
How does batch normalization help optimization? In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, 3-8 December 2018, Montréal, Canada, pages 2488–2498, 2018.

[TAM20] Dhruv Thapar, Manaar Alam, and Debdeep Mukhopadhyay. Transca: Cross-
family profiled side-channel attacks using transfer learning on deep neural
networks. IACR Cryptol. ePrint Arch., 2020:1258, 2020.

[THZ+14] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Dar-
rell. Deep domain confusion: Maximizing for domain invariance. CoRR,
abs/1412.3474, 2014.

Pei Cao, Chi Zhang, Xiangjun Lu and Dawu Gu 55

[vEH20] Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised
learning. Mach. Learn., 109(2):373–440, 2020.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart Preneel.
Revisiting a methodology for efficient CNN architectures in profiling attacks.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):147–168, 2020.

[WdHG+20] Lennert Wouters, Jan Van den Herrewegen, Flavio D. Garcia, David F.
Oswald, Benedikt Gierlichs, and Bart Preneel. Dismantling dst80-based
immobiliser systems. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):99–
127, 2020.

[WKW16] Karl R. Weiss, Taghi M. Khoshgoftaar, and Dingding Wang. A survey of
transfer learning. J. Big Data, 3:9, 2016.

[WP20] Lichao Wu and Stjepan Picek. Remove some noise: On pre-processing of
side-channel measurements with autoencoders. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(4):389–415, 2020.

[YCBL14] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable
are features in deep neural networks? In Zoubin Ghahramani, Max Welling,
Corinna Cortes, Neil D. Lawrence, and Kilian Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada, pages 3320–3328, 2014.

[ZBD+20] Gabriel Zaid, Lilian Bossuet, François Dassance, Amaury Habrard, and
Alexandre Venelli. Ranking loss: Maximizing the success rate in deep learning
side-channel analysis. IACR Cryptol. ePrint Arch., 2020:872, 2020.

[ZBHV20] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient CNN architectures in profiling attacks. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(1):1–36, 2020.

[ZZN+20] Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai Yu.
A novel evaluation metric for deep learning-based side channel analysis and
its extended application to imbalanced data. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(3):73–96, 2020.

A Additional Results on CHES CTF 2018
We also give the result on the CHES Capture-the-flag (CTF) AES-128 dataset, released in
2018 for the Conference on Cryptographic Hardware and Embedded Systems (CHES). The
traces refer to a masked AES-128 implementation running on 32-bit STM microcontrollers.
Each raw trace consists of 650000 samples covering the whole encryption of AES. As the
raw trace is too long to be processed, Perin et al. [PCP20] conduct a feature selection
and reduce the length to 2200 samples. In our experiments, we use the dataset and the
network architecture provided by Perin et al. The profiling set consists of 45000 traces
(we use 43000 traces for training, 1000 traces for validation, and 1000 traces for testing).
The target set has 5000 traces acquired from a different device with a different fixed key.
The profiling phase runs for 15 epochs with a batch size of 200. After training, we use 200
attack traces for fine-tuning (5 epochs) with the λ set to 0.1. The attack results are shown
in Figure 18. We can observe that although the device discrepancy exists, it is not as
apparent as what we present in other experiments. Again, we see that CDPA improves the
performance on the target device. We refer to the source code in our Github repository
for more details of this attack.

56 Cross-Device Profiled Side-Channel Attack with Unsupervised Domain Adaptation

(a) Guessing entropy (b) Success rate

Figure 18: Attacking results on CHES CTF 2018.

B The Detailed Configuration of the Models

Table 4: CNN architecture of the XMEGA dataset.

Layer Filter size # of filters Pooling stride # of neurons

Conv block 1 16 2 -
Conv block 50 32 50 -
Conv block 3 64 2 -
Flatten - - - -

Fully-connected - - - 20

Table 5: CNN architecture of the SAKURA_AES dataset.

Layer Filter size # of filters Pooling stride # of neurons

Conv block 1 8 2 -
Batch normalization - - - -

Conv block 11 16 11 -
Batch normalization - - - -

Conv block 3 128 3 -
Batch normalization - - - -

Flatten - - - -
Fully-connected - - - 2

Table 6: CNN architecture of the ASCAD dataset.

Layer Filter size # of filters Pooling stride # of neurons

Conv block 1 32 2 -
Batch normalization - - - -

Conv block 50 64 50 -
Batch normalization - - - -

Conv block 3 128 2 -
Batch normalization - - - -

Flatten - - - -
Fully-connected * 3 - - - 20

	Introduction
	Overview
	Related Work
	Our Contributions
	Organization

	Background
	Notations
	Profiled Side-Channel Attacks
	Neural Networks
	DL-based Profiled Attacks
	Preprocessing techniques

	Cross-Device Profiled Attack
	A Cross-Device Profiled Attack Strategy
	Methodology for Minimizing the Domain Discrepancy
	Methodology for Embedding MMD in CNN-based SCA

	Datasets
	Experimental Results
	Setttings
	Study on Different Devices
	Extended Applications to Other Portability Issues
	Computation Cost

	Discussion
	Effect of Adaptation Layers
	Effect of the Penalty Parameter
	Effect of the Number of Traces for Fine-tuning
	Comparison with Other Promising Techniques

	Conclusion and Future Work
	Additional Results on CHES CTF 2018
	The Detailed Configuration of the Models

