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Abstract. We revisit Unterstein et al.’s leakage-resilient authenticated encryption
scheme from CHES 2020. Its main goal is to enable secure software updates by
leveraging unprotected (e.g., AES, SHA256) coprocessors available on low-end mi-
crocontrollers. We show that the design of this scheme ignores an important attack
vector that can significantly reduce its security claims, and that the evaluation of
its leakage-resilient PRF is quite sensitive to minor variations of its measurements,
which can easily lead to security overstatements. We then describe and analyze a
new mode of operation for which we propose more conservative security parameters
and show that it competes with the CHES 2020 one in terms of performances. As an
additional bonus, our solution relies only on AES-128 coprocessors, and it halves the
amount of key material needed in order to encrypt and authenticate.
Keywords: Leakage-Resilient Cryptography · Authenticated Encryption · Secure
Software Updates · Ciphertext Integrity · ARM Cortex · Differental Power Analysis

1 Introduction
In a recent work from CHES 2020, Unterstein et al. propose a leakage-resilient Authenti-
cated Encryption (AE) mode of operation that is targeted for implementation in low-end
microcontrollers empowered with hardware (e.g., AES, SHA256) coprocessors [USS+20].
Their main target application is secure firmware update. The ingredients they use for this
purpose are the leakage-resilient Pseudo-Random Function (PRF) of Medwed et al. for
generating an ephemeral key and the tag [MSJ12], and a mode of operation adapted from
Degabriele et al. to process the message [DJS19,KS20]. In this paper, we first exhibit
some limitations of this work, both in the proposed design and in its security evaluation.
We then describe mitigations that we analyze theoretically and validate experimentally.

The first limitation of [USS+20] relates to its motivation of enabling secure firmware
updates by leveraging hardware coprocessors rather than countermeasures like masking.
While this appears as a strong motivation given the challenge of implementing masking
securely on low-end devices [BS20], we observe that the main security property that is
required for this purpose is ciphertext integrity with leakage in decryption. As discussed
in [BPPS17], this property can be reached with two calls to a strongly protected block
cipher and letting most of the other parts of the implementation leak in an unbounded
manner. Yet, it requires a careful instantiation of the tag verification. Namely, either
this tag verification is protected at the implementation level (e.g., via masking), which
contradicts the goal of relying only on hardware coprocessors, or it has to be designed
such that leaking the verified value cannot lead to forgeries. It is shown in [BPPS17] that
an inverse-based verification can remain secure with unbounded leakages. The variant
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in [DEM+20] achieves a similar result without inverse, but based on a slightly stronger
assumption, which translates into security against Simple Power Analysis (SPA).

By contrast, the proposal of Unterstein et al. does not include such a careful design.
Hence, we first show that a standard Differential Power Analysis (DPA) against its
tag verification can lead to forgeries, completely breaking the integrity of a leaking
software update using this scheme. We note that such an attack was already exhibited
in [BBC+20], Section 4.3, for an ARM Cortex-M0. We repeat it here for slightly more
noisy targets embedding hardware coprocessors. We next propose an adaptation of the
tricks in [BPPS17,DEM+20] that we incorporate into an improved mode as a remedy.

A second limitation of [USS+20] relates to its security analysis of the leakage-resilient
PRF used for ephemeral key and tag generation. The security of this construction is based
on the use of “carefully chosen plaintexts” which are aimed to generate key-dependent
algorithmic noise. As mentioned in [MSJ12], this (heuristic) security relies on parallelism
and on the fact that (i) exploiting leakage after the AES MixColumns operation is difficult
(e.g., because only transition-based leakages that are intensive to guess provide significant
leakage), and (ii) the leakage models of different S-boxes are sufficiently similar.

We revisit these requirements by investigating two hardware coprocessors available on
ARM Cortex-M33 and M4 devices, with respectively 32-bit and 128-bit architectures, that
are similar (yet not identical) to the ones analyzed by Unterstein et al. We observe that
while the leakage of the AES MixColumns operation is indeed difficult to exploit, a profiling
using a linear subspace and up to 4 · 109 traces allow us to exploit the different leakage
models of different S-boxes, leading to significant reductions of the data complexities
reported at CHES 2020. Since the complexity of these attacks directly impacts the number
of bits that can be “absorbed” per block cipher call in the tree-based PRF of Medwed et
al., these results imply important updates on the efficiency of such constructions. More
conceptually, these investigations put forward that evaluating leakage-resilient PRFs is a
quite delicate task. That is, in contrast with standard countermeasures like masking and
shuffling, which mostly depend on a sufficiently high level of noise in the measurements
(that may be uneasy to obtain on low-end devices, but is at least easy to evaluate),
leakage-resilient PRFs enable attacks with averaged observations so that they rather
require a sufficiently low side-channel signal in the measurements. Our experiments show
that evaluating such a signal is a quite sensitive process and that slight changes in the
measurement setup or profiling methods can significantly modify the perceived level of
security of such primitives. Hence, they suggest that considering sufficient security margins
is needed in order to mitigate risks of overstated security. We insist that we do not
claim leakage-resilient PRFs cannot be implemented securely: our only claim is that their
security evaluation has been less thoroughly studied than for countermeasures like masking.
So while such PRFs remain interesting candidates for secure implementation in low-end
devices with hardware coprocessors, our results suggest a deeper understanding of their
security assumptions is needed, which is an interesting research direction.

Based on these security analyses and keeping the motivation of providing efficient and
secure firmware updates, a third observation is that the AE mode in [USS+20] requires two-
passes in decryption. While the use of two passes is needed to provide strong confidentiality
guarantees in the presence of decryption leakage (as for example witnessed by the TEDT
mode of operation [BGP+20]), optimal integrity guarantees in the presence of leakage
can already be obtained with a single-pass and online mode, as reflected by the so-called
Grade-2 designs in [BBC+20]. We therefore provide a new mode of operation that is
exclusively based on block ciphers and satisfies such integrity guarantees.1

1 Strictly speaking, the Grade-1b designs of [BGP+20] that only provide integrity (so no confidentiality)
in the presence of leakage would be sufficient for this purpose. Yet, since ensuring beyond-birthday
integrity in the presence of leakage with n-bit block ciphers requires a 2n-bit state, adding an ephemeral



Olivier Bronchain, Charles Momin, Thomas Peters and François-Xavier Standaert 643

An obvious direction to achieve this goal would be to use the TET mode of operation
described in [BGP+20], that relies on Tweakable Block Ciphers (TBC). Yet, this solution
would require to instantiate the TBC with block cipher calls. Using generic constructions
like [Men15] would then require arguing about security in the presence of leakage during
the intermediate computations (especially since our integrity guarantees are aimed to hold
with unbounded leakages).2 Besides, the tag verification of TET is based on inverting a
TBC while our goal is to leverage a leakage-resilient PRF for this part.

We propose a solution avoiding these caveats which instantiates a Grade-2 design by
leveraging a block cipher based hash function introduced by Mennink [Men17] slightly
tailored for our purposes. It requires four block cipher calls per message block. We
also propose a careful instantiation of the tag verification that does not rely on masking
We show that this design is competitive with the CHES 2020 proposal and that it even
improves it when a SHA256 coprocessor is not available (which is sometimes the case in
low-end embedded devices). For completeness, we additionally describe solutions to ensure
confidentiality in the presence of decryption leakage, which can be necessary in contexts
where Intellectual Property (IP) must be protected [BPPS17,USS+20]. One heuristic
option is to leverage a multi-user variant of our Grade-2 mode. Another option is to use a
block cipher based variant of TEDT leveraging Mennink’s hash function. As a bonus, our
solutions also halve the amount of key material compared to [USS+20].

In summary, we show that (i) the AE scheme in [USS+20] does not enable secure
firmware updates unless its tag verification is protected against side-channel attacks
with implementation-level countermeasures (which contradicts its design goals); (ii) the
evaluation of the LR-PRF used in [USS+20] is a sensitive task that hardly transfer from
one device (or measurement setup) to another, hence suggesting the use of conservative
security parameters when instantiating it; (iii) block cipher based modes of operation can
be designed in order to mitigate the aforementioned integrity issue at the algorithmic level,
in one or two passes depending on the type of protection against leakage-based IP theft
required, and avoiding the use of SHA256 which can lead to performance gains.

We finally mention an application note from NXP on leakage-resilient primitives as
evidence that there is industry demand for such concrete security solutions.3

Related works and terminology. The idea of limiting the power of side-channel at-
tacks thanks to adapted cryptographic designs is an old one, already present in Kocher’s
first patents [Koc05]. Dziembowski and Pietrzak formalized this idea and proposed the
first leakage-resilient primitive proven based on standard reductionist arguments [DP08].
Their work has then been the source of many leakage-resilient designs for various crypto-
graphic primitives such as Pseudo-Random Number Generators (PRNGs) [Pie09,YSPY10],
PRFs [SPY+10,FPS12] or Pseudo-Random Permutations [DP10]. These seed results on
basic cryptographic primitives next triggered analyzes of complete functionalities like
encryption and authentication [BPS15,PSV15], and rapidly shifted the attention of design-
ers to Authenticated Encryption (AE) schemes mixing both integrity and confidentiality
guarantees [BMOS17,BKP+18,BPPS17,GPPS19]. Two definitional frameworks exist for
this purpose. Barwell et al. consider an all-in-one definition of leakage-resilience (excluding
the leakage in the challenge query) [BMOS17]. Guo et al. rather consider a composite
definition of leakage-resistance (including the leakage in the challenge query) [GPPS19].
Our investigations follow the approach of Guo et al. which, as discussed in [BBC+20],

key evolution mechanism that provides some confidentiality guarantees comes at very limited price and we
therefore have limited incentives to design a Grade-1b mode in the context of this paper.

2 A more efficient alternative would be to assume the AES-256 to provide a tweakable block cipher
(e.g., as done in [BÖS11]). Yet, AES-256 coprocessors are less standard than AES-128 ones, and such an
assumption is at least theoretically disputable in view of the related-key attacks described in [BK09]. In
particular, such attacks show that formally, the AES-256 cannot instantiate an ideal cipher.

3 https://www.nxp.com/docs/en/application-note/AN12304.pdf, see also [MSNF16].

https://www.nxp.com/docs/en/application-note/AN12304.pdf
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is well-suited to analyze integrity and confidentiality guarantees separately and to take
advantage of the different physical requirements they may lead to. We will use the term
leakage-resilient for the PRF of Medwed at al. [MSJ12], the term leakage-resilient for the
AE mode of [UHSS17] which is based on the definitions of Barwell et al., and the term
leakage-resistant for our modes of operation which are based on the definitions of Guo et al.
We further note that the leakage-resilient PRF of Medwed et al. essentially corresponds
to the seminal construction of Goldreich, Goldwasser and Micali (GGM) [GGM86], the
leakage-resilience of which has been analyzed by Faust et al. [FPS12]. Its originality
mainly lies in a careful selection of the plaintexts to encryption to generate “key-dependent”
algorithmic noise, which has only been analyzed heuristically so far. We finally mention
that the issue of secure tag comparison is not a new one in cryptography. It has been
frequently discussed in the context of authenticated encryption and has for example been
put forward by both Barwell et al. [BPS15] and Berti et al. [BPPS17].

2 Background
In the following, we first recall the side-channel attack we use in the rest of the paper.
Then, we continue with a description of the leakage-resilient PRF from [MSJ12].

2.1 Linear subspace template attacks
Profiled side-channel attacks can be performed by building templates in a linear sub-
space [APSQ06]. To do so, the adversary estimates the conditional probability density
function of the leakage according to:

f̂[~l|x] = 1√
(2π)nd |Σ̂|

exp 1
2 ((W~l−µ̂x)′Σ̂(W~l−µ̂x) , (1)

where ~l is a leakage vector of length np and x a sensible variable. The matrix W with
dimensions nd × np is the linear projection from the leakage domain (directly sampled
from a scope) to its linear subspace with nd dimensions. The vector µ̂x of dimension nd is
the estimated mean of the leakage in the linear subspace conditioned to x. Finally, the
matrix Σ̂ is the estimated pooled covariance matrix within the linear subspace. Thanks to
this conditional distribution, the adversary can use Bayes’ theorem and apply maximum
likelihood to recover the secret, just like in a standard template attack [CRR02].

When dealing with subspace-based template attacks, a few parameters have to be
carefully chosen such as np, nd and a method to derive the projection W. In this work, the
dimensions of interest are selected to be the np most informative time samples according
to Signal-to-Noise Ratio (SNR) [Man04]. The value of np as well as nd are chosen in
order to maximize the Perceived Information (PI) after projection [BHM+19]. Finally, the
projection is build based on a Linear Discriminant Analysis (LDA) [SA08].

2.2 Medwed et al.’s leakage-resilient PRF
The LR-PRF introduced in [MSJ12] and used in [USS+20] aims at reducing the number of
different plaintexts that can be encrypted with single a key, in effect leading to reducing
DPA security to SPA security. As illustrated in Figure 1, it processes an input x with a
key k using a tree-based construction: at each stage, a plaintext depending on nb bits of x
is encrypted with a key taken as the output (ciphertext) of the previous stage. The last
stage of the LR-PRF is a whitening that encrypts a public plaintext. Therefore, the total
number of calls to the block cipher (or stages) to run the LR-PRF is worth 1 +n/nb where
n is the size of the LR-PRF input. In order to mount a DPA against k, the adversary
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Figure 1: LR-PRF construction from [MSJ12] with nb = 8 (illustration from [MSJ12]).

has access to 2nb different plaintexts. Since she has control of x, she can observe multiple
leakage for the same input and so obtain averaged leakages with minimum noise.

In [MSJ12], the authors format the plaintext based on the nb bits of x such that all the
bytes have the same value (e.g., set to these nb bits). As a result, for a byte-oriented cipher
like the AES, the bytes of the plaintext that enter the key addition plus the S-box in the
first cipher round will be equal. This makes the guesses performed by the DPA adversary
equal for all the bytes. In a parallel implementation and assuming that the leakage model
of each S-box is identical, an adversary will not be able to distinguish the leakage from the
S-boxes. In case this attack vector is the best one (i.e., if attacking after the MixColumns
operation is hard), the adversary will be forced to enumerate the permutation on all the
key bytes. We will further elaborate on these hypotheses in Subsection 4.1.

3 Attack against the integrity of the [USS+20] LR-AE
In this section, we first describe the experimental setup used in the rest of the document.
Then, we demonstrate a DPA against the tag verification that can be used to mount
forgeries against the leakage-resilient AE proposed in [USS+20].

3.1 Targets and measurement setup
We perform experiments on two commercial MCUs with AES coprocessors. The first one
is an ARM Cortex-M4 STM32F439ZI mounted on a (unmodified) demonstration board
Nucleo-144.4 The coprocessor has a 128-bit architecture meaning that all the S-boxes are
processed in parallel. The device is running at its maximum clock frequency of 180[MHz].

4 https://www.st.com/en/evaluation-tools/nucleo-f439zi.html

https://www.st.com/en/evaluation-tools/nucleo-f439zi.html
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The second target is an ARM Cortex-M33 STM32L562QEI6QU with ARM TrustZone
and a dual core. The MCU is also mounted on a (unmodified) demonstration board
STM32L562E-DK.5 The coprocessor has a 32-bit architecture meaning that a single AES
column is processed in parallel. This target is also running at its maximum clock frequency
of 110[MHz]. On both targets, the supply voltage is lowered to 1.8[V] which is the minimal
specified value, in order to reduce the noise generated by the on-chip voltage regulator. The
two investigated targets have similar but not identical coprocessors as the ones investigated
in [USS+20], which are respectively based on 32-bit and 128-bit architectures, and are
running on ARM Cortex-M4 and ARM Cortex-M3 devices. We evaluate the coprocessor
of a more recent ARM Cortex-M33 in place of the ARM Cortex-M3.

Similarly to [USS+20], the side-channel leakage is measured with an electromagnetic
(EM) probe. The EM signal is sampled with a PicoScope 6424E at 5[GSamples/sec]
(with a 500[MHz] analog bandwidth), using a 10-bit resolution. This signal is amplified
thanks to a PA 306 from Langer that offers 30[dB] of gain on the bandwidth 100[kHz] to
6[GHz]. For the ARM Cortex-M33, the probe RF-B 0.3-3 from Langer is used while for the
ARM-Cortex-M4 the probe RS H2.5-2 from Rohde&Schwarz is selected. The quality of
the equipment is similar to the one used in [USS+20], excepted that we did automatically
position the probe instead of manually. For both targets, the probe was positioned thanks
to a XYZ table used to scan the top of the (untouched) package. The SNR is estimated
for all the S-boxes with 200,000 traces at each point of a grid. For the Cortex-M33, the
grid is of size 16x16. For the Cortex-M4, we use a 64x64 grid.6 The heatmaps obtained
after the grid scan of Cortex-M4 are reported in Appendix A, Figure 15. For both targets,
the heatmap for each S-box suggests to place the probe around the same area. Therefore,
the probe is moved to the position maximizing the averaged SNR across the 16 S-boxes
and we do not exploit spacial resolution as investigated in [UHSS17,UHS+18].

Overall, we were able to capture the traces at a rate larger than 30,000[measure-
ments/sec] for the two investigated targets. Similarly to [SM16], the AES coprocessor
is used as a PRG to generate the random plaintexts and keys, which saves most of the
cost of communication with a control desktop. Namely, it encrypts in CBC mode a zero
string with a known random IV. The SNRs are then computed on-the-fly thanks to a
one-pass algorithm similar to [SM16], which totally saves the cost of disk writing. The
estimations of SNR as well as most of the side-channel analyses have been performed with
the open-source library SCALib.7

3.2 Tag recovery attack
In [BBC+20], the authors present a practical side-channel attack against a tag verification
implemented on an ARM Cortex-M0. It can directly be used to forge valid messages under
adversarial control [BPPS17], and therefore to break the integrity of a software update.
We repeat that experiment with two differences: (i) we use an ARM Cortex-M4 which is
more noisy, and (ii) we do template attacks in a linear subspace instead of directly in the
leakage domain.8 The target code is described in Listing 1, where a 128-bit tag candidate
S is compared with the correct tag T by using 4 XOR instructions. After using 3 OR and
1 comparison, the returned value is 1 if all the bits of S and T are equal. We report the
corresponding assembly code obtained with objdump in Appendix A, Listing 2.

More precisely, considering the scheme from [USS+20], Algorithm 3, an adversary can
try to forge a valid tag T for a ciphertext of her choice and a nonce. By having access

5 https://www.st.com/en/evaluation-tools/stm32l562e-dk.html
6 The Cortex-M33 package is smaller than the Cortex-M4, which explains the different resolutions.
7 https://github.com/simple-crypto/SCALib
8 The maximum SNR on the ARM Cortex-M4 we investigate is approximately 0.15 while it is

approximately 0.8 on a similar ARM Cortex-M0 as investigated in [BBC+20].

https://www.st.com/en/evaluation-tools/stm32l562e-dk.html
https://github.com/simple-crypto/SCALib
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1 uint32_t tag_ver i f ( uint32_t ∗S , uint32_t ∗T){
2 uint32_t f l a g ;
3 f l a g = S [ 0 ] ^ T [ 0 ] ;
4 f l a g |= S [ 1 ] ^ T [ 1 ] ;
5 f l a g |= S [ 2 ] ^ T [ 2 ] ;
6 f l a g |= S [ 3 ] ^ T [ 3 ] ;
7 r e turn ( f l a g == 0) ;
8 }

Listing 1: Tag verification C code.

to a decryption oracle, she can attempt decryption with multiple random tags S. The
oracle will first compute the valid tag T (lines 12 and 13) and then compare it with S (line
14) allowing one to mount a DPA on the XOR instructions in Listing 1.9 In Figure 2a,
we report the median rank of the 128-bit tag estimated with [PSG16], in function of the
number of calls to the decryption oracle. In Figure 2b, we similarly report the success
probability if no enumeration is possible. After 3, 000 calls, the adversary can recover the
valid tag in full without enumeration with a probability almost equal to one. After 200
calls, she is already able to reduce the rank of the valid tag below 232. This would allow
her to still succeed in the attack by enumerating these 232 tags.
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Figure 2: Median tag rank & success rate for various number of traces on ARM Cortex-M4.
Metrics estimated on 100 independent random keys. 2 · 106 profiling traces used.

In the context of firmware updates investigated in [USS+20], this tag recovery could
be exploited as follows. First, an adversary can anyway select a (garbage) ciphertext C
and one nonce of her choice N . By targeting the verification, she is able to obtain the
valid tag T and to decrypt the (garbage) plaintext M corresponding to the ciphertext
C. This already results in a valid authenticated (garbage) firmware update which can
lead to practical issues (e.g., denial-of-service) if no additional protection mechanisms
are implemented. Second, if we additionally assume that the adversary can observe the
garbage plaintext, she can then also recover the random string R output by the LR-PRG
that depends only on N and a secret key, by adding C to M . In this case, she can
choose a (malicious) plaintext of her choice M ′ and compute the corresponding ciphertext
C ′ = R ⊕M ′, which is valid for the nonce N . Afterwards, she only needs to repeat the
attack against the tag verification to recover the corresponding valid tag T ′ This attack
therefore allows the adversary to forge an authenticated firmware update (C ′, T ′, N) that
she controls without recovering the long-term key. We note that it admittedly assumes
that the adversary can observe the garbage plaintext, which may require some additional
(possibly side-channel based) reverse engineering. But on the one hand, our following
investigations will show that for a well instantiated mode, integrity can hold even with
an unbounded leakage of ephemeral secrets (e.g., plaintexts), and on the other hand, this
attack shows that if one single correct plaintext/ciphertext pair is ever recovered, then

9 We note that by using template attacks, the adversary implicitly exploits all the leakage points that
are bijectively related to a byte at the output of the target XOR operation.
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forging any malicious software update of at most this size becomes possible.

Based on the above, a natural question is: where does this weakness arise from? That
is, does this tag recovery attack result from problems with the model, the security proofs
or a wrong instantiation of the construction? In this respect, we note that the model
used to analyze [DJS19,KS20] is the one of Barwell et al. which considers leakage during
verification [BMOS17]. They observe that a MAC whose verification algorithm recomputes
the tag and checks for equality with the candidate tag cannot be strongly unforgeable with
leakage. Therefore, they proposed an instance of leakage-resilient MAC based on pairings
to mitigate this issue. The work of Degabriele et al. then suggested that such expensive
pairings could be avoided in the (quite realistic) non-adaptive leakage setting, enabling
simple MAC verifications that work by recomputing the tag on an input pair (nonce,
ciphertext) and checking that it is identical to the given tag. Yet, it turns out their analysis
ignores the leakage of the tag comparison. We show in this section that a simple DPA with
non-adaptive leakages is sufficient to forge MACs in this case, as discussed in [BPPS17].
Such an issue was for example recognized in the ISAP v2 design [DEM+20], which comes
with a discussion of secure tag comparison that was missing in ISAP v1 [DEM+17]. But
it seems that it was ignored in the theoretical treatment of [DJS19,KS20], an error that
was then propagated in [USS+20], as explicited by the sentence: “this does not add any
additional attack vectors, as all sensitive operations are located within the LR-PRF and
LR-PRG”. Clearly, the comparison of the tags is another sensitive operation.

4 Evaluation of the [MSJ12,USS+20] LR-PRF
In this section, we detail our side-channel analysis of the LR-PRF. We first give a qualitative
analysis aimed to highlight the relevant sources of leakage to target such a construction.
Next, we describe our attack results quantitatively and conclude with a more general
discussion on the evaluation of low-complexity DPA/SPA.10

4.1 LR-PRF: qualitative leakage analysis
The heuristic security provided by Medwed et al.’s LR-PRF is based on two main working
principles. On the one hand, it bounds the amount of average leakage traces that an
adversary can exploit to perform a DPA. Namely, she can only access 2nb traces to attack
each stage of the LR-PRF. On the other hand, the plaintexts that are encrypted are not
random since they are structured as vectors with 16 times the same value. This aims to
generate “key-dependent algorithmic noise” as described in Subsection 2.2. For this purpose,
it is additionally required that the implementation executes the S-boxes in parallel, that
their leakage models are sufficiently similar and that targeting the MixColumns operation
is hard. If these conditions are satisfied, it implies that the adversary will not be able to
distinguish the leakage from the 16 S-boxes (due to their identical input), at least leading
to the requirement to enumerate all the possible permutations of key bytes, which has a
cost of 16! ≈ 244.25 for the AES (see [MSJ12], Section 5). As a result, the main qualitative
questions when analyzing the physical security of such a primitive are whether attacking
MixColumns is indeed hard, and whether the S-boxes’ leakage models are sufficiently
similar. In the rest of this section, we analyze these two points in detail.

Regarding the first question, Figure 3 reports the SNR observed on the S-boxes and
MixColumns output bytes, for our two targets. On the ARM Cortex-M33, we first note
that the 4 columns are processed serially, confirming that the underlying architecture is

10 Unterstein et al. also analyze the additional leakage that is provided by key transportation. We do
not repeat this part of their experiments since our analysis of the LR-PRF will already conclude that
using a minimum nb value is recommended for the two targets we consider in this paper.
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Figure 3: SNR on AES S-boxes and MixColumns outputs evaluated on 200 · 106 traces.
The color mapping corresponds to bytes within the same AES column.

32-bit. For the ARM Cortex-M4, all the SNR peaks occur simultaneously, hinting towards
a 128-bit architecture. We observe that the SNR on the MixColumns operation is at least
two order of magnitudes lower than the one on the S-boxes. We assume the latter is due
to MixColumns’s being implemented by harder to target combinatorial logic and/or its
leakages requiring wider key guesses to predict transitions. Hence, we conclude from this
experiment that Medwed et al.’s first requirement is sufficiently satisfied.11

Regarding the second question, Figure 4 depicts the leakage distributions in a linear
subspace and in the direct leakage space for a constant value at the input of each of the
first AES column’s S-boxes. The distributions are shown for the two first dimensions and
the linear subspace is the one of the first S-box. Looking at the distributions on the ARM
Cortex-M33 (resp., Cortex-M4), we observe in Figure 4a (resp., Figure 4c) that they are
already different in the original leakage space. These differences in the first dimensions are
enhanced by moving to the linear subspace, as depicted in Figure 4b (resp., Figure 4c).

In Figure 5, we then study the difference between the leakage distributions of the first vs.
the other S-boxes, based on Hotelling’s T 2-test [Hot31]. On these plots, the X-axis is the
amount of averaging performed by the adversary and the Y -axis is the significance of the
difference. First, we observe that by increasing the amount of averaging, the significance
increases. This is expected since it reduces the noise on the distributions, making their
means easier to estimate. Additionally for the ARM Cortex-M33 (resp., Cortex-M4), by
comparing Figure 5a (resp., Figure 5b) with Figure 5c (resp., Figure 5d) we observe that
the differences are of the same magnitude in the linear subspace and in the direct leakage
space but that more dimensions are needed in the second case (200 dimensions instead of
6). We notice that the advantage of using additional dimensions is larger on the ARM
Cortex-M33. The difference between the distributions on the ARM Cortex-M33 is also
larger than on ARM Cortex-M4, presumably due to a more serial implementation.

While these results remain qualitative, they highlight that the leakage models of
different S-boxes are different for our two targets. Hence, they contradict one of Medwed
et al.’s assumptions. Informally, our results suggest that with a precise enough profiling,
it should be possible to exploit these differences, enabling the adversary to escape the
enumeration of a 16-permutation as expected from the LR-PRF design. In that context,
projecting the leakages in a linear subspace allows “concentrating” these differences in a

11 Our SNR is admittedly based on 8-bit guesses. However, 32-bit linear models estimated with [SLP05]
did not exhibit significantly better results. So given the wide gap with the S-box leakages, we assume that
targeting MixColums will remain a worse strategy for our two target devices.
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(a) Cortex-M33 (32-bit arch), leakage space (b) Cortex-M33 (32-bit arch), linear subspace

(c) Cortex-M4 (128-bit arch), leakage space (d) Cortex-M4 (128-bit arch), linear subspace

Figure 4: Leakage distributions of multiple S-boxes for a constant input value. Distribu-
tions after 256 (resp., 2048) averaging on the ARM Cortex-M33 (resp., Cortex-M4). The
linear subspace is the one of the first S-box. The two dimensions of the original leakage
space are the ones with highest SNR. Curves represent a Gaussian fit on the clusters.
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Figure 5: Hotelling’s T 2-test between leakage distributions of S-box 0 and other S-boxes for
various number of dimensions, computed with (averaged) 2, 000 samples per distribution.
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few dimensions which makes it easier to exploit by an adversary/evaluator. In Appendix B,
we illustrate that the amount of information extracted in the original leakage space and
in the linear subspace is similar. But since the second solution uses less dimensions, it
requires less profiling traces to accurately profile a model. We note that [UHSS17,UHS+18]
already pointed out that linear subspaces and spacial resolution can be used to observe
different leakage models for different S-boxes. Our experiments show that a similar effect
can be obtained without spacial resolution for the targets we look at.

4.2 LR-PRF: quantitative attacks
We now report the results of attacks against the LR-PRF. We used template attacks in
linear subspace, as described in Subsection 2.1, since they provided the best results. For
the ARM Cortex-M33 (resp., Cortex-M4), the profiling is performed on 500 · 103 (resp.,
2 ·106) averaged traces. For example, for 256 (resp., 2048) averaging, we collected a total of
256 · 500 · 103 (resp., 2048 · 2 · 106) measurements. We note that the profiling was performed
using random keys and plaintexts in order to avoid biasing our models with key-dependent
features that would not be exploitable during the online attack phase.

The median key rank estimated according to [PSG16] is reported in Figure 6, where the
X-axis is the LR-PRF parameter nb (see Subsection 2.2). We observe that by increasing
nb, and so the number of different averaged traces available to the adversary, the key rank
significantly decreases. The fact that the key rank decreases below 16! ≈ 244.25 confirms
that we are able to exploit the different leakage models of the different S-boxes. Averaging
also allows decreasing the key rank but its impact saturates at some point, similarly to
what can be observed in [USS+20], Figure 10. On the ARM Cortex-M33 (resp., Cortex-M4)
starting from 64 (resp., 512), averaging does not improve the attacks.

Concretely, for the ARM Cortex-M33 our adversary reduces the median key ranks
down to 29 if nb = 8, and down to 250 if nb = 4. For keeping it larger than 290, we need
nb ≤ 2. The ARM Cortex-M4 is more resistant thanks to its parallel architecture: with
nb = 8, the median key rank is equal to 225 but with nb ≤ 5 it is already above 296.

4.3 LR-PRF: the evaluation challenge
Our analyses imply that smaller nb values than reported in [USS+20] should be used for our
similar targets and measurement setup. For example, Figure 11 in this reference suggests
that on both targets, nb = 6 leads to more than 100 bits of security. In our evaluations,
this value is reduced to 20 (resp., 70) on the ARM Cortex-M33 (resp., Cortex-M4).

Technically, these results are not in strong contradiction with previous works. For
example, as illustrated in [UHSS17,UHS+18], the resistance of a LR-PRF highly depends
on the adversary’s measurement capabilities and the exploitable signal within the target.
On an FPGA implementation of the LR-PRF, is has been showed that such schemes
can be insecure even for nb = 1 depending on the floorplanning. To some extent, this is
typical for any side-channel countermeasure: eventually, their security depends on physical
assumptions. Fulfilling such assumptions is always a challenge, whether being to ensure a
sufficient noise level or a sufficiently low side-channel signal. Yet, one important conclusion
of our experiments is that the “low signal” requirement of LR-PRF constructions ensuring
low complexity DPA (or even SPA) to be hard is also more challenging to evaluate. The
main reason of this fact is that such constructions generally enable averaging the physical
noise. In this context, evaluating the signal becomes very dependent on the shape (i.e., the
deterministic part) of the leakage function, while “noise amplification” countermeasures
such as masking or shuffling only require that the ratio between signal and noise (SNR) is
sufficiently low, independently of the signal shape. Since the shape of a leakage function is
quite sensitive to (even minor) modifications of the target designs and measurement setups,
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Figure 6: Median key rank of the Medwed et al. LR-PRF for various data complexities.
Medians are estimated on 100 independent attacks with random keys.

constructions relying on limited signal (if implemented without additional countermeasures),
inherently carry a higher risk of suboptimal (i.e., non worst-case) evaluation.

Such a risk is illustrated by the comparison between our analysis and the one of [USS+20]
where mild variations of the measurement setup and a collection of 1,000 more profiling
traces lead to different security parameters for similar targets (i.e., same architecture but
not exactly the same MCU). They could be amplified if the adversary obtains a better
a-priori knowledge of her target, or performs larger key guesses than the evaluator. Hence,
we conclude that designers should be conservative when selecting the parameter nb of a
LR-PRF. As will be detailed in Section 6, low nb values are anyway not overly detrimental
from a performance viewpoint, since they can be amortized for long messages.

5 The LR-BC-2 mode of operation
In order to design a one-pass AE mode with Grade-2 leakage security, we need to combine
an ephemeral key evolution scheme and a compression function. On the one hand, the
ephemeral key evolution scheme allows iteratively processing each block of message with
a fresh key, which is reminiscent of designs conferring confidentiality guarantees in the
presence of encryption leakage [BBC+20]. On the other hand, the compression function is
used to progressively absorb the blocks to make the computation more and more dependent
on the already processed blocks, leading to a kind of digest that can then be authenticated
using a fixed-length leakage-resilient Message Authentication Code (LR-MAC). While
relying on a TBC is not only a convenient solution to implement the above principle
but also a way to achieve high security bounds (e.g., with 2 TBC calls per block as in
TET [BGP+20]), we do not have the same degree of freedom when only relying on a block
cipher, as explained in the introduction. In this section, we show how we can still reach
high security guarantees in the presence of decryption leakages when only block ciphers like
the AES, are available. Our new mode, coined LR-BC-2, only requires four BC calls per
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block, which is equivalent in performance to a variant of TET where each TBC call would
be implemented by 2 BC calls as in [Men15], even if such a composition would be insecure
in our (unbounded) leakage setting. We start with a general description of our design and
its rationale. We follow with a formal quantitative analysis of its integrity in the presence
of leakage, which is the most important property for our intended (secure firmware update)
application. We finally provide a shorter (heuristic) discussion of confidentiality in the
presence of leakage, for which LR-BC-2 does not exhibit particular innovations.

5.1 Specification and rationale
Our mode follows the general 3-step blueprint suggested in [BBC+20] for Grade-2. In
the initialization step, we compute a random 2n-bit state (K1, L1) from a key derivation
function KDFK(N), where K1 is an ephemeral encryption key. For this first step, we
borrow the BC-based bit-by-bit PRF of the previous section that we apply to the nonce
N to get a seed K0, allowing producing our initial state (K1, L1). As a second step, the
bulk of the computation is made as a one-time encryption of M1‖ · · · ‖M` where, at each
successive processing of a message block Mi, the corresponding ciphertext block Ci is
created and absorbed, and the state is refreshed. Eventually, in the finalization step, we
use an LR-MAC, aka Tag Generation Function (TGF) to authenticate the final state with
an appropriate verification mechanism. We now focus on the second step.

Our starting point is the BC-based compression function family due to Mennink [Men17],
which achieves optimal collision security using only 3 calls to the underlying n-bit block
cipher. In the sequel, we denote this function by MenH. Given a 2n-bit state (Ki, Li) and a
n-bit block Ci to absorb, MenH(Ki, Li, Ci) compresses the 3n-bit input into 2n-bit output
state (Ki+1, Li+1). The reason why we rely on MenH is twofold: (i) in the ideal-cipher
model, the collision bound holds even if all the intermediate values are exposed, which
comes in handy for our integrity with leakage purpose; (ii) by carefully choosing MenH in
the family, we can use it to turn Ki into an ephemeral secret key allowing encrypting Mi,
which only requires a single additional call to the BC. More precisely, if E is the underlying
BC, given an i-th 2n-bit state (Ki, Li), we encrypt Mi as Ci = EKi(Li ⊕ θ) ⊕Mi and
compute MenH(Ki, Li, Ci) = (Ki+1, Li+1) in such a way that Ki+1 can, in turn, be used
as the next ephemeral key. The value θ is a non-zero constant, e.g. θ = 10∗.

In Figure 7, we depict the encryption algorithm of our new mode, where (K1, L1) is
the initial state. The 4 BC calls per block Mi can easily be parsed from the picture. For
each processing of message block, the 3 BC calls in black as well as the black wires and
the linear map L (computed over F2n) represent MenH. In red, the additional BC call,
Mi, and the wires correspond to our plug-in that turns MenH into a block encryption. We
note that many L transforms are possible for the collision/preimage-resistant compression
function. Our specific choice is illustrated in Figure 8(a). We additionally assume that the
bit-length of any message and any ciphertext is a multiple of n since our goal is to show
the leakage security of our design, which is orthogonal to (standard) padding issues.

Figure 7: The LR-BC-2 mode of operation.
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We now picture the design of KDF in Figure 8(b). It first uses the key K to set up
an IV (K0, L0) for a constant cst so that L0 := cst. The preimage resistance of the half
state L-value as the image of a single-length compression function ensures that no internal
state can collide with (K0, L0) because of this constant cst. To avoid IV-collisions between
encryption and decryption, we simply apply MenH once with the nonce: we make the call
MenH(K0, L0, N). This first call inside KDF forces the initial state (K1, L1) to diverge for
distinct nonces. We also add a separation bit before the nonce. This is for reusing the
same secret key both in the initialization and the finalization of our mode.

(a) The coefficients of L. (b) KDF for some constant cst.

Figure 8: The Key Derivation Function (KDF) and our linear map L.

It remains to explain the design of TGF, which we would like to build without relying
on hardware-level countermeasures such as masking, and to argue why the verification of
maliciously chosen tags does not reveal enough information on a valid tag T during the
decryption of fresh ciphertexts. A natural starting point for this purpose is the recent work
of Guo et al. [GSWY19], which describes different such constructions with good bounds.
We now argue why they cannot be used in our context and how to tweak them so that
they lead to secure implementations based on unprotected hardware coprocessors.

For this purpose, let us start with the MAC illustrated in the red box of Figure 9(a),
and integrated in the LR-BC-2 mode of operation. Guo et al. showed that it ensures
beyond-birthday security if implemented with two strongly protected block ciphers (e.g.,
thanks to masking) and the verification is done by inverting the upper block cipher. The
problem in our context is that we do not want to rely on masking. Hence, typically, the
lower PRF will be strongly protected thanks to the leakage-resilience features discussed
in Section 4, and the upper block cipher call will rely on an unprotected hardware AES
implementation. As a result, if we apply this idea in our context we cannot assume anymore
that the intermediate key X will be leak-free. In fact, a simple DPA against LR-BC-2’s
decryption is possible. By querying decryption on (N,C1, . . . , C`, S) for many candidate
tags S and fixed nonce and ciphertext blocks, the last state (A,B) and X, are fixed. The
DPA is then run against X in the verification when E−1

X (S) is performed on distinct S.

(a) Birthday security. (b) Beyond-birthday security (1st attempt).

Figure 9: Towards our tag generation/verification functions.

A first step towards solving this issue, illustrated in Figure 9(a), is to use a tag
verification similar to the one proposed for ISAP v2 [DEM+20]. That is, rather than
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performing the verification by inverting the block cipher (which, as discussed in [BPPS17],
enables the tag comparison to remain secure with unbounded leakages), use an additional
call to the block cipher to encrypt a constant (e.g., zero) plaintext and compare the
resulting Z values during verification. Such a tweak mitigates the previous attack since
this time, the adversary cannot perform a DPA against BCX(A) by decrypting multiple
tag candidates S. She rather has to attack this block cipher in the forward direction. But
in order to fix the key X for α different A values so that a DPA can be performed with
data complexity α, she will have to find multi-collisions on B. For reasonable values of α,
this task becomes computationally intensive as the probability of finding an α-collision
for a random function roughly decreases to 2−n(α−1)(q

α

)
, which remains safe for around

q ≈ 2n(α−1)/α queries. Therefore, to extract the internal X the adversary is only left with
an SPA. Yet, it remains that the tag T and the value Z are only 128-bit wide and a collision
on Z indicates a collision on T with high probability, so that this tag verification is only
birthday secure in the black box world.12 Indeed, by making 2n/2 encryption queries as
well as 2n/2 decryption queries, with good chance we will have that among the many tags
T returned in the ciphertexts we will have as many corresponding Z (that we can compute)
and a colliding Z ′ returned from the decryption. For that identified decryption query we
simply guess that the valid tag is the one from which the colliding Z was generated.

Therefore, a second step to keep our TGF/TVF beyond-birthday secure is to ensure
that Z depends on a wider state, which we achieve by generating an additional value Y
that we use as a plaintext to produce Z, as illustrated in Figure 9(b). We note again that
the security of this proposal cannot hold with unbounded leakages as the decryption-based
proposal in [BPPS17]. In particular, it requires SPA security for the intermediate key
X and the tag T which is internally computed during the verification. Yet, the latter is
natural in our case, since we assume it for the leakage-resilient PRF anyway.

While this solution may already look strong, it however remains that a repetition of
B implies a repetition of the ephemeral key X, while we have to reduce the number of
times PRF[E](1‖·) – our notation for the leakage-resilient PRF using E as underlying
block cipher with a bit of separation at its input – is run on the same input to avoid SPA
with (constant but) larger number of leakages against the tag verification. Since the MenH
outputs are not random over {0, 1}2n (Mennink showed they are up to a tight birthday
bound, but we aim for beyond-birthday integrity), there may be up to α2 repetitions of
a B-value among all the final states (A,B) if there are some α-multi-collisions on the
underlying n-bit output compression functions inside the computation of MenH. Indeed,
even if there are at most α multi-collisions on a single value of B, each of these collisions
may themselves come from previous α multi-collisions on the 2L+D value, which is the
key-input value of the last lower BC call in MenH – see Figure 8(a).

Since the adversary controls C`, the corresponding plaintext-input of that BC call can
be chosen equal between key-input collisions. We would thus have to deal with α2 possible
repetitions of B since B is the output of two successive iterations of some compression
functions. In turn, the key X may be manipulated up to 2α2 times in Figure 9(b).13

Concretely, this essentially implies that in order to guarantee security with up to
q ≈ 2n(α−1)/α queries, one would also require that the block cipher implementation used in
the construction of Figure 9(b) resists SPA with qspa = 2α2 queries. For 96 bits of security,
this gives qspa = 32 (which correponds to nb = 5 in our empirical evaluation of Section 4.2).
For 112 bits of security, this gives qspa = 128 (which corresponds to nb = 7). Those values
correspond to SPA requirements that are not satisfied by the devices we evaluated.

As a result, the third and the last step to build our TGF/TVF is to carefully add one
more call to a n-bit output compression function on (A,B) before going into PRF[E](1‖·).

12 A similar concern happens with the tag verification of ISAP v2 [DEM+20].
13 Where the factor 2 comes from the fact that X is used to encrypt twice.
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While this obviously reduces the number of repetitions from α2 to α since the final states
are pairwise distinct, we also have to introduce one more feed-forward in order to avoid
collisions on (A,X). We illustrate our proposed TGF/TVF functions in Figure 10. In this
case, we get ≈96-bit security with qspa = 8 (which corresponds to nb = 3) and ≈112-bit
security with qspa = 16 (which corresponds to nb = 4). Those values better match what our
implementations offer and (we believe) correpond to an interesting security vs. performance
tradeoff. More precise evaluations are given after the proof in the next section.

We finally note that a simple but expensive solution to remove this multi-collision SPA
is to directly send A and B to a leakage-resilient PRF with 2n input bits.

Figure 10: Our tag generation function with the tag comparison.

The full specification of our mode is given in Figure 11. To encrypt M = (M1, . . . ,M`)
with nonce N , computing the ciphertext C = (C1, . . . , C`, T ), where T is the tag, requires
4`+ 5 calls to the block cipher E in addition to both evaluations of PRF[E].

Algorithm Enc[E](K,N,M)

1. M1‖ . . . ‖M`
n←−M

2. (K1, L1)← KDF[E](K,N)
3. for i = 1 to ` do // θ = 10∗

4. Ci ← EKi (Li ⊕ θ)⊕Mi

5. (Ki+1, Li+1)← MenH[E](Ki, Li, Ci)
6. T ← TGF[E](K,K`+1, L`+1)
7. C ← C1‖ . . . ‖C`‖T
8. return C

Algorithm KDF[E](K,N)
1. K0 ← PRF[E](K, 0‖N) // L0 = 0n

2. (K1, L1)← MenH[E](K0, L0, N)
3. return (K1, L1)

Algorithm TGF[E](K,A,B)
1. W ← EA(B)⊕B
2. X ← PRF[E](K, 1‖W )⊕B
3. return T ← EX(A)

Algorithm TVF[E](K,A,B, S)
1. W ← EA(B)⊕B
2. X ← PRF[E](K, 1‖W )⊕B
3. Y ← EX⊕θ(A), T ← EX(A)

4. return [ES(Y ) ?= ET (Y ) ]

Algorithm Dec[E](K,N,C)

1. C1‖ . . . ‖C`‖S
n←− C

2. (K1, L1)← KDF[E](K,N)
3. for i = 1 to ` do // θ = 10∗

4. Mi ← EKi (Li ⊕ θ)⊕ Ci
5. (Ki+1, Li+1)← MenH[E](Ki, Li, Ci)
6. β ← TVF[E](K,K`+1, L`+1, S)
7. if β = 0 then return ⊥
8. M ←M1‖ . . . ‖M`

9. return M

Algorithm PRF[E](K, b‖U)

1. ν1‖ . . . ‖νn
1←− U

2. k0 ← EK(Pb)
3. for i = 1 to n do // P0, P1, P2

4. ki ← Eki−1 (Pνi )

5. return kn+1 ← Ekn (P2)

Algorithm MenH[E](K,L,C)
1. D ← EK(L)
2. K′ ← EK+L+2D(C)⊕ C
3. L′ ← E2L+D(L+ C)⊕ (L+ C)
4. return (K′, L′)

Figure 11: Definition of the LR-BC-2 mode, using a BC E.
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Figure 12: The CIML2 security game.

5.2 Integrity in the presence of leakage: formal analysis
Definition 1 (Nonce-Based AEAD [Rog02]). A nonce-based authenticated encryption
scheme with associated data is a tuple AEAD = (Gen,Enc,Dec) such that, for any security
parameter n, and keys in K generated from Gen(1n):

• Enc : K×N ×AD×M→ C deterministically maps a key in K, a nonce in N , some
blocks of associated data in AD, and a message inM to a ciphertext in C.

• Dec : K ×N ×AD × C →M∪ {⊥} deterministically maps a key in K, a nonce in
N , some blocks of associated data in AD, and a ciphertext in C to a message inM
or to a special symbol ⊥ if integrity checking fails.

The sets K,N ,AD,M, C are completely specified by n. Given a key k ← Gen(1n),
Enck(N,A,M) := Enc(k,N,A,M) and Deck(N,A,M) := Dec(k,N,A,M) are determinis-
tic functions whose implementations may be probabilistic.

Definition 2 (CIML2). An authenticated encryption AEAD = (Gen,Enc,Dec) with leakage
function pair L = (LEnc, LDec) provides (qe, qd, ql, t, ε)-ciphertext integrity with nonce misuse
and leakages (both in encryption and decryption) given a security parameter n if, for all
(qe, qd, ql, t)-bounded adversaries AL, we have:

Pr
[
PrivKCIML2

A,AEAD,L(1n)⇒ 1
]
≤ ε,

with the PrivKCIML2
A,AEAD,L game of Figure 12 where AL makes at most qe leaking encryption

queries, qd leaking decryption queries and ql leakage evaluation queries.

For the sake of simplicity we do not deal with associated data. Therefore, when the
adversary makes an encryption (resp., decryption) query for a nonce N and a plaintext M
(resp., ciphertext C) we implicitly set the associated data to the empty string.

Idealized leakage assumptions. As a usual first step in the analysis of leakage-resistant
modes of operation, we assume that the computation of the ideal cipher is leak-free as
long as it is called a small constant number of times on each ephemeral secret key [PSV15].
This small number corresponds to the 2nb queries of the leakage-resilient PRF and to the
α-multi-collisions. More precisely, we make the following simplifying assumption.

Given a block cipher E : {0, 1}n × {0, 1}n 7→ {0, 1}n, we say that E satisfies (α, u)-
leakage independence if for any adversary A the leakage contains no information about
the u ephemeral keys in the next experiment where they are explicitly used at most 2α
times. Let U1, . . . , Uu be random values over {0, 1}n, and Q1, . . . , Qu and R be initially
empty sets.14 In the experiment the adversary A can make the following query: on input

14 These values correspond to the outputs of the PRF in TGF.
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(i, Aij , Bij), where 1 ≤ i ≤ u and Aij , Bij ∈ {0, 1}n, (i) if (Aij , Bij) ∈ Qi, abort;15 (ii) if
(Ui ⊕Bij , Aij) or (Ui ⊕Bij ⊕ 0∗1, Aij) ∈ R, abort;16 (iii) if |Qi| = α, abort; (iv) update
Qi ← Qi ∪{(Aij , Bij)} and R← R∪{(Ui⊕Bij , Aij)}; and finally (v) compute and return
EUi⊕Bij (Aij) and EUi⊕Bij⊕0∗1(Aij) as well as the leakage of these computations.

As clear from the previous discussions, the smaller is α, the weaker is the assumption.
Depending on the number u of explicit random ephemeral keys, there might be many
collisions among U -values. However, since no computation is repeated in this game, the
adversary has no clue about which keys collide if she halts before making a forbidden
query (i.e, those creating an abort). As a result, the only information the adversary can
get from the experiment is many pairs of plaintext-input blocks and ciphertexts-output
blocks corresponding to unknown keys. Hence, the leakage independence ensures that the
leakage does not help her to guess collisions, for instance. In our mode of operation, we
manage to create these non-aborting conditions in TGF and TVF.

Leakage function. By repeating nonces for different values of M1 (and thus C1) it is
easy to mount a DPA on L1 due to the computation of L1 + C1 in (the lower half of) the
compression function of MenH – see Figure 8(a). By learning L1, the adversary has the
two plaintext-inputs of the last two BC calls in MenH and she can still change them at
will. In turn, the key-inputs K1 +L1 + 2D1 and 2L1 +D1 will be leaked. We thus directly
give the seed K0 to the adversary in any leaking encryption or decryption query. For KDF
and TGF, we simply give the leakage associated to the computation of the block cipher
(and not the intermediate values). We already argued about the leakage of PRF[E] used in
KDF and TGF in the previous sections and we also commented on why computing T does
not leak it (except in encryption where T is the tag which is explicitly returned by the
algorithm) since the ephemeral key X is refreshed given any final state (A,B), except a
small constant number of times related to a maximum multi-collision parameter α that we
control in the proof. We would have the same property for Y if it was not involved in the
last verification Z = ES(Y ) in decryption, where S is the candidate tag and Z = ET (Y ).
However, with many distinct S for a single prefix ciphertext, Z will leak by a DPA on the
comparison check and thus Y = E−1

S (Z) can be discovered. Based on these premisces, we
describe the unbounded leakage function pair L = (LEnc, LDec) used in our proofs as:

• LEnc(K,N,M): `0 = Lprf (K, 0‖N) to computeK0 and `1 = Lprf (K, 1‖B) to compute
X, the seed K0 allowing to compute MenH offline on IV (K0, L0), where L0 = cst is
a constant, and `tgf = Ltgf (X,A) to compute T . Then, `Enc = (`0, `1,K0, `tgf ).

• LDec(K,N,C‖S): `0 = Lprf (K, 0‖N) to compute K0 and `1 = Lprf (K, 1‖B) to
compute X, the seed K0 allowing to compute MenH offline on IV (K0, L0), and
`tvf = Ltvf (X,A) to compute T, Y and which includes Y,Z, where ET (Y ) = Z, to
implicitly check whether T = S without leaking T by verifying if Z = ES(Y ), which
can be done by the adversary. Then, `Dec = (`0, `1,K0, `tgf , Y, Z).

The idea behind our integrity result with leakage is that the final state (A,B) is fresh
throughout all the online queries, and so are the pairs (Y, Z). By showing that (Y, Z)
is independent of all the other queries, the adversary is thus left with brute-forcing a
compatible key-input S of the block cipher matching a plaintext-ciphertext pair (Y,Z).

Theorem 1 (CIML2). LR-BC2[E] with the leakage function pair L = (LEnc, Ldec) as defined
above is CIML2 secure if the E : {0, 1}n × {0, 1}n 7→ {0, 1}n can be modeled as an ideal
cipher. More precisely, if E is an ideal cipher satisfying (α, qon)-leakage independence, and

15 These pairs correspond to final states which will all be distinct.
16 In the CIML2 proof, we manage to always make fresh BC calls, which weakens the assumption.
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PRF[E] is leak-free,17 then the CIML2 advantage is bounded as:

εciml2 ≤
4 · 2n

(2n −Q)α+1

(
Q

α+ 1

)
+ ε̃MenH + 2(α2 + 1)Q

2n −Q
,

where α is a maximal multi-collision parameter, q is the number of offline ideal cipher
queries, qe is the number of leaking encryption queries, qd is the number of leaking decryption
queries, qon = qe + qd + 1 is the total number of on-line queries, σ is the total number
of message blocks involved in the online queries, and Q = q + 7qe + 9qd + 4σ is the total
number of ideal cipher calls excluding those implicitly computed in PRF[E].

To simplify the proof we give more power to the adversary by additionally returning Y
and Z in any leaking encryption query. That is, even if the leakage differs in encryption
and decryption, we decide to give both in the case of an encryption as the adversary may
anyway make a leaking decryption query for the received valid ciphertext. That way, we
can assume that the adversary never asks the decryption of a received valid ciphertext, and,
conversely, the adversary never asks the encryption of the underlying message related to a
ciphertext involved in a decryption query (since K0 is equal in those cases with the same
nonce, and it defines a bijection between the message blocks and the ciphertext blocks no
matter what is the candidate tag); we will say the adversary never makes a cross query.
As usual, we also assume that the adversary never repeats a query because it is useless
(the leakage functions directly give all the information she can get with repetitions).

Proof. We use a sequence of modified CIML2 games where Game 0 is the proper CIML2
game and the last game is a dummy game where the adversary looses. In each game,
Game i, Wi is the event that the adversary wins in that game.

In the state of MenH we call K-value (resp., L-value) the upper (resp., lower) half state
value appearing in Figure 7. We also refer to K+L+2D-value (resp., 2L+D-value) to
denote the upper (resp., lower) key-input of the block cipher call made in MenH as shown
in Figure 8(a). We use similar notations such as A-value (resp., B-value) for the upper
(resp., lower) half final state, U -value for U = PRF[E]K(1‖W ), X-value for X = U ⊕B,
Y -value, Z-value. . . , all of them denoted according to Figure 10.

Game 0: This is the actual CIML2 game as specified in Figure 12, but without associated
data. Given a (q, qe, dd . . .)-adversary A we select a random secret key K ∈ {0, 1}n.
On an encryption query (N,M) with M = (M1, . . . ,M`) in {0, 1}`n, for some non
negative integer `, we return LEncK(N,M) = (EncK(N,M), LEnc(K,N,M)) as well
as (Y,Z), where EncK(N,M) = C for some C = (C1, . . . , C`, T ) ∈ {0, 1}n(`+1)

with tag T . On a decryption query (N,C) with C = (C1, . . . , C`, S) ∈ {0, 1}n(`+1)

with candidate tag S and for some for some non negative integer `, we return
LDecK(N,C) = (DecK(N,C), LDec(K,N,C)), where DecK(N,C) = M for some
M = (M1, . . . ,M`) in {0, 1}`n if the candidate tag S is valid, that is, it satisfies
ES(Y ) = Z, where Y and Z = ET (Y ) are computed in the TVF part of the decryption
(and T is the real tag). Otherwise the decryption returns ⊥ but A still gets the
leakage `Dec. At the end of the game, A returns a nonce-ciphertext pair (N∗, C∗)
and wins if it is valid and fresh, i.e., if the pair was never queried as an input to a
leaking encryption. In that case, (N∗, C∗) is called a ciphertext forgery. We view
the candidate ciphertext forgery as the (qd+1)-th decryption query.
By definition we have Pr[W0] = Pr

[
PrivKCIML2

A,LR-BC-2,L(1n)⇒ 1
]
.

Game 1: This is the CIML2 game except that we bring the following modification in the
winning condition. Now, we also consider the adversary A to be unsuccessful if
there is at least one (α + 1)-multi-collision on any of the PGV-like (n-bit output)

17The leakages `0, `1 are useless and can be removed from LEnc and LDec.



660 Improved Leakage-Resistant Authenticated Encryption based on Hardware AES Coprocessors

compression functions or in a (forward) BC output. If we call F1 the event that the
adversary wins in Game 0 but fails in this game we have Pr[W1]− Pr[W0] ≤ Pr[F1].
Clearly, F1 implies that there are some (α+1)-multi-collisions in any underlying
single-length compression function or the the block cipher in forward calls. Since we
have the following compression functions and block cipher (forward) calls:
1. f1(h,m) = Eh(m) +m to compute (non-seed) K-values, L-values;
2. f2(h,m) = h+m+ 2Eh(m) to compute K+L+2D-values;
3. f3(h,m) = 2m+ Eh(m) to compute 2L+D-values;
4. BC (including PRF) calls to compute K0, U, Y, Z, T -values;

we can use for each case our multi-collision result of Appendix C, Theorem 2. We
thus have Pr[F1] ≤ 4·2n

(2n−Q)α+1

(
Q
α+1
)
. We note that we do not consider cross-function

collisions here. Also, an A-value (resp., a B-value) is a particular case of a K-value
(resp.s an L-value). In the following games we have at most α-multi-collisions.

Game 2: This is as the previous game except that we deem the adversary A unsuccessful if
a state-collision occurs during the game. If we denote F2 the event that the adversary
wins in Game 1 but fails in this game we have Pr[W1]− Pr[W2] ≤ Pr[F2].

Bounding Pr[F2]: We first consider initial state collision. Since the initial state
(K1, L1) = Menh(K0, L0, N), distinct nonce N implies distinct (K1, L1) except if
we have a MenH-collision. As a second case, we deal with the probability that an
internal state (K ′, L′) collides with an IV (K0, cst). This can only happen if L′ = cst
which implies finding a preimage of cst for the compression function f1. We thus
have the term Q/(2n −Q), where Q ≤ 2n−c is the total number of calls to the ideal
cipher. It remains to bound the probability that internal states collide, but this is
directly related to MenH-collision. Therefore, Pr[F2] ≤ ε̃MenH + Q/(2n − Q) since
εMenH ≤ ε̃MenH + εmu-coll, and the multi-collisions of Mennink’s proof implies F1.

Game 3: In this game we replace the output of PRF[E]K(b||·) used in KDF (with b = 0)
and TGF/TVF (with b = 1) by an independent and secret random function in a
leakage respectful manner. Since we rely on the idealized assumption that PRF[E] is
leak-free and independent, we directly have Pr[W2] = Pr[W3].

Game 4: In this game we bring yet another modification to the winning conditions. To be
successful, the adversary must fulfil the winning conditions of Game 3 but she fails if
she creates some final states (A,B) and (A,B′) such that their respective X-value,
denoted X and X ′, are such that X +X ′ ∈ {0, 1} (using the finite field notation).
That is, the adversary does not win if she forces the re-use of some computation
EX(A) or EX+1(A) in an online query. If we denote F4 the event that the adversary
wins in Game 3 but fails in this game we have Pr[W3]− Pr[W4] ≤ Pr[F4].

Bounding Pr[F4]: Given a final upper state A, let consider all the final states
(A,B1), . . . , (A,Ba) with that A-value. Since A is the output of a consecutive
computation of two compression functions f1(f2(K`, L`), C`) we know that a ≤ α2.
Indeed, since their is no state collision from Game 2, the previous states are all
distinct except if the corresponding queries only differ on the last block C` (the
prefix must be equal). In the latter case, that means that we must have a (proper)
collision on f1. In the former case, i.e., when the previous states differ, we must have
a (proper) collision on f2. That means that we have no more than α2 repetitions
of A (since the adversary does not repeat a query and never makes a cross query).
With this in mind we can now consider several cases.
First, we deal with the case where some of these A pairs collide on a W -value.
Consequently, those W -colliding pairs lead to a common U -value (the PRF output).
But then the X-value differs since Xi = U + Bi with necessarily distinct Bi for
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the appropriate index. So, between the pairs (A,Bi) and (A,Bj) that collide on a
same W , Xi +Xj 6= 0. Now it looks like we are stuck if Bi +Bj = 1 as it implies
Xi +Xj = 1, but we next show that W -collision are very unlikely in that case.
Second, we bound the probability that there is a special f1 collision of the form
f1(h,m) = f1(h,m′) and m+m′ = 1. That is Eh(m) + Eh(m′) = 1. Assuming that
the BC triple (h,m,Eh(m)) is already defined in the view, the probability that a
forward ideal cipher query (h,m+ 1, ·) or a backward query (h, ·, Eh(m) + 1) defines
the triple (h,m + 1, Eh(m) + 1) is bounded by 1/(2n − Q). By taking the union
bound on all the possible such queries, we find at most Q/2 · 1/(2n −Q) (since each
query defines a single triple which defines a single try).
Third, we show that among the respectiveX-valuesX1, . . . , Xa associated to the pairs
(A,B1), . . . , (A,Ba), those related to non W -colliding pairs imply Xi +Xj 6∈ {0, 1},
except with a very low probability. To show this, we bound the probability that
Xi+1 = PRF[E](1‖Wi+1)+Bi+1 falls either on Xj or on Xj+1, for some 1 ≤ j ≤ i, if
Wj 6= Wi+1, for any 1 ≤ i ≤ a−1. Given the index i, such a probability is lower than
2i/(2n−Q) since we have at most 2i targets of the form Xj +Bi+1 or Xj +Bi+1 + 1,
with 1 ≤ j ≤ i, for the random value Ui+1 = PRF[E](1‖Wi+1). Given A, by summing
on the index i we get the lower bound

∑a−1
i=1 2i/(2n −Q) = 2/(2n −Q) · a(a− 1)/2.

Now, considering all the final upper half state A-values, we will show that the union
probability is lower than qon/α2 · α2(α2 − 1)/(2n −Q) as the probability is maximal
when all the A-values are repeated α2 times with exactly qon/α2 distinct A-values.
Let A1, . . . , Aν be all the distinct A-values that are respectively repeated a1, . . . , aν
times in a final state. We can compute the lower bound as

∑ν
i=1 ai(ai − 1)/(2n −

Q) =
∑α2

j=1
∑
i:ai=j j(j − 1)/(2n −Q) ≤ (α2 − 1)/(2n −Q)

∑α2

j=1
∑
i:ai=j j, that is

qon(α2 − 1)/(2n −Q). Hence, Pr[F4] ≤ Q
2(2n−Q) + qon(α2−1)

2n−Q . From now on we can
assume that the computations of EX(A), EX+1(A) are fresh in the online queries.

Game 5: This game is as Game 4 except that we add one more failure event F5 which
causes the adversary A to loose the game if she wins in Game 4 but manages to make
an (offline) ideal cipher query that (re)produces a triple (X,A, T ) or (X + 1, A, Y )
for some pair (A,X) involved in an online query. We want to discard the case where
A brute-forces X from offline queries and we have Pr[W4]− Pr[W5] ≤ Pr[F5].

Bounding Pr[F5]: First, we note that the leakage on U , X and X+1 is small so that it
does not reveal anything useful to the adversary. Indeed, as there are at most α multi-
collisions on aW -value, each U = PRF[E]K(1‖W ) is only explicitly (but secretly) used
twice in the online computation of EU+Bi(Ai) and EU+Bi+1(Ai) (where Xi = U+Bi)
and for at most α indexes of the final states. Each U -value is only explicitly called
2α times in the online queries. Then, the (α, qon)-leakage independence of E ensures
that the leakage does not give more information than E does.
Second, considering (again) all the A-values A1, . . . , Aν with their respective mul-
tiplicity a1, . . . , aν , we can show that all the 2qon pairs (Ai, Tij), (Ai, Yij), where
Tij , Yij denotes all the T -values and the Y -values coming from Ai, for 1 ≤ j ≤ ai, are
pairwise distinct except with probability qon(2α2−1)/(2n−qon). Note that the adver-
sary A only gets both pairs (Ai, Tij), (Ai, Yij) if the corresponding query is a leaking
encryption query. The leakage in decryption only reveals the pair (Ai, Yij). Now, if F5
occurs A manages to find a key Xij (even if it is Xij +1, at the first place) that might
be involved in a decryption query and A then knows EXij (Ai) = Tij , which leads to
a ciphertext forgery. To increase her advantage in finding Xij , A should focus on
(Ai, Yij) since for distinct i-indexes she must be lucky to find an X-collision (or more
exactly, figure out the collision but the offline queries are independent from X-values
before that time): it is more efficient to put all her power on the corresponding
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i-index. Now, we show that A should focus on the Ai’s with the highest multiplicities.
Her goal is to make an offline query (X ′+1, Ai) for many keys X ′ and hope falling on
Yij , for some 1 ≤ j ≤ ai ≤ α2. In that case she can guess that the X ′ “hitting” Yij
is actually Xij . For each try where she has to bind the A-value in each ideal cipher
query before getting the result, the probability of such a hit is maximal when ai is
maximal since a single try has more chance to hit more targets. More precisely, if qi
is the number of time A makes a query with Ai, then if ai ≤ ai′ , for a fixed value of
qi + qi′ , qiai/(2n−Q) + qi′ai′/(2n−Q) ≤ (qi− 1)ai/(2n−Q) + (qi′ + 1)ai′/(2n−Q).
Since E is an ideal cipher, A’s success is independent of the chosen i-index among
those for which ai is maximal because she does not know how many times the X-key
she is looking for has already been used. Anyway, we assume that a1 = α2 and that
the keys X1j , for 1 ≤ j ≤ α2 are those that are already the most involved in the
ideal cipher queries. Hence, the probability to find a good key X1j is bounded by
qα2/(2n −Q). We stress that making inverse ideal cipher call is less efficient for A
as there are at most α multi-collisions on some Y -values. Finding an X-key is thus
more likely in forward calls where A-values can be repeated up to α2 times. From
now on, forging a ciphertext cannot be made by guessing an X-key and thus by
computing explicitly an honest tag T for the decryption of an invalid ciphertext.

Game 6: Game 6 is like game 5 except that a winning adversary in game 5 is no more
considered successful if she finds a forgery by (purely) guessing a valid candidate tag
S. More precisely, guessing S in that case means that A defines a block cipher triple
(S, Y, Z), i.e., ES(Y ) = Z where Z = ET (Y ), for known Y,Z, by making an ideal
cipher query either in a forward call of the form (S, Y, ·) or in a backward call of the
form (S, ·, Z). Oviously, Pr[W5]− Pr[W6] ≤ Pr[F6].

Bounding Pr[F6]: as there are at most α multi-collisions on any Y -value and any
Z-value there is no distinction to make between forward and backward calls as long
as the adversary focuses on the values with the highest occurrence. A similar analysis
used in the previous transition show that Pr[F6] ≤ qα/(2n −Q).

In game 6, the probability that adversary computes a ciphertext forgery is 0. That is,
Pr[W6] = 0, and we have:

Pr[W0] ≤ 4 · 2n
(2n −Q)α+1

(
Q

α+ 1

)
+ ε̃MenH + 3Q/2 + qon(α2 − 1) + qα(α+ 1)

(2n −Q) ·

Eventually, qon(α2 − 1) + qα(α+ 1) ≤ 2α2Q. Hence, the bound.

Assuming that Q ≤ 2n−c, and α+ 1 ≤ n/c, for some 1 ≤ c ≤ n, the multi-collision term is
bounded by:

4
(α+ 1)!

(
2c

2c − 1

)α+1
· Q

α+1

2nα ·

For n = 128, and c = 8, the above expression is less than 8/(α + 1)! ·Qα+1/2nα, for all
1 ≤ α ≤ 15. In Appendix D, we show ε∗MenH ≤ (2t22 + 7t2 + 18)Q/(2n −Q), where we have
to take t2 = α. This compresses the remaining terms of our bound to:

256
255

(4α2 + 7α+ 20)Q
2n ·

Now, let Q = 2βn, with 0 < β < 1 and βn ≤ n− 8. For α = 2, the advantage is bounded
by 23βn−2n+4 + 2βn−n+5, so β ≤ 0.65 and the mode supports up to Q ≤ 283 queries. For
α = 3, the advantage is bounded by 24βn−3n−2 + 2βn−n+7, so β ≤ 3/4 and the mode
supports up to Q ≤ 296 queries. Similarly, for α = 4, we can go up to Q ≤ 2102 queries.
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And for α ≥ 5, the above equation is bounded by 7α22βn−n and the multi-collision term
remains dominant. Therefore, the bit security for 5 ≤ α ≤ 15 is up to α/(α+ 1)n.

So overall, and as already outlined in the previous section, the integrity of our con-
struction increases with the multi-collision parameter α, but increasing α also implies
a stronger hardware assumption since we assume SPA security with qSPA = 2α queries.
Interestingly, our detailed analysis is slightly better than the estimates of Section 5.1.
For example, we reach 96-bit security with α = 3 rather than α = 4 (and for α = 4 we
reach 102-bit security). That is because, we actually tolerate α multi-collisions. We thus
“forbid” (α + 1)-multi-collisions, and bound the probability that it eventually happens.
These results therefore show that for actual security parameters as available on low-cost
embedded devices, LR-BC-2 can provide strong concrete integrity guarantees.

Incidentally, we note that the LR-MAC of Figure 10 also improves the results of Guo et
al. at FSE 2020 [GSWY19], which require two strongly protected block cipher calls where
we only use one call to the LR-PRF (which could be replaced by a strongly protected
block cipher, if not aiming for exploiting hardware co-processors as in this work).

5.3 Confidentiality in the presence of leakage: heuristic analysis
The confidentiality with leakage of LR-BC-2 follows the standard approach of previous
leakage-resistent modes of operations. As a heuristic argument, it is easy to see that
ignoring decryption leakages and assuming fresh nonces, every message block is encrypted
with a fresh key. So at high-level, and using the simplified assumptions of [BBC+20], the
security of our mode reduces to the SPA security of a single message block.

A bit more formally, to prove the CCAmL1 security of our mode, which stands for CCA
security with misuse-resilience and leakage-resistance [GPPS19], we can rely on the hard-to-
invert leakage assumption, which follows [YSPY10] and was used in [BGP+20] for TEDT.
In the CCAmL1 game, the adversary is not granted access to a leaking decryption oracle
but only to a black-box decryption. We briefly sketch the leakage function in encryption
queries. For a fresh nonce in encryption, we can rely on Mennink’s indifferentiability result
for MenH, recalled in Appendix D in order to establish that the initial state (K1, X1)
is independent and random up to the birthday bound (which is unavoidable in leakage
confidentiality with the current state of cryptographic knowledge). We stress that a
linear map L which satisfies the collision-resistance condition automatically satisfies the
indifferentiability condition. Now, we also have to show that the initial state is kept secret
and we will explain why any internal state will remain sufficiently hidden when nonces are
not repeated (as required only for the computation of the challenge ciphertext).

For the first ephemeral key K1, a first part of the leakage comes from the first call to
MenH inside KDF as shown in Figure 8(b). The second part of the leakage comes from the
next call to MenH and to EK1(L1 ⊕ θ) in the bulk of the computation. Assuming that the
first part remain safe (since K1 = EK0+L0+2D0(N) is computed once and a single time with
K0), the leakage reduces to the second part, and more precisely to EK1(L1), EK1(L1 ⊕ θ)
and the key-input K1+L1+2D1. So K1 is only used a very small constant number of times.
Therefore, the protection of the internal ephemeral key material can be propagated and
the EK(L⊕ θ) value remains hidden enough and random. Now, each block of message, i.e.,
M -value, is only XORed with that previous value. In the hard-to-invert leakage model, we
can iterate the argument until the final state. Finally, given a final state, TGF is also made
independent of the message processing as argued in the integrity proof while the adversary
here has much less information on the internal states. Therefore, a single execution on
a final state (A,B) := (K`+1, X`+1) does not leak much about it and the intermediate
computation in TGF also remains safe as already argued in the proof of CIML2.
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We finally note that while the LR-BC-2 mode of operation ensures the strongest
integrity in front of decryption leakages, formalized by the CIML2 notion, its confidentiality
guarantees are limited to encryption leakages (i.e., CCAmL1). In order to obtain CCAmL2
security (where the 2 stands for decryption leakages), one option is to leverage a second
pass, and to adapt the TEDT mode of operation to the block cipher case. We represent
the resulting LR-BC-3 mode of operation in Figure 13: it works by replacing Hirose’s hash
function [Hir06] by Mennink’s one [Men17] in the scheme of Berti et al. [BGP+20].

Figure 13: The LR-BC-3 mode of operation.

Alternatively, we observe that a simple trick to provide some heuristic confidentiality
with decryption leakages is to limit the number of incorrect verifications a chip can
perform at the protocol level (and to freeze it afterwards). In this case, the number
of measurements a side-channel adversary can perform will be limited by this number
of incorrect verifications for each target chip. Yet, in case multiple chips encrypt with
the same key, it may still happen that a sufficient number of traces can theoretically be
collected. In this respect, we observe that multi-user security could be of interest to limit
such multi-chip attacks without requiring the distribution of more secret key material: by
using a public key P in combination with the nonce 0||N in Figure 8(b), one could send
firmware updates encrypted based on different public keys for different chips.

In the following section, we conclude the paper by analyzing the implementation cost
of these different solutions and compare them with the benchmarking of [USS+20].

6 Performance evaluation
We next detail the performances obtained by our two main LR-BC modes of operation.
We first compare them in terms of block cipher calls. Next, we detail the results obtained
on the two previously mentioned targets and compare them with [USS+20].

6.1 BC calls count for LR-BC variants
In Table 1, we detail the number of AES calls required to encrypt l-block messages with
LR-BC-2, LR-BC-3 and [USS+20]. For the two first modes, decryption requires 3 additional
block cipher calls for the tag verification. We separate these figures for the three main
steps of the modes, namely the KDF, bulk computation and TGF.

Table 1: Number of block cipher calls to encrypt l-block messages.
Scheme Grade KDF Bulk TGF Total
LR-BC-2 2 130 + 3 4 · l 130 + 2 260 + 4 · l + 5
LR-BC-3 3 130 5 · l + 3 130 + 2 260 + 5 · l + 5
[USS+20] ? 129 2 · l + ? 257 386 + 2 · l + ?
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Figure 14: Performances of LR-AES modes -O3 -flto optimizations and nb = 1.

The main observations from this table are twofold. First, the constant part of the
cost of these modes is dominated by the execution of the LR-PRF. In this respect, the
LR-BC-2 and LR-BC-3 modes are similar since they only use the LR-PRF on 258 bits. By
contrast, the CHES 2020 construction has a larger constant cost due to its more expensive
finalization. Indeed, it uses the LR-PRF on 384 bits [USS+20]. Second, our one-pass
modes asymptotically require 4 · l calls to the block cipher and LR-BC-3 requires 5 · l such
calls, which directly reflects their security grade. Evaluating [USS+20] is more difficult for
this part, since it requires 2 · l calls to a block cipher and a call to a hash function on all
the message (which can be implemented in software or hardware as discussed next).

6.2 LR-AES encryption throughput
We start by describing the two optimizations we used in order to implement the LR-BC
mode variants based on AES coprocessors, that we next denote as LR-AES. Note that the
CHES 2020 mode was instantiated with both the AES and SHA-256, as in [USS+20].18

Since these schemes heavily rely on calls to the AES, the first guideline we followed is to
use the ECB mode (available on most coprocessors) whenever multiple (e.g., 2 in our case)
calls to the AES with the same key are needed. This trick allows saving at least the cost
of writing the key to the coprocessor, as well as its initialization. Therefore, it significantly
speeds up the bulk computation of all the variants of LR-BC as well as [USS+20]. In
addition, if the coprocessor has a direct memory access (DMA), it will be able to run the
two encryptions without relying on any software instruction. The second optimization is to
work on explicitly aligned words (i.e., uint32_t): this ensures that the compiler will operate
on machine words instead of bytes. Roughly, the combination of these optimizations lead
to a ≈ 50% improvement of the throughputs reported in [USS+20].

The curves in Figure 14 depict the encryption throughput ([cycles/byte]) for variants
of LR-AES and [USS+20]. By comparing Figure 14a with Figure 14b, we notice that the
Cortex-M4 systematically offers a better throughput than the Cortex-M33 thanks to its
faster AES coprocessor (with a 128-bit architecture). For the rest, the comparative results
are similar on both targets and follow the trends outlined in Table 1.

More into the details, for short messages (e.g., 16 bytes), the cost of the KDF and
TGF dominates the cycle count. LR-AES variants reach the better throughput. Indeed,

18 In the C implementation proposed by [USS+20] and accessible at https://github.com/
Fraunhofer-AISEC/leakres-aead-microcontroller/blob/master/host/src/, the 256-bit digest provided
by the hash function is truncated to 128 bits that are then fed to the LR-PRF. This leads to a possibility
of forgery by looking for a collision on these 128 bits, which has a cost of 264 offline queries to SHA-256.
Hence, we report the results of a more secure version that does not truncate SHA256’s output. In the
same implementation, the tag comparison is done with memcmp, of which the execution time depends on
the inputs to compare. This leads to a direct timing side-channel leakage that can be exploited by an
adversary to forge tags. Listing 1 is constant time avoiding this source of leakage.

https://github.com/Fraunhofer-AISEC/leakres-aead-microcontroller/blob/master/host/src/
https://github.com/Fraunhofer-AISEC/leakres-aead-microcontroller/blob/master/host/src/
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they require ≈ 2 · 130 calls to the AES for these steps, while [USS+20] require ≈ 128
additional calls. For long messages, the cost of the KDF and TGF are amortized and the
bulk computation dominates the cycle count. Therefore, the Grade-2 variants of LR-AES
give the best throughputs. The Grade-3 variant pays one additional call to the block
cipher per message block. As for the comparison with [USS+20], it highly depends on the
presence of a hardware accelerator for SHA-256. When available, its throughput is ≈ 2.3
better than our Grade-2 designs (but without strong integrity guarantees in the presence
of leakage due to the attack in Subsection 3.2). If there is no hardware accelerator for the
hash function, then LR-AES-2 is better with a factor ≈ 2.94 (resp., ≈ 2.17) on the ARM
Cortex-M33 (resp., Cortex-M4). We note that because of LR-AES-3 and [USS+20] are
two-pass, the entire ciphertext must be stored in memory when decrypting (it is not the
case for LR-AES-2 which is online, but only offers CCAmL1 confidentiality).

Overall, these results suggest that the high cost of the LR-PRF will be quite well
amortized for actual software updates, and that hardware coprocessors enable making
the 4 · l / 5 · l block cipher calls per message block of our modes acceptable in practice.
For example, the firmware of our ARM Cortex-M33 has a size of 21,184 bytes and the
one of our ARM Cortex-M4 has a size of 19,064 bytes. Even with the most conservative
security parameter for the LR-PRF (nb = 1), encrypting this amount of data is sufficient
to reach a good amortization (as shown in Figure 14). Also, considering the maximum
clock frequencies of our two target devices, decrypting their ciphertext with LR-AES-2
will take 0.014 seconds (resp., 0.0043 seconds) on the ARM Cortex M33 (resp., M4).
Source code for LR-BC-2 is available here: https://github.com/cmomin/lr-bcx.

7 Conclusions
Securing low-cost embedded devices against side-channel attacks is a challenging task. It
is for example well-known that implementing standard countermeasures like masking and
shuffling hardly gives strong guarantees without a sufficient noise level, that may not be
readily available in such devices. This fact naturally suggests the use of leakage-resilient
modes of operation as an interesting alternative to these countermeasures, especially when
hardware coprocessors with bounded leakage are available. A previous work of Unterstein
et al. proposed one construction in this direction, taking secure firmware update as
an exemplary motivation. In this work, we first showed that this proposal ignores one
important attack vector against the integrity of their scheme (namely the leakage of the
tag verification) and as a result, it does not offer the claimed guarantees. We therefore
propose new modes of operation (LR-BC-2 and LR-BC-3) that fix this issue.19 Next, we
revisit the concrete side-channel security evaluation of the leakage-resilient PRF that is
leveraged by our modes (and the one of Unterstein et al.) and show that it is quite sensitive
to variations of target device and measurement setup. We conclude that such modes are
interesting candidates for leveraging the existing ecosystem of embedded micro-controllers,
but that their security parameters should be selected conservatively.
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A Additional figures

1 l d r r3 , [ r1 ]
2 l d r ip , [ r0 ]
3 l d r r2 , [ r0 , #4]
4 eor ip , ip , r3
5 l d r r3 , [ r1 , #4]
6 eor r2 , r2 , r3
7 or r r2 , r2 , ip
8 l d r r3 , [ r0 , #8]
9 l d r ip , [ r1 , #8]

10 l d r r0 , [ r0 , #12]
11 l d r r1 , [ r1 , #12]
12 eor r3 , r3 , ip
13 or r r3 , r3 , r2
14 eor r2 , r0 , r1
15 o r r s r3 , r2 , r3
16 moveq r0 , #1
17 movne r0 , #0
18 bx l r

Listing 2: Tag verification ASM (from GCC)
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Figure 15: Heatmaps on Cortex-M4 (128-bit arch) for various tag bytes.
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B Perceived Information Analysis
Next, we compare the Perceived Information (PI) for profiling methods using Gaussian
templates in the original leakage space (GT) and in a linear subspace (LDA+GT).

The number of dimensions of the Gaussian templates are denoted as nd. If applicable,
the number of dimensions taken into account to project in the linear subspace is denoted
as np. See Subsection 2.1 for additional details. Figure 16, that reports the PI according
to the profiling set size, leads to two main observations: First, both types of templates
converge to similar values, meaning that a similar amount of information can be extracted
with GT and GT+LDA. Second, we observe that the LDA+GT approach converges faster,
meaning that less profiling samples are needed in order to fit the model. The gap between
LDA+GT and GT depends on the number of profiling samples.
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(a) Cortex-M33 (32-bit arch), 256 averaging
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Figure 16: PI for the best models we found with and without using linear subspace.
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C Compression functions and multi-collision
Ths Merkle-Damgard (MD) paradigm for hash functions is based on the iteration of a
compression function. Here we give a multi-collision probability upper-bound for general
compression functions that relies on a single call to a block cipher. Our result can be
viewed as a generalization of the collision bound for PGV-like compression [BRSS10], for
α-multi-collisions from α = 2 to α ≥ 2.

Definition 3 (Good compression). Let E : {0, 1}n × {0, 1}n 7→ {0, 1}n be a block cipher.
A good compression f [E] is a compression function f : {0, 1}n × {0, 1}n 7→ {0, 1}n based
on E equipped with efficient functions gin, gout, gmid such that f(h,m) = z, where (i)
(h,m) 7→ (k, x) = gin(h,m); (ii) y ← Ek(x); (iii) (h,m, y) 7→ z = gout(h,m, y); as well as
(iv) gmid(k, x, y) 7→ gout(g−1

in (k, x), y) = z with the following properties:
1. gin : {0, 1}n × {0, 1}n 7→ {0, 1}n × {0, 1}n is invertible;
2. gout(h,m, ·) : {0, 1}n 7→ {0, 1}n is invertible;
3. gmid(k, ·, y) : {0, 1}n 7→ {0, 1}n is invertible.

Good compression functions are the compression functions satisfying the so-called
T1-property in [BRSS10] of generalized PGV-like compression functions [PGV93]. The 12
secure PGV compression function of the so-called group-1 satisfy T1.

For instance, the compression function fα,β,γ,δ(h,m) = γEαh(βm) + δm, for some non-
zero constants over F2n , satisfies all the above requirements. Hence, so are Eh(m)⊕ 2m
and 2Eh(m)⊕m involved in Mennink’s double-length compression function. Indeed, given
α, β, γ, δ ∈ F∗2n , it is easy to see that gin(h,m) = (αh, βm), gout(h,m, y) = γy + δm and
g′(k, x, y) = γy + δ/βx fulfills all the requirements.

In this paper, we use many compression functions. We will rely on Mennink’s double
length compression function which makes 3 calls to the underlying block cipher. This
compression function has a double-length state and it is easy to see that it implicitly
contains 3 different types of (single-length) good compression functions.

This is why a multi-collision bound on good compression functions can be usefull. While
it is easy to compute exponentially many collisions on MD(f) from several 2-collisions
when f is good compression function (due to a result of Joux [Jou04]), multi-collisions on f
are still interesting to bound. We believe this to be of independent interest and especially
for other modes based on Hirose’s compression function or Tandem.

Although, the probability of multi-collisions have been studied in the case of random
hash function [STKT08], we are not aware of a general lower-bound for multi-collisions
on PGV-like compression functions. The following theorem fills this gap. We note that
the definition of collision resistance of [PGV93, BRSS10] includes a target point as in
the definition of preimage resistance. Here, there is no target point, which explains the
difference between (q + 1)q in the original bounds and q(q − 1).

Theorem 2 (Multi-Collision). Let E be a n-bit block cipher modeled as an ideal cipher
and let f [E] be a good compression function. Then, by making at most q (forward and
backward) queries to E, the probability of finding an s-multi-collisions is bounded by:

2n
(2n − q)s

(
q

s

)
.

Since f [E] is a good compression, any forward query (k, x) defines a single f -query
g−1
in (k, x). Likewise, any backward query (k, y) defines a single f -query g−1

in (k,E−1
k (y)).

Therefore, we do not distinguish E-queries from f -queries.

Proof. Let Cs(q) be the event that there is at least one s-multi-collision for the good
compression f [E] after q queries. We partition this event twice as follows by considering
the events Cs(q, z) and Cs(q, z, i), for any z ∈ {0, 1}n and any s ≤ i ≤ q. Cs(q, z) is the
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event that the first time an s-multi-collision occurs it is on the output z. Cs(q, z, i) is the
same as Cs(q, z) except that the first time the s-multi-collision occurs is at the i-th query.
We thus have:

Pr[Cs(q)] =
∑

z∈{0,1}n

q∑
i=s

Pr[Cs(q, z, i)] .

Now, by considering all the possible colliding queries 1 ≤ i1 < . . . < is−1 ≤ i− 1,

Cs(q, z, i) ⊂
⋃

1≤i1<...<is−1≤i−1
C∗(z, i1, . . . , is−1, i),

where C∗(z, i1, . . . , is) is the event that all the ij-th queries (hij ,mij ) are exactly those
which hit z, for 1 ≤ j ≤ s. That is, f(hij ,mij ) = z, while each of the other i′-th query
for i′ ≤ is and i′ 6= ij , for 1 ≤ j ≤ s, does not collide on z (no matter whether other
s-multi-collisions occur or not before the is-th query). We find:

Pr[C∗(z, i1, . . . , is−1, i)] =
s∏
j=1

1
2n −Kij (hij ,mij )

,

where Ki(hi,mi) is the number of time the key ki from gin(hi,mi) = (ki, xi) has already
been used in some computation Eki(·) in a previous query before the i-th query. Assuming
that f(hi,mi) = z, we argue why the factor 1/(2n −Ki(hi,mi)) is indeed the right piece-
wise probability: (i) in the case of a forward query, there is a single possible output y of E
given z and the i-th query (hi,mi) (or equivalently (ki, xi)) since gout(hi,mi, ·) = z has
exactly one solution by assumption on gout; (ii) in the case of a backward query, there is a
single possible input x of E given z and (ki, yi) since gmid(ki, ·, yi) = z has exactly one
solution by assumption on gmid. In both cases, the number of remaining possible outputs
of forward or backward evaluations of the random permutation Eki is exactly 2n minus all
the previous calls to it, which is Ki(hi,mi) by definition.
Therefore, since Pr[C∗(z, i1, . . . , is−1, i)] ≤ 1/(2n − i)s ≤ 1/(2n − q)s, we find:

Pr[Cs(q)] ≤
1

(2n − q)s
∑

z∈{0,1}n

q∑
i=s

∑
1≤i1<...<is−1≤i−1

1 .

Since we have
∑

1≤i1<...<is−1≤i−1 1 =
(
i−1
s−1
)
and

∑q
i=s
(
s−1
i−1
)

= 1 +
∑q
i=s+1

(
s−1
i−1
)

=
1 +

∑q
i=s+1

[(
i
s

)
−
(
i−1
s

)]
= 1 +

(
q
s

)
−
(
s
s

)
=
(
q
s

)
because

(
i
s

)
=
(
i−1
s−1
)

+
(
i−1
s

)
, for i ≥ s+ 1,

we finally get:
Pr[Cs(q)] ≤

2n
(2n − q)s

(
q

s

)
.

Let q ≤ 2n−2. For s = 2, we match the bound Pr[C2(q)] ≤ q(q − 1)/2n of [BRSS10].
In that case, Pr[C3(q)] ≤ q3/22n. More generally, for s ≥ 4, and q ≤ 2n−1, we have
Pr[Cs(q)] ≤ qs/2n(s−1). To summarize, we have that good compression functions resist to
s-multi-collision at least up to 2 s−1

s n queries, for s ≤ n.
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D Mennink’s Double-Length Compression Function
Mennink’s double-length compression function provides optimal security based on 3 calls
to the underlying BC modeled as an ideal cipher.

(a) General design (b) Our choice of the linear map

Figure 17: Mennink’s optimally secure generic compression function.

Collision resistance. The linear map L over F2n of the compression function must be
invertible. If the i-th row corresponds to the linear function ai in the figure, we find the
following matrices:a11 a12 a13 0

a21 a22 a23 a24
a31 a32 a33 0
a41 a42 a43 a44

 1 1 2 0
0 0 0 1
0 2 1 0
0 1 0 1


To be collision resistant, we also must have: a12, a13, a24, a32, a33, a44 6= 0, and a12 6= a32,
a13 6= a33. In that case, the collision advantage for n = 128 allows q ≈ 2118 ideal cipher
queries to have a collision probability of 1/2. The main Mennink’s bound depends on two
parameters t1 and t2 that control the maximum number of some bad events in the security
proof. To give a concrete non-optimal simple bound, if we set t1 = q/t2, for t2 ≥ 9, we
have:

εMenH ≤
3t22q

(2n − q) + 2n
3t2−1

(
q

2n − q

)t2
,

where εMenH is the collision-resistance advantage. A closer look at Mennink’s proof shows
εMenH ≤ ε̃MenH + εmu-coll, where εmu-coll is thrice the advantage of finding a t2 + 1 multi-
collision for any of the following 3 compression functions a1(K,L,D,C), a3(K,L,D,C)
and f1(h,m) = Eh(m) +m involved in the last 2 BC calls of Figure 17. Since in our mode
we separately deal with multi-collisions (which implies those of Mennink’s proof), we are
only interested in:

ε̃MenH ≤
(2t22 + 7t2 + 18)q

2n − q ,

for any t2 ≥ 1, as long as our multi-collision parameter equals t2.

Preimage resistance. With more constraints on the linear map, the everywhere preimage
resistance advantage of the compression function is roughly ≤ q2/3/2n, but asymptotically
in n [Men17]. For n = 128, we can actually have 180 bits of security (instead of 191 bits,
for q ≈ 23n/2). Yet, this is a strong (and tight) result.

However, we do not need such a bound in the security of our mode. The only place
where we need to rely on the preimage resistance is when we argue about state collision
resistance. Although most of the state collisions can be avoided by directly relying on
the collision resistance of the compression function itself, the initial phase of our mode
derives many IV’s that serves to initialize MenH in the MD construction. This forces
us to show that none of these IV’s can appear in some internal (non initial) state as we
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want to maintain a fresh final state to have independent tags. A natural strategy would
be to generate random IV’s from the nonces in the initialization and to directly apply
Mennink’s result. However, this does not lead to a strong security in our case: if we have
qon online queries (adding up encryption and decryption), we will have an asymptotic
bound of qonq2/3/2n allowing “only” qin ≈ 2n/2 and q ≈ 23n/4 or qon ≈ q ≈ 23n/5, for
instance. And the bound would be even worse for n = 128.

Instead, our strategy is to generate the IV’s as (K0, 1) for a random n-bit half state
K0 depending on the nonces to solve the above preimage issue. That way, we only need to
rely on preimage reistance for a single half-state value. Collision between initial states and
internal states thus imply computing a preimage of 1 for a PGV-like good compression.
IV collisions are now more likely as it is enough to collide on the n-bit value K0. Still,
it is easy to avoid causing collisions in the next state by first absorbing the nonce in a
compression function call, since the first evaluation input (K0, 1, N) is always fresh. This
costs us one more compression function call but it improves the bound drastically.

Since we do not have to comply with the more restrictive choice for the linear map
to be preimage resistant, we have more freedom to choose the coefficients. In our choice
we avoid using K in plaintext-input to give more confidence in confidentiality since it
lets open the possibility to make a proof of our mode based on a related-key secure block
cipher in the standard model for a future work.

Indifferentiability. Mennink’s compression function is also indistinguishable from a ran-
dom function with domain {0, 1}3n and range {0, 1}2n if the linear map satisfy the
requirement for collision resistance. The indifferentiability adantage is of birthday type in
n.

This result is very convenient to argue about the confidentiality with leakage of our
mode: the internal leakage does not help to distinguish our key-stream from a truly random
stream up to the birthday bound. As long as the internal computation remains hidden
enough, the security will follow easily by other standard techniques.
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