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Abstract. The growth of the Internet of Things (IoT) has led to concerns over the lack
of security and privacy guarantees afforded by IoT systems. Homomorphic encryption
(HE) is a promising privacy-preserving solution to allow devices to securely share data
with a cloud backend; however, its high memory consumption and computational
overhead have limited its use on resource-constrained embedded devices. To address
this problem, we present SEAL-Embedded, the first HE library targeted for em-
bedded devices, featuring the CKKS approximate homomorphic encryption scheme.
SEAL-Embedded employs several computational and algorithmic optimizations along
with a detailed memory re-use scheme to achieve memory efficient, high performance
CKKS encoding and encryption on embedded devices without any sacrifice of security.
We additionally provide an “adapter” server module to convert data encrypted by
SEAL-Embedded to be compatible with the Microsoft SEAL library for homomorphic
encryption, enabling an end-to-end solution for building privacy-preserving applica-
tions. For a polynomial ring degree of 4096, using RNS primes of 30 or fewer bits,
our library can be configured to use between 64–137 KB of RAM and 1–264 KB
of flash data, depending on developer-selected configurations and tradeoffs. Using
these parameters, we evaluate SEAL-Embedded on two different IoT platforms with
high performance, memory efficient, and balanced configurations of the library for
asymmetric and symmetric encryption. With 136 KB of RAM, SEAL-Embedded
can perform asymmetric encryption of 2048 single-precision numbers in 77 ms on the
Azure Sphere Cortex-A7 and 737 ms on the Nordic nRF52840 Cortex-M4.
Keywords: Homomorphic Encryption, IoT, embedded systems

1 Introduction
The emergence of the Internet of Things (IoT) has led to a dramatic increase in the
number and pervasiveness of devices present around the globe. As IoT devices continue
to radically transform domains of daily life, including privacy-sensitive domains such as
healthcare, manufacturing, and home automation, users are becoming increasingly aware
of the privacy and security risks that accompany the device-to-cloud model adopted by
most smart devices. In particular, due to their limited memory capacities and low-power
operational states, small embedded devices often rely on external sources of storage and
processing to obtain useful insights from device-collected data. Such deployments often
utilize cloud computing to perform analytics on this data, which must inherently be carried
out while the data is in plaintext form.

Though the above deployment scenario is standard in most domains, it raises several
security and privacy concerns: First, the cloud trusted computing base, or the set of
hardware, software, and firmware components that a user must trust for security in the
cloud, exposes a broad surface for attackers to exploit. Moreover, protection against certain
classes of cloud attacks, such as side channel or physical attacks, are often difficult or
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Figure 1: Secure end-to-end computational flow enabled by the SEAL-Embedded solution.

impossible to achieve in a shared cloud setting. Additionally, so-called “honest-but-curious”
or even malicious cloud infrastructure or server application providers may constitute an
added threat as they eagerly attempt to extract and store private information from user
data (e.g. for purposes such as targeted advertising).

Homomorphic encryption (HE), a cryptographic technology that enables secure com-
putation on encrypted data, has often been posed as a solution to the aforementioned
threats. Since the construction of the first fully homomorphic encryption scheme in 2009,
several improvements have been introduced to make HE efficient enough for practical use.
One recent HE construction, known as the CKKS scheme [CKKS17], enables approximate
homomorphic encryption for efficient processing of floating point data. Prior works have
established CKKS as a leading contender for efficient homomorphic logisitic regression
and other machine learning tasks [KSW+18, JKLS18, KSK+18, BGP+20, KSLM20]. The
CKKS scheme is a natural choice for IoT devices since it can efficiently perform secure
computation on the type of real-valued data often sampled by sensors.

However, the computationally heavy nature of homomorphic encryption operations has
still largely prevented HE from being ported to the IoT domain. Indeed, currently available
homomorphic encryption libraries require much more memory than constrained devices
are able to provide. For example, for a polynomial ring with degree 4098 and three 30-bit
primes, a commonly used parameter set, a simple CKKS encode-and-encrypt operation with
Microsoft SEAL [SEA20] requires a minimum of 4 MB in memory allocation - much larger
than the 256 KB of main memory that is typical of many embedded devices. Additionally,
the CKKS scheme presents an additional complexity in that its encoding operation
requires the implementation of double-precision arithmetic modules (e.g. the Fast Fourier
Transform) in addition to modular integer units (e.g. the Number Theoretic Transform)
for encryption, while comparable HE schemes such as BFV [FV12] and BGV [BGV12] only
require the latter. This significantly increases the memory and computational requirements
for an efficient CKKS implementation.

In this work, we show that while there are several memory and performance challenges
to overcome in the embedded domain, it is ultimately possible and practical to use HE to
encrypt data on IoT devices and to take advantage of secure computation in the cloud.
More concretely, we make the following contributions:

• We identify the specific memory and performance challenges related to enabling HE
on embedded devices and discuss several techniques to overcome them. In particular,
we show how to use RNS partitioning, data type compression, and memory pooling,
along with a detailed memory re-use scheme to reduce the memory consumption of
HE encoding and encryption while still enabling high performance. Importantly, by
employing RNS partitioning, our library’s memory usage is constrained only by the
degree of ciphertext polynomials rather than the full size of ciphertexts.
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• We implement our techniques in SEAL-Embedded, the first homomorphic encryption
library targeted for constrained embedded devices, featuring the encoding and
encryption procedures of the CKKS scheme. As part of our design, we include
a server-side adapter that acts as a translation layer from SEAL-Embedded to
the Microsoft SEAL library [SEA20] for homomorphic encryption. Together, these
components enable an end-to-end HE deployment solution for embedded devices, as
shown in Figure 1.

• We demonstrate the utility, efficiency, and versatility of our solution by deploying our
library on two embedded devices with varying degrees of constraints. In particular,
we target a standalone Cortex-M4 device for low-power implementations, as well as
the high-performance Cortex-A7 on an Azure Sphere IoT platform.

• We provide performance and memory usage results for a variety of configurations
enabled by our library, for a parameter set that enables insightful analytics, such as
linear inference, on encrypted data. With 136 KB of RAM, we achieve 77 ms and
737 ms for asymmetric encode-and-encrypt for 2048 single-precision numbers on a
Cortex-A7 and Cortex-M4, respectively.

Organization The remainder of this paper is organized as follows: Section 2 covers
preliminaries, including an introduction to the CKKS scheme and arithmetic algorithms.
Section 3 gives a high-level overview of our library’s components and usage in a secure
remote computation scenario. Section 4 provides further details of our library’s imple-
mentation, including various optimizations and their impact on computational efficiency
and memory consumption. Finally, Section 5 presents the performance and memory
consumption results of our library evaluation on Cortex-A7 and Cortex-M4 devices.

2 Preliminaries
2.1 Notation
We define the elements of the integer quotient ring Zq = Z/qZ as integers in (−q/2, q/2]
and represent them in our software implementation with unsigned integers in [0, q − 1].
Throughout this paper, we take n to be a power of two. We choose the 2n-th cyclotomic
polynomial xn + 1 to define a quotient ring R = Z[x]/(xn + 1) whose elements are integer
polynomials with degree less than n. The residue ring of R modulo q is denoted as
Rq = R/qR. We use ai to denote the i-th element of a vector a or the i-th coefficient
of a polynomial a. Operator [·]q reduces an element modulo q. For a finite set S, U(S)
denotes the uniform distribution on S. We denote the ternary distribution U({−1, 0, 1}n)
as U(R3) (since they are computationally identical), and the centered binomial distribution
parameterized by η as Bη, whose samples range in Z ∩ [−η, η]. We use Bη[x] to denote the
distribution of polynomials whose coefficients are sampled from Bη

2.2 Homomorphic Encryption and Ring-Learning with Errors
Homomorphic encryption is a cryptographic technology that allows for secure computation
on encrypted data. Throughout this paper, when we refer to homomorphic encryption,
we are specifically referring to a somewhat homomorphic encryption scheme that allows
both addition and multiplication on ciphertexts, with a limitation on the multiplicative
depth of computation (a so-called “leveled” homomorphic encryption scheme). HE schemes
typically include five main computation modules: parameter selection, key generation,
encryption, evaluation, and decryption. Parameters are selected based on a desired security
level and the multiplicative depth of computation that will be performed on ciphertexts.
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Key generation is performed by a trusted party and creates a secret key for decryption
and encryption. Key generation can also include the generation of one or more public
keys for encryption and/or other public functional keys to be used in evaluation, all
generated from the same underlying secret key. Encryption is non-deterministic and can be
either symmetric or asymmetric, while evaluation refers to computation on encrypted data
(typically performed by an untrusted party) to yield encrypted results. Finally, decryption
is performed by a trusted party with access to the secret key.

The security of most efficient homomorphic encryption schemes, such BGV [BGV12],
BFV [FV12], and CKKS [CKKS17], relies on the Ring Learning with Errors (RLWE)
problem. Given a key s chosen from a key distribution over R, an RLWE sample (b, a) ∈ R2

q

is constructed by sampling a from U(Rq) and noise e randomly from an error distribution
over R and computing b = as+ e (mod q). The RLWE assumption is that the distribution
of (b, a) and U(R2

q) are computationally indistinguishable. For our implementation, we
choose U(R3) as our key distribution and B21 as our error distribution, and choose secure
encryption parameters in compliance with the HE security standard [ACC+18].

The aforementioned HE schemes all support a technique called batching. Here, batching
refers to the encoding of multiple messages (where each message may consist of several
bits) into a single plaintext. The resulting batched plaintext can then be encrypted into a
single corresponding batched ciphertext. Moreover, computation on batched ciphertexts
can be performed in a single-instruction-multiple-data (SIMD) fashion on the underlying
messages, reducing the cost of homomorphic evaluation by several orders of magnitude.

2.3 CKKS
In 2017, Cheon, Kim, Kim, and Song introduced the first HE scheme for approximate
homomorphic encryption [CKKS17]. While other HE schemes can only preserve integer
modular arithmetic, producing modulo-reduced results instead of exact computation for
values that exceed a chosen plaintext modulus, the CKKS scheme allows for truncation
of the lower bits of the underlying floating point values. This truncation, which can be
controlled by carefully selecting the scale parameter ∆ to mark the position of the decimal
point, allows the results of CKKS homomorphic evaluation to occupy a dynamic range.
These properties have led to the CKKS scheme becoming widely considered as the most
desirable scheme for floating point computation, where approximation of values can be
tolerated. This makes CKKS an excellent fit for computations such as machine learning,
which naturally operate on floating point, imprecise values, and is evidenced by several
prior works demonstrating efficient CKKS-based logisitic regression and other machine
learning tasks [KSW+18, JKLS18, KSK+18, BGP+20, KSLM20]. By contrast, the CKKS
scheme would not be a good fit for computations such as private-set intersection, where
exact values are typically required. We choose to focus on the CKKS scheme as the basis
for our library (though our library contains all the core components for the BFV scheme as
well), since its ability to compute on floating point values makes it a natural fit to encode
the analog data typically captured by IoT device sensors.

Below, we give a summary of the CKKS encoding and encryption procedures. For
simplicity, we omit the description of CKKS key generation, evaluation, and decod-
ing/decryption procedures, since these do not need to be implemented on the device itself.
We refer readers to [CKKS17] and [CHK+19] for detailed descriptions of each module.

CKKS.Encode(z ∈ Cn/2, ∆ ∈ R): Let T be a multiplicative subgroup of Z∗2n with
order n/2. The subring H = {(zj)j∈Z∗2n

: zj = z−j} of Cn can be identified with Cn/2

via the natural projection π : (zj)j∈Z∗2n
7→ (zj)j∈T . Given a complex 2n-th root of unity

ζ = eπi/n, the canonical embedding σ : C[x]/(xn + 1) 7→ Cn/2 is an injection and is defined
as σ(a) = (a(ζj))j∈T . Denote as bσ−1(π−1(z))eR the discretization of σ−1(π−1(z)) to R.
A scalar ∆ ≥ 1 is multiplied before the discretization so that the rounding error does not
affect significant bits. Output plaintext polynomial m = b∆ · σ−1(π−1(z))eR ∈ R.



760 SEAL-Embedded: A Homomorphic Encryption Library for the Internet of Things

CKKS.SymEncrypt(secret key sk ∈ R3, plaintext m ∈ R): Sample a ← U(Rq) and
coefficients of e ∈ R from B21. Output (−a · sk + e+m, a) ∈ R2

q .
CKKS.AsymEncrypt(public key pk = (pk0, pk1) ∈ R2

q , plaintext m ∈ R): Sample
u← U(R3) and coefficients of e0, e1 ∈ R from B21. Output (u·pk0+e0+m,u·pk1+e1) ∈ R2

q .
Note that the above description for CKKS.Encode is different from the description given

in [CKKS17], which defines the canonical embedding as R 7→ Cn/2 and therefore applies
discretization to π−1(z). This difference has no effect on the correctness of encoding, since
the introduced rounding error can be scaled down by ∆ during the decode operation.
Additionally, the above description shows that CKKS is actually able to encode complex
floating-point values rather than just real values. Since prior works have largely been
unable to take advantage of complex encoding in real-world use cases, we assume an
encoding of real inputs z ∈ Rn/2 throughout this paper.

2.4 Residue Number System
To be compliant with the Homomorphic Encryption Security Standard [ACC+18], HE
schemes must be able to support multi-precision integer arithmetic. To efficiently compute
integer arithmetic of lengths larger than a single processor word-size, prior works make
use of the Chinese Remainder Theorem (CRT) (equivalently, the residue number system
(RNS)) and choose the modulus q to be a product of smaller pair-wise coprime moduli
q0, q1, · · · , qL−1 (e.g. primes). This establishes an isomorphism Rq0q1...qL−1 7→ Rq0 ×
Rq1 × · · · ×RqL−1 . To avoid costly CRT conversions, which involve multi-precision integer
arithmetic, full-RNS variants of HE schemes were developed to allow ciphertexts to
remain in RNS form. The full-RNS variant of CKKS was proposed in [CHK+19] and
is implemented by all libraries that support CKKS, including Microsoft SEAL [SEA20],
PALISADE [PAL], HEAAN [HEA], and HElib [HEl]. Under this RNS variant, an element
in Rq can be stored as an array of elements in Rq0 , Rq1 , . . . , RqL−1 .

2.5 Number Theoretic Transform (NTT)
One major performance bottleneck of HE schemes is polynomial multiplication. The
Number Theoretic Transform (NTT) is a commonly utilized technique for fast polynomial
multiplication. The NTT is similar to the Fast Fourier Transform (FFT) except that it
operates over a prime field instead of the complex field. In both FFT and NTT algorithms,
inputs are multiplied with twiddle factors (powers of an n-th primitive root of unity) and
combined with each other in a “butterfly”-like manner. To reduce the polynomial product
modulo xn + 1 for our ring structure, we perform a negacyclic convolution on the inputs
using a special transform whose twiddle factors are powers of a primitive 2n-th root of unity,
called the “negacyclic NTT”. In the rest of paper, we use “NTT” to refer to this negacyclic
NTT. The method for using the negacyclic convolution for polynomial multiplication
between two (n− 1)-degree polynomials consists of applying the negacyclic NTT to each
polynomial, multiplying the transformed polynomials together in a point-wise manner,
and performing an inverse negacyclic NTT on the result to get the n-dimensional product.
This process is dominated by the NTT/INTT operations, which gives the NTT-based
multiplication process an overall complexity of O(n logn). We use the NTT algorithm for
negacyclic convolution as summarized by [LN16], given in Algorithm 1 in Appendix A.
Our optimized NTT implementation is described in detail in Section 4.5.

2.6 Fast Fourier Transform for σ−1 Projection
The σ−1 map in the CKKS.Encode procedure (described in Section 2.3) can be performed
by evaluating a polynomial at ζ0, ζ−1, . . . , ζ−(n−1), where ζ is a primitive 2n-th root of
xn + 1 in C, e.g., eπi/n. This process can be computed through a negacyclic inverse FFT
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(IFFT) over C, which is conceptually similar to the inverse negacyclic NTT defined over Zq.
We adapted the inverse negacyclic NTT algorithm described in [LN16] to an efficient IFFT
algorithm for σ−1, given in Algorithm 2 in Appendix A. We describe our implementation
and optimizations for the IFFT in more detail in Section 4.4.

2.7 Related Work

Modern HE schemes are lattice-based and post-quantum in nature. As such, they
share many algorithmic commonalities with other post-quantum encryption schemes
such as CRYSTALS-KYBER [SAB+19], NewHope [PAA+19], SABER [DKRV19], and
NTRU [ZCH+19]. However, HE schemes operate on vectors and in rings with dimen-
sions orders of magnitude larger than those in post-quantum cryptosystems, leading to
significantly higher memory consumption for HE implementations. This makes HE much
more difficult to implement on embedded devices, since these devices often feature limited
memory availability and performance constraints. While several post-quantum-based
encryption schemes have been demonstrated on embedded devices [ABCG20, MKV20], no
homomorphic encryption scheme has been ported to the embedded domain.

Other HE schemes such as CGGI [CGGI20] and DM [DM15], also known as TFHE
and FHEW, respectively, feature lightweight encryption algorithms with O(n) complexity.
Although these schemes may be suitable for embedded devices, since they feature low
computational overhead and low memory consumption during encryption, they have many
orders of magnitude higher ciphertext-to-message size expansions. In particular, each
ciphertext in these schemes encrypts only a single bit (or very few bits). Additionally, the
bootstrapping operation, a technique which enables unlimited computation on ciphertexts,
is both necessary and costly for these schemes, since it must be applied after each ciphertext
operation during evaluation. This results in a much slower evaluation performance
compared to leveled HE schemes such as CKKS, BFV, and BGV. Taking CKKS with
a 4096-degree ring and 72-bit modulus as an example, the ciphertext-to-message size
expansion ratio for 2048 20-bit messages is 7.2, compared to a ratio of 16, 000 in CGGI;
squaring 2048 20-bit encrypted messages takes a fraction of a millisecond in CKKS, while
a single logic gate in CGGI with 1-bit inputs has an overhead of 13 ms.

Prior works [GHS12, LN14, DSES14] have shown that it is possible to achieve homo-
morphic encryption indirectly by first evaluating a block cipher to encrypt a message, and
then having an untrusted party homomorphically evaluate the block cipher’s decryption
circuit to obtain an HE ciphertext from the initial block cipher encryption. The computa-
tional cost of evaluating the decryption circuit can be minimized using a low-depth block
cipher [AGR+16]. However, this technique does not allow for the efficient floating point
arithmetic evaluation, since messages are in an extension field.

Both [CDKS20] and [BGGJ20] support conversion of ciphertexts from a lightweight
LWE encryption to an RLWE-based HE encryption. The former [CDKS20] has low
ciphertext-to-message size expansion and supports packing. However, it does not allow
message operations to be performed in a SIMD fashion on RLWE ciphertexts, thereby
losing several orders of magnitude speedup. The latter [BGGJ20] uses TLWE ciphertexts,
which are inefficient in storage and communication cost compared to packed ciphertexts.

In [LM20], the authors demonstrated a key-recovery attack on the CKKS scheme.
However, the attack requires an attacker to have access to a decryption oracle, e.g. by
allowing the attacker to query the client device for the decryption of any previously
encrypted ciphertexts. Since this attack arises from an incorrect instantiation of the HE
protocol within a full application workflow, it does not weaken the security of our work.
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3 SEAL-Embedded Design
The SEAL-Embedded solution consists of two main components: the device library, and
the cloud adapter. The device library contains optimized functions for encoding and
both symmetric and asymmetric encryption of the CKKS scheme. A user can use the
SEAL-Embedded solution for secure end-to-end homomorphic computation as follows:
After gathering the private sensor data on the embedded device, the user invokes the
SEAL-Embedded library to encode and encrypt the data into a CKKS ciphertext. The
user then transfers the ciphertext to an instance of the adapter in the cloud over a network
of the user’s choice. The adapter translates the ciphertexts into a form interpretable by
the SEAL library, which can then be invoked by an application to perform homomorphic
evaluation on the still-encrypted data. Finally, the computed results can be sent back to
the client, who can then use the SEAL library to decrypt and decode the results.

Adapter. The SEAL-Embedded cloud adapter is designed to be a translation layer
between the outputs of the SEAL-Embeddedd client device and the Microsoft SEAL
library for homomorphic encryption. This design decision allows updates to the SEAL
API to be handled by a simple update to the adapter in the cloud rather than a more
cumbersome device library update. The adapter is further responsible for interpreting and
post-processing the data sent from the device, constructing the objects required by the
SEAL server library, collecting the received data into these objects, and finally passing the
objects to the SEAL library. Since the adapter does not rely on any private user data, it
can be deployed safely in the untrusted cloud alongside the instance of the SEAL server.

Key Generation. The remaining step for the end-to-end flow described above is
the generation of the encryption keys. Although the SEAL-Embedded library contains
functions for secret key and public key generation, it is likely that a user will want to use
the SEAL-library to generate their keys ahead of device deployment. This would allow a
user to, for instance, also generate any additional public keys that may be required by cloud
operations. Therefore, the SEAL-Embedded adapter also contains functions for generating
the public and secret keys in a form that is interpretable by the SEAL-Embedded library.
These keys can then be generated in a trusted environment using the SEAL-Embedded
adapter and either installed on the embedded device along with the target application
image or sent to device at run-time. For extremely constrained devices, these keys can
even be partitioned and sent on a per-prime basis. This scenario is compatible with our
implementation, which also computes all operations on a per-prime basis.

3.1 Threat Model
For our threat model, we consider a client or user to be a trusted party capable of
performing key generation, encryption, and decryption in trusted environment, and a
server to be an untrusted party to which the client would like to offload computation
on sensitive data. We use the term device to refer to a trusted environment owned and
operated by the client (e.g. an embedded device) that is responsible for collecting the
private data. The goal of our system is to provide a client device with the capability of
homomorphically encoding and encrypting the data collected by the device in order to
facilitate its offload to an untrusted server. In particular, we wish to ensure the privacy of
data from the point at which it leaves the client device to the point at which any results
are returned to the client.

We consider the following classes of attacks, and discuss each in turn below:

• network attacks - A network attacker sees all traffic across all non-private networks. A
network attacker may act actively or passively and may exploit side-channel leakage
transmitted over the network to learn user data.
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• cloud attacks - A cloud attacker may refer either to an external entity who can
corrupt a cloud sever (e.g. by exploiting bugs in large cloud operating systems)
or a cloud infrastructure provider themselves. A cloud attacker may attempt to
circumvent traditional protections in the cloud to obtain read access to private data
through conventional software methods (e.g. buffer overflows), side-channel means
such as timing or power analysis, or physical attacks such as cold-boot attacks, or if
in control of the entire server, may simply read all server state. We consider cloud
attackers to be semi-honest, meaning that they will follow the prescribed server
protocol, but will seek to learn as much private user information as possible.

• device attacks - A device attack refers to an attack on the device itself. These attacks
may be remote and injected through direct or indirect (e.g. side-channel) software
means, or may refer to physical attacks on devices in deployment settings. The
latter may be particularly relevant in certain IoT use-cases, where edge nodes are
sometimes deployed in public areas (e.g. city-wide sensors).

We discuss the threat protections that our system is able to provide at a high level and
our deployment assumptions. First, we assume that any transfer of public or secret keys for
HE encryption can be transferred to the device securely, either before device deployment or
over a secure channel. We also assume that the deployed IoT device has access to standard
network protection mechanisms for confidentiality, integrity, and freshness of transmitted
data. These network security mechanisms are still required on top of homomorphically
encrypted ciphertexts since they are necessary for protection against active attacks and
secure entire network messages (including any network packet headers) rather than just
the ciphertext data itself. In our implementation of SEAL-Embedded on the Azure Sphere,
for example, communication channels are protected by the TLS protocol. Further, as
discussed in the introduction, homomorphic encryption systems send data to the server in
encrypted form. The key property of homomorphic encryption schemes is that they allow
the untrusted server to operate on the encrypted data directly without needing to decrypt
the data or know the secret key. Since no party can learn anything about the underlying
data through the encrypted ciphertexts alone, HE is able to provide protection against all
aforementioned cloud attackers. HE itself is not robust against malicious cloud attackers,
who can manipulate encrypted ciphertexts in the cloud in addition to viewing server state.
However, HE can still offer data privacy against these adversaries as well.

A remaining threat that we consider is the threat of attacks on the device directly. We
consider these threats largely out of scope, since we assume that an attack on the device
can easily access the underlying private user data (e.g. sensor samples) or the source of
data itself. Since an attacker would already have access to the raw data in this scenario,
any additional protections on ciphertexts, keys, or error polynomials would be extraneous.
However, if a secret key is stored on device, a device attacker could theoretically also
obtain and use this key to decrypt all previously encrypted information stored in the cloud,
thereby expanding the scope of a device attack to a potentially large amount of previously
offloaded user data. To mitigate this situation, users can choose to update their device
secret keys frequently, thus limiting the interval of data that a device attacker could decrypt
using the user’s secret key. However, this would mean that any data encrypted under
the old secret key would no longer be able to be analyzed alongside any data encrypted
with the new secret key.1 A better solution to mitigate this problem is to encrypt data
on the device using a public key instead of a secret key, thereby removing the need for
the secret key to be stored on the device entirely. A CKKS public key is much larger in

1Assuming circular security, it would be possible for a user to initiate a secure key-switching operation
in the cloud to transform previously encrypted data into a ciphertext that could be decrypted by the
new secret key, as described in [CKKS17]. However, after performing this key-switching operation, a
user would still be left with the problem that an attacker possessing the new secret key would be able to
decrypt the previously encrypted data.
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Figure 2: SEAL-Embedded library architecture.

size than a secret key, and therefore imposes a much larger memory requirement on the
device. Nevertheless, our system is able to provide memory and computationally efficient
implementations for public key CKKS encryption as well, often with the same or similar
RAM requirements as the secret key implementation for the same parameter set.

One subtlety that exists even with all the above considerations is the possibility that
timing variation on the device could reveal information about the underlying secret data.
For example, variations in sample time for sampling an error polynomial on device, or
from operations such as modular multiplication or addition including error or secret key
coefficients, may manifest as detectable time variations further downstream in the end-to-
end flow. These variations may be particularly observable in a streaming case, where a
device is computing and sending encryptions continuously. It may therefore be possible for
a network or cloud attacker to learn some information about the secret values from this
timing variation alone. To defend against this threat, we implement all secret-dependent
computations in a constant-time manner.2 This mitigation can also reduce the ability of
a co-located device application from learning secret values as well and therefore ensures
a better separation between applications on the device. Since device data leakage from
other channels (e.g. power side-channels) does not transfer to a detectable side channel
over the network, we do not provide protection from power analysis on the device itself.

Finally, we note that the post-quantum nature of HE additionally provides some
robustness against quantum attacks. In particular, attacks mounted by a quantum-time
adversary on HE ciphertexts would not be able to access the underlying private data.
For our implementation, we leave quantum attacks out of scope. However, if quantum
protection is desired, several existing libraries [wol, pqc] offer solutions for quantum-secure
encryption of messages across an untrusted channel (such as a public network).

3.2 Library Overview
In this section, we describe the structure of our library, including some of our optimizations
for performance and memory management. Figure 2 gives a visualization of our library as a
layered architecture. We describe each component below, leaving the bulk of optimization
details to Section 4.

The base layer of the SEAL-Embedded library consists of low-level arithmetic operations.
These include optimized addition and multiplication operations for both 32-bit and 64-bit
unsigned integer data types. For ease of portability, SEAL-Embedded is written entirely
in C, but includes inline assembly versions of critical operations for further performance
gains for ARM architecture targets. Additionally, SEAL-Embedded contains optimized,
constant-time variants of Barrett reduction [Bar87] and modular integer arithmetic. We
further include a fast variant of modular multiplication that can be used when one operand
is known ahead of time. These algorithms are given in more detail in Section 4.1.

2Functions in our library may still experience variations in time (e.g. due to differences in caching
between runs). Our constant-time code simply ensures that this variation will not be related to a difference
in the value of secret data.
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At the layer above the base layer, SEAL-Embedded implements the negacyclic NTT to
accelerate polynomial multiplications. For encryption, SEAL-Embedded contains functions
for sampling from uniform, ternary, and centered binomial distributions, using random
bytes generated by an extendable-output function (e.g. SHAKE-256) from a random seed
generated by an RNG accessible through system APIs or hardware peripherals. We give
further details about our choice of sampling algorithms in Section 4.2. For encoding, we
implement the inverse of the canonical embedding map using a variant of inverse FFT.
SEAL-Embedded offers trade-offs between computational efficiency and storage cost for
users to select based on their needs. We discuss these trade-offs and optimizations in
Sections 4.3–4.6.

At the top-most layer, SEAL-Embedded contains functions for CKKS encoding and
encryption operations. We provide users with preset parameters for encryption. This
allows us to omit several unnecessary functions from the library (e.g. generating prime
moduli based on the input size, finding the inverse of n in a particular ring), thus enabling
a smaller code size and faster run-time execution. However, it is possible for a user to
configure the library to use custom parameters as well, so long as they provide the necessary
precomputed values. The encoding and encryption functions string the functions in the
underlying layers together to convert an input value vector into a CKKS ciphertext. The
following section describes the encode-and-encrypt procedure as used in SEAL-Embedded.

3.3 Logical Flow
The process that our library uses to generate a CKKS ciphertext can be logically broken
up into an encoding and encryption procedure. First, a user application passes the data it
wants to encrypt to our library in the form of an input vector of (either real or complex)
floating-point values, along with a chosen scale ∆. During encoding, SEAL-Embedded
first applies the π−1 projection on these values, essentially performing a reordering of the
inputs. Next, SEAL-Embedded applies the σ−1 map to reordered values via a variant of
inverse FFT over the complex field (described in Section 2.6). The output, once multiplied
by the chosen scale ∆ and rounded to the nearest integer, is the CKKS plaintext.

Following the encoding procedure, the resulting CKKS plaintext is fed into an encryption
sub-module, which is comprised of an RLWE encryption of zero followed by an addition
of the CKKS encoded plaintext. In the symmetric case, a uniformly random polynomial
in Rqi is sampled and stored as the second polynomial of the ciphertext, and an error
polynomial is sampled from the error distribution (set as the binomial distribution in
SEAL-Embedded) and reduced modulo qi. The random polynomial is then multiplied
with the secret key and added to the reduced error polynomial. The output of this step is
the output of the RLWE encryption of zero: c0 = −a · s+ e, c1 = a. Finally, to turn the
encryption of zero into a ciphertext encrypting the requested values vector, the plaintext
m is added to the c0 term of the RLWE encryption.

The asymmetric case proceeds similarly to the above, with a few key differences. A
public key with two polynomial components is used in place of the uniform random
polynomial, while a sampled uniform ternary polynomial is used in place of the secret key.
Additionally, two error polynomials are sampled from the chosen error distribution. The
resulting RLWE ciphertext is constructed as: c0 = u · pk0 + e0, c1 = u · pk1 + e1. As in the
symmetric case, the plaintext m is added to the c0 term of the RLWE encryption.

If the full-RNS version of the encode-and-encrypt procedure is used, the above proce-
dures occur with respect to each small modulus qi. This process is illustrated in Figure 3
for both symmetric and asymmetric encryption. The logical flow described above is
useful for understanding the underlying process of the encode-and-encrypt procedure. In
SEAL-Embedded, however, we choose to order the operations in a slightly different manner
in order to enable optimal performance and memory usage. We describe this re-ordering
in more detail in Section 4.3.
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Figure 3: Logical flow of the CKKS encode-and-encrypt procedure used by SEAL-
Embedded for symmetric (a) and asymmetric (b) encryption. Each CTi denotes a
two-component ciphertext, while each PKi denotes a two-component public key. A
CKKS ciphertext is generated by adding a CKKS plaintext to an RLWE encryption of
zero. Note that in our work, the plaintext m is first added to error e (e0 for asymmetric
encryption) to reduce memory consumption and increase performance. (see Section 4.3).

4 Implementation Details and Optimizations

4.1 Low-Level Arithmetic
SEAL-Embedded relies on the efficiency of low-level modular multiplication and addition
of integers. For our implementation, we choose CKKS parameters that use primes at most
30-bits in size to be compatible with the small RAM size and 32-bit architecture type of
most embedded devices. As discussed later in Section 5.1, these parameters are capable of
building real-life applications such as linear inference. We implement all modular arithmetic
functions in C. For ARM architectures, we also provide inline assembly versions of the
modular arithmetic functions using the UMULL instruction to produce a 64-bit product of
two 32-bit unsigned integers.3

Additionally, we implement two versions of integer modular multiplication. The first

3UMULL is supported on ARM v6-T2 and above architectures.
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version contains standard Barrett reduction with both 32-bit and 64-bit wide multiplications:
Given a modulus t < 230, a precomputed value u = b264/tc, and integers x, y < t, the
reduction computes x · y−bx·y·u264 c · t as either [x · y]t or [x · y]t + t, then possibly subtracts a
t (in a constant-time manner) to get the final reduced result. The second version is a much
faster variant of the former and can be used for instances where one of the operands x or y
is known ahead of time. In this version, we precompute an auxiliary integer y′ = by ·232/tc.
Then, we calculate x · y− bx·y

′

232 c · t as either [x · y]t or [x · y]t + t (again reducing a final t if
necessary).4 This second version only needs the 32 most-significant bits of the product
when computing x ·y′, and therefore only requires 32-bit multiplication. The second version
is especially applicable to the modular multiplication of input values with twiddle factors
during the NTT, since the twiddle factors are known before runtime. We rely on both of
the above versions of modular multiplication during calculation of the NTT, and refer to
the implementation of the second version as the “fast” NTT configuration.

4.2 Random Sampling

SEAL-Embedded samples error polynomials from a centered binomial distribution, the same
distribution as widely adopted by Module-LWE and RLWE-based cryptosystems [SAB+19,
PAA+19, DKRV19]. The original worst-case to average-case reductions for LWE [Reg05]
and RLWE [LPR10] apply to (rounded) continuous Gaussian distributions and extend to
discrete Gaussian distributions. However, the implementation of efficient and constant-time
Gaussian sampling is a challenging problem [MW17][KRR+18]. By contrast, sampling from
a centered binomial distribution Bk can be performed efficiently and in constant-time by
calculating the difference of Hamming weights of two random bit streams of length k. There
is no known attack that takes advantage of the shape of this error distribution, assuming its
standard deviation is sufficiently large. To align with the HE security standard [ACC+18],
which lists secure parameters for distributions with a standard deviation of 3.2, we use a
centered binomial distribution with a standard deviation of

√
21/2 ≈ 3.24. This choice

does not reduce security levels and only increases encryption noise by a negligible amount.
Additionally, SEAL-Embedded implements two uniform sampling modules for symmet-

ric and asymmetric encryption. Symmetric encryption requires the second polynomial of a
ciphertext to be sampled uniformly from Rq. Since both the CRT and NTT are bijective,
we sample this polynomial uniformly from Rqi

directly in the NTT form for each qi in
the RNS base. Our implementation uses rejection sampling to obtain a random value
less than the maximum multiple of qi representable by the integer data type, and applies
constant-time Barrett reduction modulo qi to the output. Asymmetric encryption requires
a polynomial to be sampled uniformly from R3 (i.e., n coefficients sampled uniformly from
{−1, 0, 1}). Similar to the symmetric case, we implement this functionality using rejection
sampling and a constant-time implementation of modulo 3 reduction.

All three of the aforementioned distributions require a source of random bytes. We
obtain these random bytes by first generating a 64-byte random seed (the same size of
seed as used in Microsoft SEAL) from the device’s RNG. This seed is then extended by an
extendable-output function (XOF) to fill a variable length buffer with cryptographically
secure pseudo-random bytes. Using an XOF allows SEAL-Embedded to replace half of a
symmetrically encrypted ciphertext by the seed to reduce communication cost. Further,
since the overhead of random sampling is dominated by the XOF, using an XOF rather
than a platform-specific RNG allows for a fairer comparison between different platforms.
For our XOF, we use the assembly implementation of SHAKE-256 given in PQM4 [KRSS]5.

4According to [Har14], this algorithm should be attributed to the unpublished work [Fär05].
5SEAL-Embedded also provides the C version of SHAKE-256 as implemented in [SEA20] as a fallback.
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Figure 4: Memory requirements, order of operations, and memory re-use strategy for SEAL-
Embedded symmetric (a) and asymmetric (b) encode-and-encrypt procedure configured
for high memory efficiency. Block sizes are given in terms of bytes (e.g. m′ occupies 8n =
32 KB for n = 4096), and dashed lines denote memory reuse. Polynomial operators with
no left-hand component operate on the previous object in the particular memory block.

4.3 Memory Management
In order to maintain a small form factor, low price point, and high energy efficiency, embed-
ded devices are often uniquely memory constrained when compared to other computational
platforms. This constraint makes running memory-intensive workloads like homomorphic
encryption a challenge on embedded devices. Moreover, any embedded encryption library
must leave enough RAM free for user applications to operate and collect the data that the
user desires to encrypt. Thus, in addition to the module-specific optimizations described
in previous sections, we employ multiple techniques to further optimize memory usage
in SEAL-Embedded, including RNS partitioning, data type compression, and a novel
memory pool allocation strategy. We consider these optimizations together as part of a
comprehensive memory re-use strategy, described in more detail below.

RNS Partitioning The first major way in which SEAL-Embedded overcomes memory
limitations is by operating with respect to a single RNS prime at any given point. As
mentioned in Section 2.4, the isomorphism established by the CRT preserves arithmetic in
Rq0q1···qL−1 with arithmetic in subrings Rqi that can be performed independently. SEAL-
Embedded exploits this property by performing encryption in one subring Rqi

at a time,
allocating just enough memory to carry out operations for a single prime component. After
sending the ciphertext elements to an external server for a particular prime, the device
can begin the encryption process with respect to the next RNS prime. This method is in
direct contrast to currently available HE libraries such as Microsoft SEAL, which often
allocate enough memory for all prime components of a polynomial at once.
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Figure 5: Memory requirements, order of operations, and memory re-use strategy for SEAL-
Embedded symmetric (a) and asymmetric (b) encode-and-encrypt procedure configured
for high performance. Block sizes are given in terms of bytes (e.g. m′ occupies 8n =
32 KB for n = 4096), and dashed lines denote memory reuse. Polynomial operators with
no left-hand component operate on the previous object in the particular memory block.

Data Type Compression The second technique SEAL-Embedded employs to reduce
memory consumption is memory compression of certain polynomials. We leverage the
ternary nature of the secret key polynomial s (or polynomial u, in the asymmetric case) and
store its values using just 2 bits per coefficient. SEAL-Embedded also applies compression
to the output of error sampling. Since each error sample is an integer in the range [−21, 21],
each sample can be represented in just 6 bits. As a compromise between memory efficiency
and fast performance from a regular access pattern, we compress the error polynomials to
occupy 8-bits of storage per coefficient. When either the ternary or error polynomials are
required for arithmetic operation with another polynomial, we read its coefficients and
reduce modular qi (a larger representation) as needed, one coefficient at a time.
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Memory Pool The third significant way SEAL-Embedded overcomes memory limitations
is via the use of a memory pool. For both symmetric and asymmetric cases, we carefully
determined the minimum amount of memory required for efficient operation of the library.
SEAL-Embedded uses these sizes to allocate all the memory it needs (for a particular
configuration of the library) up front. This one-time allocation has the advantages of
providing a higher level of memory access safety and availability throughout the lifetime
of the library, ensuring low memory usage by preventing fragmentation, and reducing the
number of calls to the costly memory allocator. However, the use of a manually sized
memory pool comes with its own challenges; in particular, we need to determine the precise
re-use pattern for the memory in the pool, described in more detail below.

Efficient Memory Re-use Strategy Combining the above three strategies led us to
carefully optimize the particular order of SEAL-Embedded library operations to ensure the
lowest possible memory usage while still enabling high performance. Our strategy is best
explained through the following example of how an encoded message m ∈ Zn is passed
to encryption operations in Rqi

. The naive approach taken by almost all HE libraries
is as follows: given the output of encoding m ∈ Zn and a freshly-sampled error vector
e ∈ Bn21, reduce e and m modulo qi to get ei and mi, respectively; perform NTT in Rqi

on
ei to generate an encryption of zero; perform NTT in Rqi

on mi and add the result to the
encryption of zero. Note that this requires storage for m, e, mi, and ei in memory (17n or
33n bytes with or without RNS partitioning, respectively, for 3 primes). In our design,
by contrast, we sample e coefficient-by-coefficient and add each coefficient to m in-place
without modulo reduction, such that m (or m+ e) occupies the same buffer throughout
the full encryption. Using this method, we do not need to allocate additional storage for
sampling the error e, and instead proceed with the modular reduction and NTT in Rqi

of
m+ e with respect to RNS partitioning. As a result, our method has the advantage of
needing fewer NTTs than the naive case and requires only 12n bytes to store m+ e and its
NTT form. This example demonstrates how we consider all three of the aforementioned
memory management strategies to ensure a memory-optimal implementation. Complete
outlines of our re-use strategy for low memory and high performance configurations of our
library are given by the numbered operations in Figures 4 and 5.

Notably, our largest memory requirement comes from the encoding procedure, which
at a minimum requires space for 16n bytes. Our implementation ensures that most of
the memory used by the encoding procedure is re-used by encryption, so that encryption
requires zero or only a small amount of extra memory from this initial allocation. Addi-
tionally, we allow for multiple allocation strategies for a user to choose from, depending on
the requirements of their device and deployment. An example configuration of memory
using our library, targeted for low-RAM utilization while still achieving high performance,
is given in Figure 4 for symmetric and asymmetric encryption. As another example, for
the case where an IoT device is able to support slightly larger memory usage, our library
can be also configured to use additional RAM and/or flash data storage to achieve better
performance (shown in Figure 5 for symmetric and asymmetric encryption). These options,
which are described in more detail in the following sections, allow our library to be used
across a variety of devices and scenarios.

4.4 Optimizations and Trade-offs for the IFFT
As discussed in Section 2.6, the σ−1 projection in the CKKS encoding procedure can be
performed by evaluating an inverse FFT over the complex field using double-precision
floating arithmetic. SEAL-Embedded implements an efficient version of this algorithm
(see: Appendix A) using the techniques given in [LN16]. While the input to the IFFT in
SEAL-Embedded is a vector of n real single-precision floating point values, intermediate
results are a vector of n complex double-precision floating point values. Therefore, the
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Table 1: Configurations and data memory requirements in bytes for IFFT roots, NTT
roots, and π−1 projection in SEAL-Embedded.
Module Configuration RAM (B) Flash (B) Description

IFFT compute on-the-fly 0 0 memory efficient
load 16n 16n high performance

NTT

compute on-the-fly 0 0 memory efficient
compute one-shot 4n 0 balanced for memory

load 4n 4n balanced for performance
load fast 8n 8n high performance

π−1

compute on-the-fly 0 0 memory efficient
compute persistent 2n 0 balanced for memory

load 2n 2n balanced for performance
load persistent 2n 2n high performance

minimum memory requirement of the IFFT module is large (e.g. 64K bytes for n = 4096).
The output of the IFFT, however, is a vector of n real double-precision floating point
values, because the input values are conjugate pairs generated by the π−1 map. We can
therefore compress the IFFT output to occupy only half the storage of intermediate results
and reuse the other half as “free” memory in following procedures (e.g. encryption).

To aid memory conservation for devices where memory is particularly constrained,
SEAL-Embedded can calculate the powers of a 2n-th primitive root of unity in C (in
short, roots) that are required for the IFFT “on-the-fly” case so that roots require zero
RAM or flash data storage. For less constrained devices, we offer another option to
store precomputed roots in flash and load them into RAM during the encode-and-encrypt
procedure. A naive implementation of the “load” would require an additional n complex
double-precision elements of RAM consumption. However, we can again mitigate the effect
of this requirement through use of our memory pool, as shown in Figure 5. These two
options are summarized in Table 1. We note that the high performance option can save
significant processing time, as it requires much less double-precision arithmetic (O(n)
trigonometric sin/cos functions) than the “on-the-fly” case.

4.5 Optimizations and Trade-offs for the NTT
As discussed in Section 2.5, we used the NTT algorithm described in [LN16] (given in
Algorithm 1 in Appendix A) for our NTT implementation, using the modular multiplication
algorithms mentioned in Section 4.1. Similar to the IFFT, we implement multiple versions
of the NTT (see: Table 1) that either compute roots or access precomputed roots to
offer a trade-off between storage requirements and computational efficiency. Each of the
NTT algorithms request or generate each power of the primitive root once (specifically,
the bit_reverse(k)-th power in the k-th request, where k ∈ {1, 2, . . . , n − 1}). We
additionally implement a faster NTT algorithm (see: “load fast” below) that requires twice
the amount of memory to store powers of a 2n-th primitive root of unity in Zqi

.
In the “compute on-the-fly” version, when a certain root power is requested, we compute

its value by exponentiating the primitive root modulo qi. For pre-selected RNS primes and
degree n, we precompute 2n-th primitive root of unity for each prime. For the k-th request,
we compute the bit_reverse(k)-th power using the square-and-multiply algorithm in the
reverse direction (i.e., from least to most significant bit), resulting in an overal complexity
of O(n log logn) integer modular multiplications for obtaining the full set of NTT roots.
This configuration of the NTT is most useful for a low-memory implementation, since it
requires no additional RAM or flash data storage.

In the “compute one-shot” configuration, we compute all root powers together and
store them in RAM for the lifetime of encryption with each prime. This requires 4n
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bytes of RAM for requesting all the roots. However, it requires less computation than the
“compute on-the-fly” case, since the roots only need to be calculated once per prime. We
compute powers of the roots in increasing order, with n integer modular multiplications
and n bit-reverse operations, so that they are stored in bit-reversed order for coalesced
memory accesses during the NTT computation. In the “load” flavor, all of the roots are
precomputed and stored in flash ahead of deployment. The NTTs for each prime are
performed together, before which the roots for the target prime are loaded to RAM, and
after which the roots for next prime are loaded into the same RAM buffer (overwriting
the previous roots). For accessing the NTT roots, this version requires 4n bytes RAM,
and n bit-reverse operations. However, it requires no integer modular multiplications, and
can therefore be much faster than the above two configurations.

Finally, we also include a high performance “load fast” version of the NTT. In this
version, each root is coupled with a precomputed auxiliary integer (see: Section 4.1) that
enables fast integer modular multiplication with the NTT inputs. First, the roots (and
their corresponding auxiliary integers) are pre-loaded into flash. Then, similar to the above
cases, the NTTs for each prime are performed together, before which the roots for this
prime are loaded to RAM, and after which the roots for the next prime are loaded and
overwrite the same buffer. For obtaining the NTT roots, this requires 8n bytes RAM and
n bit-reverse operations. Multiplications with the roots are faster in this NTT version
than in others. Additionally, the NTT values can be reduced modulo qi in a faster “lazy”
way since its multiplication algorithm can tolerate inputs larger than qi. As a result, we
can trade O(n logn) reductions from [0, 2qi − 1] in the inner loop for just O(n) reductions
from [0, 4qi − 1] at the end of the computation.

4.6 Optimizations and Trade-offs for the π−1 Projection
As discussed in Section 2.3, the input to the encoding procedure (an element of Cn/2) is
mapped to the subring H of Cn. Each coefficient in the input vector of length n/2 and its
conjugation are sent to two calculated destinations in the output vector of length n. Since
the IFFT assumes a bit-reversed ordering of the input, our index calculation operation
outputs indices in this bit-reversed order. More precisely, the i-th input coefficient is sent
to indices j = bit_reverse(([5i]2n − 1)/2) and n − 1 − j in the output. Our library
implements four versions of this projection: “compute on-the-fly”, “compute persistent”,
“load”, and “load persistent” (summarized in Table 1).

The “compute on-the-fly” and “compute persistent” versions of the projection compute
indices using the same strategies used by the “compute on-the-fly” and “compute one-shot”
versions of the NTT (described in Section 4.5), respectively. The main difference between
these projection versions is that the “compute persistent” case stores calculated indices in
RAM for the lifetime of a program. Indices can instead be precomputed and stored in flash
to save computation; the “load” version loads precomputed indices to RAM every time an
encoding is performed (and overwrites the index buffer with other data after encoding),
while the “load persistent” version loads indices into RAM for the lifetime of the program.

5 Experimental Results
In order to demonstrate the practicality of our library and evaluate its performance, we
implement an example encryption flow on two embedded microcontrollers: an Azure Sphere
MT3620 with ARM Cortex-A7, and the Nordic nRF52840 with ARM Cortex-M4. We
give the specifications for each in Table 2. For all experiments, we compile our library
with -O3 optimizations using gcc 8.2 (which accompanies the Azure Sphere SDK) and
ARM gcc 9.2.1 for the Azure Sphere and Nordic nRF52840, respectively. As shown in
later sections, the Cortex-A7 and Cortex-M4 produce dramatically different runtimes of
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Table 2: Cortex-A7 (MT3620) and Cortex-M4 (nRF52840) specifications
Processor OS Clock Speed Cache (KB) RAM Flash

Cortex-A7 Linux 494 MHz L1: 64/32 I/D,
L2: 256 256 KB* 1 MB RO +

64 KB R/W
Cortex-M4 none 64 MHz none 256 KB 1 MB
* The Azure Sphere MT3620 reserves a large portion of RAM for the OS, leaving only 256 KB remaining
for each individual user application.

SEAL-Embedded function calls, which can be attributed to differences in clock frequencies,
caching mechanisms, and RAM/flash speeds between the platforms.

5.1 Choosing Parameters
The memory requirement of SEAL-Embedded is linear with respect to the degree n.
After numerous experiments, we found that the largest value of n that fits in 256 KB of
RAM for our implementation is 4096 (or 8192 for our extremely memory-efficient library
configuration). According to the Homomorphic Encryption security standard [ACC+18],
for n = 4096, the product of all prime moduli q0q1 · · · qL−1 must not exceed 109 bits for
128-bit classical security. Furthermore, Microsoft SEAL requires a prime to be reserved for
the purposes of noise reduction. This prime does not need to be added during encryption,
but is automatically added during key generation for evaluation keys. Therefore, an
encryption with 3 primes on SEAL-Embedded corresponds to an evaluation with 4 primes
in Microsoft SEAL. We limit moduli to 3 primes with 30 or fewer bits, leaving at least 19
bits of room for Microsoft SEAL to add a fourth modulus.

Using the above parameters, it is possible to use the CKKS scheme to build real-
life applications with sufficient accuracy. For example, one can build an application for
privacy-preserving inference of encrypted features using a trained linear model as follows:
First, build an inference service application with Microsoft SEAL using four 25-bit primes.
Then, on a client device, use SEAL-Embedded to encode a vector of real-valued features
with scale ∆ = 225 and encrypt the result with three 25-bit primes. Send the resulting
ciphertext to the server, which then performs an inner product of the encrypted features
with a vector of plaintext weights. The server additionally performs a “rescale” operation
on the resulting ciphertext to prevent exponential growth of precision in the underlying
values, consuming one prime modulus in the process. The final ciphertext is left with two
25-bit primes and is sent to the client for decryption. The decrypted messages (again, a
vector of real numbers) should roughly preserve 25-bit accuracy for the integral parts of
the messages and 10-bit accuracy for the fractional parts (both of which can be adjusted
by changing ∆ and the sizes of the primes). In [KSK+18], the authors show that this
resulting accuracy was sufficient for logistic regression training.

Comparison with Existing HE Libraries Several existing libraries also provide an imple-
mentation of CKKS homomorphic encryption; however, these libraries target full-fledged
CPUs and cannot not be run on embedded devices. To demonstrate this, we create test
programs that perform CKKS encoding and encryption of 2048 single-precision values with
the same or smaller parameters as in our experiments (n = 4096 and 3 primes with 30 or
fewer bits) using three popular open-source HE libraries: Microsoft SEAL [SEA20] v3.6.1,
HElib [HEl] v1.3.1, and PALISADE [PAL] v1.10.6. We compile all tests with clang-10.0.0
with -O3 optimizations on Ubuntu 20.04. We focus on the memory requirements of these
libraries since this requirement is fundamental to the operation of embedded devices and
is the main barrier to the ability of the libraries to be ported to the embedded domain.
To ensure a fair comparison against our library, we load parameters, keys, and any pre-
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Table 3: Memory usage for CKKS encoding and encryption of 2048 single-precision values
for n = 4096 and 3 primes with 30 or fewer bits for various open-source HE libraries.

Library Valgrind (KB) RSS (KB) VM (KB)
Microsoft SEAL v3.6.1 4,982 8,992 12,156
HElib v1.3.1 n/a* 14,416 19,276
PALISADE v1.10.6 2,359 14,840 2,372,060
* Valgrind was unable to measure HElib due to unrecognised instructions.

computed values from memory rather than generating them at runtime. We measured the
peak stack and heap allocation using Valgrind v3.16.1 [NS07], the resident set size (RSS),
which indicates the portion of memory occupied by a process that is held in main memory,
and virtual memory (VM), which includes the memory usage of any shared libraries, as
listed in Table 3. These results show that the tested libraries require orders of magnitude
more memory than 256 KB, and therefore are not suitable for embedded devices.

5.2 SEAL-Embedded Modules
We report the overhead of independent modules in SEAL-Embedded in Table 4 (see Table 1
and Section 4.2 for descriptions of the various modes). CKKS.Encode is executed only
once irrespective of the number of primes in the encode-and-encrypt workflow. The vast
majority of the encoding module’s runtime is consumed by the IFFT. The remaining
overhead includes evaluating π−1, multiplying by the scale ∆, and rounding to the nearest
integer, all of which are insignificant compared to the IFFT computation runtime.

CKKS.SymEncrypt / CKKS.AsymEncrypt is performed once for each prime modulus.
The majority of overhead for both symmetric and asymmetric modules are caused by
application of the NTT and random sampling. In symmetric mode, encryption includes
2× L NTTs, L polynomial samples from uniform distribution over Rqi

, and 1 polynomial
sample from B21[x], as well as an O(n) amount of integer modular multiplications, additions,
and negations. In asymmetric mode, encryption includes 3×L NTTs, L polynomial samples
from ternary distribution R3, and 2 polynomial samples from B21[x], plus an O(n) amount
of integer modular multiplications, additions, and negations. Note that the runtimes of
the NTT module provided in Table 4 are given with respect to a single prime.

For random sampling from all distributions, we generate a 64-byte random seed using
a call to /dev/urandom through the Azure Sphere’s Linux subsystem on the Cortex-A7
and the RNG peripheral on nRF52480. We then use the SHAKE-256 XOF to expand the
seed to generate random bytes, which dominates the overhead of random sampling. For
the uniform distribution, we fill a pre-allocated buffer with n 32-bit coefficients using a
single call to SHAKE-256. For the other distributions, we allocate a 96-byte buffer on the
stack and fill it as needed using SHAKE-256 until all coefficients of the polynomial have
been sampled. We implement both the uniform and ternary distributions using rejection
sampling, and therefore make extra calls to SHAKE-256 when rejection occurs.

5.3 Encoding and Encryption
In Table 5, we list the total memory and flash data requirements and performance overhead
of encoding and encryption using n = 4096 and 3 primes, for both symmetric and
asymmetric modes. In particular, we provide evaluation results for the most memory
efficient and highest performance configurations, as well as a configuration that provides a
balance between the two. For all configurations, we find that encoding and encryption is
10× faster on the Cortex-A7 than the Cortex-M4. This can be attributed to the 7.72×
difference in frequency between the cores as well as the presence of caches on the Cortex-A7.
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Table 4: Performance and data memory requirements of SEAL-Embedded modules on
the Cortex-M4 and Cortex-A7 for n = 4096.

Module Mode/Type RAM FLASH Cortex-M4 Cortex-A7

IFFT compute on-the-fly 0 KB 0 KB 751,745 µs 7,524 µs
load 64 KB 64 KB 408,063 µs 6,040 µs

NTT

compute on-the-fly 0 KB 0 KB 65,134 µs 15,870 µs
compute one-shot 16 KB 0 KB 28,240 µs 4,684 µs

load 16 KB 48 KB 25,495 µs 4,976 µs
load fast 32 KB 96 KB 15,336 µs 3,221 µs

Sample
uniform 16 KB 0 KB 34,294 µs 3,888 µs
ternary 1 KB 0 KB 24,474 µs 1,749 µs
CBD 4 KB 0 KB 77,155 µs 9,367 µs

Table 5: SEAL-Embedded runtimes and data memory requirements for CKKS encode-and-
encrypt on the Cortex-M4 and Cortex-A7 for n = 4096 and 3 primes. Configurations for
the IFFT, NTT, and π−1 (see Table 1) are as follows: “memory efficient” uses “compute
on-the-fly” for all; “balanced” uses “load” for all; “high performance” uses “load”, “load
fast”, and “load persistent”, respectively.
Key Type Configuration RAM FLASH Cortex-M4 Cortex-A7

symmetric
memory efficient 65 KB 1 KB 1,348,602 µs 131,691 µs

balanced 129 KB 121 KB 735,826 µs 68,959 µs
high performance 137 KB 169 KB 680,790 µs 60,016 µs

asymmetric
memory efficient 85 KB 96 KB 1,550,116 µs 188,681 µs

balanced 128 KB 216 KB 824,403 µs 91,267 µs
high performance 136 KB 264 KB 737,342 µs 76,778 µs

6 Conclusion
In this work, we present SEAL-Embedded, the first Homomorphic Encryption library
for the Internet of Things. SEAL-Embedded implements several optimizations that
enable efficient operation of CKKS encoding and encryption, including optimized low-level
arithmetic, fast multiplication, and finely tuned memory management. We also present
an adapter component for the SEAL-Embedded library, which enables compatibility with
the Microsoft SEAL HE library for an end-to-end solution for homomorphic encryption
on embedded devices. To demonstrate the efficiency of our library, we implement an
example encode-and-encrypt procedure on two different IoT platforms. Our results show
that our solution is able to provide efficient performance and memory consumption for
homomorphic encryption on embedded devices. This work is released open-source at
https://github.com/microsoft/SEAL-Embedded.
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Algorithm 1 Inplace NTT for Negacyclic Convolution
Input: A vector a ∈ Znq with dimension n a power of two, a prime modulus q congruent

to 1 modulo 2n, and ψ a table of precomputed 0 to (n− 1)-th powers of a primitive
2n-th root of unity in bit-reversed order.

Output: a in NTT domain
1: function NTT(a, ψ, n, q)
2: for (m = 1; m < n; m = 2m) do
3: t = n/2/m
4: for (i = 0; i < m; i++) do
5: S = ψ[m+ i]
6: for (j = 2it; j < (2i+ 1)t; j++) do
7: L = a[j]
8: R = a[j + t] · S mod q
9: a[j] = (L+R) mod q
10: a[j + t] = L−R+ q mod q
11: return a

Algorithm 2 Inverse Fast Fourier Transform (IFFT) for the Canonical Embedding
Input: A vector a ∈ Cn with dimension n a power of two and ψ−1 a table of precomputed

0 to (n− 1)-th inverse powers of a primitive 2n-th root of unity in bit-reversed order.
Output: a in IFFT domain
1: function IFFT(a, ψ−1, n)
2: for (m = n/2; m > 0, m = m/2) do
3: t = n/2/m
4: for (i = 0; i < m; i++) do
5: S = ψ−1[m+ i]
6: for (j = 2it; j < (2i+ 1)t; j++) do
7: L = a[j]
8: R = a[j + t]
9: a[j] = L+R
10: a[j + t] = (L−R) · S
11: for (i = 0; i < n, i++) do
12: a[i] = a[i] · n−1

13: return a
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