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Abstract.
Masking schemes are among the most popular countermeasures against Side-Channel
Analysis (SCA) attacks. Realization of masked implementations on hardware faces
several difficulties including dealing with glitches. Threshold Implementation (TI) is
known as the first strategy with provable security in presence of glitches. In addition
to the desired security order d, TI defines the minimum number of shares to also
depend on the algebraic degree of the target function. This may lead to unaffordable
implementation costs for higher orders. For example, at least five shares are required
to protect the smallest nonlinear function against second-order attacks. By cutting
such a dependency, the successor schemes are able to achieve the same security level
by just d+ 1 shares, at the cost of high demand for fresh randomness, particularly at
higher orders.
In this work, we provide a methodology to realize the second-order glitch-extended
probing-secure implementation of a group of quadratic functions with three shares and
no fresh randomness. This allows us to construct second-order secure implementations
of several cryptographic primitives with very limited number of fresh masks, including
Keccak, SKINNY, Midori, PRESENT, and PRINCE.
Keywords: Side-Channel Analysis · Masking · Hardware · Threshold Implementa-
tion

1 Introduction
Physical attacks are a serious threat for many security-critical devices, where the attacker
tries to gain sensitive information by monitoring the physical properties of the target
device. Physical observations like power consumption or electromagnetic radiations can
be exploited to recover sensitive data, if no proper countermeasure is employed. Hence,
resistance against Side-Channel Analysis (SCA) attacks – as a sort of physical attack – is
an important requirement for almost any deployed cryptographic device.

Kocher et al. [KJJ99] exploited the relation between the calculations performed on
intermediate values and power consumption of the target device for the first time. Introduc-
tion of such a seminal work opened a new line of research into SCA attacks leading to more
sophisticated attack strategies like Correlation Power Analysis (CPA) [BCO04], Mutual In-
formation Analysis (MIA) [GBTP08], and Moments-Correlating DPA (MC-DPA) [MS16b].
Recently, several studies focus on applying Deep Learning (DL) to improve state-of-the-art
SCA attacks [Tim19, RAD20]. This highlights the necessity of employing appropriate
countermeasures to ensure physical security in applications, where the adversary has a
chance to control the device. A wide range of strategies and theories have been proposed
in the open literature to limit or eliminate the amount of SCA leakages, some focusing on
software implementations, others on hardware platforms. Masking schemes, due to their
sound theoretical basis and a good understanding of their requirements, are among the
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most common methods applied in practice and studied by the researchers. In masking
schemes, sensitive intermediate values are randomized during the execution of the cipher
breaking the relation between the processed secret-dependent data and physical properties
of the underlying device.

Generally, in a masking scheme, every key-dependent variable is split into several
shares (defining the order of sharing/masking), and all computations are performed on
the masked data which can be seen as performing the computations on secret-shared data.
Boolean masking is surely the most popular approach, although other masking schemes like
Multiplicative masking [MRB18] or Inner Product masking [BFG+17] can be beneficial
depending on the application. It has been shown that masking increases the measurement
complexity of an SCA attack exponentially in the number of shares provided that the
leakage of each share is noisy enough and that each power sample depends on a bounded
number of shares. This level of protection does not come for free; the area overhead
and the latency of an implementation realizing a masking scheme grows approximately
quadratically with respect to the number of shares [FGP+18].

In the context of masking, the seminal contribution has been made by Trichina [Tri03]
where a first-order secure AND gate was presented. As a follow-up work, Ishai et al. [ISW03]
introduced a general methodology to mask a 2-input AND gate at the desired security
order. However, the existing research exhibits leakage in their hardware implementations
due to a well-known phenomenon in hardware platforms called glitches [MPO05, MME10].
Glitches are unwanted signal transitions at the output of a combinatorial circuit due to
the unbalanced delay of its inputs. Hence, the result of the calculation also depends on
the timing of the inputs and can potentially cause exploitable leakage in practice.

To assess the security of a given design some sort of abstraction should be made. The
most convincing approach in this context is probing security model, firstly introduced
in [ISW03]. In this method, the security order of the design is defined by the maximum
number of probes that the attacker can place on intermediate signals of the circuit and
observe their values simultaneously. It appears consistent with software implementations
where the instructions are executed sequentially and each of them can be considered as an
atomic gate. In contrast, this abstraction does not consider physical defaults, and hence
the designs may exhibit leakage even though they are shown secure under the probing
model. Over time, extensive research has been devoted to understand how to adjust this
model covering hardware platforms. After introducing several models, the most convincing
one seems to be robust probing model presented in [FGP+18]. In order to take glitches into
account, each probe in the glitch-extended probing model is extended to multiple probes
implying an even stronger adversary. By probing a signal in a combinatorial circuit, the
adversary gains information about all intermediate values and input signals involved in
the calculation of the probed signal.

A critical question more than a decade ago was how to make a design secure con-
sidering physical defaults like glitches. In order to properly address this question, three
comprehensible properties, associated with an implementation strategy called Threshold
Implementation (TI), have been introduced in [NRR06]. This strategy is immune to
glitches and guarantees the security of the design if all properties are fulfilled. In the
underlying methodology, the number of shares is defined based on the desired security
order and the algebraic degree of the function. It has been shown that the same level of
security can also be achieved with the minimum possible shares, i.e., independent of the
algebraic degree of the underlying function [RBN+15, GMK16] even in the presence of
glitches. In this technique, the masked realization is split into two parts, where registers
should be placed in between to avoid the propagation of glitches, and fresh randomness
should be used to avoid the leakages. In [SM20] a methodology is presented which avoids
using fresh randomness in the first-order secure hardware implementations with two shares.
The authors provided a first-order secure 2-input AND gate without fresh randomness for
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the first time and presented first-order secure implementation of a couple of ciphers with
no fresh randomness under glitch-extended probing model.

The situation is a bit different at higher orders. Classical TI forces to use at least five
shares to protect the smallest non-linear function against second-order attacks [BGN+14].
In contrast, when using minimum number of shares of three for such a security level, the
use of a relatively high number of fresh masks is mandatory. For example, a second-order
masked AES S-box requires 162 fresh mask bits [CRB+16] (alternatively 84 bits [GMK17]).

1.1 Our Contributions
In this work, we pass a further step and introduce three-share hardware constructions
which can provide second-order security without fresh randomness. Due to the complexity
of the algorithms as well as the constructions, we limit ourselves to quadratic functions,
i.e., with algebraic degree of two. In short, we present a group of quadratic functions
whose three-share second-order secure hardware implementation can be realized without
fresh randomness. The other not-supported functions need to be decomposed to such
quadratic functions, which necessitates refreshing the intermediate shares to avoid multi-
variate leakages. As an outcome of our research, we provide three-share second-order
glitch-extended probing-secure implementations of Keccak with no fresh randomness and
the S-box of SKINNY, Midori, PRESENT, and PRINCE ciphers using only 8-bit fresh
masks per clock cycle. We would like to highlight that we confirm the second-order security
of our constructions by SILVER [KSM20] under glitch-extended probing model and by
FPGA-based practical experiments. Our programs as well as the hardware implementations
(HDL codes) are fully provided in the GitHub.

2 Background
In the following, after giving the used notations and basic definitions, we review the concept
behind probing and glitch-extended probing security and restate the fundamental concepts
of hardware masking, which are required to follow the rest of the paper.

2.1 Notations and Definitions
We denote binary variables ∈ F2 with lower-case italic x and vectors ∈ Fn>1

2 with upper-
case italic X. We represent j-th element in a vector X with superscripts xj , i-th share
of a variable with subscripts xi, coordinate functions with lower-case italic sans-serif f (.),
vectorial Boolean functions by upper-case italic sans-serif F (.), and sets with calligraphic
font F .

A Boolean function of n variables is a function of the form f : Fn
2 → F2, where Fn

2
is the n-dimensional vector space over F2. We denote F : Fn

2 → Fm
2 to show a vector of

Boolean functions.

F (X) =


f 1(X)
f 2(X)

...
f m(X)

 such that ∀i, f i : Fn
2 → F2 and X ∈ Fn

2 (1)

Definition 1. The weight of a Boolean function is defined as wt(f ) =
∣∣{X|f (X) = 1}

∣∣.
Definition 2. A Boolean function f : Fn

2 → F2 is balanced, if

wt(f ) = 2n−1 ⇐⇒
∣∣{X|f (X) = 1}

∣∣ =
∣∣{X|f (X) = 0}

∣∣.

https://github.com/Chair-for-Security-Engineering/NullFresh2
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In this paper, we use Algebraic Normal Form (ANF), which is a representation of
a Boolean function with a polynomial of n variables of X = 〈x1, . . . , xn〉. In other
words, every Boolean function f : Fn

2 → F2 can uniquely be expressed by an element in
F2[x1, . . . , xn], where F2[x1, . . . , xn] is the ring of all polynomials with coefficients in F2.

Definition 3 (Algebraic degree of a Boolean function). The algebraic degree of a Boolean
function f : Fn

2 → F2, where f (X) = +
V ∈Fn

2

αV

∏
vi=1

xi, is defined as:

deg(f ) = max
V

{ n∑
i=1

vi
∣∣∣αV = 1

}
,

where ∀V, αV ∈ F2 and by vi we refer to the i-th element of V . In other words, the
maximum number of variables that have to be multiplied determines the algebraic degree
of a given Boolean function. Further, algebraic degree of a vectorial Boolean function is
determined by the maximum algebraic degree of its coordinate functions.

In order to apply Boolean masking to provide s-th order security, we first split a variable
x into at least s+ 1 shares xi where i ∈ {0, 1, . . . , s} such that the sum of these shares is
equal to the original value, i.e., x = +

∀i

xi. As an initial sharing, we naturally can draw x1

to xs from a uniform distribution at random and form the first share x0 = x+ +
1≤∀i≤s

xi.

The application of Boolean masking on linear functions is straightforward, since the same
function can be applied on each share independently. However, implementing the masked
realization of a non-linear Boolean function is non-trivial and special care should be taken
to avoid any leakage. This is actually the main difficulty and the core of major publications
in the areas of Boolean masking.

2.2 Probing Security
Masking, as the most promising countermeasure against SCA attacks, has been widely
applied in practice. Consequently, many different schemes have been proposed over the
years, considering different applications, assumptions and security requirements [Tri03,
ISW03, NRR06, RBN+15, GMK16, NRS11, GM18, GIB18]. Some of the interesting
questions in this context are how to evaluate the proposed masking schemes under different
adversary models, and how to consider execution environments and physical defaults in
the evaluation process.

One of the first attempts to address such questions was presented in [ISW03], where
d-probing security model was proposed. In this model, the adversary is allowed to observe
(probe) up to d intermediate values during the execution of the cipher. It has been
repeatedly shown (e.g., in [MPO05, MME10]) that hardware implementations of such
d-probing secure schemes fail to deliver security in practice. Namely, this model fits
best into software platforms, where instructions can be viewed as atomic gates and there
is no data-dependent activation timing. However, it is an inaccurate assumption for
hardware platforms due to a common fact in CMOS technologies called glitches. In fact,
the d-probing model does not cover specific physical defaults, such as glitches, couplings,
or transitions [FGP+18]. These undesired effects, which are inherent to the nature of
physical implementations, may occur during the execution of the cipher on a device, hence
violating the security assumptions leading to exploitable leakages.

To consider physical characteristics in the verification model, the relevant scientific
communities have conducted extensive research on the development of formal models.
After some trial and error, Faust et al. [FGP+18] addressed the aforesaid questions by
proposing an extension of the d-probing model called robust probing model, which can
cover inherent physical properties of hardware platforms when evaluating the security of a
design. Focusing on glitch-extended feature of such a comprehensive model, each probe,
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placed on a combinatorial circuit, propagates backward to the last synchronization point
(registers). In other words, by placing a single probe, the adversary has information about
all signals that may contribute to determine the value of the probed signal. This simple
but effective abstraction significantly helped reducing the implementation cost of several
schemes [BGR18, SM20]. Moreover, using such glitch-extended probing model, the authors
of [MMSS19] demonstrated the insecurity of previous hardware-oriented masking schemes
such as [RBN+15, GMK17, GMK16]. This highlighted the importance and necessity of
probing security proofs in masked implementation, leading to the development of formal
verification tools to evaluate the given designs [BBC+19, KSM20].

2.3 Masking with td+ 1 Shares
Classical TI [NRR06] is the first implementation strategy that is immune to glitches in
hardware implementations. It defines the minimum number of input shares as td + 1,
where t and d stand for the algebraic degree of the function and the desired security
order, respectively. Let us suppose that the number of input shares and output shares
are the same and equal to s + 1. Hence, a masked realization of Y = F (X) receives
input shares X0, . . . , Xs and provides output shares Y0, . . . , Ys. Three essential properties
were introduced in [NRS11] to guarantee first-order security. First of all, the sum of
output shares should yield to the original output value for the sake of correctness, i.e.,
∀Xi,F (+

∀i

Xi) = +
∀i

Yi. In order to fulfill the second property, the computation of each

output share should be independent of at least one input share. To this end, the authors
suggested to avoid giving Xi as an input to the function which generates the output share
Yi, so-called a component function. This property, called non-completeness, guarantees
the glitch-resistance as the leakage of each component function is independent of X.
Alternatively, by placing a glitch-extended probe on any component function, the adversary
observes only a non-complete shared input, hence no information about X. The third
and last property implies that for each value of X, all possible input shares X0, . . . , Xs

lead to a set of Y0, . . . , Ys which can be represented as F (X) = Y being shared by masks
uniformly selected at random. Note that uniformity itself is neither a necessary nor a
sufficient condition to achieve security of an implementation [MBR19]. It actually becomes
important when secure gadgets are composed. In other words, we need to guarantee that
the second gadget receives a uniformly-shared input. Otherwise, the essential underlying
assumption of masking (secret sharing) is violated.

While non-completeness can be easily achieved by a methodology called direct shar-
ing [NRS11], no systematic way is known to fulfill uniformity except remasking, i.e.,
refreshing the sharing of the output using fresh randomness. Daemen [Dae17] introduced
a trick called changing of the guards to relax the need for fresh masks at every clock cycle.
The underlying concept is based on re-using the unrelated parts of the cipher, e.g., shares
of the neighboring S-box(es), as fresh masks. We should highlight that this technique
can fulfill the uniformity of a correct and non-complete shared function, but cannot be
beneficial if non-completeness is violated.

In short, constructing secure implementations becomes costly when the algebraic degree
of the function increases or high-order security is desired. To cope with this issue, the target
function is decomposed into smaller functions as their masked variants are easier to achieve.
The secure constructions of the smaller functions are composed with register stages in
between to avoid the propagation of glitches, or let say to avoid the propagation of glitch-
extended probes on all shares of a variable. TI also covers higher-order security [BGN+14],
where the main difference to the first order is the adjusted definition of non-completeness.
Considering probing security, in a d-order secure implementation, every d probes placed
on any part of the circuit should be independent of at least one share of every variable.
As highlighted in [Rep15], the output sharing of a higher-order secure gadget should be
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refreshed before being fed into the next higher-order secure gadget.

2.4 Masking with d+ 1 Shares
The high implementation cost of TI circuits has been reported using several case studies
(e.g., [MPL+11, CBR+15]), particularly at higher orders due to using a high number of
shares which naturally scales to a significant amount of fresh randomness when composing
the functions. In two independent works [RBN+15, GMK16], it has been tried to make the
number of shares independent of the algebraic degree of the function, i.e., d+ 1 shares for
d-order security. These constructions can potentially lead to lower implementation costs in
terms of area overhead and latency while maintaining the same level of security and glitch
resistance that TI offers. In these techniques, the masked variant of the target function
consists of two separate parts, which are divided by dedicated registers. More importantly,
fresh masks should be used to ensure the security of the gadgets. Precisely speaking, in
contrast to td + 1 where fresh masks might be need to fulfill the uniformity when the
functions are composed, in d+ 1 the fresh masks are essential to achieve non-completeness.
In other words, an standalone td+ 1 function can be secure without any fresh masks, but
its d+ 1 variant demands fresh masks for its security.

Following Domain Oriented Masking (DOM) [GMK16], which needs slightly-less fresh
masks compared to [RBN+15] in certain scenarios, a two-share masked variant of a 2-input
AND gate x = f (a, b) can be realized as:

f0(a0, b0) = a0b0 → x′0

f1(a0, b1, r) = a0b1 + r → x′1 x′0 + x′1 = x0

f2(a1, b0, r) = a1b0 + r → x′2 x′2 + x′3 = x1

f3(a1, b1) = a1b1 → x′3

, (2)

where r is a single-bit fresh mask, a0, a1, b0, b1 are input shares, and x0, x1 are output
shares. fl(.), 0 ≤ l ≤ 3 are known as component functions whose result should be stored in
registers, identified by x′0 and x′1. The part that XORs the registers’ outputs to generate
the output shares x0 and x1 is known as compression layer. It is shown in [RBN+15] that
the demand for fresh randomness can be more relaxed particularly in the first-order masked
implementation of quadratic functions. A methodology has been later introduced in [SM20]
which avoids using fresh randomness in the first-order d+ 1 hardware implementations.
We express the details of this scheme in the next section.

3 Technique
Below, we first shortly review the technique presented in [SM20] allowing to construct
first-order secure implementations without any fresh randomness. Afterwards, we express
our developments extending the underlying scheme to the second order.

3.1 First-Order d+ 1 Masking with no Fresh Randomness
It is shown in [SM20] that two-share first-order representation of the 2-input AND x =
f (a, b) = ab can be realized by four component functions f0≤l≤3(.), each of which receiving
a combination of input shares as follow.

f0(a0, b0) = a0b0 → x′0

f1(a0, b1) = a0b1 + b1 → x′1 x′0 + x′1 = x0

f2(a1, b0) = a1b0 → x′2 x′2 + x′3 = x1

f3(a1, b1) = a1b1 + b1 → x′3

(3)
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Its first-order security has been guaranteed through the following observations.

• Every component function receives only one share of each input, either a0 or a1 and
either b0 or b1, hence fulfilling non-completeness. Therefore, placing a probe on every
gate of each component function does not leak any information about a or/and b.

• Following glitch-extended probing model, a probe placed on x0 propagates to (x′0, x′1).
However, simulating (x′0, x′1) for all possible sharings of (a0, a1, b0, b1) shows a unique
joint distribution for all values of (a, b). The same holds when a probe is placed on
x1.

Further, it has been shown that (x0, x1) is a uniform sharing of x = f (a, b) = ab if a and b
are uniformly shared. Note that the above-given example is one of 16 solutions found for
the 2-input AND in [SM20].

The same principle has been extended to cover up to 4-bit cubic functions allowing the
authors to obtain the first-order secure implementations of coordinate functions of several
4-bit S-boxes. As the last step to construct the masked S-box, a combination of different
solutions for each coordinate function should be found that fulfills the joint uniformity of
the output sharing.

3.2 Extension to the Second Order
3.2.1 2-input AND

Moving toward second-order security, we start with the same simplest case, i.e., 2-input
AND. Using three shares, a : (a0, a1, a2) and b : (b0, b1, b2), 9 component functions f0≤l≤8(.)
are required to cover all 9 quadratic monomials ∀0 ≤ i, j ≤ 2, aibj . Naturally, the result of
each three component functions should be compressed (after being stored in dedicated
registers) to form an output share, as exemplary shown below.

f0(a0, b0) → x′0
f1(a0, b1) → x′1 x′0 + x′1 + x′2 = x0
f2(a0, b2) → x′2
f3(a1, b0) → x′3
f4(a1, b1) → x′4 x′3 + x′4 + x′5 = x1
f5(a1, b2) → x′5
f6(a2, b0) → x′6
f7(a2, b1) → x′7 x′6 + x′7 + x′8 = x2
f8(a2, b2) → x′8

(4)

In addition to the corresponding quadratic monomial aibj , each component function
fl(ai, bj) can have two other linear monomials ai and bj , i.e., four cases fl(ai, bj) = aibj ,
fl(ai, bj) = aibj + ai, fl(ai, bj) = aibj + bj , or fl(ai, bj) = aibj + ai + bj . Hence, we should
search for cases whose combination fulfills the requirements for second-order security.
Compared to [SM20], we need to extend the checks and examine all possible two probes
which can be placed on different parts of the implementation. To this end, we constructed
a procedure shown in Algorithm 1 and Algorithm 2, explaining the entire process.

We start with constructing a set F0,1,2 containing 3 component functions f0, f1, and f2
that are jointly second-order secure and whose compression layer’s output is balanced. As
defined in Section 2.1, a Boolean function is balanced if its output yields as many zeros as
ones over its input set. This is shown in lines 4 to 13 of Algorithm 1. Its second-order
security is examined by three combinations of two probes: one probe at the output of the
compression layer, which – under glitch-extended probing model – propagates backward
to the output of registers storing the output of all three component functions, and the
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second probe on the input of one of such registers, which also propagates back to all inputs
of the component function. For example, considering Equation (4), placing a probe on
x0 propagates to f0(a0, b0), f1(a0, b1), and f2(a0, b2). If the second probe is placed on the
first component function f0(a0, b1), which propagates to a0 and b0, the joint distribution
of
(
a0, b0, f1(a0, b1), f2(a0, b2)

)
should be identical for all values of (a, b) over all possible

sharings. Note that it is not required to consider f0(a0, b0) in the joint distributions as
all its inputs a0 and b0 are already covered. This check and other 2-probe combinations
are shown in lines 6 to 8 of Algorithm 1. The final check is the balancedness of the
compression layer’s output, which is an essential condition for uniform sharing of the
final construction [KSM20, § 4.6]. In the rest of Algorithm 1, this process is repeated
to construct two other sets F3,4,5 and F6,7,8 for other tuples of component functions,
identified by lines 14 to 23 and lines 24 to 33, respectively.

The next step, shown in Algorithm 2, is to find an element in each aforementioned set,
that jointly i) realize the sharing of f (a, b) = ab, ii) are second-order secure, and iii) form
a uniform sharing for the output. In order to ease the first check, i.e., the correctness of
sharing, we store the function made by each output of the compression layer. For example,
in line 10 of Algorithm 1, in addition to component functions f0, f1, and f2, we store f0,1,2 in
set F0,1,2. For all elements of f0,1,2 and all elements of f3,4,5, we calculate the XOR of the
corresponding outputs of the compression layer, i.e., f0,1,2 + f3,4,5. Since the desired output
of the target function over input sharing, i.e., f ∗, can be easily achieved by replacing a
by a0 + a1 + a2 and b by b0 + b1 + b2 in f (a, b) = ab, the expecting third output of the
compression layer can be calculated as f ∗6,7,8 = f ∗ + f0,1,2 + f3,4,5. If f ∗6,7,8 exists in F6,7,8,
we already found a solution that fulfills the correctness property. In order to accelerate
this process, we enumerate the ANF of such functions and use sorted arrays (or sorted
link lists) to rapidly find out whether the expecting function exists in a set.

After finding a correct solution, we need to examine its second-order security. Since
through Algorithm 1, we included only those component functions in each set F0,1,2, F3,4,5,
and F6,7,8, that are second-order secure, we need to just examine the cases where two
probes are placed on functions of different output shares. For example, one probe on output
share x0 and another one on x1, which means examining the identical joint distribution of(
f0(a0, b0), f1(a0, b1), f2(a0, b2), f3(a1, b0), f4(a1, b1), f5(a1, b2)

)
. Lines 6 to 8 of Algorithm 2

show this check and that of two other combinations where probes are placed on (x0, x2)
and (x1, x2). In fact, many other probe combinations should be examined, where a probe
is placed on an output share, e.g., x0, and the other one on a component function of a
different output share, e.g., f3(a1, b0) which propagates to (a1, b0). This means examining
the identical joint distribution of

(
a1, b0, f0(a0, b0), f1(a0, b1), f2(a0, b2)

)
as shown in line 9

of Algorithm 2. There are 17 other such combinations that should be checked as given in
lines 10 to 26. Note that we do not need to examine the combinations where both probes
are placed on different parts of an output share, since they are already covered during the
generation of the sets F0,1,2, F3,4,5, and F6,7,8 in Algorithm 1. Further, it is not necessary
to examine the cases, where probes are placed on different component functions, as only
one share of each input variable is involved in every component function, i.e., second-order
non-completeness. We also do not require to examine the first-order probing security, since
having a second-order probing-secure design implies its first-order security as well. If the
found correct and second-order probing-secure solution forms a uniform sharing, examined
in line 27 of Algorithm 2, the found solution is a valid one.

Note that the above-given procedure is dedicated to the configuration shown in Equa-
tion (4). However, there is no must to place component functions f0, f1, and f2 in the
compression layer of the first output share x0. The component functions can be freely
assigned to one of the output shares, but assigning more than three component functions
to one output share would reduce the chance of having a valid solution since placing a
probe on that output share would propagate to more than three component functions.
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Algorithm 1 Search for 2nd-order 3-share rep. of 2-input quadratic function (part one)
Output: . component functions
F0,1,2 :

{(
f0(a0, b0), f1(a0, b1), f1(a0, b2), f0,1,2(a0, b0, b1, b2)

)}
,

F3,4,5 :
{(

f3(a1, b0), f4(a1, b1), f5(a1, b2), f3,4,5(a1, b0, b1, b2)
)}

,
F6,7,8 :

{(
f6(a2, b0), f7(a2, b1), f8(a2, b2), f6,7,8(a2, b0, b1, b2)

)}
1: for ∀i, j ∈ {0, 1, 2} do
2: F3i+j ← ∀ f3i+j(ai, bj) : F2 × F2 7→ F2 . only quadratic functions
3: end for

4: F0,1,2 ← ∅
5: for ∀(f0, f1, f2) ∈ F0 ×F1 ×F2 do
6: if ∃α;∀a, b;P

(
a0, b0, f1(a0, b1), f2(a0, b2)

)
= α and

7: ∃β;∀a, b;P
(
f0(a0, b0), a0, b1, f2(a0, b2)

)
= β and

8: ∃γ;∀a, b;P
(
f0(a0, b0), f1(a0, b1), a0, b2

)
= γ then. identical joint distribution

9: if f0,1,2(a0, b0, b1, b2) : f0(a0, b0) + f1(a0, b1) + f1(a0, b2) is balanced then
10: F0,1,2 ← F0,1,2 ∪ (f0, f1, f2, f0,1,2)
11: end if
12: end if
13: end for

14: F3,4,5 ← ∅
15: for ∀(f3, f4, f5) ∈ F3 ×F4 ×F5 do
16: if ∃α;∀a, b;P

(
a1, b0, f4(a1, b1), f5(a1, b2)

)
= α and

17: ∃β;∀a, b;P
(
f3(a1, b0), a1, b1, f5(a1, b2)

)
= β and

18: ∃γ;∀a, b;P
(
f3(a1, b0), f4(a1, b1), a1, b2

)
= γ then. identical joint distribution

19: if f3,4,5(a1, b0, b1, b2) : f3(a1, b0) + f4(a1, b1) + f5(a1, b2) is balanced then
20: F3,4,5 ← F3,4,5 ∪ (f3, f4, f5, f3,4,5)
21: end if
22: end if
23: end for

24: F6,7,8 ← ∅
25: for ∀(f6, f7, f8) ∈ F6 ×F7 ×F8 do
26: if ∃α;∀a, b;P

(
a2, b0, f7(a2, b1), f8(a2, b2)

)
= α and

27: ∃β;∀a, b;P
(
f6(a2, b0), a2, b1, f8(a2, b2)

)
= β and

28: ∃γ;∀a, b;P
(
f6(a2, b0), f7(a2, b1), a2, b2

)
= γ then. identical joint distribution

29: if f6,7,8(a2, b0, b1, b2) : f6(a2, b0) + f7(a2, b1) + f8(a2, b2) is balanced then
30: F6,7,8 ← F6,7,8 ∪ (f6, f7, f8, f6,7,8)
31: end if
32: end if
33: end for

In total, there are 280 different configurations of how to assign each three component
functions to one output share.

We wrote the programs in C++ to implement these algorithms and realized that there
is no solution satisfying all the above-explained criteria. In fact, Algorithm 1 reports
empty sets F0,1,2, F3,4,5, and F6,7,8 for any of these 280 configurations. Getting back to
DOM, three fresh mask bits are used to construct the second-order probing-secure 2-input
AND with three shares. Hence, we adopted our algorithms to include fresh mask bits.
Namely, we require to adjust line 2 in Algorithm 1 to include linear terms (as fresh masks)
to each component function. Subsequently, to construct F0,1,2, the fresh masks should
be considered in lines 6 to 10 when the second-order security of construction and the
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Algorithm 2 Search for 2nd-order 3-share rep. of 2-input quadratic function (part two)
Input: f (a, b), . target function

F0,1,2, F3,4,5, F6,7,8 . component functions
Output: F0−8 :

{(
f0(a0, b0), f1(a0, b1), . . ., f7(a2, b1), f8(a2, b2)

)}
1: F0−8 ← ∅
2: f ∗ ← sharing f (a, b) . direct sharing
3: for ∀

(
(f0, f1, f2, f0,1,2), (f3, f4, f5, f3,4,5)

)
∈ F0,1,2 ×F3,4,5 do

4: f ∗6,7,8 ← f ∗ + f0,1,2 + f3,4,5
5: if ∃(f6, f7, f8, f6,7,8) ∈ F6,7,8 s.t. f6,7,8 = f ∗6,7,8 and . correct sharing

6: ∃α0; ∀a, b;P
(
f0(a0, b0), f1(a0, b1), f2(a0, b2), f3(a1, b0), f4(a1, b1), f5(a1, b2)

)
= α0 and

7: ∃α1; ∀a, b;P
(
f0(a0, b0), f1(a0, b1), f2(a0, b2), f6(a2, b0), f7(a2, b1), f8(a2, b2)

)
= α1 and

8: ∃α2; ∀a, b;P
(
f3(a1, b0), f4(a1, b1), f5(a1, b2), f6(a2, b0), f7(a2, b1), f8(a2, b2)

)
= α2 and

9: ∃α3;∀a, b;P
(
a1, b0, f0(a0, b0), f1(a0, b1), f2(a0, b2)

)
= α3 and

10: ∃α4;∀a, b;P
(
a1, b1, f0(a0, b0), f1(a0, b1), f2(a0, b2)

)
= α4 and

11: ∃α5;∀a, b;P
(
a1, b2, f0(a0, b0), f1(a0, b1), f2(a0, b2)

)
= α5 and

12: ∃α6;∀a, b;P
(
a2, b0, f0(a0, b0), f1(a0, b1), f2(a0, b2)

)
= α6 and

13: ∃α7;∀a, b;P
(
a2, b1, f0(a0, b0), f1(a0, b1), f2(a0, b2)

)
= α7 and

14: ∃α8;∀a, b;P
(
a2, b2, f0(a0, b0), f1(a0, b1), f2(a0, b2)

)
= α8 and

15: ∃α9 ;∀a, b;P
(
a0, b0, f3(a1, b0), f4(a1, b1), f5(a1, b2)

)
= α9 and

16: ∃α10;∀a, b;P
(
a0, b1, f3(a1, b0), f4(a1, b1), f5(a1, b2)

)
= α10 and

17: ∃α11;∀a, b;P
(
a0, b2, f3(a1, b0), f4(a1, b1), f5(a1, b2)

)
= α11 and

18: ∃α12;∀a, b;P
(
a2, b0, f3(a1, b0), f4(a1, b1), f5(a1, b2)

)
= α12 and

19: ∃α13;∀a, b;P
(
a2, b1, f3(a1, b0), f4(a1, b1), f5(a1, b2)

)
= α13 and

20: ∃α14;∀a, b;P
(
a2, b2, f3(a1, b0), f4(a1, b1), f5(a1, b2)

)
= α14 and

21: ∃α15;∀a, b;P
(
a0, b0, f6(a2, b0), f7(a2, b1), f8(a2, b2)

)
= α15 and

22: ∃α16;∀a, b;P
(
a0, b1, f6(a2, b0), f7(a2, b1), f8(a2, b2)

)
= α16 and

23: ∃α17;∀a, b;P
(
a0, b2, f6(a2, b0), f7(a2, b1), f8(a2, b2)

)
= α17 and

24: ∃α18;∀a, b;P
(
a1, b0, f6(a2, b0), f7(a2, b1), f8(a2, b2)

)
= α18 and

25: ∃α19;∀a, b;P
(
a1, b1, f6(a2, b0), f7(a2, b1), f8(a2, b2)

)
= α19 and

26: ∃α20;∀a, b;P
(
a1, b2, f6(a2, b0), f7(a2, b1), f8(a2, b2)

)
= α20 then

27: if (f0,1,2, f3,4,5, f6,7,8) forms a uniform sharing then . uniform sharing
28: F0−8 ← F0−8 ∪

(
f0, f1, . . . , f7, f8

)
29: end if
30: end if
31: end for

balancedness of the compression layer’s output is being checked. In fact, when a probe is
placed on a component function, all its inputs are probed including the fresh mask (if any).
Since this process is repeated to generate F3,4,5 and F6,7,8, lines 14 to 23 and lines 24 to 33
should also be adjusted accordingly.

With two fresh masks, our programs found 156 672 solutions only for the default
configuration shown in Equation (4), each of which is second-order probing-secure with
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uniform output sharing. One of such solutions is shown below.

f0(a0, b0) = a0b0 + b0 → x′0
f1(a0, b1) = a0b1 → x′1 x′0 + x′1 + x′2 = x0
f2(a0, b2, r0) = a0b2 + b2 + r0 → x′2
f3(a1, b0, r1) = a1b0 + a1 + r1 → x′3
f4(a1, b1) = a1b1 → x′4 x′3 + x′4 + x′5 = x1
f5(a1, b2) = a1b2 + a1 + b2 → x′5
f6(a2, b0, r1) = a2b0 + b0 + r1 → x′6
f7(a2, b1) = a2b1 → x′7 x′6 + x′7 + x′8 = x2
f8(a2, b2, r0) = a2b2 + r0 → x′8

(5)

3.2.2 AND-XOR

As shown in [SM20], two-share first-order probing secure implementation of f (a, b, c) = ab+c
can be easily achieved by replacing the fresh mask bit of the masked AND implementation
by c0 and c1. However, it is not trivially possible in the second order. Therefore, we adopted
our algorithms to include one more shared input c0≤i≤2 in each component function. Since
c does not contribute to any quadratic monomials, every component function can have
an additional linear monomial c0, c1, or c2, hence 16 cases for each component function.
Staying with the default configuration (Equation (4)), our programs found 73 728 solutions
for f (a, b, c) = ab+ c, without any fresh randomness1. One of the solutions is given below.

f0(a0, b0) = a0b0 + b0 → x′0
f1(a0, b1) = a0b1 → x′1 x′0 + x′1 + x′2 = x0
f2(a0, b2, c0) = a0b2 + c0 → x′2
f3(a1, b0) = a1b0 + b0 → x′3
f4(a1, b1) = a1b1 → x′4 x′3 + x′4 + x′5 = x1
f5(a1, b2, c1) = a1b2 + b2 + c1 → x′5
f6(a2, b0, c2) = a2b0 + a2 + c2 → x′6
f7(a2, b1) = a2b1 → x′7 x′6 + x′7 + x′8 = x2
f8(a2, b2) = a2b2 + a2 + b2 → x′8

(6)

3.2.3 Quadratic Bijections

Our findings with respect to the possibility of realizing the second-order probing-secure
and uniform sharing of the AND-XOR function, motivated us to examine the applicability
of our algorithms on larger yet quadratic functions. Below, borrowed from [DC07], we
restate the definition of Affine Equivalent, which is helpful to follow the rest of the paper.

Definition 4 (Affine Equivalent). Two S-boxes S and S ′ are affine/linear equivalent if
there exists a pair of invertible affine/linear permutation A and A′, such that S = A′ ◦S ′ ◦A.

Every invertible affine permutation A(X) can be written as A · X + A, where A
and A are refereed to an n × n invertible matrix over GF (2) and an n-bit constant,
respectively. Based on Definition 4, the authors of [BNN+15] classified all 4-bit quadratic
bijections in six classes, namely Q4

4, Q4
12, Q4

293, Q4
294, Q4

299, and Q4
300. In other words,

for any 4-bit quadratic bijection F , there exist two affine functions A and A′ such that
∃i ∈ {4, 12, 293, 294, 299, 300},F = A′ ◦Q4

i ◦A. Below we explain how our scheme is applied
to each of such quadratic classes.

1For all configurations, in total we found 3 207 168 such solutions.
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Q4
4: 0123456789ABDCFE is the simplest one with the following coordinate functions.

〈x = cd+ a, y = b, z = c, t = d〉,

with 〈a, b, c, d〉 the 4-bit input, 〈x, y, z, t〉 the 4-bit output, and a and x the least significant
bits. The first coordinate function is the AND-XOR, which we have studied in Section 3.2.2.
However, all solutions we found for AND-XOR do not necessarily make a jointly uniform
4-bit output sharing. We found out that 533 solutions of those reported in Section 3.2.2
fulfill the joint uniformity of the output sharing of Q4

4. The one given in Equation (6)
is one of those 533 solutions. For the sake of completeness, full details of the shared Q4

4
without fresh randomness is given in Appendix A.
Q4

12: 0123456789CDEFAB has a bit more complicated ANF:

〈x = a, y = bd+ cd+ b, z = bd+ c, t = d〉.

Compared to Q4
4, here we need to examine combinations, where two probes are placed

on the circuit associated with different coordinate functions. We start with the third
output bit z which is similar to the former cases. Since the second coordinate function
(generating y) has cd in its terms, all possible quadratic monomials 0 ≤ i, j ≤ 2, cidj appear
in its component functions. Therefore, when we are searching for a solution for the third
coordinate function f (b, c, d) = bd + c, we can already add more checks in Algorithm 1
when we construct the set of component functions F0,1,2, F3,4,5, and F6,7,8. More precisely,
in addition to 3 checks in lines 6 to 8, 9× 3 other conditions are added to reflect the cases
where one probe is placed on a component function of y and one probe on an output of
the compression layer of z, i.e., 0 ≤ ∀i, j ≤ 2,

∃α;∀b, c, d;P
(
ci, dj , f0, f1, f2

)
= α,

∃β;∀b, c, d;P
(
ci, dj , f3, f4, f5

)
= β,

∃γ;∀b, c, d;P
(
ci, dj , f6, f7, f8

)
= γ.

This way, we can strongly reduce the solutions for the third coordinate function. In fact,
these extra checks result in finding solutions only for one configuration of component
functions (see Equation (4)). No solution exists for the other 279 configurations. Our
programs found 73 728 solutions for the third coordinate function.

By adopting the algorithms and the programs to the second coordinate function
f (b, c, d) = bd+ cd+ b, we also found 3 072 solutions only for one configuration. As the
last step, we need to search for a tuple of solutions for each coordinate function which i)
jointly have uniform output sharing, and ii) are second-order probing secure. We have
to examine all possible 2-probe combinations placed on different coordinate functions. In
general, if we have n coordinate functions, we need to examine the cases where

• both probes are placed on the output of compression layers, i.e., 3×
(

n
2
)
cases, and

• one probe is placed on a component function and the other one on a compression
layer’s output, i.e., 9× 3× 2×

(
n
2
)
cases.

As stated, due to the second-order non-completeness of component functions, we do not
need to consider cases where both probes are placed on the component functions. In
total, we need to examine 63 ×

(
n
2
)
probe combinations, in this case 63. Among the

aforementioned solutions for the second and the third coordinate functions, we found
several cases2 which pass all 63 probe-combination checks and fulfill joint uniformity of
the 4-bit output sharing. One of such solutions is given in Appendix B.

2We did not let the program terminate as it is very lengthy, but the program found 64 such solutions
after passing 2% of the entire search space.
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Q4
293: 0123457689CDEFBA’s coordinate functions are as follows.

〈x = bc+ a, y = bd+ cd+ b, z = bd+ c, t = d〉

We realized that when we consider only three input variables in each component function
(as each coordinate function is such), we cannot find any solution satisfying the second-order
probing security when all quadratic monomials of three variables (here bc, bd, and cd)
are involved. Therefore, we adjusted our programs to consider one more input variable
thereby achieving second-order probing security. More precisely, considering the second
coordinate function g(b, c, d) = bd + cd + b, we can use input shares a0, a1, and a2 to
fulfill the requirements for second-order probing security. However, it does mean that the
found solution can easily make a joint uniform sharing with other coordinate function,
particularly with the first one f (a, b, c) = bc+ a, which depends on a as well. Since this
leads to a huge number of solutions, we allowed a0 and a1 to be added to certain component
functions to limit the valid solutions. By this, we found 14 592, 1 024 and 41 920 solutions
for the first three coordinate functions, respectively. Our programs finally found several
joint solutions for Q4

293 satisfying all requirements, one of which is given in Appendix C.
Q4

294: 0123456789BAEFDC has the following coordinate functions.

〈x = bd+ a, y = cd+ b, z = c, t = d〉

Since both first two coordinate functions are a form of AND-XOR, we easily achieved their
corresponding solutions. The only condition, which should be additionally considered, is
the existence of monomial bd (in the first coordinate function) when finding solutions for
the second coordinate function cd+ b. Similar to what explained for the third coordinate
function of Q4

12, this extra condition forces the solutions to belong to only one configuration
of component functions. As a result, we found 73 728 solutions for each coordinate function.
Among them, we found thousands of joint solutions satisfying the second-order probing
security (explained for Q4

12) and joint uniformity of the output sharing. One of the solutions
is given in Appendix D.
Q4

299: 012345678ACEB9FD with the following ANF has a coordinate function with four
input variables.

〈x = ad+ cd+ a, y = ad+ bd+ cd+ b, z = bd+ cd+ c, t = d〉

After adjusting the programs to handle such cases as well, we found 3 072, 144 384, and
3 072 valid solutions for its coordinate functions. Note that the reason behind such a
difference is that we considered only three corresponding input variables when looking
for solutions for the first and third coordinate functions. If we include the missing input
variable in the component functions as well, the number of found solutions would have
significantly increased. Nevertheless, with the current solutions, we were able to identify
one for each coordinate function which jointly fulfills all conditions. One of the found
solutions is shown in Appendix E.
Q4

300: 0123458967CDEFAB has all three possible quadratic monomials between b, c, and d
in its forth coordinate function, as given below.

〈x = a, y = bc+ b+ d, z = bc+ cd+ c+ d, t = bc+ bd+ cd〉

This avoids our algorithms to find any solutions for its three-share second-order probing
secure realization without fresh randomness.

3.2.4 Composition

As we have shown above, we are able to implement the identifier of all 4-bit quadratic
bijective classes except Q4

300. However, it can be decomposed into two quadratic bijections
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from the other classes. More concretely, Q4
300 can be written by a composition of two

bijections belonging to Q4
4 ×Q4

12, Q4
12 ×Q4

4, Q4
12 ×Q4

294, and Q4
294 ×Q4

12. As an example,
we can write Q4

300 = A3 ◦ Q4
4 ◦ A2 ◦ Q4

12 ◦ A1 with affine functions
A1:014589CD2367ABEF: 〈x = a, y = d, z = b, t = c〉,
A2:02DF469B8A57CE13: 〈x = b, y = a, z = b+ c, t = b+ d〉, and
A3:08192A3B4C5D6E7F: 〈x = b, y = c, z = d, t = a〉.

Hence, we are able to compose the descriptions given in Appendix A and Appendix B.
However, we should emphasize that the composition of such designs does not necessarily
lead to a second-order probing-secure implementation. As stated in [Rep15], when probes
are placed of composed functions, there is no guarantee to maintain the higher-order
security, while each function is individually higher-order secure. Hence, we have to refresh
the signals traversing between the functions.

By integrating both A1 and A2 in Q4
12, and A3 in Q4

4, we can write Q4
300 = G ◦ F with

F :02468A13DF9BCE57 as

〈x = bc+ cd+ d, y = a, z = bc+ b+ d, t = bc+ cd+ c+ d〉,

and G :08192A3B4C5DE6F7 which is Q4
4 with permuted outputs. When giving the shared

output of F as the input to G , the following rules should be carefully followed.

• Every output share 〈x0, x1, x2〉 should be refreshed by two individual fresh mask bits
r0 and r1 as 〈x0 + r0, x1 + r1, x2 + r0 + r1〉. This also holds for those outputs which
directly come from the input shares if it participates in a coordinate function. For
example, the second output bit of F , i.e., y = a, does not need to be refreshed since
a is not involved in any coordinate function of F . However, if Q4

299 is composed,
its forth output share t = d should also be refreshed since d is involved in its other
coordinate functions.

• The refreshing should be performed together with the compression layer, i.e., where
the output of the component functions (stored in register) are XORed to make the
output shares.

• The output of the compression layer should be stored in a register before being given
to the next function. Otherwise, a probe placed on the component function of the
next function propagates backward to the compression layer and hence to the output
of several component functions, which may make the implementation vulnerable
even to first-order attacks. This has been discussed in detail in [SM20].

In short, we need 6 fresh mask bits and 3 register stages to realize a second-order probing-
secure implementation of Q4

300. Full description of the component functions and how they
are connected together is given in Appendix F.

We should mention that we also unsuccessfully tried to extend our algorithms to cover
cubic monomials. Since the number of component functions increases from 3 to 9 for each
output share, the search space explodes and the chance of finding a second-order probing-
secure construction becomes low while each probe placed on a compression layer propagates
to the output of 9 component function. Nevertheless, following the comprehensive study
conducted in [BNN+15], the 4-bit cubic S-box of all lightweight ciphers can be decomposed
to quadratic bijections (in 2 or 3 stages), each of which is affine equivalent to one of the
above-explained classes. Hence, we are able to construct their second-order probing-secure
implementation, while fresh randomness is required only between their connection. We
give more detail when dealing with some of such S-boxes in the next session.
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4 Case Studies
In this section, we express some case studies to highlight the benefits and difficulties of
the application of our technique on different symmetric cryptographic primitives.

4.1 Keccak
We first focus on Keccak [BDPA13], where a 5-bit S-box is used, called χ function. Each
of its coordinate functions is a quadratic Boolean function with three input bits. More
precisely, all of them are the AND-XOR that we have discussed in Section 3.2.2, where
one of the AND operands is complemented. The ANF of the coordinate functions is given
below.

〈x = de+ a+ d, y = ae+ b+ e, z = ab+ a+ c, t = bc+ b+ d, w = cd+ c+ e〉,

where 〈a, b, c, d, e〉 and 〈x, y, z, t, w〉 are the 5-bit input and output, respectively.
Looking at the state of the art, a first-order td+ 1 masked implementation of Keccak

with three shares is first given in [BDPA10], whose output sharing is not uniform; one
approach to achieve uniformity is to use fresh randomness. A uniform first-order td+ 1
solution with four shares was then introduced in [BDN+14], which fulfills all requirements
without fresh randomness. The trick known as “changing of the guards” was afterwards
introduced in [Dae17], that overcomes the non-uniformity of the design in [BDPA10] by
re-using the shares of the i-th S-box instance as the fresh mask for the i + 1-th S-box,
hence not requiring fresh randomness in each clock cycle.

The first d + 1 masked Keccak with two shares is given in [GSM17a] with DOM
as the underlying technique. Although each DOM AND operation needs a fresh mask
bit (see Equation (2)), due to the AND-XOR nature of χ’s coordinate functions, the
additive variable is used to blind the AND, and finally a two-share Keccak without fresh
randomness is presented in [GSM17a]. A security flaw in its implementation (with respect
to the location of registers), and two-round first-order secure implementations with five
(and six) shares are reported in [ABP+18], which do not make use of any fresh randomness.
We also have observed that the implementation given in [GSM17a] does not maintain the
uniformity of the χ’s output sharing. Although the authors claim that the security loss is
negligible [Dae16], for the sake of completeness, we give a solution with uniform output
sharing in Appendix G by applying the technique presented in [SM20]. We indeed found
274 924 such solutions.

To the best of our knowledge, the only second-order secure Keccak is given in [GSM17a],
where each AND-XOR operation is masked following the second-order DOM multiplier,
i.e., 3 fresh mask bits per coordinate function, hence 15-bit fresh randomness per 5-bit
S-box of the χ function. As stated in Section 3.2.2, for an AND-XOR, we found 73 728
solutions without fresh randomness. However, considering all 5 coordinate functions, they
are not necessarily jointly uniform or second-order probing secure. To reduce the search
space, we employed the same technique explained in Section 3.2.3. For instance, the first
coordinate function (generating x) receives 〈a, d, e〉 as the input, where de is the only
quadratic monomial. The term ae exists in the ANF of the second coordinate function
(generating y), and the monomial ad does not show up in the ANF of the other coordinate
functions. Hence, when we search for a solution for the first coordinate function, we added
extra checks to consider a probe on each possible quadratic monomial 0 ≤ ∀i, j ≤ 2, aiej .
Due to χ’s rhythmic ANF pattern, i.e., XORing each bit with an AND result of two
other adjacent bits in its row, the same technique can be applied to the other coordinate
functions. Namely, we add extra conditions to put a probe on each component function of
the coordinate function i+ 1 mod 5 when searching for a solution for the i-th coordinate
function. In this way, we reduced the number of solutions to 24 for each coordinate function.
Note that by such extra conditions, the solutions can be found for only one configuration
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of the component functions (see Section 3.2.1). Finally, by searching through the found
solutions, we identified 659 cases which jointly fulfill all requirements for second-order
probing security and uniform output sharing. One of such cases is given in Appendix H.

Based on our S-box constructions, we have designed a two-share and a three-share
round-based implementation of Keccak [1088,512] permutation without any fresh masks.
It is one of the SHA3 standards and allows to provide a fair comparison to the state of
the art. The underlying design architecture is shown in Figure 1. As shown, we placed a
register at the input of the θ transformation. Alternatively, it can be placed at the output
of the compression layer. This is essential since θ combines (XOR) every two neighboring
output bits of each 5-bit S-box of the χ function. Without such a register, a probe placed
on the XORs of θ propagates backwards to two outputs of the compression layer. Then,
a second probe can be easily found to show a second-order leakage. Further, a register
at the input of the χ function is essential to not violate the requirements for the security
under the glitch-extended probing model [ABP+18]. As a comparison to the state of the
art, we refer to Table 1 where our first-order secure design is the only one which i) uses
two shares, ii) does not require any fresh masks, iii) and has uniform output sharing. Note
that the designs presented in [GSM17a] suffer from non-completeness issue as addressed
in [ABP+18]. Afterwards, the implementations were modified and the results were updated
in [GSM17b]. Hence, we compare only with the corrected implementations. Regarding the
second order, our construction outperforms the only-previously-published one in terms
of randomness complexity and area overhead, as shown in Table 1. Note that the given
performance results are excluding PRNGs required to generate the fresh masks, but still
our design, which does not use any fresh masks, needs less area footprint. In order to be
compatible with the state of the art, we synthesized our designs using UMC 130 standard
cell library.

One more important fact to discuss is multivariate leakages between two consecutive
rounds. We are not refreshing the χ output, which goes through the diffusion layer (θ,
ρ, and π) and is given to the next χ function. A question is whether anything can be
gained by placing two probes on two χ operations in consecutive rounds. As a general
rule, when two second-order secure functions are composed, fresh masks are required
at their conjunction, as illustrated in Section 3.2.4. Our observation is that if there is

Table 1: Performance figures of round-based Keccak [1088,512] permutation.
(using Synopsis Design Compiler, and UMC130 standard cell library, excluding PRNGs)

Design Security No. of Fresh Masks/ Area Delay Latency
Order Shares S-box [bit] [kGE] [ns] [cycles]

[BDN+14] 1 3 2 135.2 1.34 25
[BDN+14] 1 4 0 157.6 1.36 24
[GSM17b] 1 2 0 111.8 1.19 72
this work 1 2 0 129.3 1.29 72
[GSM17b] 2 3 15 238.4 1.19 72
this work 2 3 0 231.5 1.50 72
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Figure 2: Design architecture of our round-based second-order SKINNY-64 encryption
function.

a strong diffusion layer between such compositions, no mask refreshing is required. In
case of Keccak, independent of the bit permutations ρ and π, each output bit of θ
is the XOR result of 11 bits; 9 of them are taken from the output of 9 different 5-bit
S-box instances. We expect that every probe placed on the second χ function observes a
distribution independent of any other probe placed on the first χ function. Note that it is
just our observation confirmed by practical experiments expressed in Section 5. We further
should highlight that no verification tool is yet able to evaluate full cipher implementations;
hence we cannot provide any proof for this observation.

4.2 SKINNY
The 4-bit S-box of SKINNY [BJK+16]: C6901A2B385D4E7F belongs to the cubic class C4

223
which can be decomposed as A3 ◦ Q4

294 ◦ A2 ◦ Q4
294 ◦ A1. Among 262 144 ways for the

decomposition, we identified a case with the simplest affine functions as
A1:FEBA7632DC985410: 〈x = a+ 1, y = d+ 1, z = b+ 1, t = c+ 1〉,
A2:084C2A6E195D3B7F: 〈x = d, y = c, z = b, t = a〉, and
A3:FDECB9A875643120: 〈x = b+ 1, y = a+ 1, z = c+ 1, t = d+ 1〉,
which are just bit permutations and negation of input/output variables. Therefore, the
solution given for Q4

294 in Appendix D can be directly used here. Note that two output
bits of Q4

294 are directly connected to its inputs (see its ANF in page 720), but since they
both are involved in the coordinate function of the other output bits, all outputs of the
first masked Q4

294 should be refreshed and stored in registers before being given to the
second masked Q4

294. Therefore, we made the second-order probing-secure and uniform
sharing of the SKINNY 4-bit S-box in 3 register stages using 8 fresh mask bits.

In order to construct a round-based secure implementation of the SKINNY-64, placing
a state register at the output of the S-box is not necessary (see Figure 2). That is because
the diffusion layer of SKINNY, including AddRoundTweakey (ART), ShiftRows (SR), and
MixColumns (MC), does not mix different output bits of any S-box. More precisely, each
output bit of MC is the XOR of at most three bits that belong to three different S-boxes.
However, as explained in the case of Keccak, a register stage at the input of the S-box
is essential, which is used in our design as the state register. Note that here we do not
need to place any register because of the affine functions A1, A2, and A3, since – as stated
– they are just bit permutation and negation. The diffusion layer of the SKINNY round
function is not as strong as that of the Keccak. For example, one row of the cipher
state passes through MC unchanged. Therefore, our argument with respect to multivariate
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leakages across consecutive cipher rounds, given for Keccak, is not valid here. However,
ART can be beneficial here. Let us denote the output of SubCells (SC) by (A,B,C,D),
where each element corresponds to a row, here 4 nibbles. Ignoring SR, which permutes the
nibbles of each row, the output of MC can be written as

(A+D + C +K, A+K, B + C +K ′, C +A+K),

where (K,K ′) denote the 32-bit round tweakey represented in two rows. It can be seen
that – except the second row – each input bit of any S-box in the next round is the XOR
result of at least two output bits belonging to different S-boxes. If the round tweakkey
is presented in a second-order masked form, i.e., with three shares (as in our design in
Figure 2, it plays the role of the fresh mask and blinds the second row A+K. Therefore,
it is essential to apply key masking, i.e., the key schedule should also be masked with three
shares.

In summary, our fully-pipeline round-based implementation has four register stages
and requires 8 × 16 fresh mask bits per clock cycle. Table 2 shows the corresponding
performance figures. We constructed SKINNY-64-64 encryption function, i.e., with a 64-bit
key; the other variants with larger keys can be easily constructed since the SKINNY key
schedule is a linear function. Further, due to the lack of higher-order implementation of
SKINNY in the open literature, we could not find any other design for comparison.

4.3 Midori
Midori’s 4-bit S-box S:CAD3EBF789150246 [BBI+15] is affine equivalent to the identifier of
the class C4

266. Among several ways to decompose it to quadratic bijections, we selected
the case as S = A3 ◦ Q4

12 ◦ A2 ◦ Q4
12 ◦ A1 with

A1:93821B0AF5E47D6C: 〈x = b+ 1, y = a+ d, z = d, t = a+ c+ 1〉,
A2:08C43BF719D52AE6: 〈x = c+ d, y = c, z = b t = a+ b〉, and
A3:FD75A820EC64B931: 〈x = c+ d+ 1, y = a+ 1, z = c+ 1, t = b+ 1〉.
Integrating A1 into the first Q4

12 would lead to having all quadratic monomials of three
input variables in a coordinate function, and we would face similar difficulty observed for
Q4

300. In general, we prefer the decompositions with a simple input affine A1, and would

Table 2: Performance figures of different implementations, including key masking.
(using Synopsis Design Compiler, and UMC90 standard cell library, excluding PRNGs)

Design Security No. of Fresh Masks/ Area Delay Latency Throughput
Order Shares S-box [bit] [kGE] [ns] [cycles] [MB/s]

SKINNY-64-64
this work 2 3 8 10.6 1.22 128 204.9
Midori-64
this work 2 3 8 15.5 2.86 64 174.8
PRESENT-80
[CBRN14]a 2 5 520 8.3 - 149 -
this work 2 3 8 3.8 2.04 666 5.8
PRINCE
this work 2 3 8 19.4 3.11 84 214.3
[BKN19]b 2 3 18 13.4 4.00 72 27.7
[BKN19]b 2 5 10 18.7 4.10 72 27.1
[BKN19]b,c 2 3 108 32.4 3.42 24 194.9
[BKN19]b,c 2 8 88 177.6 3.54 24 188.3

a just an S-box and using NanGate 45
b using TSMC90
c without S-box decomposition
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Figure 3: Design architecture of our round-based second-order Midori-64 encryp-
tion/decryption function.

integrate the middle and output affine functions A2 and A3 at the output of the quadratic
functions. More precisely, we write S = G ◦ F ◦ A1 with F = A2 ◦ Q4

12:08C43BF7192AE6D5
as

〈x = bd+ c+ d, y = bd+ c, z = bd+ cd+ b, t = bd+ cd+ a+ b〉,

and G = A3 ◦ Q4
12:FD75A820ECB93164 as

〈x = bd+ c+ d+ 1, y = a+ 1, z = bd+ c+ 1, t = bd+ cd+ b+ 1〉.

An important point to mention is that the output of the A1 should be stored in a register
before it is connected to the input of the shared F . Otherwise, the non-completeness would
be violated. Further, due to the existence of the input affine, we have to consider more
checks when we search for solutions for each coordinate function of F . More precisely, a
probe can be placed on the XOR of the input affine, and another probe on component
functions or compression layer of F . In order to cover any affine function placed at the
input of F , we consider three cases, where the probe is propagated to all input variables of
the same share index, i.e.,

(a0, b0, c0, d0), (a1, b1, c1, d1), (a2, b2, c2, d2).

In other words, similar to what explained as extra conditions for Q4
12 in page 719, the

combination of each of these propagated probes and a probe placed on every output
share should be considered in lines 6 to 8 of Algorithm 1, i.e., 3× 3 extra conditions for
each coordinate function. This way, we make sure that any affine function, placed at the
input of the target function, would not violate the second-order probing-security of the
implementation. By adjusting our programs and considering these extra checks for F , we
found several solutions for each F and G , while one of them is given in Appendix I.

The design architecture of our fully-pipeline round-based second-order Midori-64 sup-
porting both encryption and decryption is depicted in Figure 3, which is similar to the one
presented in [MS16a]. As stated, 8-bit fresh masks should be used for the composition of F
and G , which is integrated into the compression layer of F whose results should be stored
in registers. As a result, the second-order secure Midori’s S-box needs 4 register layers and
8-bit fresh masks. Note that we do not need any further registers to implement the cipher as
one of the register stages can be seen as the state register, and Midori’s MixColumns (MC)
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Figure 4: Design architecture of our nibble-serial second-order PRESENT encryption
function (permutation layer and key schedule not shown).

only mixes the output bits of different S-boxes, similar to Skinny. Namely, when a probe
is placed on MCs’ output bit, it propagates to output bits of different S-boxes that are
statistically independent. Regarding multivariate leakages between two consecutive rounds,
the argument is similar to the one given for Keccak and SKINNY. Each MC’s output bit is
the XOR of three different bits of different S-boxes, and together with key masking, this
blinds the S-box outputs that are given to the next round function avoiding second-order
leakages. Note that, these arguments are valid since each S-box itself (including several
stages) is second-order probing secure. The synthesis result of our design is also involved
in Table 2. Notably, our design seems to be the only second-order implementation of
Midori-64 in the literature.

4.4 PRESENT
Similar to Midori, the PRESENT S-box [BKL+07] S:C56B90AD3EF84712 belongs to the
cubic class C4

266. Therefore, we follow the same principle and express it as S = G ◦ F ◦ A1
with
A1:894501CDAB6723EF: 〈x = a, y = d, z = b, t = b+ c+ 1〉,
F :08C43BF7192AE6D5 as

〈x = bd+ c+ d, y = bd+ c, z = bd+ cd+ b, t = bd+ cd+ a+ b〉,

and G :9C3672D805EB41AF as
〈x = a+ d+ 1, y = cd+ b+ c, z = bd+ a+ c, t = cd+ b+ c+ d+ 1〉,

where both F and G are affine equivalent to the quadratic class Q4
12. As a matter of

chance, here F is the same as that of Midori. Therefore, we only give the sharing of G
in Appendix J. Note that all given statements with respect to the input affine A1 and
fresh randomness given for the S-box of Midori hold valid here as well. In summary, we
provide a three-share second-order probing-secure realization of the PRESENT S-box with
uniform output sharing in 4 register stages making use of 8-bit fresh randomness.

Most of the implementations of PRESENT reported in the literature follow a serialized
architecture, where a single S-box is instantiated and shared with the key schedule as well.
Staying with the same fashion, we took the design of PRESENT-80 presented in [PMK+11]
and plugged our S-box as shown in Figure 4. At each clock cycle, the state- and the
key-registers are shifted nibble-wise and feed the S-box (16 clock cycles by the state and one
clock cycle by the key schedule). After 20 clock cycles, when sBoxLayer is accomplished,
in one clock cycle the permutation pLayer performed and the key schedule is finalized.

Regarding multivariate leakages across two consecutive rounds, we should have a closer
look at AddRoundKey and the pLayer. Since pLayer is just a bit permutation, the 4-bit
input of any S-box of the next round in a concatenation of 4 output bits of 4 different
S-boxes in the previous round. Supposing that each S-box is individually shared, the 4
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input bits of any S-box in the next round are independently shared. Moreover, by applying
key masking the shares of the input of every S-box is again refreshed.

As a comparison to the state of the art, a second-order secure PRESENT S-box is
presented in [CBRN14] in which polynomial masking is employed as the underlying masking
scheme. Looking at the performance results in Table 2, the randomness complexity and
latency of their masked S-box are extremely higher than our design.

4.5 PRINCE
Both S-box S:BF32AC916780E5D4 and its inverse S−1:B732FD89A6405EC1 are used in
encryption as well as decryption of PRINCE [BCG+12]. Based on the study published
in [MS16a], the S-box belongs to the cubic class C4

223 which cannot be decomposed to two
quadratic bijections of those classes that we cover [BNN+15]. Following the decomposition
given in [MS16a] for the S-box inverse, we write S−1 = H ◦ G ◦ F ◦ A1 with
A1:8293C6D70A1B4E5F: 〈x = b, y = a z = c, t = a+ d+ 1〉,
F :C480E6A2D519B37F as

〈x = d, y = c, z = cd+ b+ 1, t = bd+ a+ 1〉,

G :08C43BF72A6ED591 as
〈x = c, y = c+ d, z = cd+ b, t = bd+ cd+ a+ b〉,

and H:21748BDE65039AFC as
〈x = bd+ cd+ a+ b, y = bd+ a+ c+ 1, z = cd+ b+ d, t = c〉.

Using our programs adjusted to these coordinate functions, we found several solutions
for each F , G , and H satisfying all requirements to be second-order probing-secure with
uniform output sharing. One of such solutions is given in detail in Appendix K. Note that
the S-box and its inverse are affine equivalent as S = A ◦ S−1 ◦ A with
A:B8A93021EDFC6574: 〈x = a+ b+ d+ 1, y = a+ 1 z = d, t = c+ 1〉.
As stated in Section 4.3, we considered those extra checks with respect to the input affine
when constructing the component functions. Therefore, placing A at the start of S−1

would not violate its second-order security. Since we split the S-box inverse into three
quadratic parts, and we should refresh when the functions are composed, our construction
is in 6 register stages and needs 16 fresh mask bits for each S-box/inverse calculation. It
is important to recall that if a pipeline design is made, the 8-bit fresh mask required for
G ◦ F and those required for H ◦ G can be connected to the same source, i.e., 8-bit fresh
randomness per clock cycle. We give more details about the security of this optimization
in Appendix L.

In order to construct a secure implementation of the cipher, an extra register layer
should be placed at the output of the S-box inverse due to the affine function A at the
end of S−1. Figure 5 depicts the design architecture of our fully-pipeline round-based
second-order PRINCE supporting both encryption and decryption. Similar to Midori’s MC,
each bit of the output of the M ′-layer is the XOR result of three output bits of different
S-boxes with independent sharing. combined with key masking, the same arguments, given
with respect to avoiding multivariate leakages across two consecutive rounds, hold here
as well. In summary, our fully-pipeline design has 7 register layers per cipher round and
needs 8× 16 fresh mask bits per clock cycle.

We are aware of one work dealing with second-order masked hardware implementation of
PRINCE presented in [BKN19]. The authors decomposed the S-box inverse into quadratic
bijections, where all of them belong to Q294 class. They provided 5-share and 3-share
second-order masked implementation of Q294 using 10 and 18 bits fresh masks (per clock
cycle) and made a loop over it with different affine functions to realize either the S-box or
its inverse. As one can see in page 725, our construction has less randomness complexity
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Figure 5: Design architecture of our round-based second-order PRINCE encryp-
tion/decryption function.

but higher area overhead due to its fully-pipeline architecture leading to higher throughput.
The authors also presented two second-order secure designs without S-box decomposition.
Looking at Table 2, with even lower throughput, the randomness complexity and area
overhead of their designs are way higher than ours. Note that in order to be more fair in
the shown comparison, we synthesized our designs by UCM 90 standard cell library. The
performance figures in [BKN19] are based on TSMC 90 which is out of our access.

5 Analysis
As the first analysis step, we employed SILVER [KSM20] to examine our S-box constructions
under glitch-extended probing model, dedicated to masked hardware designs. SILVER is a
formal verification tool, developed to check the design based on the proofs to avoid writing
the proofs for every design. It receives the gate-level netlist of a hardware design and
reports the result of evaluations based on the security notions defined in different articles
like [MBR19]. Since SILVER does not simplify anything, its analysis results are reliable
(without false positive or false negative). To this end, we synthesized the HDL code of our
S-box designs (also given in the GitHub) and supplied SILVER with the resulting netlist.
For our entire designs, SILVER reported robust-probing security up to second order as well
as the uniformity of output sharing. Since no verification tool (including SILVER) is yet
able to analyze full cipher implementations, similar to the state of the art, we additionally
conducted FPGA-based experimental analyses, as given in detail as follows.

5.1 Setup
We implemented our designs expressed in Section 4 on the target Spartan-6 FPGA of
the SAKURA-G board [SAK]. We collected power consumption traces by monitoring
the voltage drop over a 1 Ω resistor placed in the Vdd path of the target FPGA using a
digital oscilloscope at sampling rate of 500MS/s. During the measurements, the target
FPGA were supplied by a stable clock source at the frequency of 6MHz. The target FPGA
receives masked input (plaintext) and issues output (ciphertext) also in the same sharing
form. The fresh mask bits (if needed) are generated on the fly inside the target FPGA
by means of 31-bit LFSRs optimized for Xilinx FPGAs [DMW18]. For each mask bit, we
instantiated one LFSR seeded at random right after the power-up of the FPGA.

For each design, we collected 100 million traces following the strategy explained
in [GJJR11] to conduct reliable fixed-versus-random t-test. We further followed the
techniques presented in [SM15] to efficiently perform t-tests at higher orders.

https://github.com/Chair-for-Security-Engineering/NullFresh2
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5.2 Results
We start with our Keccak design, given in Section 4.1. Due to the large size of the
Keccak instance benchmarked in Table 1, which hardly fits into our target FPGA, similar
to [ABP+18] we practically evaluated a smaller variant, i.e., Keccak-f [200]. Note that χ
function, whose protection is the difference between the state of the art, is the same in all
Keccak variants. It instantiates the 5-bit S-box a different number of times. Figure 6
shows a sample power trace and the result of up to third-order univariate t-tests indicating
no detected leakage up to second order. Since we also aim at evaluating our design with
respect to multivariate leakages (i.e., the combined sample points are taken from different
clock cycles), we performed bivariate t-test as formulated in [SM15]. Here, each power trace
contains 5 000 sample points translating to 5 000× (5 000 + 1)/2 = 12 502 500 individual
t-tests, which take around 30 days to accomplish using all cores of a 24-CPU machine
running (at most) at 2.93GHz. Due to the same difficulty, such analyses are usually done
on a small part of the traces downsampled, e.g., by covering only one S-box calculation and
dividing the sampling rate (e.g., by 4 as done in [CRB+16]). Power consumption traces
are inherently low-pass filtered by the Printed Circuit Board (PCB), shunt resistor, the
chip package, and the measurement equipments [MOP07] Hence, several sample points in
each clock cycle of power traces (close to the power peak, i.e., clock edge) contain the same
information about the leakage at that clock cycle (see [MM13] for relevant information).
Therefore, considering the power peak at each clock cycle should be adequate for such a
bivariate analysis. Therefore, instead of decreasing the sampling frequency (which should
be synchronous with the device clock at very low sampling rates [OC15]), we extracted
one sample (power peak) per clock cycle for the bivariate analyses, but covered the entire
clock cycles involved in the power traces. The results shown at the left side of Figure 6(e)
are inline with our expectations, i.e., no detected bivariate second-order leakage. However,
in order to verify our bivariate setup, we also implemented a first-order version of the same
Keccak variant. To this end, we took the two-share description of the χ function given
in Appendix G, and performed the same bivariate analysis. The corresponding results
depicted at the right side of Figure 6(e) confirm the correctness and ability of our setup to
detect such bivariate leakages.

We conducted exactly the same analyses on all our other designs, all of which actually
lead to the more of less similar results (given in Appendix M), and with the same
conclusion, i.e., no first- and second-order univariate and bivariate leakage detected. We
should highlight that except in the case of our PRESENT implementation, which follows
a serialized architecture, in all our measurements we cover the entire calculation of the
algorithm (can also be recognized from the shown sample power traces). For the PRESENT
design, we cover only the first half of the encryption, which is already 300 clock cycles.

6 Discussions and Conclusions
In this work, we have introduced a methodology to achieve three-share second-order secure
implementation of a group of quadratic functions without any fresh randomness. Naturally,
by composing such designs we can realize larger constructions. However, refreshing the
sharing of the interconnections is inevitable for higher-order security. We showed that
having a quadratic round function with a strong diffusion layer, e.g., in Keccak, allows us
to realize the second-order secure implementation of the cryptographic primitive without
any fresh randomness. Although it is not the case for even lightweight ciphers with a 4-bit
S-box, their second-order secure implementations require fresh masks only for composition,
i.e., 8 bits per S-box and per clock cycle. To the best of our knowledge, our constructions
outperform state-of-the-art implementations with respect to area, throughput, and demand
for fresh randomness. More importantly, evaluations based on SILVER [KSM20] confirm
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Figure 6: Experimental analysis of our second-order secure Keccak-f [200] design,
100 million traces.

the second-order security of our designs under glitch-extended probing model.
Naturally, the most interesting and useful case would be the application of our technique

on the AES S-box. It is for sure among our future works, but it seems challenging as the
entire operations of the S-box should be represented by quadratic functions. This would
lead to a high number of compositions and consequently a high number of registers as
well as fresh masks. Therefore, it needs intensive research to cope with such difficulties to
outperform the state of the art.

Reduction of the number of required fresh masks per cipher round (due to the com-
position) is of interesting topics as well. We should refer to the relevant study [BDZ20],
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which addresses some interesting facts with respect to reusing the masks to refresh the
shares between consecutive cipher rounds in higher-order td+ 1 masked designs. Further,
it has been stated in [BKN19], that when each S-box requires n-bit fresh masks, having 16
S-boxes in a second-order implementation of PRINCE, 4n fresh mask bits are adequate
to apply instead of 16n bits, i.e., reusing the fresh masks. We should refer to “changing
of the guards” [Dae17] which also tries to reuse the shares of irrelevant cipher states as
fresh masks in first-order td+ 1 masked implementations. Clearly, this topic needs more
research and investigations particularly for higher orders.

In all these research activities, the goal is to avoid or reduce the required fresh masks.
As given in the performance figures (Table 1 and Table 2), similar to the state of the art,
we exclude the PRNGs necessary to generate the fresh masks. A fundamental question,
which is not yet answered and needs proper attention, is how expensive it is to generate a
certain number of fresh masks per clock cycle. As the cost function, area, energy, power,
and latency are certainly the possible choices.
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A 3-share Masked Q4
4 without Fresh Randomness

F (a, b, c, d) : 0123456789ABDCFE

x = f (a, b, c, d) = cd+ a

y = g(a, b, c, d) = b

z = h(a, b, c, d) = c

t = k(a, b, c, d) = d

f0(c0, d0) = c0d0 + d0 → x′0
f1(c0, d1) = c0d1 → x′1 x′0 + x′1 + x′2 = x0
f2(c0, d2, a0) = c0d2 + a0 → x′2
f3(c1, d0) = c1d0 + d0 → x′3
f4(c1, d1) = c1d1 → x′4 x′3 + x′4 + x′5 = x1
f5(c1, d2, a1) = c1d2 + d2 + a1 → x′5
f6(c2, d0, a2) = c2d0 + c2 + a2 → x′6
f7(c2, d1) = c2d1 → x′7 x′6 + x′7 + x′8 = x2
f8(c2, d2) = c2d2 + c2 + d2 → x′8

b0 → y0
b1 → y1
b2 → y2

c0 → z0
c1 → z1
c2 → z2

d0→ t0
d1→ t1
d2→ t2
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B 3-share Masked Q4
12 without Fresh Randomness

F (a, b, c, d) : 0123456789CDEFAB

x = f (a, b, c, d) = a

y = g(a, b, c, d) = bd+ cd+ b

z = h(a, b, c, d) = bd+ c

t = k(a, b, c, d) = d

x0 = a0
x1 = a1
x2 = a2

g0(d0, c0, b0) = d0c0 + d0b0 → y′0
g1(d0, c1, b1) = d0c1 + d0b1 + b1 → y′1 y′0 + y′1 + y′2 = y0
g2(d0, c2, b2) = d0c2 + d0b2 + c2 + b2 → y′2
g3(d1, c0, b0) = d1c0 + d1b0 + c0 → y′3
g4(d1, c1, b1) = d1c1 + d1b1 → y′4 y′3 + y′4 + y′5 = y1
g5(d1, c2, b2) = d1c2 + d1b2 + c2 + b2 → y′5
g6(d2, c0, b0) = d2c0 + d2b0 + d2 + c0 + b0 → x′6
g7(d2, c1, b1) = d2c1 + d2b1 → y′7 y′6 + y′7 + y′8 = y2
g8(d2, c2, b2) = d2c2 + d2b2 + d2 + b2 → y′8

h0(d0, b0, c0) = d0b0 + b0 + c0 → z′0
h1(d0, b1) = d0b1 + d0 + b1 → z′1 z′0 + z′1 + z′2 = z0
h2(d0, b2) = d0b2 + d0 → z′2
h3(d1, b0) = d1b0 + d1 + b0 → z′3
h4(d1, b1) = d1b1 → z′4 z′3 + z′4 + z′5 = z1
h5(d1, b2, c2) = d1b2 + d1 + b2 + c2 → z′5
h6(d2, b0) = d2b0 + d2 → z′6
h7(d2, b1, c1) = d2b1 + b1 + c1 → z′7 z′6 + z′7 + z′8 = z2
h8(d2, b2) = d2b2 + d2 + b2 → z′8

d0→ t0
d1→ t1
d2→ t2
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C 3-share Masked Q4
293 without Fresh Randomness

F (a, b, c, d) : 0123457689CDEFBA

x = f (a, b, c, d) = bc+ a

y = g(a, b, c, d) = bd+ cd+ b

z = h(a, b, c, d) = bd+ c

t = k(a, b, c, d) = d

f0(b0, c0, a0) = b0c0 + a0 + c0 → x′0
f1(b0, c1) = b0c1 + b0 + c1 → x′1 x′0 + x′1 + x′2 = x0
f2(b0, c2) = b0c2 + b0 → x′2
f3(b1, c0) = b1c0 + c0 → x′3
f4(b1, c1) = b1c1 → x′4 x′3 + x′4 + x′5 = x1
f5(b1, c2, a1) = b1c2 + a1 → x′5
f6(b2, c0) = b2c0 + b2 → x′6
f7(b2, c1) = b2c1 + c1 → x′7 x′6 + x′7 + x′8 = x2
f8(b2, c2, a2) = b2c2 + a2 + b2 → x′8

g0(b0, c0, d0, a0) = b0d0 + c0d0 + a0 + b0 + d0 → y′0
g1(b1, c2, d0) = b1d0 + c2d0 → y′1 y′0 + y′1 + y′2 = y0
g2(b2, c1, d0) = b2d0 + c1d0 + b2 + c1 + d0 → y′2
g3(b0, c1, d1, a0) = b0d1 + c1d1 + a0 + c1 → y′3
g4(b1, c2, d1, a1) = b1d1 + c2d1 + a1 + b1 → y′4 y′3 + y′4 + y′5 = y1
g5(b2, c0, d1) = b2d1 + c0d1 + b2 + c0 → y′5
g6(b0, c2, d2) = b0d2 + c2d2 → y′6
g7(b1, c1, d2, a1) = b1d2 + c1d2 + a1 → y′7 y′6 + y′7 + y′8 = y2
g8(b2, c0, d2) = b2d2 + c0d2 + b2 + c0 → y′8

h0(b0, d0, a0) = b0d0 + a0 + d0 → z′0
h1(b1, d0) = b1d0 + b1 → z′1 z′0 + z′1 + z′2 = z0
h2(b2, d0, c0) = b2d0 + c0 + d0 → z′2
h3(b0, d1, c1, a0) = b0d1 + a0 + c1 → z′3
h4(b1, d1, a1) = b1d1 + a1 + b1 → z′4 z′3 + z′4 + z′5 = z1
h5(b2, d1, b1) = b2d1 + b2 → z′5
h6(b0, d2, c2) = b0d2 + c2 + d2 → z′6
h7(b1, d2, a1) = b1d2 + a1 → z′7 z′6 + z′7 + z′8 = z2
h8(b2, d2) = b2d2 + b2 + d2 → z′8

d0→ t0
d1→ t1
d2→ t2
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D 3-share Masked Q4
294 without Fresh Randomness

F (a, b, c, d) : 0123456789BAEFDC

x = f (a, b, c, d) = bd+ a

y = g(a, b, c, d) = cd+ b

z = h(a, b, c, d) = c

t = k(a, b, c, d) = d

f0(b0, d0, a0) = b0d0 + b0 + d0 + a0 → x′0
f1(b0, d1) = b0d1 + d1 → x′1 x′0 + x′1 + x′2 = x0
f2(b0, d2) = b0d2 + b0 → x′2
f3(b1, d0) = b1d0 + d0 → x′3
f4(b1, d1) = b1d1 → x′4 x′3 + x′4 + x′5 = x1
f5(b1, d2, a1) = b1d2 + a1 → x′5
f6(b2, d0, a2) = b2d0 + a2 → x′6
f7(b2, d1) = b2d1 + d1 → x′7 x′6 + x′7 + x′8 = x2
f8(b2, d2) = b2d2 → x′8

g0(d0, c0, b2) = d0c0 + b2 → y′0
g1(d0, c1) = d0c1 + d0 + c1 → y′1 y′0 + y′1 + y′2 = y0
g2(d0, c2) = d0c2 + d0 → y′2
g3(d1, c0) = d1c0 + d1 + c0 → y′3
g4(d1, c1) = d1c1 + d1 → y′4 y′3 + y′4 + y′5 = y1
g5(d1, c2, b1) = d1c2 + b1 → y′5
g6(d2, c0) = d2c0 + d2 + c0 → y′6
g7(d2, c1, b0) = d2c1 + d2 + c1 + b0 → y′7 y′6 + y′7 + y′8 = y2
g8(d2, c2) = d2c2 → y′8

c0 → z0
c1 → z1
c2 → z2

d0→ t0
d1→ t1
d2→ t2
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E 3-share Masked Q4
299 without Fresh Randomness

F (a, b, c, d) : 012345678ACEB9FD

x = f (a, b, c, d) = ad+ cd+ a

y = g(a, b, c, d) = ad+ bd+ cd+ b

z = h(a, b, c, d) = bd+ cd+ c

t = k(a, b, c, d) = d

f0(a0, d0, c0) = a0d0 + c0d0 + a0 + c0 → x′0
f1(a1, d0, c1) = a1d0 + c1d0 + a1 → x′1 x′0 + x′1 + x′2 = x0
f2(a2, d0, c2) = a2d0 + c2d0 → x′2
f3(a0, d1, c0) = a0d1 + c0d1 + a0 → x′3
f4(a1, d1, c1) = a1d1 + c1d1 → x′4 x′3 + x′4 + x′5 = x1
f5(a2, d1, c2) = a2d1 + c2d1 + a2 + c2 → x′5
f6(a0, d2, c0) = a0d2 + c0d2 + a0 + c0 → x′6
f7(a1, d2, c1) = a1d2 + c1d2 → x′7 x′6 + x′7 + x′8 = x2
f8(a2, d2, c2) = a2d2 + c2d2 + c2 → x′8

g0(a0, d0, b0, c0) = a0d0 + b0d0 + c0d0 + b0 + d0 → y′0
g1(a1, d0, b1, c1) = a1d0 + b1d0 + c1d0 + d0 → y′1 y′0 + y′1 + y′2 = y0
g2(a2, d0, b2, c2) = a2d0 + b2d0 + c2d0 + a2 → y′2
g3(a0, d1, b0, c0) = a0d1 + b0d1 + c0d1 → y′3
g4(a1, d1, b1, c1) = a1d1 + b1d1 + c1d1+

a1 + c1 + d1 → y′4 y′3 + y′4 + y′5 = y1
g5(a2, d1, b2, c2) = a2d1 + b2d1 + c2d1+

a2 + b2 + c2 + d1 → y′5
g6(a0, d2, b0, c0) = a0d2 + b0d2 + c0d2 → y′6
g7(a1, d2, b1, c1) = a1d2 + b1d2 + c1d2 + a1 + b1 + c1 → y′7 y′6 + y′7 + y′8 = y2
g8(a2, d2, b2, c2) = a2d2 + b2d2 + c2d2 + c2 → y′8

h0(b0, d0, c0) = b0d0 + c0d0 → z′0
h1(b1, d0, c1) = b1d0 + c1d0 + c1 → z′1 z′0 + z′1 + z′2 = z0
h2(b2, d0, c2) = b2d0 + c2d0 + b2 + c2 → z′2
h3(b0, d1, c0) = b0d1 + c0d1 + b0 → z′3
h4(b1, d1, c1) = b1d1 + c1d1 → z′4 z′3 + z′4 + z′5 = z1
h5(b2, d1, c2) = b2d1 + c2d1 + b2 + c2 → z′5
h6(b0, d2, c0) = b0d2 + c0d2 + b0 + c0 → z′6
h7(b1, d2, c1) = b1d2 + c1d2 → z′7 z′6 + z′7 + z′8 = z2
h8(b2, d2, c2) = b2d2 + c2d2 + c2 → z′8

d0→ t0
d1→ t1
d2→ t2



742 Second-Order SCA Security with almost no Fresh Randomness

F 3-share Masked Q4
300 with 6-bit Fresh Randomness

Q4
300(a, b, c, d) : 0123458967CDEFAB = G ◦ F

F (a, b, c, d) : 02468A13DF9BCE57

x = f (a, b, c, d) = bc+ cd+ d y = g(a, b, c, d) = a

z = h(a, b, c, d) = bcd+ b+ d t = k(a, b, c, d) = bc+ cd+ c+ d

G(x, y, z, t) : 08192A3B4C5DE6F7 is Q4
4 with permuted outputs given in Appendix A

f0(c0, b0, d0) = c0b0 + c0d0 + c0 + b0 + d0 → x′0
f1(c0, b1, d1) = c0b1 + c0d1 + c0 → x′1 x′0 + x′1 + x′2 + r0 → x0
f2(c0, b2, d2) = c0b2 + c0d2 + b2 → x′2
f3(c1, b0, d0) = c1b0 + c1d0 + c1 → x′3
f4(c1, b1, d1) = c1b1 + c1d1 + b1 → x′4 x′3 + x′4 + x′5 + r1 → x1
f5(c1, b2, d2) = c1b2 + c1d2 + c1 + b2 + d2 → x′5
f6(c2, b0, d0) = c2b0 + c2d0 + b0 → x′6
f7(c2, b1, d1) = c2b1 + c2d1 + b1 + d1 → x′7 x′6 + x′7 + x′8 + r0 + r1 → x2
f8(c2, b2, d2) = c2b2 + c2d2 → x′8

a0→ y′0 y′0 → y0
a1→ y′1 y′1 → y1
a2→ y′2 y′2 → y2

h0(c0, b0) = c0b0 + c0 → z′0
h1(c0, b1, d1) = c0b1 + b1 + d1 → z′1 z′0 + z′1 + z′2 + r2 → z0
h2(c0, b2) = c0b2 + c0 + b2 → z′2
h3(c1, b0, d0) = c1b0 + d0 → z′3
h4(c1, b1) = c1b1 → z′4 z′3 + z′4 + z′5 + r3 → z1
h5(c1, b2) = c1b2 + b2 → z′5
h6(c2, b0) = c2b0 + b0 → z′6
h7(c2, b1) = c2b1 → z′7 z′6 + z′7 + z′8 + r2 + r3 → z2
h8(c2, b2, d2) = c2b2 + b2 + d2 → z′8

k0(c0, b0, d0) = c0b0 + c0d0 + c0 + b0 + d0 → t′0
k1(c0, b1, d1) = c0b1 + c0d1 + c0 → t′1 t′0 + t′1 + t′2 + r4 → t0
k2(c0, b2, d2) = c0b2 + c0d2 + c0 + b2 → t′2
k3(c1, b0, d0) = c1b0 + c1d0 → t′3
k4(c1, b1, d1) = c1b1 + c1d1 + b1 → t′4 t′3 + t′4 + t′5 + r5 → t1
k5(c1, b2, d2) = c1b2 + c1d2 + c1 + b2 + d2 → t′5
k6(c2, b0, d0) = c2b0 + c2d0 + c2 + b0 → t′6
k7(c2, b1, d1) = c2b1 + c2d1 + c2 + b1 + d1 → t′7 t′6 + t′7 + t′8 + r4 + r5 → t2
k8(c2, b2, d2) = c2b2 + c2d2 + c2 → t′8
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G 2-share Masked χ function without Fresh Randomness

x = f (a, e, d) = de+ a+ d

y = g(a, b, e) = ae+ b+ e

z = h(a, b, c) = ab+ a+ c

t = k(b, c, d) = bc+ b+ d

w = m(c, d, e) = cd+ c+ e

f0(d0, e0, a0) = d0e0 + a0 + d0 → x′0
f1(d0, e1) = d0e1 → x′1 x′0 + x′1 = x0
f2(d1, e0, a1) = d1e0 + a1 + d1 → x′2 x′2 + x′3 = x1
f3(d1, e1) = d1e1 → x′3

g0(a0, e0) = a0e0 → y′0
g1(a0, e1, b0) = a0e1 + b0 → y′1 y′0 + y′1 = y0
g2(a1, e0) = a1e0 + e0 → y′2 y′2 + y′3 = y1
g3(a1, e1, b1) = a1e1 + b1 + e1 → y′3

h0(a0, b0) = a0b0 → z′0
h1(a0, b1, c0) = a0b1 + a0 + c0 → z′1 z′0 + z′1 = z0
h2(a1, b0, c1) = a1b0 + a1 + c1 → z′2 z′2 + z′3 = z1
h3(a1, b1) = a1b1 → z′3

k0(b0, c0, d0, a0) = b0c0 + a0 + d0 → t′0
k1(b0, c1, a0) = b0c1 + a0 + b0 → t′1 t′0 + t′1 = t0
k2(b1, c0) = b1c0 → t′2 t′2 + t′3 = t1
k3(b1, c1, d1) = b1c1 + b1 + d1 → t′3

m0(c0, d0, e0) = c0d0 + e0 → w′0
m1(c0, d1) = c0d1 + c0 → w′1 w′0 + w′1 = w0
m2(c1, d0, a1, b1, e1) = c1d0 + a1 + b1 + e1 → w′2 w′2 + w′3 = w1
m3(c1, d1, a1, b1) = c1d1 + a1 + b1 + c1 → w′3



744 Second-Order SCA Security with almost no Fresh Randomness

H 3-share Masked χ function without Fresh Randomness
x = f (a, e, d) = de+ a+ d y = g(a, b, e) = ae+ b+ e z = h(a, b, c) = ab+ a+ c

t = k(b, c, d) = bc+ b+ d w = m(c, d, e) = cd+ c+ e

f0(d0, e0, a0) = d0 + a0 + d0e0 → x′0
f1(d1, e0) = d1 + d1e0 → x′1 x′0 + x′1 + x′2 = x0
f2(d2, e0) = d2e0 → x′2
f3(d0, e1) = d0 + d0e1 → x′3
f4(d1, e1) = d1e1 → x′4 x′3 + x′4 + x′5 = x1
f5(d2, e1, a2) = a2 + d2e1 → x′5
f6(d0, e2) = d0 + d0e2 → x′6
f7(d1, e2) = d1e2 → x′7 x′6 + x′7 + x′8 = x2
f8(d2, e2, a1) = d2 + a1 + d2e2 → x′8

g0(a0, e0, b0) = e0 + a0 + b0 + e0a0 → y′0
g1(a0, e1) = e1 + e1a0 → y′1 y′0 + y′1 + y′2 = y0
g2(a0, e2) = a0 + e2a0 → y′2
g3(a1, e0) = e0 + e0a1 → y′3
g4(a1, e1) = e1a1 → y′4 y′3 + y′4 + y′5 = y1
g5(a1, e2, b2) = e2 + b2 + e2a1 → y′5
g6(a2, e0) = e0 + e0a2 → y′6
g7(a2, e1) = e1a2 → y′7 y′6 + y′7 + y′8 = y2
g8(a2, e2, b1) = b1 + e2a2 → y′8

h0(a0, b0, c2) = a0 + b0 + c2 + a0b0 → z′0
h1(a1, b0) = b0 + a1b0 → z′1 z′0 + z′1 + z′2 = z0
h2(a2, b0) = a2 + a2b0 → z′2
h3(a0, b1) = a0 + a0b1 → z′3
h4(a1, b1) = a1b1 → z′4 z′3 + z′4 + z′5 = z1
h5(a2, b1, c0) = c0 + a2b1 → z′5
h6(a0, b2, c1) = a0 + c1 + a0b2 → z′6
h7(a1, b2) = a1 + a1b2 → z′7 z′6 + z′7 + z′8 = z2
h8(a2, b2) = a2b2 → z′8

k0(b0, c0) = b0 + c0 + b0c0 → t′0
k1(b1, c0) = b1c0 → t′1 t′0 + t′1 + t′2 = t0
k2(b2, c0, d2) = c0 + d2 + b2c0 → t′2
k3(b0, c1) = b0 + b0c1 → t′3
k4(b1, c1) = b1c1 → t′4 t′3 + t′4 + t′5 = t1
k5(b2, c1, d0) = b2 + d0 + b2c1 → t′5
k6(b0, c2, d1) = b0 + c2 + d1 + b0c2 → t′6
k7(b1, c2) = b1 + b1c2 → t′7 t′6 + t′7 + t′8 = t2
k8(b2, c2) = c2 + b2c2 → t′8

m0(c0, d0) = c0d0 → w′0
m1(c1, d0) = c1 + d0 + c1d0 → w′1 w′0 + w′1 + w′2 = w0
m2(c2, d0, e0) = c2 + d0 + e0 + c2d0 → w′2
m3(c0, d1) = c0 + c0d1 → w′3
m4(c1, d1) = c1d1 → w′4 w′3 + w′4 + w′5 = w1
m5(c2, d1, e1) = c2 + e1 + c2d1 → w′5
m6(c0, d2, e2) = e2 + c0d2 → w′6
m7(c1, d2) = c1d2 → w′7 w′6 + w′7 + w′8 = w2
m8(c2, d2) = c2 + c2d2 → w′8
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I 3-share Masked Midori S-box with 8-bit Fresh Masks

S : CAD3EBF789150246 = G ◦ F ◦ A1

A1(a, b, c, d) : 93821B0AF5E47D6C : x = b+ 1, y = a+ d, z = d, t = a+ c+ 1

F (a, b, c, d) : 08C43BF7192AE6D5

x = f (a, b, c, d) = bd+ c+ d y = g(a, b, c, d) = bd+ c

z = h(a, b, c, d) = bd+ cd+ b t = k(a, b, c, d) = bd+ cd+ a+ b

f0(d0, b0) = d0b0 → x′0
f1(d0, b1, c1) = d0b1 + c1 → x′1 x′0 + x′1 + x′2 + r0 → x0
f2(d0, b2) = d0b2 + d0 + b2 → x′2
f3(d1, b0, c0) = d1b0 + c0 → x′3
f4(d1, b1) = d1b1 + b1 → x′4 x′3 + x′4 + x′5 + r1 → x1
f5(d1, b2) = d1b2 + d1 → x′5
f6(d2, b0) = d2b0 + d2 → x′6
f7(d2, b1) = d2b1 + b1 → x′7 x′6 + x′7 + x′8 + r0 + r1 → x2
f8(d2, b2, c2) = d2b2 + b2 + c2 → x′8

g0(d0, b0) = d0b0 + d0 → y′0
g1(d0, b1, c1) = d0b1 + d0 + c1 → y′1 y′0 + y′1 + y′2 + r2 → y0
g2(d0, b2) = d0b2 + b2 → y′2
g3(d1, b0, c0) = d1b0 + d1 + c0 → y′3
g4(d1, b1) = d1b1 + b1 → y′4 y′3 + y′4 + y′5 + r3 → y1
g5(d1, b2) = d1b2 + d1 → y′5
g6(d2, b0) = d2b0 + d2 → y′6
g7(d2, b1) = d2b1 + b1 → y′7 y′6 + y′7 + y′8 + r2 + r3 → y2
g8(d2, b2, c2) = d2b2 + d2 + b2 + c2 → y′8

h0(d0, c0, b0) = d0c0 + d0b0 + c0 + b0 → z′0
h1(d0, c1, b1) = d0c1 + d0b1 + d0 → z′1 z′0 + z′1 + z′2 + r4 → z0
h2(d0, c2, b2) = d0c2 + d0b2 + d0 + c2 → z′2
h3(d1, c0, b0) = d1c0 + d1b0 + b0 → z′3
h4(d1, c1, b1) = d1c1 + d1b1 → z′4 z′3 + z′4 + z′5 + r5 → z1
h5(d1, c2, b2) = d1c2 + d1b2 + c2 + b2 → z′5
h6(d2, c0, b0) = d2c0 + d2b0 + c0 + b0 → z′6
h7(d2, c1, b1) = d2c1 + d2b1 + b1 → z′7 z′6 + z′7 + z′8 + r4 + r5 → z2
h8(d2, c2, b2) = d2c2 + d2b2 → z′8

k0(d0, c0, b0) = d0c0 + d0b0 + c0 + b0 → t′0
k1(d0, c1, b1, a0) = d0c1 + d0b1 + d0 + a0 → t′1 t′0 + t′1 + t′2 + r6 → t0
k2(d0, c2, b2) = d0c2 + d0b2 + d0 + c2 → t′2
k3(d1, c0, b0) = d1c0 + d1b0 + b0 → t′3
k4(d1, c1, b1, a1) = d1c1 + d1b1 + a1 → t′4 t′3 + t′4 + t′5 + r7 → t1
k5(d1, c2, b2) = d1c2 + d1b2 + c2 + b2 → t′5
k6(d2, c0, b0) = d2c0 + d2b0 + d2 + c0 + b0 → t′6
k7(d2, c1, b1, a2) = d2c1 + d2b1 + b1 + a2 → t′7 t′6 + t′7 + t′8 + r6 + r7 → t2
k8(d2, c2, b2) = d2c2 + d2b2 + d2 → t′8
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G(a, b, c, d) : FD75A820ECB93164

x = f (a, b, c, d) = bd+ c+ d+ 1
y = g(a, b, c, d) = a+ 1
z = h(a, b, c, d) = bd+ c+ 1
t = k(a, b, c, d) = bd+ cd+ b+ 1

f0(d0, b0) = d0b0 + d0 + 1 → x′0
f1(d0, b1, c1) = d0b1 + d0 + b1 + c1 → x′1 x′0 + x′1 + x′2 = x0
f2(d0, b2) = d0b2 + d0 + b2 → x′2
f3(d1, b0, c0) = d1b0 + c0 → x′3
f4(d1, b1) = d1b1 → x′4 x′3 + x′4 + x′5 = x1
f5(d1, b2) = d1b2 + d1 + b2 → x′5
f6(d2, b0) = d2b0 + d2 → x′6
f7(d2, b1) = d2b1 + b1 → x′7 x′6 + x′7 + x′8 = x2
f8(d2, b2, c2) = d2b2 + c2 → x′8

1 + a0 → y0
a1 → y1
a2 → y2

h0(d0, b0) = d0b0 + 1 → z′0
h1(d0, b1, c1) = d0b1 + d0 + b1 + c1 → z′1 z′0 + z′1 + z′2 = z0
h2(d0, b2) = d0b2 + d0 + b2 → z′2
h3(d1, b0, c0) = d1b0 + c0 → z′3
h4(d1, b1) = d1b1 → z′4 z′3 + z′4 + z′5 = z1
h5(d1, b2) = d1b2 + b2 → z′5
h6(d2, b0) = d2b0 → z′6
h7(d2, b1) = d2b1 + b1 → z′7 z′6 + z′7 + z′8 = z2
h8(d2, b2, c2) = d2b2 + c2 → z′8

k0(d0, c0, b0) = d0c0 + d0b0 + d0 + c0 + 1 → t′0
k1(d0, c1, b1) = d0c1 + d0b1 + d0 → t′1 t′0 + t′1 + t′2 = t0
k2(d0, c2, b2) = d0c2 + d0b2 + c2 + b2 → t′2
k3(d1, c0, b0) = d1c0 + d1b0 + d1 → t′3
k4(d1, c1, b1) = d1c1 + d1b1 + d1 + b1 → t′4 t′3 + t′4 + t′5 = t1
k5(d1, c2, b2) = d1c2 + d1b2 + c2 + b2 → t′5
k6(d2, c0, b0) = d2c0 + d2b0 + c0 + b0 → t′6
k7(d2, c1, b1) = d2c1 + d2b1 + d2 → t′7 t′6 + t′7 + t′8 = t2
k8(d2, c2, b2) = d2c2 + d2b2 + d2 + b2 → t′8
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J 3-share Masked PRESENT S-box with 8-bit Fresh Masks

S : C56B90AD3EF84712 = G ◦ F ◦ A1

A1(a, b, c, d) : 894501CDAB6723EF : x = a, y = d, z = b, t = b+ c+ 1

F (a, b, c, d) : 08C43BF7192AE6D5 idential to F of the Midori’s S-box given in Appendix I

G(a, b, c, d) : 9C3672D805EB41AF

x = f (a, b, c, d) = a+ d+ 1
y = g(a, b, c, d) = cd+ b+ c

z = h(a, b, c, d) = bd+ a+ c

t = k(a, b, c, d) = cd+ b+ c+ d+ 1

f0(a0, d0) = a0 + d0 + 1 → x0
f1(a1, d1) = a1 + d1 → x1
f2(a2, d2) = a2 + d2 → x2

g0(d0, c0) = d0c0 → y′0
g1(d0, c1) = d0c1 + c1 → y′1 y′0 + y′1 + y′2 = y0
g2(d0, c2, b0) = d0c2 + c2 + b0 → y′2
g3(d1, c0) = d1c0 + c0 → y′3
g4(d1, c1) = d1c1 → y′4 y′3 + y′4 + y′5 = y1
g5(d1, c2, b1) = d1c2 + c2 + b1 → y′5
g6(d2, c0, b2) = d2c0 + b2 → y′6
g7(d2, c1) = d2c1 → y′7 y′6 + y′7 + y′8 = y2
g8(d2, c2) = d2c2 + c2 → y′8

h0(d0, b0, a0) = d0b0 + b0 + a0 → z′0
h1(d0, b1) = d0b1 → z′1 z′0 + z′1 + z′2 = z0
h2(d0, b2, c0) = d0b2 + b2 + c0 → z′2
h3(d1, b0, a1) = d1b0 + b0 + a1 → z′3
h4(d1, b1) = d1b1 → z′4 z′3 + z′4 + z′5 = z1
h5(d1, b2, c1) = d1b2 + c1 → z′5
h6(d2, b0, c0, a2) = d2b0 + c2 + a2 → z′6
h7(d2, b1) = d2b1 → z′7 z′6 + z′7 + z′8 = z2
h8(d2, b2) = d2b2 + b2 → z′8

k0(d0, c0) = d0c0 + d0 + 1 → t′0
k1(d0, c1) = d0c1 + c1 → t′1 t′0 + t′1 + t′2 = t0
k2(d0, c2, b0) = d0c2 + c2 + b0 → t′2
k3(d1, c0) = d1c0 + d1 + c0 → t′3
k4(d1, c1) = d1c1 → t′4 t′3 + t′4 + t′5 = t1
k5(d1, c2, b1) = d1c2 + c2 + b1 → t′5
k6(d2, c0, b2) = d2c0 + b2 → t′6
k7(d2, c1) = d2c1 → t′7 t′6 + t′7 + t′8 = t2
k8(d2, c2) = d2c2 + d2 + c2 → t′8



748 Second-Order SCA Security with almost no Fresh Randomness

K 3-share Masked PRINCE S-box Inverse with 16-bit Fresh
Masks

S−1 : = H ◦ G ◦ F ◦ A1

A1(a, b, c, d) : 8293C6D70A1B4E5F : x = b, y = a, z = c, t = a+ d+ 1

F (a, b, c, d) : C480E6A2D519B37F

x = f (a, b, c, d) = d

y = g(a, b, c, d) = c

z = h(a, b, c, d) = cd+ b+ 1
t = k(a, b, c, d) = bd+ a+ 1

d0→ x′0 x′0 + r0 → x0
d1→ x′1 x′1 + r1 → x1
d2→ x′2 x′2 + r0 + r1 → x2

c0→ y′0 y′0 + r2 → y0
c1→ y′1 y′1 + r3 → y1
c2→ y′2 y′2 + r2 + r3 → y2

h0(d0, c0) = d0c0 + 1 → z′0
h1(d0, c1, b1) = d0c1 + c1 + b1 → z′1 z′0 + z′1 + z′2 + r4 → z0
h2(d0, c2) = d0c2 + c2 → z′2
h3(d1, c0, b0) = d1c0 + b0 → z′3
h4(d1, c1) = d1c1 → z′4 z′3 + z′4 + z′5 + r5 → z1
h5(d1, c2) = d1c2 + c2 → z′5
h6(d2, c0) = d2c0 → z′6
h7(d2, c1) = d2c1 + c1 → z′7 z′6 + z′7 + z′8 + r4 + r5 → z2
h8(d2, c2, b2) = d2c2 + b2 → z′8

k0(d0, b0, a0) = d0b0 + d0 + b0 + a0 + 1 → t′0
k1(d0, b1) = d0b1 + d0 + b1 → t′1 t′0 + t′1 + t′2 + r6 → t0
k2(d0, b2) = d0b2 → t′2
k3(d1, b0, a2) = d1b0 + b0 + a2 → t′3
k4(d1, b1) = d1b1 → t′4 t′3 + t′4 + t′5 + r7 → t1
k5(d1, b2) = d1b2 + b2 → t′5
k6(d2, b0) = d2b0 → t′6
k7(d2, b1) = d2b1 + b1 → t′7 t′6 + t′7 + t′8 + r6 + r7 → t2
k8(d2, b2, a1) = d2b2 + b2 + a1 → t′8
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G(a, b, c, d) : 08C43BF72A6ED591

x = f (a, b, c, d) = c

y = g(a, b, c, d) = c+ d

z = h(a, b, c, d) = cd+ b

t = k(a, b, c, d) = bd+ cd+ a+ b

c0→ x′0 x′0 + r8 → x0
c1→ x′1 x′1 + r9 → x1
c2→ x′2 x′2 + r8 + r9 → x2

g0(c0, d0) = c0 + d0 → y′0 y′0 + r10 → y0
g1(c1, d1) = c1 + d1 → y′1 y′1 + r11 → y1
g2(c2, d2) = c2 + d2 → y′2 y′2 + r10 + r11 → y2

h0(d0, c0) = d0c0 + d0 + c0 → z′0
h1(d0, c1) = d0c1 → z′1 z′0 + z′1 + z′2 + r12 → z0
h2(d0, c2, b2) = d0c2 + d0 + c2 + b2 → z′2
h3(d1, c0) = d1c0 + c0 → z′3
h4(d1, c1) = d1c1 → z′4 z′3 + z′4 + z′5 + r13 → z1
h5(d1, c2, b1) = d1c2 + b1 → z′5
h6(d2, c0, b0) = d2c0 + b0 → z′6
h7(d2, c1) = d2c1 → z′7 z′6 + z′7 + z′8 + r12 + r13 → z2
h8(d2, c2) = d2c2 + c2 → z′8

k0(d0, c0, b0, a0) = d0c0 + d0b0 + a0 → t′0
k1(d0, c1, b1) = d0c1 + d0b1 + c1 + b1 → t′1 t′0 + t′1 + t′2 + r14 → t0
k2(d0, c2, b2) = d0c2 + d0b2 + b2 → t′2
k3(d1, c0, b0, a1) = d1c0 + d1b0 + d1 + a1 → t′3
k4(d1, c1, b1) = d1c1 + d1b1 + c1 → t′4 t′3 + t′4 + t′5 + r15 → t1
k5(d1, c2, b2) = d1c2 + d1b2 + d1 + c2 + b2 → t′5
k6(d2, c0, b0, a2) = d2c0 + d2b0 + b0 + a2 → t′6
k7(d2, c1, b1) = d2c1 + d2b1 + d2 → t′7 t′6 + t′7 + t′8 + r14 + r15 → t2
k8(d2, c2, b2) = d2c2 + d2b2 + d2 + c2 + b2 → t′8
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H(a, b, c, d) : 21748BDE65039AFC

x = f (a, b, c, d) = bd+ cd+ a+ b

y = g(a, b, c, d) = bd+ a+ c+ 1
z = h(a, b, c, d) = cd+ b+ d

t = k(a, b, c, d) = c

f0(d0, c0, b0, a0) = d0c0 + d0b0 + a0 → x′0
f1(d1, c1, b1) = d0c1 + d0b1 + c1 → x′1 x′0 + x′1 + x′2 = x0
f2(d2, c2, b2) = d0c2 + d0b2 + c2 + b2 → x′2
f3(d0, c0, b0, a1) = d1c0 + d1b0 + b0 + a1 → x′3
f4(d1, c1, b1) = d1c1 + d1b1 → x′4 x′3 + x′4 + x′5 = x1
f5(d2, c2, b2) = d1c2 + d1b2 + c2 + b2 → x′5
f6(d0, c0, b0, a2) = d2c0 + d2b0 + d2 + a2 → x′6
f7(d1, c1, b1) = d2c1 + d2b1 + c1 + b1 → x′7 x′6 + x′7 + x′8 = x2
f8(d2, c2, b2) = d2c2 + d2b2 + d2 + b2 → x′8

g0(d0, b0, a0) = d0b0 + d0 + b0 + a0 + 1 → y′0
g1(d0, b1) = d0b1 + d0 + c1 → y′1 y′0 + y′1 + y′2 = y0
g2(d0, b2) = d0b2 → y′2
g3(d1, b0, a1) = d1b0 + c0 + a1 → y′3
g4(d1, b1) = d1b1 → y′4 y′3 + y′4 + y′5 = y1
g5(d1, b2) = d1b2 + b2 → y′5
g6(d2, b0, a2) = d2b0 + b0 + a2 → y′6
g7(d2, b1) = d2b1 → y′7 y′6 + y′7 + y′8 = y2
g8(d2, b2) = d2b2 + b2 + c2 → y′8

h0(d0, c0) = d0c0 + c0 → z′0
h1(d0, c1) = d0c1 → z′1 z′0 + z′1 + z′2 = z0
h2(d0, c2, b2) = d0c2 + d0 + c2 + b2 → z′2
h3(d1, c0) = d1c0 → z′3
h4(d1, c1, b1) = d1c1 + c1 + b1 → z′4 z′3 + z′4 + z′5 = z1
h5(d1, c2) = d1c2 + d1 + c2 → z′5
h6(d2, c0, b0) = d2c0 + d2 + c0 + b0 → z′6
h7(d2, c1) = d2c1 + d2 + c1 → z′7 z′6 + z′7 + z′8 = z2
h8(d2, c2) = d2c2 + d2 → z′8

c0→ t0
c1→ t1
c2→ t2
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L Fresh Mask-reuse in PRINCE S-box
As explained in Section 4.5, the PRINCE S-box (resp. its inverse) needs to be decomposed
to three quadratic bijections as H ◦G ◦F ◦A1. Therefore, we need to use 8-bit fresh mask r1
when we compose G with F ◦ A1 and another 8-bit fresh mask r2 when composing with H.
However, since r1 and r2 are required in different clock cycles (indeed with 2 clock cycles
distance) if a fully-pipeline design is made, we can provide r1 and r2 using the same source
of randomness which is updated at every clock cycle, i.e., 8-bit fresh randomness per clock
cycle. In order to provide evidence for the security of such an optimization, we constructed
a test circuit as shown in Figure 7, which emulates the pipeline architecture. More precisely,
two S-boxes are performed with 2 clock cycles distance. Hence, 8-bit r2 used for the second
composition of the first S-box is re-used by the first stage of the second S-box. After
synthesizing the circuit, which receives 24 fresh mask bits and an 8-bit input and provides
an 8-bit output (both shared with three shares), we gave the corresponding netlist to
SILVER [KSM20], which confirmed its second-order security under glitch-extended probing
model and uniformity of its output sharing. Note that this optimization is possible since
each function F , G and H is individually second-order glitch-extended probing secure with
uniform output sharing, and the fresh masks are only used to avoid multivariate leakages
with respect to probes places on different functions.
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Figure 7: Emulation of fresh mask reuse in PRINCE S-box.
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M Result of Experimental Analyses on Our Implementa-
tions (SKINNY, Midori, PRESENT, and PRINCE)
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Figure 8: Experimental analysis of our second-order secure round-based SKINNY-64-64
encryption design, 100 million traces.
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Figure 9: Experimental analysis of our second-order secure round-based Midori-64 encryp-
tion design, 100 million traces.



754 Second-Order SCA Security with almost no Fresh Randomness

0 5 10 15 20 25 30 35 40 45 50
Time [μs]

P
ow

er

(a) A sample trace

0 5 10 15 20 25 30 35 40 45 50
Time [μs]

-4

-2

0

2

4

t-
st

at
is

tic
s

(b) 1st-order t-test

0 5 10 15 20 25 30 35 40 45 50
Time [μs]

-4

-2

0

2

4

t-
st

at
is

tic
s

(c) 2nd-order t-test

0 5 10 15 20 25 30 35 40 45 50
Time [μs]

-50

0

50

t-
st

at
is

tic
s

(d) 3rd-order t-test

0 5 10 15 20 25 30 35 40 45 50
Time [μs]

0

5

10

15

20

25

30

35

40

45

50

T
im

e 
[μ

s]

1.5

3.0

4.5

6.0

7.5

t-
st

at
is

tic
s

(e) 2nd-order bivariate t-test

Figure 10: Experimental analysis of our second-order secure round-based PRESENT
encryption design, 100 million traces.
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Figure 11: Experimental analysis of our second-order secure round-based PRINCE en-
cryption design, 100 million traces.
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