
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2021, No. 4, pp. 1–26. DOI:10.46586/tches.v2021.i4.1-26

Novel Key Recovery Attack on Secure ECDSA
Implementation by Exploiting Collisions between

Unknown Entries
Sunghyun Jin 1,2, Sangyub Lee 3, Sung Min Cho 4, HeeSeok Kim 5† and

Seokhie Hong 1,2

1 School of Cyber Security, Korea University, Seoul, Republic of Korea
2 Center for Information Security Technologies, Institute of Cyber Security and Privacy, Korea

University, Seoul, Republic of Korea,
{sunghyunjin,shhong}@korea.ac.kr

3 National Institute for Mathematical Sciences, Daejeon, Republic of Korea,
sylee@nims.re.kr

4 CIOT, Seongnam, Republic of Korea,
smcho@ciotsecurity.com

5 Department of Cyber Security, College of Science and Technology, Korea University, Sejong,
Republic of Korea,

80khs@korea.ac.kr

Abstract. In this paper, we propose a novel key recovery attack against secure ECDSA
signature generation employing regular table-based scalar multiplication. Our attack
exploits novel leakage, denoted by collision information, which can be constructed
by iteratively determining whether two entries loaded from the table are the same
or not through side-channel collision analysis. Without knowing the actual value
of the table entries, an adversary can recover the private key of ECDSA by finding
the condition for which several nonces are linearly dependent by exploiting only the
collision information. We show that this condition can be satisfied practically with
a reasonable number of digital signatures and corresponding traces. Furthermore,
we also show that all entries in the pre-computation table can be recovered using
the recovered private key and a sufficient number of digital signatures based on the
collision information. As case studies, we find that fixed-base comb and T_SM scalar
multiplication are vulnerable to our attack. Finally, we verify that our attack is a real
threat by conducting an experiment with power consumption traces acquired during
T_SM scalar multiplication operations on an ARM Cortex-M based microcontroller.
We also provide the details for validation process.
Keywords: Public-key cryptography · Digital signature · ECDSA · Scalar multiplica-
tion · Side-channel analysis · Collision attack

1 Introduction
A digital signature has an important role as an authentication mechanism in modern security.
The Elliptic Curve Digital Signature Algorithm (ECDSA) [KR13, RHAL92, JMV01] is an
elliptic curve cryptography-based digital signature scheme that is used in a wide variety
of security services. ECDSA has speed and memory usage advantages with a shorter

†Corresponding Author. This work was supported by the Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT under Grant
NRF-2019R1A2C2088960.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-04-15 Accepted: 2021-06-15 Published: 2021-08-11

https://doi.org/10.46586/tches.v2021.i4.1-26
https://orcid.org/0000-0002-9521-0937
https://orcid.org/0000-0001-6709-293X
https://orcid.org/0000-0003-0139-3478
https://orcid.org/0000-0001-8137-4810
https://orcid.org/0000-0001-7506-4023
mailto:sunghyunjin@korea.ac.kr, shhong@korea.ac.kr
mailto:sylee@nims.re.kr
mailto:smcho@ciotsecurity.com
mailto:80khs@korea.ac.kr
http://creativecommons.org/licenses/by/4.0/

2 Novel Key Recovery Attack on Secure ECDSA Implementation

key length while providing a level of security equivalent to that of RSA, a common
representative public-key cryptosystem. Thus, it is preferred in constrained environments
such as smart cards.

On the other hand, side-channel analysis (SCA) takes advantage of various forms of
leakage (e.g., execution time, power consumption, electromagnetic emission, and acoustic
emanation) occurring when cryptosystems are executed in devices to retrieve secret
information because the instructions and data processed by the device are correlated with
these leakages [Koc96, KJJ99, GMO01, GST14, MOP08]. Because it is well-known that
SCA can be practically employed to break cryptosystems, many works on SCA against
ECDSA have been reported to investigate its practical security.

In this paper, we propose a novel key recovery attack against secure ECDSA signature
generation employing regular table-based scalar multiplication by exploiting side-channel
collisions between unknown entries. Because ECDSA uses a fixed base, table-based scalar
multiplication is commonly employed in ECDSA due to its efficiency and security. Although
table-based scalar multiplication can be easily implemented to be practically secure against
known SCAs, our attack can still be successful against it. Our attack exploits a form of
leakage to determine whether two entries loaded from the table are the same or not, i.e.,
whether there is a collision or not between two corresponding traces. Without knowing
the actual value of the table entries, an adversary can recover the private key for ECDSA
exploiting only the collision information by finding the condition for which several nonces
are linearly dependent. We show that this condition can be satisfied practically with a
reasonable number of digital signatures and corresponding traces. The required number
is at most one more than the total number of entries in the table. Furthermore, we also
show that all entries of the pre-computation table can be recovered using the recovered
private key and a sufficient number of digital signatures based on the collision information.
We first explain the detail of our attack against ECDSA signature generation employing
regular table-based scalar multiplication. We then show that fixed-base comb and T_SM
scalar multiplication are vulnerable to our attack as case studies. Finally, we prove that
our attack is a real threat by conducting an experiment with power consumption traces
acquired during T_SM scalar multiplication operations on an ARM Cortex-M based
microcontroller. We also provide details on how to conduct the validation process.

This paper is organized as follows. In Section 2, we briefly explain ECDSA signature
generation and provide an overview of side-channel attacks on ECDSA. We also generalize
regular table-based scalar multiplication for the description of our attack. In Section 3,
we describe our novel key recover attack, which can recover the private key for ECDSA
by identifying the situation in which several nonces are linearly dependent using collision
information from the pre-computation table. Section 4 presents case studies on fixed-base
comb and T_SM scalar multiplication. In Section 5, we validate the feasibility of the
proposed attack by describing an experiment using real traces of T_SM scalar multiplication
acquired from an ARM Cortex-M based microcontroller. Finally, we conclude this paper
in Section 6.

2 Preliminaries

2.1 Notations

Let t ∈ RD×1 denote side-channel traces of length D. Let x[j] denote the j-th entry of
vector x. Let Za := {x mod a|x ∈ Z} and Zba := {(z1, z2, ..., zb)|z1, z2, ..., zb ∈ Za}. Let
A ‖B be the concatenation of vectors (or matrices) A and B. Let (·)T be a transpose of
the vector (or matrix), and MatX×Y (Z) be the set of all X-by-Y matrices with all entries
in Z. Let IN is a N ×N identity matrix.

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 3

2.2 Overview on Side-Channel Attacks against ECDSA Signature Gen-
eration

The ECDSA signature generation algorithm, described in Algorithm 1, generates a signature
(r, s) for message m using private key d obtained from the key generation process. It
consists of a scalar multiplication stage over an elliptic curve using a randomly selected
secret nonce k (also known as the ephemeral key or ephemeral scalar), and a subsequent
stage in which r and s are computed using the value obtained from the scalar multiplication.

Algorithm 1 ECDSA signature generation [HMV04]
Require: Message m, private key d, base point P of order ord, hash function H
Ensure: Signature (r, s)

1: Choose nonce k uniformly at random from [1, ord− 1]
2: Compute scalar multiplication Q = (xQ, yQ) = k · P
3: r = xQ mod ord; If r = 0 then go to step 1
4: Compute hash h = H(m)
5: s = k−1 · (h+ d · r) mod ord
6: If s = 0 then go to step 1
7: Return (r, s)

Naive implementation of Algorithm 1 can be easily broken by side-channel attacks.
Side-channel attacks against ECDSA signature generation can be categorized as multiple-
trace attack (MTA) and single-trace attack (STA) depending on the required number of
traces.

Representative of MTA are differential power analysis (DPA) [KJJ99] and correlation
power analysis (CPA) [BCO04] against ECDSA signature generation [Cor99, AFV07,
HMHW09]. An adversary can conduct a DPA-like attack against intermediate data from
the multiplication operation d · r, performed in line 5 of Algorithm 1, by partially guessing
private key d because the value of r is known as a signature. The adversary can then
test whether the guess is correct by evaluating the correlation between multiple traces
and hypothetical values for the intermediate data with a statistical tool and consequently
recover the secret d. Hence, to counter this attack, it is required to adjust the operations
of k−1 · (h + d · r) in line 5 of Algorithm 1 such that the inverse of random secret k is
involved in every prior operation, i.e., k−1 · h+ (k−1 · d) · r, to prevent the guessing of the
intermediate data.

Another form of MTA is lattice attacks using partial nonces. Partial information for
nonces with signatures can be reconstructed as a system of inequalities for private key,
which is known as the hidden number problem (HNP) [HGS01, NS02]. The system of
inequalities is a closest vector problem (CVP) and can be solved efficiently using the LLL
lattice basis reduction algorithm and Babai’s nearest plane algorithm. For the lattice
attack, partial nonces can be retrieved in the following ways. First, if biased nonces are
generated in Algorithm 1, then partial nonces can be easily guessed [AFG+14, BH19].
Second, if some part of Algorithm 1 is implemented to consume a non-constant execution
time and has different times according to the message or nonce, then it can leak partial
information [BH09, BT11, YB14, DHMP14, BvSY14, ABF+15, vSY15, FWC16, GPP+16,
BFMT16, ASS17, GB17, Rya18, DPP20, RSBD20, ANT+20, MH20, CPB20, JSSS20,
GuHT+20, MSEH20, WSBS20]. Third, it can be possible through template-based attacks
[MO09, BCP+14, BCP+19] or STA. These attacks, which will be described later, can be
used to find only partial information because errors may exist.

Here, we provide an overview of STA. Similar to MTA, the naive implementation
of scalar multiplication allows simple power analysis (SPA) [KJJ99], which is a basic
form of STA, because the patterns of doubling and addition in a single trace of scalar

4 Novel Key Recovery Attack on Secure ECDSA Implementation

multiplication are different. This distinguishability is generally caused by two factors.
First, differences in the implementation of doubling and addition operations, which results
in different execution times and computation methods, are used. Second, an irregular
scalar multiplication algorithm is employed, e.g., double-and-add scalar multiplication
where point addition is computed depending on the bits of the scalar. Thus, there are two
approaches to counteracting SPA.

The first approach is introducing regular scalar multiplication algorithms such as
double-and-add always [Cor99] and the Montgomery ladder algorithm [IT02], which always
employ an identical sequence of operations consisting of the same number of doubling
and addition. The second approach is removing the difference in unit instructions for
doubling and addition, such as side-channel atomicity [CCJ04] and unified point addition
[BJ02]. Although these approaches are effective in counteracting SPA because they focus
on removing the operational leakages of scalar multiplication algorithms, leakages from
registers and data are still exploitable and STA using these leakages have been proposed
[Wal01, HMH+12, CFG+12, BJPW14, HIM+14, DGH+16, HKT15, SHKS15, SH17].

Because register- or data-dependent leakages, i.e., collision characteristics, can be
determined to be highly correlated or not depending on the bit value of the scalar, all
forms of attack using collision characteristics can be categorized as a collision attack
(CA). Walter [Wal01] firstly proposed the idea of a collision attack with a single trace,
referred to as the Big Mac attack, which can determine the bits of the secret exponent
by exploiting the collision characteristics between sliding window exponentiation and its
pre-computation process utilizing the difference of means. ROSETTA (Recovery of Secret
Exponent by Triangular Trace Analysis) [CFG+12] distinguishes squaring from multipli-
cation operations by exploiting collision characteristics caused by the same input single
precision multiplications in a squaring operation. Unlike ROSETTA, which determines
inner-collision in one operation, i.e., squaring, HCCA (Horizontal Collision Correlation
Attack) [BJPW14] exploits collision characteristics between two (or more) operations,
particularly in the same input operands manipulated in target operations. Hanley et al.
[HKT15] extended the idea of HCCA by exploiting the collision characteristics between
the input and output operands of the target operations.

Whereas the collision attacks listed above focus on data-dependant leakages in target
operations, e.g., field multiplications in the doubling or addition of scalar multiplication,
several studies have proposed approaches to exploiting collision characteristics caused by
different register behavior dependant on the value of the scalar by measuring location-
dependent electromagnetic emissions [HMH+12, SHKS15]. In addition, these attacks
employ clustering algorithms for the better discrimination of register-dependant leakages
[HIM+14, JB17].

An adversary against ECDSA can obtain nonces through STA against scalar multipli-
cation and then can recover the private key as follows:

s = k−1 · (h+ d · r) ⇔ d = (k · s− h) · r−1 (1)

2.3 Table-based Scalar Multiplication for ECDSA Signature Genera-
tion

In this section, we generalize regular table-based scalar multiplication for ECDSA signature
generation, as shown in Definition 1, Algorithm 2, and Algorithm 3, to represent a target
for the proposed attack. Regular table-based scalar multiplication involves a consistent
number of point doubling and point addition during the table-based scalar multiplication
phase.

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 5

Definition 1. Given regular table-based scalar multiplication and precomputation table
T for the scalar multiplication, there are sequence ks(k) for the row index of the table
reference and function ws for k · P such that

ks(k) = (ks0, ks1, ..., ksc−1), ksj ∈ {0, 1, ..., r − 1}, (2)

ws : ksj 7→ ws(ksj) ∈ Z>0, (3)
where ksj is the row index for referencing the j-th column of the table, and the result
of Algorithm 3 with sequence ks(k) and ws is the same as with k · P . ks(k) and ws are
determined depending on the scalar multiplication algorithm.

It is worth noting that our attack targets Algorithm 3 with function ws, which outputs
a value that depends on only j, not ksj . In other words, methods such as the sliding
window method are excepted.

Algorithm 2 Preparation of pre-computed tables for regular table-based scalar multipli-
cation
Require: base point P over E(Fp) of order ord
Ensure: r × c pre-computation table T

1: Initialize r × c table T
2: for j ∈ 0 up to c− 1 do
3: for i ∈ 0 up to r − 1 do
4: Choose αi,j ∈ Zord that is appropriate for the current table-based scalar

multiplication
5: T [i, j]← αi,j · P
6: end for
7: end for
8: Return T

Algorithm 3 Regular table-based scalar multiplication
Require: k and r × c pre-computation table T
Ensure: Q = k · P

1: Set ks(k) = (ks0, ks1, ..., ksc−1) and ws to be appropriate for the current table-based
scalar multiplication

2: Q←∞
3: for j ∈ 0 up to c− 1 do
4: Q← ws(ksj) ·Q
5: Q← Q+ T [ksj , j]
6: end for
7: k ← k mod ord
8: Return k,Q

3 Proposed attack
This section proposes a novel key recovery attack on ECDSA signature generation employing
regular table-based scalar multiplication. We set two assumptions for the threat model of
our attack:

Assumption 1 We assume that ws is a function of index j in the loop in Algorithm 3.
i.e., we consider only cases of ws, the output of which depends only on index j, not
ks(j).

6 Novel Key Recovery Attack on Secure ECDSA Implementation

Figure 1: Overall flow of the proposed attack.

Assumption 2 We assume that an adversary can perform multiple ECDSA signature gen-
eration operations where the private key is fixed and acquire corresponding signatures
and traces of the table-based scalar multiplication with fixed pre-computation table
T .

We emphasize that our attack can be performed even when the adversary has no
knowledge of the pre-computed table entries. Because our attack only uses collisions
between entries, the pre-computation phase is independent of our attack. We illustrate the
details of the proposed attack in two steps: the preparation of the collision information
and the recovery of the private key for the ECDSA signature. Figure 1 presents the overall
flow of the proposed attack.

3.1 Preparation of Collision Information
First, we prepare collision information through side-channel analysis. Regular table-based
scalar multiplication repeats the operations in lines 4-5 in Algorithm 3 c times, where c is
defined according to the security parameter of the scalar multiplication. In each loop, point
doubling and point addition are conducted respectively based on j and ksj , i.e., iteration
and the index of the row of the table. Note that, although security parameter c might be
confidential, it can be easily obtained by visually inspecting the power consumption of the
overall process of scalar multiplication. In addition, row size r of the table is guessable
from c using a guessing scalar multiplication algorithm.

We can now consider a attack scenario where an adversary can obtain N signatures
(ri, si) generated with the fixed private key and different messages and their corresponding
traces Ti, where i = {1, ..., N}, on the table-based scalar multiplications with the fixed
pre-computation table which are operated during the signature generations 1. Because
lines 4-5 in Algorithm 3 are regularly iterated, the adversary can determine and extract
samples corresponding to these operations, denoted by a subtrace, for each iteration and
reconstruct the trace Ti as Ti = (ti,0, ti,1, ..., ti,c−1), where ti,j represents a subtrace of the
j-th loop.

Let us consider a specific iteration, e.g., 0 ≤ j ≤ c− 1, and every subtrace of each trace
corresponding to the iteration, i.e., t1,j , ... tN,j . In this situation, we can perform collision
attacks that determine whether a row index of the table corresponding to a subtrace is

1If it is not deterministic ECDSA signature, it is possible with the same messages.

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 7

Figure 2: Flow for grouping of the subtraces for the j′-th loop. An adversary can determine
whether each subtrace is related to the same data or not through collision attacks among
vertical subtraces on the j′-th loop. With this information, the adversary can group
vertical subtraces.

the same or not as the indexes of the table corresponding to the other subtraces. These
attacks are possible because the data-dependent leakages of any two entries from T are
highly correlated if the selected row index of the entries is the same. Because there are at
most r different row entries in T for each iteration, we can classify all of the subtraces
for the iteration in r different groups by repeating the process (the process described
above is presented in Figure 2 and a more detailed version is provided in Algorithm 9 in
Section 5). At this time, we assume that this grouping for all iterations is possible without
any error2. For the rest of iterations, the grouping of the subtraces can be achieved using
the same technique. After the grouping of the traces is completed, we can label each ti,j
with gi,j ∈ {0, 1, ..., r − 1}. Consequently, we can define the collision information vector
corresponding to (ri, si) as Gi = (gi,0, gi,1, ..., gi,c−1). In the next section, we describe how
the private key can be recovered by utilizing the collision information vectors and the
acquired signatures.

3.2 Key Recovery by Identifying Linearly Dependent Nonces
In the second step, we find the condition in which nonces are linearly dependent by
utilizing the collision information and then recover the private key on the basis of this
linear dependency. The values of each component gi,j of Gi are assigned arbitrarily as
labels in the elements of the set {0, 1, ..., r − 1} only to classify the selected entries from a
column of pre-computation table T into r groups. If we consider any two columns, the
same label does not mean that the same row index of the entry is selected in the actual
scalar multiplication operation. In other words, the labels of the collision information are
independent both vertically and horizontally. Hence, in order to indicate independent
information between different labels, each component gi,j of Gi is converted to one-hot
representation Eoh as follows:

Eoh : Zr → Zrord
gi,j 7→ e(gi,j+1)

(4)

where ei is a unit vector in which only the i-th component is 1 and all of the other
components are 0. The collision information vector Gi = (gi,0, gi,1, ..., gi,c−1) for nonce ki
used in the i-th signature generation can then be converted into vector vi = Eoh(gi,0) ‖
Eoh(gi,1) ‖ ... ‖Eoh(gi,c−1) ∈ Zr·cord. Hence, each component of vi corresponds bijectively to
each entry of pre-computation table T although we still do not know how to map this.

Now, we can consider vi to be a coefficient vector representing a linear combination
to construct nonce ki with unknown variables, i.e., the table entries. Note that we set

2At the end of this section, we discuss how to deal with errors.

8 Novel Key Recovery Attack on Secure ECDSA Implementation

the codomain of Eoh as Zrord, not as Zr2, because all of the values in the computations in
the later process are defined in Zord. Because vi is a finite-dimensional vector, if there
are enough vectors, then a specific vector can be expressed as a linear combination of the
other vectors, i.e., it is linearly dependent, via Corollary 1.

Corollary 1. Let V be a finite-dimensional vector space and let the dimension of V be
n = dimV . Then, any subset of V that contains more than n vectors is linearly dependent.

As a result, if there are N (> r · c) vectors, there exists at least one vector that
can be expressed as a linear combination of the remaining vectors because vi is in the
(r · c)-dimensional vector space, i.e., one of N different vectors can be expressed as a
linear combination of the remaining vectors. However, it is possible that these linear
dependencies also occur in N <= r · c different vectors because vis are sparse vectors.

To obtain a linear dependency, we construct matrix A with N different vectors vi as
rows of the matrix and then construct M as follows:

A =
[
vT1 ‖ vT2 ‖ . . . ‖ vTN

]T ∈MatN×(r·c)(Zord) (5)

M =
[
A ‖ IN

]
∈MatN×(r·c+N)(Zord) (6)

By performing Gaussian elimination on matrix M as shown in (7), the row echelon
matrix, denoted by A′, can be calculated from A. Then, A′ = B ·A is established for A,
B, and A′ in (7). Note that, because the components of vi represent coefficients of a linear
combination of all entries of the pre-computation table, Gaussian elimination is calculated
with modulus ord.

M =
[
A ‖ IN

]
∈MatN×(r·c+N)(Zord)

↓ Gaussian elimination
M ′ =

[
A′ ‖B

]
∈MatN×(r·c+N)(Zord)

(7)

where A′ = [v′T1 ‖ v′
T
2 ‖ . . . ‖ v′

T
N]T ∈ MatN×(r·c)(Zord), and B = [bT1 ‖ bT2 ‖ . . . ‖ bTN]T ∈

MatN×N (Zord).
If there is a linearly dependent relationship between the used vectors, there is at least

one row with all components at zero in the row echelon matrix A′. Let us define the
corresponding row index as g ∈ {2, 3, . . . , N}. Then, (8) is satisfied, where bg represents
the g-th row vector of B.

bg ·A = ~0 and bg 6= ~0 (8)

where ~0 is a vector with all components at zero. This means that all components of
bg = (bg,1, bg,2, ..., bg,N) are coefficients for the linear combination of nonces ki resulting
0. In other words, the corresponding nonces with non-zero components in bg are linearly
dependent. Finally, from (9) and the linearly dependent nonces, the private key d can be
recovered as shown in (10). Note that finishing the Gaussian elimination in our attack is
not required. Because the attacker needs only one row with all entries at zero, the attacker
can stop Gaussian elimination early as soon as this row appears.

si = k−1
i · (hi + ri · d)

⇔ ki = s−1
i · (hi + ri · d)

⇔ ki = s−1
i · hi + s−1

i · ri · d
(9)

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 9

0 =
∑
i

bg,i · ki

=
∑
i

bg,i · (s−1
i · hi + s−1

i · ri · d)

=
∑
i

(bg,i · s−1
i · hi) + (

∑
i

bg,i · s−1
i · ri) · d

⇔ d =
(∑

i

bg,i · s−1
i · ri

)−1

·

(
−
∑
i

bg,i · s−1
i · hi

)
(10)

3.3 Recovery of the Entries in the Pre-computation Table

Trivially, all entries in the pre-computation table of T can be found after the private key
is recovered. If private key d is recovered by the proposed attack, we can calculate all ki
using (9). Then, we have N ≥ r · c linear equations where the left side of the equation
is a linear combination between coefficients of vi and the unknown entries of T and the
right side of the equation is ki. Hence, if there are sufficient digital signatures and traces
capable of finding the basis of the vector space of vis (i.e., if N is sufficiently large), the
value of all table entries can be recovered by solving the linear equations. However, the
actual order of entries in each column might be known or unknown according to the scalar
multiplication algorithm used and the use of countermeasures.

3.4 Discussion of Issues regarding the Proposed Attack

There are some issues with our attack. First, computing the collision information accurately
is required. i.e., the collision information should have no errors. However, it is possible for
errors to occur in the grouping stage because trace noise can induce errors in the collision
attacks. Currently, only a trial-and-error solution is possible. From a sufficient pool of
Np(> N) traces, the attacker chooses N traces randomly and conducts an attack until
the recovery of the secret key because our attack assumes that there is no error in the
grouping stage. Other solutions can be the focus of future work.

Secondly, for the same reason, our attack may be limited for relatively large row size r.
The number of groups for each column grows with r. However, because clustering errors
are dependent on the signal-to-noise ratio (SNR) of the traces, the limitation associated
with the row size is changed according to the SNR of traces. Thus, we skip formulating an
accurate limitation for r.

We investigate the probability of incorrect clustering between two different entries
assuming an ideal environment, i.e., only the Hamming weight as a leakage model and
without noise. In the same way, as Section 5 will describe, we can target points of interest
about loading two multi-precision integers 32-bit-wisely from the pre-computation table.
i.e., we can target the leakage on loading the coordinates X, Y of k · P , where P is a
base point. These coordinates X and Y of k · P are determined by the corresponding
256-bit scalar. Thus, to simplify the calculation of probability, we assume here that we
can target 8 points of interest corresponding to the load scalar for each entry instead of
the coordinates. i.e., there are 8 points of interest here. Note that we assume that each
entry from the pre-computation table is different. This assumption is reasonable because
the probability of two random 256-bit values being the same is extremely low if random
extraction is valid. When two different random 32-bit words are chosen, the probability of

10 Novel Key Recovery Attack on Secure ECDSA Implementation

two Hamming weights of the two words being equal is as follows:

p = 1
264

31∑
i=1

(
32
i

)
·
((

32
i

)
− 1
)
. (11)

Thus, the probability of two leakages being equal when two different entries are chosen is
as follows:

P =
8∑
i=1

(
8
i

)
· pi ·

(
1

232

)8−i
(12)

We claim that the trial-and-error method can be successful because the probability P is
very low. We also empirically verify this through 100,000 simulations, with no incorrect
clustering for each r ∈ {22, 24, 28} 3.

4 Applications: Case studies
In this section, we explore two types of representative regular table-based scalar multipli-
cation for ECDSA signature generation that are considered to be practically or perfectly
resistant to side-channel analysis as the targets of our attack.

4.1 Case Study: Fixed-base Comb Scalar Multiplication
Table-based scalar multiplication such as the fixed-base NAF windowing method and the
fixed-base comb method is widely used for efficiency in many crypto libraries including
OpenSSL, Mbed TLS, Bouncy Castle [Libc, Libb, Liba]. Of these general table-based
scalar multiplication approaches, we take the well-known fixed-base comb method as an
example to demonstrate that our attack can be easily applicable to general table-based
scalar multiplication deployed in ECDSA signature generation. In this section, for the
sake of simplicity, we select the original version of the fixed-base comb method here, as
described in Algorithm 4, although there are many variations to improve the efficiency
and counteract side-channel analysis.

Algorithm 4 is a version of the algorithm combining Definition 1, Algorithm 2, and
Algorithm 3 for fixed-base comb scalar multiplication. For the fixed-base comb method,

ws(x) = 2 for any x, r = 2w, c = d (13)

holds. Note that, although the pre-computed table has only one column, we assume that
there is a r × c pre-computed table, which is the original table repeated c times, for the
sake of simplicity. With this setting, our attack can be applied easily to fixed-base comb
scalar multiplication. Table 1 shows how many signatures and traces are required for our
attack depending on the security parameter of the fixed-base comb method.

4.2 Case Study: T_SM Scalar Multiplication
T_SM scalar multiplication is proposed to be resistant against STA [SCM+18]. To achieve
security against STA, it is designed to differ from other types of scalar multiplication. It
can be employed only in specific settings such as ECDSA signature generation because it
outputs both random nonce k and corresponding result point k ·P for scalar multiplication
using randomly pre-computed tables whereas conventional scalar multiplication algorithms
calculate k · P based on the inputted k, as shown in Algorithm 5 and Algorithm 6.

T_SM scalar multiplication, as described in Algorithm 6, is performed by selecting
a random row per column, which is represented by j, and accumulating the scalar and

3Except r = 216 because it is unrealistic that this would be employed in a real environment.

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 11

Algorithm 4 Fixed-base comb scalar multiplication [LL94, HMV04]
Require: base point P ∈ E(Fp) of order ord, scalar k = (kt−1, ..., k1, k0)2 ∈ Zord, security

parameter w, d = dt/we
Ensure: Q = k · P

Pre-computation
1: for j = (jw−1, ...j1, j0)2 ∈ 0 up to 2w − 1 do
2: T [j]←

∑w−1
i=0 (2i·d · ji) · P

3: end for
Scalar recoding

4: Let k = (kwd−1, ..., k1, k0)2 be a wd-bit integer by padding k on the left with 0s if
necessary

5: Prepare k′ ← (k′d−1, ..., k
′
1, k
′
0)2w . k′ = ks(k)

6: for i ∈ 0 up to d− 1 do
7: k′i ← (k(w−1)·d+i, ..., k2·d+i, k1·d+i, k0·d+i)2
8: end for

Calculation
9: Q←∞

10: for i ∈ d− 1 down to 0 do
11: Q← 2 ·Q
12: Q← Q+ T [k′i]
13: end for
14: Return Q

Table 1: For the fixed-base comb method, the size, the number of entries in the pre-
computation table, and attack parameter according to security parameter.

secp256r1 [Bro10]
(128-bit security) Pre-computation table Attack phase

w d Size # of entries # of group per loop Dimension of vi
2 128 128 B 4 4 512
4 64 512 B 16 16 1,024
8 32 8 KB 256 128 8,192
16 16 2 MB 65,536 65,536 1,048,576

Algorithm 5 Preparation of pre-computed tables for T_SM scalar multiplication
[SCM+18]
Require: security parameter λ = m · n ∈ Z+, base point P on group E(Fq) of order ord
Ensure: Tk, TP

1: for i ∈ 0 up to 2m − 1 do
2: for j ∈ 0 up to n− 1 do
3: Tk[i, j] R← Z2ord // Choose a ord-bit random integer
4: TP [i, j]← Tk[i, j] · P
5: end for
6: end for
7: Return Tk, TP

12 Novel Key Recovery Attack on Secure ECDSA Implementation

Algorithm 6 T_SM scalar multiplication [SCM+18]
Require: security parameter λ = m · n ∈ Z+, the order ord of base point P ∈ E(Fq),

pre-computation tables Tk and TP
Ensure: k,Q = k · P

1: k ← 0, Q←∞
2: for j ∈ 0 up to n− 1 do
3: row

R← Z2m // Choose an m-bit random integer
4: k ← k + Tk[row, j]
5: Q← Q+ TP [row, j]
6: end for
7: k ← k mod ord
8: Return k,Q

corresponding point for each table corresponding to the rows and columns, respectively.
This accumulation is iterated n times, hence, n long integer additions for k (line 4 in
Algorithm 6) and n elliptic curve point additions for k · P (line 5 in Algorithm 6) are
conducted. Consequently, the accumulated results for the scalar and point are returned as
a nonce k and point k ·P . With this property, T_SM scalar multiplication can be employed
for ECDSA signature generation by replacing step 1 and 2 in Algorithm 1 because it
outputs k and corresponding k · P .

Note that it is not possible to know whether the output scalar k from T_SM scalar
multiplication is uniformly random in [1, ord− 1], as described in step 1 in Algorithm 1,
because k is an accumulated result of random entries. However, we can evaluate the security
of T_SM scalar multiplication by calculating the number of cases selecting random scalars
from table Tk to produce a result k of (2m)n = 2mn = 2λ, which is the same as the
complexity of the λ-bit scalar for conventional scalar multiplication. Although it is not
yet investigated whether the T_SM method outputs biased nonces or not, this is not of
interest in this work, and remains a goal for future work.

It is worth noting that every entry in the pre-computed table of T_SM scalar multipli-
cation is independent and this is an extreme case of table-based scalar multiplication. Due
to this, we choose to explore the vulnerability of T_SM against our attack, although the
threat model for the T_SM method is not considered against MTA. Note also that it is
difficult to reveal the table entries through only STA against the pre-computation phase,
which is executed once and occupies many execution times, because the digital oscilloscope
has a restricted sampling memory [DLO+19].

Although the notation in Section 2 is not completely consistent with T_SM scalar
multiplication, T_SM scalar multiplication also repeatably uses two pre-computed tables
and uses an entry of a column per iteration. Thus, T_SM scalar multiplication can be
represented as a case of Algorithm 3 with (14) below for security parameter λ = m · n,

ws(x) = 1 for any x, r = 2m, c = n. (14)

In other words, step 4 in Algorithm 3 is skipped. With this setting, our attack can also be
applied to T_SM scalar multiplication. Table 2 shows how many signatures and traces
are required for our attack depending on the security parameter of the T_SM method.

5 Experimental Results
In this section, we validate our attack by conducting a practical experiment of our attack
on 256-bit T_SM scalar multiplication for security parameter λ = m · n = 2× 128 as a
proof of work.

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 13

Table 2: The size, the number of entries of pre-computation table, and attack parameter
according to security parameter of T_SM method.

λ = m · n
= 256 Pre-computation table Attack phase

m n Size # of entries # of groups per loop Dimension of vi
2 128 48 KB 512 4 512
4 64 96 KB 1,024 16 1,024
8 32 768 KB 8,192 128 8,192
16 16 96 MB 1,048,576 65536 1,048,576

5.1 Experimental Setup and Trace Acquisition
We implement T_SM calculation, where λ = 256, m = 2, and n = 128, operating on ARM
Cortex-M4-based STM32F405 microcontroller [Devb] which is embedded on ChipWhisperer
[OC14] CW308T-STM32F [Deva] target board. T_SM calculation (Algorithm 6) is
implemented in C and Thumb-2 assembly language. In detail, line 4 for scalar addition is
implemented as 256-bit long integer addition and line 5 for point addition is implemented as
"madd-2004-hmv" point addition [BL], described in Algorithm 7, where randomly selected
entries from TP are inputted as the operand P2. For practical reasons, the first iteration
of Algorithm 6 where j = 0 is implemented as simple loading, i.e., copying corresponding
data from the tables to the variables of k and Q from Tk and TP according to the first
row value.

Algorithm 7 Point addition (y2 = x3 − 3x+ b, Jacobian Coordinates) [BL]
Require: P1 = (X1, Y1, Z1), P2 = (X2, Y2, 1) in Jacobian coordinates
Ensure: P1 + P2 = (X3, Y3, Z3) in Jacobian coordinates

1: T1 = Z2
1

2: T2 = T1 · Z1
3: T1 = T1 ·X2
4: T2 = T2 · Y2
5: T1 = T1 −X1
6: T2 = T2 − Y1
7: Z3 = Z1 · T1
8: T3 = T 2

1
9: T4 = T3 · T1

10: T3 = T3 ·X1

11: T1 = 2 · T3
12: X3 = T 2

2
13: X3 = X3 − T1
14: X3 = X3 − T4
15: T3 = T3 −X3
16: T3 = T3 · T2
17: T4 = T4 · Y1
18: Y3 = T3 − T4
19: Return (X3, Y3, Z3)

A power consumption trace of our implementation operating at 5 MHz acquired with
a 250 MS/s sampling rate using a LeCroy HDO6104A oscilloscope [Devc] is presented
in Figure 3. We collected 513 (= 2m · n+ 1) traces because this number guarantees the
successful recovery of the private key, as outlined in the previous section. Note that,
although we already know m = 2 and n = 128, we can obtain n easily by inspecting
the power consumption through common means in side-channel analysis such as visual
inspection and cross-correlation. By knowing n = 128, we can guess m = 2. After
acquisition, a 5 MHz low-pass filter is applied to every trace.

5.2 Identification and Extraction of Target Operation Traces
In the next step, we perform visual inspection to identify and extract the target operation
traces to exploit collision characteristics and then construct the collision information by

14 Novel Key Recovery Attack on Secure ECDSA Implementation

0.5 1 1.5 2 2.5

Time sample 10
7

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

P
o

w
er

 c
o

n
su

m
p

ti
o

n

initial loading 0j

loop of scalar and elliptic curve point additions {1, ... , 127}j

Figure 3: Power consumption trace for T_SM scalar multiplication.

grouping. To this end, we apply a low-pass filter with an arbitrary frequency lower than
the operating frequency, e.g., 1 MHz, to easily identify operations as presented in Figure 4.

First, we determine which are the power consumption traces corresponding to the
long integer additions and the point additions. As represented in Figure 4 (a), each
point addition operation can be identified by eleven peaks because it consists of eight
multiplications and three squarings of long integers. The long integer additions can also be
determined because it is located before the point addition operations. We then identify the
loading operation, which is located before the first iteration of the long integer addition
and the point addition.

Now our target operations for the attack are the loading operation for j = 0 and one
long integer addition and two long integer multiplications for j ∈ {1, ... 127}, i.e., line 3
and 4 in Algorithm 7, which manipulates X2 and Y2 selected from TP according to row
(these operations are highlighted with gray boxes in Figure 4 (a) and (c)). Note that, in
a real attack scenario, because an adversary may not know when the target long integer
multiplication algorithm is operated, it should guess the location of the target operation
in this case. However, because this location is necessarily located in the early stages of the
iteration, the cost of guessing the location may not be great, thus it does not seriously
degrade the feasibility of the attack.

With the power consumption samples of the target operations as references, we can
determine the locations of the target operations on the other 512 power consumption
traces from T_SM scalar multiplication by utilizing cross-correlation. After that, we
reconstruct the target operation traces Ci,j where i ∈ {1, ..., 513} indicates the trace
acquisition number. Hence Ci,0 consists of samples of the loading operation and Ci,j
where j ∈ {1, ..., 127} consists of samples of one long integer addition and two long integer
multiplications sequentially concatenated.

Note that 1 MHz low-pass-filtered traces are used only for the identification of target
operations. In the rest of the attack process, the original 5 MHz-low-pass-filtered traces are
used for trace cutting exploiting cross-correlation and the reconstruction of Ci,j . After the

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 15

1.9 1.95 2 2.05 2.1 2.15 2.2

Time sample 10
6

-0.05

0

0.05

P
o
w

er
 c

o
n
su

m
p

ti
o
n

1.901 1.902 1.903 1.904 1.905 1.906 1.907 1.908 1.909 1.91 1.911

Time sample 10
6

-0.05

0

0.05

P
o
w

er
 c

o
n
su

m
p

ti
o
n

1.915 1.92 1.925 1.93 1.935 1.94 1.945 1.95 1.955 1.96 1.965

Time sample 10
6

-0.05

0

0.05

P
o
w

er
 c

o
n
su

m
p

ti
o
n

(b)

0j

(a)

(c)

1j 2j

Figure 4: Example of 1 MHz low-pass-filtered power consumption trace for (a) the first
part of T_SM scalar multiplication where j = 0 to j = 2, (b) initial loading operation
where j = 0, and (c) the group of operations corresponding to one iteration where j = 1.
In each iteration, gray boxes indicates intervals of three target operations according to
one long integer addition, which manipulates an entry from table Tk, and two long integer
multiplications, which manipulate an entry from the table TP consisting of two coordinate
values of an elliptic curve point.

16 Novel Key Recovery Attack on Secure ECDSA Implementation

(b)

(a)

Figure 5: Example of (a) power consumption difference traces and (b) a variance of power
consumption difference trace corresponding to initial loading operations where j = 0. Gray
boxes represent selected PoIs.

extraction of all Ci,j , we apply the integration compression technique [MOP08] on each
Ci,j for noise reduction in which 50 samples are integrated into a single sample because
we sampled 50 samples per clock cycle. We treat these compressed traces as the same Ci,j
because these are used for the rest of the attack.

5.3 Making Difference Traces and Finding Points of Interest
In this step, we make difference traces Di,j , as described in Algorithm 8, by calculating
average trace C̃j and subtracting it from each Ci,j for j ∈ {0, ..., 127} independently to
exploit collision characteristics followed by finding points of interest (PoIs). We illustrate
examples of difference traces for j = 0 and j = 127 in Figure 5 and Figures 6, 7, and
8, respectively, as these represent two types of target operations. In the corresponding
figures, all Di,j are plotted in different colors according to the actual row value used during
the trace acquisition process to visually represent exploitable collision characteristics. Of
course, in a real attack scenario, an adversary cannot acquire differently colored figures at
this stage because Di,j has not been grouped yet. Hence to find PoIs, it should utilize a
variance trace, which represents the variance of samples corresponding to each index in
the time domain.

For j = 0, because the loading operation solely loads data from each table Tk and TP
and stores the same data for some variables, every peak in the variance trace can be selected
as PoIs. On the other hand, for j ∈ {1, ..., 127}, we heuristically choose the moment only
when some data are loaded from the tables to exploit collision characteristics because
there are always collision characteristics caused by load operation independent of how to
compute long integer operation. Hence, these PoIs should be carefully selected because
it is difficult to identify PoIs as shown in Figures 6, 7, and 8. As highlighted in Figures
6, 7, and 8 in gray boxes, PoIs for iterations of one long integer addition (Figure 6) and

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 17

(b)

(a)

Figure 6: Example of (a) power consumption difference traces and (b) a variance of power
consumption difference trace corresponding to long integer addition operations where
j = 127. Gray boxes represent selected PoIs.

(b)

(a)

Figure 7: Example of (a) power consumption difference traces and (b) a variance of
power consumption difference trace corresponding to the first long integer multiplication
operation where j = 127. Gray boxes represent selected PoIs.

18 Novel Key Recovery Attack on Secure ECDSA Implementation

(b)

(a)

Figure 8: Example of (a) power consumption difference traces and (b) a variance of
power consumption difference trace corresponding to the second long integer multiplication
operation where j = 127. Gray boxes represent selected PoIs.

Algorithm 8 Making difference traces
Require: Ci,j with i ∈ {1, ..., N} and j ∈ {0, ..., n− 1}
Ensure: Di,j with i ∈ {1, ..., N} and j ∈ {0, ..., n− 1}

Calculate mean traces
1: for j = 0 up to n− 1 do
2: C̃j = 1

N

∑N
i=1 Ci,j

3: end for
Calculate difference traces

4: for j = 0 up to n− 1 do
5: for i = 1 up to N do
6: Di,j = Ci,j − C̃j
7: end for
8: end for
9: Return Di,j

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 19

two long integer multiplications (Figure 7 and Figure 8) can be determined by relatively
low peaks located before large peaks in the variance trace. Note that, in this case, the
variance trace is generated by utilizing all subtraces corresponding to the same operation,
i.e., every Di,j with j ∈ {1, ..., 126}. Finally, with the selected PoIs, which are represented
by indexes of samples, we reconstruct each D′i,j only consisting of samples corresponding
to PoIs from each Di,j .

5.4 Grouping Traces with Correlation Coefficients
Now, we can determine the group label for each D′i,j using Algorithm 9 on N = 513 traces
where i ∈ {1, ..., N} and j is fixed with a certain value, e.g., j = 0. First, we prepare
two N × 2m matrices ρ and λ, one for the Pearson correlation coefficients and another to
determine the group label, respectively. Then, we calculate the correlation coefficients
ρi,1 between trace D′1,0 and N traces D′i,0. By comparing each ρi,1 and the mean value
of every ρi,1 where i ∈ {1, ..., N}, we set entries of the first column of λ as one if ρi,1 is
larger than the mean or zero otherwise. For the next step, we find D′i,0 with the lowest
ρi,1, which means the least similar trace to the first group and calculate ρi∈{1,...,N},2. Now
we set the entries of the second column of λ by comparing each ρi,2 and the mean of all
ρi,2 similarly as described above. The rest of the process for determining the entries of λ
can be generalized as finding the least similar coefficients between every traces and setting
the next column of λ. The least similar trace to the former groups can be determined
by finding row indices with all zero entries for λ and the minimum of the sum of the
correlation coefficients for the former groups corresponding to these indices.

After all of the entries of ρ and λ are calculated, we can determine vector (l1, ..., lN)
corresponding to the j-th components of collision information vectors where j is fixed,
i.e., gi,j = li. First, we set the D′1,0 as the first group, i.e., l1 = 0. For the remaining
D′i,0, we find the column index of λ with only one non-zero row entry and all others at
zero and determine the group label according to that column index. If there is a row
entry with more than one, the group label can be determined by finding the column index
with the largest correlation coefficient corresponding to the row index on ρ. By iterating
Algorithm 9 with the remaining D′i,j where j ∈ 1, ..., 127, we successfully determine the
entire collision information vector Gi∈{1,...,N} without error.

5.5 Recovery of the Private Key
The final step is the recovery of the private key by exploiting the collision information
acquired in the previous step. We transform the collision information vectors in one-hot
representation, i.e., vi, to find linearly dependent nonces. We can generate matrixM in (7).
Next, we calculate M ′ through Gaussian elimination on M . Because the matrix consists
of 513 transformed vectors more than the total number of entries in the pre-computation
table, there must exists at least one row in which all components are zero in part A′ 4.
Then, the row vector in B corresponding to the zero row vector of A′ is a vector resulting
that the linear combination of nonces with its components is zero. Finally, we can recover
the private key of ECDSA using (10).

5.6 Discussion of Clustering Algorithms
Note that we provided a correlation-based clustering algorithm (as shown in Algorithm 9)
and confirmed that the clustering algorithm works well by real experiment for m = 2,
showing that our attack is valid. This does not guarantee that the clustering algorithm
works for a larger class. Because the correlation of fewer PoIs is susceptible to noise,

4In an our experiment, the row with all zero components in A′ appeared in the 390th out of 513 vectors
because the vi’s are sparse vectors.

20 Novel Key Recovery Attack on Secure ECDSA Implementation

Algorithm 9 Grouping traces with correlation coefficients between traces
Require: D′i,j with i ∈ {1, ..., N} and fixed j = c

Ensure: N × 1 group label vector {g1,c, ..., gN,c}T
1: Prepare N × 1 vector L = {l1, ..., lN}T for the output
2: Prepare N × 2m matrix ρ with zero entries
3: Prepare N × 2m matrix λ with zero entries
4: for i = 1 up to N do
5: ρ[i, 1]← corr(D′1,j , D′i,j)
6: end for
7: for i = 1 up to N do
8: if ρ[i, 1] > mean({ρ[i, 1], ρ[2, 1], ..., ρ[N, 1]}) then
9: λi,1 ← 1

10: end if
11: end for
12: for q = 2 up to 2m do
13: vert_cand_set← {i| arg min

i
(
∑q−1
r=1 λi,r)}

14: next_index← arg min
i∈vert_cand_set

(
∑q−1
r=1 ρi,r)

15: for i = 1 up to N do
16: ρ[i, q]← corr(D′next_index,j , D′i,j)
17: end for
18: for i = 1 up to N do
19: if ρ[i, q] > mean({ρ[1, q], ρ[2, q], ..., ρ[N, q]}) then
20: λi,q ← 1
21: end if
22: end for
23: end for

Determine final label results
24: l1 = 0
25: for i = 2 up to N do
26: if mean(λi,q∈{1,...,2m}) = 1/2m then
27: li ← (arg max

r∈{1,...,2m}
(λi,r))− 1

28: else
29: hori_cand_set← {q|λi,q 6= 0}
30: li ← (arg max

r∈hori_cand_set
(ρi,r))− 1

31: end if
32: end for
33: Return L

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 21

the success of the clustering algorithm for a larger class is unclear. Thus, improving the
accuracy of the clustering algorithm or developing other clustering algorithms should be
considered in future work.

6 Conclusion
We proposed a novel key recovery attack against ECDSA signature generation employing
regular table-based scalar multiplication by exploiting side-channel collisions between
unknown entries. Without knowing the actual values of the table entries, an attacker
can extract collision information indicating which group each entry belongs to for every
individual column of a pre-computation table through vertical collision attacks. Next,
the private key can be recovered by finding the condition in which several nonces are
linearly dependent exploiting only the collision information. Additionally, we explained
that all of the unknown entries in the pre-computation table can be recovered using
the recovered private key with sufficiently more digital signatures and traces. We then
presented case studies for our attack against ECDSA employing fixed-base comb and T_SM
scalar multiplication to illustrate that our attack can be easily applicable to other forms
of table-based scalar multiplication. Finally, we validated that our attack is a real threat
by conducting a practical experiment with power consumption traces acquired during the
operations of T_SM scalar multiplication on an ARM Cortex-M based microcontroller.
We also detailed the validation process.

References
[ABF+15] Thomas Allan, Billy Bob Brumley, Katrina Falkner, Joop van de Pol, and

Yuval Yarom. Amplifying side channels through performance degradation.
Cryptology ePrint Archive, Report 2015/1141, 2015. https://eprint.iacr.
org/2015/1141.

[AFG+14] Diego F. Aranha, Pierre-Alain Fouque, Benoît Gérard, Jean-Gabriel Kam-
merer, Mehdi Tibouchi, and Jean-Christophe Zapalowicz. GLV/GLS decom-
position, power analysis, and attacks on ECDSA signatures with single-bit
nonce bias. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part I, volume 8873 of LNCS, pages 262–281. Springer, Heidelberg, December
2014.

[AFV07] Frederic Amiel, Benoit Feix, and Karine Villegas. Power analysis for secret
recovering and reverse engineering of public key algorithms. In Carlisle M.
Adams, Ali Miri, and Michael J. Wiener, editors, SAC 2007, volume 4876 of
LNCS, pages 110–125. Springer, Heidelberg, August 2007.

[ANT+20] Diego F. Aranha, Felipe Rodrigues Novaes, Akira Takahashi, Mehdi Tibouchi,
and Yuval Yarom. LadderLeak: Breaking ECDSA with less than one bit of
nonce leakage. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 20, pages 225–242. ACM Press, November 2020.

[ASS17] Alejandro Cabrera Aldaya, Alejandro Cabrera Sarmiento, and Santiago
Sánchez-Solano. SPA vulnerabilities of the binary extended euclidean al-
gorithm. Journal of Cryptographic Engineering, 7(4):273–285, November
2017.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation power analysis
with a leakage model. In Marc Joye and Jean-Jacques Quisquater, editors,

https://eprint.iacr.org/2015/1141
https://eprint.iacr.org/2015/1141

22 Novel Key Recovery Attack on Secure ECDSA Implementation

CHES 2004, volume 3156 of LNCS, pages 16–29. Springer, Heidelberg, August
2004.

[BCP+14] Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe,
and Michael Tunstall. Online template attacks. In Willi Meier and Debdeep
Mukhopadhyay, editors, INDOCRYPT 2014, volume 8885 of LNCS, pages
21–36. Springer, Heidelberg, December 2014.

[BCP+19] Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe,
and Michael Tunstall. Online template attacks. Journal of Cryptographic
Engineering, 9(1):21–36, April 2019.

[BFMT16] Pierre Belgarric, Pierre-Alain Fouque, Gilles Macario-Rat, and Mehdi Ti-
bouchi. Side-channel analysis of Weierstrass and Koblitz curve ECDSA on
android smartphones. In Kazue Sako, editor, CT-RSA 2016, volume 9610 of
LNCS, pages 236–252. Springer, Heidelberg, February / March 2016.

[BH09] Billy Bob Brumley and Risto M. Hakala. Cache-timing template attacks. In
Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
667–684. Springer, Heidelberg, December 2009.

[BH19] Joachim Breitner and Nadia Heninger. Biased nonce sense: Lattice attacks
against weak ECDSA signatures in cryptocurrencies. In Ian Goldberg and
Tyler Moore, editors, FC 2019, volume 11598 of LNCS, pages 3–20. Springer,
Heidelberg, February 2019.

[BJ02] Eric Brier and Marc Joye. Weierstraß elliptic curves and side-channel attacks.
In David Naccache and Pascal Paillier, editors, PKC 2002, volume 2274 of
LNCS, pages 335–345. Springer, Heidelberg, February 2002.

[BJPW14] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild. Hori-
zontal collision correlation attack on elliptic curves. In Tanja Lange, Kristin
Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS, pages
553–570. Springer, Heidelberg, August 2014.

[BL] D. J. Bernstein and T. Lange. Explicit-Formulas Database. http://
hyperelliptic.org/EFD/index.html Accessed on: Jun 02, 2020.

[Bro10] Daniel R. L. Brown. Standards for efficient cryptography (sec) 2: Recom-
mended elliptic curve domain parameters (version 2.0). Certicom Research,
Certicom Corp, 2010.

[BT11] Billy Bob Brumley and Nicola Tuveri. Remote timing attacks are still practical.
Cryptology ePrint Archive, Report 2011/232, 2011. https://eprint.iacr.
org/2011/232.

[BvSY14] Naomi Benger, Joop van de Pol, Nigel P. Smart, and Yuval Yarom. “ooh
aah... just a little bit”: A small amount of side channel can go a long way.
In Lejla Batina and Matthew Robshaw, editors, CHES 2014, volume 8731 of
LNCS, pages 75–92. Springer, Heidelberg, September 2014.

[CCJ04] Benoît Chevallier-Mames, Mathieu Ciet, and Marc Joye. Low-cost solutions
for preventing simple side-channel analysis: Side-channel atomicity. IEEE
Transactions on computers, 53(6):760–768, 2004.

http://hyperelliptic.org/EFD/index.html
http://hyperelliptic.org/EFD/index.html
https://eprint.iacr.org/2011/232
https://eprint.iacr.org/2011/232

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 23

[CFG+12] Christophe Clavier, Benoit Feix, Georges Gagnerot, Christophe Giraud,
Mylène Roussellet, and Vincent Verneuil. ROSETTA for single trace analy-
sis. In Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT 2012,
volume 7668 of LNCS, pages 140–155. Springer, Heidelberg, December 2012.

[Cor99] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In Çetin Kaya Koç and Christof Paar, editors, CHES’99,
volume 1717 of LNCS, pages 292–302. Springer, Heidelberg, August 1999.

[CPB20] Alejandro Cabrera Aldaya, Cesar Pereida García, and Billy Bob Brum-
ley. From A to Z: Projective coordinates leakage in the wild. IACR
TCHES, 2020(3):428–453, 2020. https://tches.iacr.org/index.php/
TCHES/article/view/8596.

[Deva] NewAE Technology, CW308T-STM32F. http://wiki.newae.com/
CW308T-STM32F Accessed on: Jun 02, 2020.

[Devb] STMicroelectronics, STM32F405/415. https://www.st.com/en/
microcontrollers/stm32f405-415.html Accessed on: Jun 02, 2020.

[Devc] Teledyne LeCroy, HDO6104A. http://teledynelecroy.com/
oscilloscope/hdo6000a-high-definition-oscilloscopes/hdo6104a
Accessed on: Jun 02, 2020.

[DGH+16] Jean-Luc Danger, Sylvain Guilley, Philippe Hoogvorst, Cédric Murdica, and
David Naccache. Improving the big mac attack on elliptic curve cryptography.
In The New Codebreakers, pages 374–386. Springer, 2016.

[DHMP14] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter Pearson. Using
Bleichenbacher’s solution to the hidden number problem to attack nonce leaks
in 384-bit ECDSA: extended version. Journal of Cryptographic Engineering,
4(1):33–45, April 2014.

[DLO+19] Ibrahima Diop, Yanis Linge, Thomas Ordas, Pierre-Yvan Liardet, and Philippe
Maurine. From theory to practice: horizontal attacks on protected implemen-
tations of modular exponentiations. Journal of Cryptographic Engineering,
9(1):37–52, April 2019.

[DPP20] Gabrielle De Micheli, Rémi Piau, and Cécile Pierrot. A tale of three signatures:
Practical attack of ECDSA with wNAF. In Abderrahmane Nitaj and Amr M.
Youssef, editors, AFRICACRYPT 20, volume 12174 of LNCS, pages 361–381.
Springer, Heidelberg, July 2020.

[FWC16] Shuqin Fan, Wenbo Wang, and Qingfeng Cheng. Attacking OpenSSL im-
plementation of ECDSA with a few signatures. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, ACM CCS 2016, pages 1505–1515. ACM Press, October 2016.

[GB17] Cesar Pereida García and Billy Bob Brumley. Constant-time callees with
variable-time callers. In Engin Kirda and Thomas Ristenpart, editors, USENIX
Security 2017, pages 83–98. USENIX Association, August 2017.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. Electromagnetic
analysis: Concrete results. In Çetin Kaya Koç, David Naccache, and Christof
Paar, editors, CHES 2001, volume 2162 of LNCS, pages 251–261. Springer,
Heidelberg, May 2001.

https://tches.iacr.org/index.php/TCHES/article/view/8596
https://tches.iacr.org/index.php/TCHES/article/view/8596
http://wiki.newae.com/CW308T-STM32F
http://wiki.newae.com/CW308T-STM32F
https://www.st.com/en/microcontrollers/stm32f405-415.html
https://www.st.com/en/microcontrollers/stm32f405-415.html
http://teledynelecroy.com/oscilloscope/hdo6000a-high-definition-oscilloscopes/hdo6104a
http://teledynelecroy.com/oscilloscope/hdo6000a-high-definition-oscilloscopes/hdo6104a

24 Novel Key Recovery Attack on Secure ECDSA Implementation

[GPP+16] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yuval
Yarom. ECDSA key extraction from mobile devices via nonintrusive physical
side channels. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1626–1638.
ACM Press, October 2016.

[GST14] Daniel Genkin, Adi Shamir, and Eran Tromer. RSA key extraction via low-
bandwidth acoustic cryptanalysis. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 444–461. Springer,
Heidelberg, August 2014.

[GuHT+20] Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri, Iaroslav Gridin,
Alejandro Cabrera Aldaya, and Billy Bob Brumley. Certified side channels.
In Srdjan Capkun and Franziska Roesner, editors, USENIX Security 2020,
pages 2021–2038. USENIX Association, August 2020.

[HGS01] Nick A Howgrave-Graham and Nigel P. Smart. Lattice attacks on digital
signature schemes. Designs, codes and cryptography, 23(3):283–290, 2001.

[HIM+14] Johann Heyszl, Andreas Ibing, Stefan Mangard, Fabrizio De Santis, and
Georg Sigl. Clustering algorithms for non-profiled single-execution attacks on
exponentiations. In Proc. International Conference on Smart Card Research
and Advanced Applications – CARDIS 2013, pages 79–93, Berlin, Germany,
November 27–29, 2014.

[HKT15] Neil Hanley, HeeSeok Kim, and Michael Tunstall. Exploiting collisions in
addition chain-based exponentiation algorithms using a single trace. In Kaisa
Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 431–448. Springer,
Heidelberg, April 2015.

[HMH+12] Johann Heyszl, Stefan Mangard, Benedikt Heinz, Frederic Stumpf, and Georg
Sigl. Localized electromagnetic analysis of cryptographic implementations. In
Orr Dunkelman, editor, CT-RSA 2012, volume 7178 of LNCS, pages 231–244.
Springer, Heidelberg, February / March 2012.

[HMHW09] Michael Hutter, Marcel Medwed, Daniel Hein, and Johannes Wolkerstor-
fer. Attacking ECDSA-enabled RFID devices. In Michel Abdalla, David
Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, ACNS 09,
volume 5536 of LNCS, pages 519–534. Springer, Heidelberg, June 2009.

[HMV04] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic
Curve Cryptography. Springer New York, 2004.

[IT02] Tetsuya Izu and Tsuyoshi Takagi. A fast parallel elliptic curve multiplication
resistant against side channel attacks. In David Naccache and Pascal Paillier,
editors, PKC 2002, volume 2274 of LNCS, pages 280–296. Springer, Heidelberg,
February 2002.

[JB17] Kimmo Järvinen and Josep Balasch. Single-trace side-channel attacks on scalar
multiplications with precomputations. In Proc. International Conference on
Smart Card Research and Advanced Applications – CARDIS 2016, pages
137–155, Cannes, France, November 7–9, 2017.

[JMV01] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital
signature algorithm (ecdsa). International journal of information security,
1(1):36–63, 2001.

Sunghyun Jin, Sangyub Lee, Sung Min Cho, HeeSeok Kim and Seokhie Hong 25

[JSSS20] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sys. Minerva: The
curse of ECDSA nonces. IACR TCHES, 2020(4):281–308, 2020. https:
//tches.iacr.org/index.php/TCHES/article/view/8684.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
388–397. Springer, Heidelberg, August 1999.

[Koc96] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Neal Koblitz, editor, CRYPTO’96, volume 1109
of LNCS, pages 104–113. Springer, Heidelberg, August 1996.

[KR13] Cameron F. Kerry and Charles Romine. Fips pub 186-4 federal information
processing standards publication digital signature standard (dss). National In-
stitute of Standards and Technology, NIST FIPS PUB 186-4, U.S. Department
of Commerce, 2013.

[Liba] Bouncy Castle. https://www.bouncycastle.org/ Accessed on: Jun 02,
2020.

[Libb] Mbed TLS. https://tls.mbed.org/ Accessed on: Jun 02, 2020.

[Libc] OpenSSL. https://www.openssl.org/ Accessed on: Jun 02, 2020.

[LL94] Chae Hoon Lim and Pil Joong Lee. More flexible exponentiation with pre-
computation. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS,
pages 95–107. Springer, Heidelberg, August 1994.

[MH20] Gabrielle De Micheli and Nadia Heninger. Recovering cryptographic keys
from partial information, by example. Cryptology ePrint Archive, Report
2020/1506, 2020. https://eprint.iacr.org/2020/1506.

[MO09] Marcel Medwed and Elisabeth Oswald. Template attacks on ECDSA. In
Kyo-Il Chung, Kiwook Sohn, and Moti Yung, editors, WISA 08, volume 5379
of LNCS, pages 14–27. Springer, Heidelberg, September 2009.

[MOP08] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks:
Revealing the secrets of smart cards. Springer Science & Business Media, 2008.

[MSEH20] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger. TPM-
FAIL: TPM meets timing and lattice attacks. In Srdjan Capkun and Franziska
Roesner, editors, USENIX Security 2020, pages 2057–2073. USENIX Associa-
tion, August 2020.

[NS02] Phong Q. Nguyen and Igor Shparlinski. The insecurity of the digital signature
algorithm with partially known nonces. Journal of Cryptology, 15(3):151–176,
June 2002.

[OC14] Colin O’Flynn and Zhizhang (David) Chen. Chipwhisperer: An open-source
platform for hardware embedded security research. In Proc. Constructive
Side-Channel Analysis and Secure Design – COSADE 2014, pages 243–260,
Paris, France, April 13–15, 2014.

[RHAL92] Ronald L Rivest, Martin E Hellman, John C Anderson, and John W Lyons.
Responses to nist’s proposal, 1992.

https://tches.iacr.org/index.php/TCHES/article/view/8684
https://tches.iacr.org/index.php/TCHES/article/view/8684
https://www.bouncycastle.org/
https://tls.mbed.org/
https://www.openssl.org/
https://eprint.iacr.org/2020/1506

26 Novel Key Recovery Attack on Secure ECDSA Implementation

[RSBD20] Niels Roelofs, Niels Samwel, Lejla Batina, and Joan Daemen. Online template
attack on ECDSA: - extracting keys via the other side. In Abderrahmane
Nitaj and Amr M. Youssef, editors, AFRICACRYPT 20, volume 12174 of
LNCS, pages 323–336. Springer, Heidelberg, July 2020.

[Rya18] Keegan Ryan. Return of the hidden number problem. IACR
TCHES, 2019(1):146–168, 2018. https://tches.iacr.org/index.php/
TCHES/article/view/7337.

[SCM+18] Bo-Yeon Sim, Kyu Young Choi, Dukjae Moon, Hyo Jin Yoon, Jihoon Cho,
and Dong-Guk Han. T_SM: Elliptic curve scalar multiplication algorithm
secure against single-trace attacks. In Proc. International Conference on
Information Security Practice and Experience – ISPEC 2018, pages 407–423,
Tokyo, Japan, September25–27 2018.

[SH17] Bo-Yeon Sim and Dong-Guk Han. Key bit-dependent attack on protected
PKC using a single trace. In Proc. International Conference on Information
Security Practice and Experience – ISPEC 2017, pages 168–185, Melbourne,
Australia, December13–15 2017.

[SHKS15] Robert Specht, Johann Heyszl, Martin Kleinsteuber, and Georg Sigl. Improv-
ing non-profiled attacks on exponentiations based on clustering and extracting
leakage from multi-channel high-resolution EM measurements. In Stefan
Mangard and Axel Y. Poschmann:, editors, COSADE 2015, volume 9064 of
LNCS, pages 3–19. Springer, Heidelberg, April 2015.

[vSY15] Joop van de Pol, Nigel P. Smart, and Yuval Yarom. Just a little bit more.
In Kaisa Nyberg, editor, CT-RSA 2015, volume 9048 of LNCS, pages 3–21.
Springer, Heidelberg, April 2015.

[Wal01] Colin D. Walter. Sliding windows succumbs to big mac attack. In Çetin
Kaya Koç, David Naccache, and Christof Paar, editors, CHES 2001, volume
2162 of LNCS, pages 286–299. Springer, Heidelberg, May 2001.

[WSBS20] Samuel Weiser, David Schrammel, Lukas Bodner, and Raphael Spreitzer. Big
numbers - big troubles: Systematically analyzing nonce leakage in (EC)DSA
implementations. In Srdjan Capkun and Franziska Roesner, editors, USENIX
Security 2020, pages 1767–1784. USENIX Association, August 2020.

[YB14] Yuval Yarom and Naomi Benger. Recovering OpenSSL ECDSA nonces using
the FLUSH+RELOAD cache side-channel attack. Cryptology ePrint Archive,
Report 2014/140, 2014. https://eprint.iacr.org/2014/140.

https://tches.iacr.org/index.php/TCHES/article/view/7337
https://tches.iacr.org/index.php/TCHES/article/view/7337
https://eprint.iacr.org/2014/140

	Introduction
	Preliminaries
	Notations
	Overview on Side-Channel Attacks against ECDSA Signature Generation
	Table-based Scalar Multiplication for ECDSA Signature Generation

	Proposed attack
	Preparation of Collision Information
	Key Recovery by Identifying Linearly Dependent Nonces
	Recovery of the Entries in the Pre-computation Table
	Discussion of Issues regarding the Proposed Attack

	Applications: Case studies
	Case Study: Fixed-base Comb Scalar Multiplication
	Case Study: T_SM Scalar Multiplication

	Experimental Results
	Experimental Setup and Trace Acquisition
	Identification and Extraction of Target Operation Traces
	Making Difference Traces and Finding Points of Interest
	Grouping Traces with Correlation Coefficients
	Recovery of the Private Key
	Discussion of Clustering Algorithms

	Conclusion

