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Abstract. The developments in the areas of strong Physical Unclonable Func-
tions (PUFs) predicate an ongoing struggle between designers and attackers. Such a
combat motivated the atmosphere of open research, hence enhancing PUF designs in
the presence of Machine Learning (ML) attacks. As an example of this controversy,
at CHES 2019, a novel delay-based PUF (iPUF) has been introduced and claimed
to be resistant against various ML and reliability attacks. At CHES 2020, a new
divide-and-conquer modeling attack (splitting iPUF) has been presented showing the
vulnerability of even large iPUF variants.

Such attacks and analyses are naturally examined purely in the simulation domain,
where some metrics like uniformity are assumed to be ideal. This assumption is
motivated by a common belief that implementation defects (such as bias) may ease
the attacks. In this paper, we highlight the critical role of uniformity in the success
of ML attacks, and for the first time present a case where the bias originating
from implementation defects hardens certain learning problems in complex PUF
architectures. We present the result of our investigations conducted on a cluster of
100 Xilinx Artix 7 FPGAs, showing the incapability of the splitting iPUF attack
to model even small iPUF instances when facing a slight non-uniformity. In fact,
our findings imply that non-ideal conditions due to implementation defects should
also be considered when developing an attack vector on complex PUF architectures
like iPUF. On the other hand, we observe a relatively low uniqueness even when
following the suggestions made by the iPUF’s original authors with respect to the
FPGA implementations, which indeed questions the promised physical unclonability.

Keywords: Physical Unclonable Function, Interpose PUF, Splitting iPUF Attack, LR
Attack, ANN, Uniformity, Bias, Uniqueness, FPGA, Hardware Implementation

1 Introduction

In order to limit the secure memory usage and avoid the attacks on non-volatile memo-
ries (NVMSs), physical hardware primitives, such as Physical Unclonable Functions (PUFs),
have been introduced to the world of the embedded devices two decades ago [GCvDDO02,
LLG™04, SDOT7]. Such functions supposedly provide a secure hardware platform (e.g., a
unique secure chip fingerprint) with lightweight features such as low energy consumption
and small area footprint. For instance, in silicon-based PUFs, the differences in transistors’
properties, especially threshold voltage, originating from process variations (e.g., random
dopant fluctuations), cause varying timing (delay) characteristics in identical circuits.
Although such device-dependent properties are also the core of other PUF constructions
like optical PUFs [PRTGO02] or coating PUFs [Pos98, SMKTO06], the silicon delay-based
PUFs [GCvDDO02] absorbed the lion’s share of both academia and industry’s attention as
they do not require any analog signal or external measurement facilities.
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PUFs, mostly known as chip fingerprints due to their unique inherent physical features,
have various cryptographic applications in the Internet of Everything (IoE) [HYKD14,
RH14, LLGT04]. For instance, their applications are shown in block-chain of devices and
data security [MYKP20], in memory usage and cloud services [SG18, DBNT19], for gener-
ating a random secret key for cryptographic ciphers [SD07], or in PUF-based authentication
protocols [ZBX 20, MRK*12, YMVD14, YHD"16]. The challenge-response mechanism
is the main approach of these one-way physical functions with a unique behavior for each
PUF. An m-bit unpredictable, stable, and unique response is answered to a random n-bit
challenge to create a set of Challenge-Response Pairs (CRPs). Supposing a fully reliable
(noise-free) case, a PUF can be seen as a Boolean function, which represents this challenge-
response behavior [GTS16, GFS19]. Since such a function is not fully known, usually a
set of CRPs, seen as one-time authentication tokens, is collected and stored in the server
during the enrollment phase. It is worthy to recall that in some authentication protocols,
instead of long CRP lists, the predictive machine-learning model of the underlying PUF
(extracted by the designer) should be stored in the server [Dell7]. This naturally helps
compensating the area and timing overheads in various applications.

With respect to the number of CRPs and PUF architectures, these physical func-
tions are categorized in two groups: weak PUFs like SRAM PUFs [MvdL14] and strong
PUFs such as Arbiter PUFs (APUFs) [GCvDDO02] and interpose PUFs (iPUFs) [NSJ*19].
Weak PUFs usually generate a limited number of secure unique responses. They mainly
need to make use of an error-correction approach such as helper data and fuzzy extrac-
tors [HKM ™12, DGV*T16, DGSV15, DV14] to produce a highly-secure and reliable key for
cryptographic applications. In contrast, strong PUFs have a large and exponential-size
CRP sphere that gives them more flexibility in terms of usage, and at the same time more
vulnerability to the modeling attacks. Regardless of their type, each PUF is evaluated
by several metrics related to their physical characteristics such as reliability, uniformity,
and uniqueness. The promise of an ideal PUF, that generates reliable tamper-evident
responses to the same repeated challenges under different circumstances, is not mostly
fulfilled due to several serious threats like Machine Learning (ML) attacks. In more detail,
the known threats to the security of PUFs can be classified into four categories: mod-
eling attacks [RSST10, Dell9, HMOR94, SBC19], side-channel-analysis-based modeling
attacks [DV13, Beclb, RXST14, AM20], cryptanalysis [NSMC14], and physical cloning
without using any modeling learners [TDFT17]. According to the recent publications,
ML attacks (the first category) are identified as the most common and effective threats,
which can be performed with a classifier algorithm like Logistic Regression (LR) [RSST10],
Support Vector Machines (SVMs) [LLGT04, NSJ19], Decision Trees (DTs), or using
black-boxes learning algorithms like Artificial Neural Networks (ANNs) [SBC19, Dell9].
The second category is also among the PUF designers’ concerns, since the extracted physi-
cal information like reliability and power consumption associated to the CRP sets can help
the attacker to simulate the PUF model through different learning algorithms such as LR
and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [TAB20, Becl5, BK14].
The first and third attack categories use only CRPs as the source for building a model,
while the second one uses per-challenge physical information to find models for individual
components of the PUF in a divide-and-conquer manner. All kinds of attacks are intimately
associated with their state-of-the-art choice of the algorithm and the category being used
interchangeably.

PUF designers find the hardware implementation of these physical functions adequately
challenging [MKD10, MKKD14]. The most difficult challenge is to achieve an implementa-
tion with physical characteristics not far from ideal. Along the same line, delay-based PUFs
are prone to environmental noise like temperature and supply voltage variations. This
motivated the researchers to deal with various hardware implementations of delay-based
PUFs in the form of Ring Oscillator PUFs (RO PUF) and Arbiter PUFs (APUF) on Field-
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Programmable Gate Arrays (FPGAs) and Application-Specific Integrated Circuit (ASIC)
platforms [MS11, RSS™13, MvdL14, SCM15]. Owing to the fact that the functionality of
APUFs and XOR-APUFs is based on a tiny delay difference between lines that should only
be affected by process variations, the implementation of these PUF primitives encounter
difficulties to achieve a symmetric structure/routing (particularly in FPGAs). Further,
APUF and RO PUFs play a primary role in different strong PUF constructions, and are
applied as a basic PUF primitive in larger designs. Therefore, all such implementation
difficulties hold valid (and even become more challenging) when dealing with composite
constructions. As a result, most of the aforementioned ML attacks are usually applied and
investigated purely in the simulation domain since implementation defects such as bias
tend to make the learning problem easier. To exclude the possibility that a hidden defect
may have enabled an otherwise non-functional attack, the analyses are usually started by
(and most of the time are limited to) software-simulated models. Another reason behind
such a pure software-based analysis, is to ensure the reproducibility and comparability of
the results, i.e., a common baseline for the hardness of the learning problem is provided
this way.

The most recent composite construction, i.e., (z,y) iPUF, combines two XOR-APUF
layers with = and y APUF instances, respectively [NSJT19]. Different iPUF instances
have been evaluated by various pure ML attacks like LR, CMA-ES, ANN, and also by the
reliability attacks (a form of SCA-based modeling attacks). Apart from the authors’ claims
on the resistance of their construction against several attacks, state-of-the-art classifier
modeling attacks and ANN have been successfully applied on various iPUF instances in
the simulation domain. For example, in [SBC19] the authors reported the modeling of up
to (4,4) iPUF variants using Multi-Layer Perceptron (MLP) with three layers and Adam
optimization. Moreover, a novel modeling attack, known as splitting iPUF [WMP™20], is
reported to be able to model the iPUF by means of splitting the learning process to two
phases and making use of LR as the learner. It is also demonstrated in [TAB20] that the
claimed-impossible reliability attack [Bec15] can achieve a high modeling accuracy using a
new optimization strategy.

1.1 Related works

Various implementations of APUFs have been examined on different platforms in several
works [MKD10, MKKD14, KKR*12, SNCM16, MRV*12, GTST19, SCM15, SMCN18].
The concern of accurate APUF implementation, which is only affected by physical/process
variation, emerged in [MKD10, MKKD14]. The authors suggested to use programmable
delay lines (tuner blocks) for identical APUF implementation on FPGAs. In [KKR ™12, five
PUF instances, including APUF, have been explored on ASICs to evaluate their entropy and
reliability with temperature variation. In addition, another study analyzed the reliability
of APUFs and their uniqueness in ASICs accompanying the effect of aging [MRVT12].

However, all these implementations focus on reliability and uniqueness of APUFs. They
have mostly compared APUF with other basic primitives. To the best of our knowledge,
only a few works including [SNCM16, WP20] have studied the inherent architectural bias of
delay-based PUFs in particular APUF-based constructions. In [SNCM16], the authors eval-
uated 1000 PUF instances to highlight the architectural bias and the implementation bias
in various APUF architectures, but again it has been conducted purely in the simulation do-
main (Matlab simulation). As a summary, delay-based PUFs are accounted as architectures
with lower bias compared to other PUF primitives, e.g., dual APUF (DAPUF) [MYIS15]
and programmable line PUF (PAPUF) [MKD10, MKKD14, SNCM16].

Further, the effect of bias (also called balance) in the input data sets (i.e., here is CRPs
sets) has been studied in the ML community [NJGS09, CM91, Bis07]. The selection of
an appropriate learner algorithm is considered as an important task in ML attacks to i)
yield an optimized success rate, and ii) observe that the learner behaves properly when
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encountering biased data sets. For instance, LR algorithms can occasionally suffer from
the biased learning which might be mitigated by choosing a proper regularization or small
sample sizes as suggested in [NJGS09, KZ01].

1.2 Qur Contributions

The primary motivation of this work is that besides the PUF architectures, the metrics
like uniformity, uniqueness, and reliability can affect their robustness against modeling
attacks. Our main focus is on the uniformity metric that affects the learning process
through the most-commonly-used ML classifier, i.e., LR, which is also used in the splitting
iPUF attack [WMP7T20]. As stated, ML attacks are usually evaluated only by software
simulations as implementation defects such as bias may ease the learning process. In this
paper, we for the first time show that implementation defects can inversely make certain
learning problems harder in the complex PUF models. We demonstrate that even a slightly
non-uniform CRP set causes a loss in modeling accuracy in the training process, although
several optimizations can moderately compensate for it. These analyses are conducted on
both classical LR (suggested by the iPUF’s original authors) and splitting iPUF attacks.

In short, we perform our investigations on real data sets collected from more than
1000 various iPUF implementations (of the same design placed and routed differently)
on 100 FPGAs of the Xilinx Artix 7 family. These data sets help us to precisely analyze
the APUFs metrics on a large scale. More importantly, this allows us to observe the
effect of uniformity of APUFs on other terms like uniqueness and on their robustness
against ML attacks. These findings, confirmed by our experimental study, motivated us to
expand our analyses by adjusting and applying other ML attacks to the iPUF. In order to
tolerate the non-uniformity (originating e.g., from implementation defects), we optimize
the splitting iPUF attack by considering bias in the LR algorithm, interfering the sample
size, and applying another learner like ANN. We further investigate the uniqueness of our
case study on the aforementioned FPGA cluster. We also try to find out whether it is
straightforward and affordable for the attacker to make a single model from a PUF’s actual
FPGA implementation thereby precisely predicting the response of other PUF instances.

2 Preliminaries

This section gives a brief background on APUF-based architectures and applied ML
attacks, including the new splitting iPUF attack. We shortly describe the PUF metrics
and parameters, which we use in our analyses by investigating their effects on modeling
attacks.

Notations. We denote binary or real random variables z € Fy/ € R with italic, vectors
X € F3>t/ € R*>! with CAPITAL italic, elements in a vector with superscripts x;, and
functions f(.) with italic sans serif font.

2.1 APUF, XOR-APUF, and iPUF

One of the most prevalent strong PUF primitives is APUF, which is applied in many delay-
based PUF architectures [LLG104, GCvDDO02, SD07, NSJ*19]. This lightweight PUF
primitive is triggered by an electrical signal to traverse through two challenge-dependent
paths as a race. The signals should pass n stages, each of which is controlled by a challenge
bit ¢;<, as shown in Figure la. At the end, an arbiter (a flip-flop) decides the final response
of the APUF depending on which delay line is more extensive than the other one. The
commonly-used linear delay model, shown in Equation (1), perfectly models the function
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The vector of weights W : (wy,...,w,) represents the physical characteristics of the

underlying APUF stages and W7 stands for W transposed. These physical characteristics
are the main target of the learner functions in ML attacks. The parity vector & :
(®g,...,D,) is applied as the feature vector in Equation (1), which is derived from the
given challenge C' : (¢, ...,cn—1) as shown in Equation (2). In such a model, the final
response bit 7 = 0/1 is generated based on the delay difference A given to the unit sign
function, i.e., r = ©(A).

In order to increase the complexity of this mode and boost their ML resistance, several
delay-based PUFs have been made with APUF as a fundamental element, e.g., XOR-
APUF [SDO07], Feed Forward PUF [LLG"04], Multiplexer-Based APUF [SMCN18], and
Bistable Ring PUF [CCL™11] with its twisted version [SH14]. Such strong PUFs promise
to provide a tamper-evident feature. It means that any external temptation should lead to
a small change in the PUF response and take down the original PUF behavior [NS14]. For
example, changes in supply voltage can create noise for the PUF and affect its performance
to be biased. In other words, this feature of PUFs is considered as noise sensitivity, which
provides the strict avalanche criterion [GTS18, DGSV14].

An XOR-APUF combines at least two n-bit APUF components with an XOR gate to
generate the final response [SD07]. In a similar approach, the aforesaid linear model is
extended to cover XOR-APUFs. As shown in Equation (3), the parallel attributes for a
k-XOR-APUF are multiplied involving k weight vectors of individual APUF [RSS*10].

r:@(ﬁAi)=@<ﬁWiT'q’i> (3)
i=1 i=1

To make a proper trade-off between ML robustness and reliability, interpose PUF (iPUF)
employs APUFs as a primitive component to make a multi-layer XOR-APUF [NSJ*19].
The most common analyzed iPUF consists of two XOR-APUF layers, (z,y) iPUF, as
shown in Figure 1b. The security of this construction relies on the position of the interpose
bit (ideally at 7 ), the length of challenge bits n, and the number of applied APUFs in
each layer x and y.

More precisely, the one-bit response of the top layer (n-bit z-XOR-APUEFs), so-called r,
plays the role of the interpose bit for the challenge set of the bottom layer. Consequently,
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n+1 challenge bits (co,...,cz_1,7¢,¢z,...,¢c,-1) are given to the bottom layer (n + 1-bit
y-XOR-APUF) to generate the single bit final response r,. Naturally, the linear model in
Equation (3) can also be employed to model an iPUF, when each layer is considered as an
individual XOR-APUF.

2.2 Modeling Attacks
Here, we briefly review the basics of LR and ANN.

2.2.1 Logistic Regression

Among supervised learning algorithms, LR is commonly applied in the PUF domain as it
solves the classification problems and is available in an adapted version suitable for PUF
applications. The goal of LR, like other modeling algorithms, is to find the best fit and
optimized models that are able to describe the relationship between the output (dependent
variable: here known as PUF responses) and a set of independent variables (here known
as PUF challenges) [JLS13]. This algorithm assigns input data to a discrete set of classes,
which are the binary sets (0/1) in the case of a PUF with 1-bit response [Bis07, RSST10].
LR learns the APUF’s weights W so that each challenge C' has a probability p(C,r|W) to
produce 1-bit response r as presented in Equation (4). To classify the given challenges
to possible responses 0 or 1, this algorithm applies an activation function (as outlined in
Equation (5)) for the weight vector W, representing the inherent PUF’s characteristics.
Note that here f(W,C) refers to the predicted PUF’s output, i.e., the sign function over
the APUF’s linear model given in Equation (1).

p(C,rIW) = ra (F(W,C)) + (1= 7) (1 = o (F(W,C)) ), where (4)
(5)

To find out how the predicted responses are close to the real ones, an error function is
defined by taking the negative logarithm of the likelihood, as shown in Equation (6). It is
also called a binary cross-entropy error function in the following form. Since the analytical
solutions are not easily able to determine the optimal minimum error function value or the
final ideal weight vector as W, it should be optimized iteratively by taking the gradient of
the error function with respect to W in Equation (7).

o(z)=(1+e) "

E(W) = ~Inp(C.rW) = = (rno(FW,C)) + (1 = 1) In(1 = o (F(W,C))) ) (6)
VE(W) = (a(F(W,C) = 1)) ™)

It is worth to mention that maximum likelihood can show severe over-fitting for data sets
that are linearly separable [Bis07]. Since the maximum likelihood solution is applied, when
the hyperplane corresponding to o = 0.5 occurs, the decision space is separated to the two
classes and the magnitude of W goes to infinity. However, these problems like over-fitting
can be solved by adding a regularization term to the error function, which is explained in
Section 4.1.1 in more details.

2.2.2 Artificial Neural Networks

Besides the classifier algorithms like aforementioned LR algorithm, ANNs are also able
to learn the PUF models as shown in [SBC19, WMP*20, NSJ*19, CDS18]. In an ANN,
a connected network of artificial neurons is responsible for building the connections and
making a decision based on input neurons. This network consists of an input layer, an
output layer, and several hidden layers depending on the network application [HMOR94].
A cost function that can be chosen diversely calculates the difference between the outputs
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until the trained model achieves the minimum prediction error. An MLP which is a class
of feedforward-ANN, has a fully-connected nodes with the determined weights. These
ANN models use different hyperparameters for their application on the CRP data sets.
For instance, MLP models apply resilient backpropagation (Rprop) optimization as a
training algorithm, or the Adadelta, Adam, and Nadam optimizations. Based on various
criteria such as network applications, data sets characteristics, and running time, the
proper optimization function is selected.

2.3 Splitting iPUF Attack

It has been shown that an (z,y) iPUF can be best modeled by an z + y-XOR-APUF (also
called linearization attack achieving at most 75% accuracy [NSJ*19]), and that large iPUF
variants cannot be precisely modeled by black-box ANNs [SBC19]. In contrast, splitting
iPUF attack applies a divide-and-conquer method to successfully break different iPUF
variants [WMP*20]. In a nutshell, it divides the (z,y) iPUF into two XOR-APUFs and
then employs the adopted LR algorithm to these functions in an alternative repeated
manner. At first, the attack starts to achieve a rough model for the bottom y-XOR-APUF
with the uniform-random selection of the interpose bit, which should be generated by the
top layer. When the LR-based learning of the bottom layer achieves an adequate but not
a high accuracy of 65%, the attack initiates the next phase. Then, the learner filters the
CRPs by considering only those for which a guess for the interpose bit leads to a match
between the actual response and the learned model. Afterward, the attack continues to
learn only the top z-XOR-APUF to achieve high accuracy. Then, the learning process of
the bottom layer is repeated but this time with the interpose bit predicted by the modeled
2-XOR-APUF. In short, by means of its iterative manner, the vulnerability of (1, k) and
(k, k) iPUF constructions up to (1,9) and (8, 8) are presented, respectively.

Further, the authors made a new technical observation that the LR-based PUF modeling
algorithm [RSST10] can fully or partially recover XOR-APUFs even in the presence of
feature-noise in the training set. Considering the weights correlation and the effect of the
interpose bit on the half of the weights of the bottom layer are the key points of the work
presented in [WMP*20]. However, requiring massive CRP sets (to find efficient ones), and
exponential increase of the required CRP sets for the large iPUF variants can be counted
as disadvantages of this attack. The entire analyses presented in [WMPT20] are based on
data sets collected by simulation. As stated, one of our goals in this work is to practically
examine its applicability on data sets collected from experimental setups.

2.4 PUF Metrics

PUF designs are evaluated based on specific metrics, which make them (un)suitable for
different applications. In other words, specific metrics can determine particular applications
for a PUF, e.g., a low-/medium-reliable PUF architecture would require a sort of error-
correcting facility (e.g., fuzzy extractor) to be used for key generation. In the following,
three important PUF metrics relevant to delay-based PUF designs are restated, which are
considered in our practical analyses. Due to the lack of consistency and firm definitions
used in public literature, some concepts with similar meaning might be called differently.
Further, in some cases a certain metric is defined uniquely in different works. Nevertheless,
in the rest of this article, we stay with the definitions given below, which are mainly the
same as defined and used in [MGS11, NS14, MRV 12, GFS19]. Note that the below-given
definitions are adopted to our experiments, where we deal with a PUF with a single-bit
response, which is the only instance implemented on every device (or let say every chip).
All estimations are done by means of [ samples (i.e., the number of CRPs) collected from
k devices.
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Uniformity

Considering a state-less PUF primitive with single-bit response, this parameter estimates
the proportion of ‘1’s in the PUF’s response. This definition is also known as random-
ness [HYKS10, MGS11] and implementation bias [SNCM16]. An ideal value for uniformity
is 0.5 or 50% as it reflects the unpredictability of the response of a state-less single-bit
PUF primitive. Uniformity is calculated per device, although an average over uniformity
of all devices can also be meaningful.
=
Uniformity, = T Z Tij, (8)
§=0

where 7; ; denotes the PUF’s response to the j-th challenge when examining the i-th device
with i € {0,...,k—1} and j € {0,...,1 — 1}. As a side note, if the estimated uniformity
is higher than 0.5, sometimes 1 — Uniformity, is used, but in this work we always count
the number of ‘1’s.

Uniqueness

One of the essential PUF’s evaluation metrics is the uniqueness of the response of different
devices to the same challenge, which somehow reflects the physical unclonability. The
intrinsic random physical characteristic of PUFs should create unique and unpredictable
responses in an ideal case. Therefore, the uniqueness is defined as the average Hamming
distance (HD) between responses of two distinct devices to the same random given
challenges. In an ideal situation, for the same given challenges, half of the responses of
two devices should be unequal, implying the ideal uniqueness to be 0.5 or 50%.
1-1 k=2 k—1

Uniqueness = ! ZZ Z HD(r; j,74 ) 9)

L (g) =0 i=0 i'=i+1

Reliability

This property presents the difference between the responses of a PUF to the same repeatedly-
given challenge. In other words, how reliably a PUF instance regenerates the same response
to the same challenges. This metric’s ideal value is 1 or 100%, which means that not only
the PUF instance but also the environmental conditions should be ideal. Achieving this
ideal situation is however challenging due to the environmental noise like temperature
and supply voltage variations. Similar to uniqueness, reliability is also estimated for each
device individually as follows.
1 I-1p—1
Reliability, = 1 — -7 > > HD(ri k), (10)

j=0 t=0

where r;j stands for the ¢-th response of the underlying PUF on the i-th device to the
j-th challenge, when each challenge is repeated p number of times.

3 FPGA Implementation

As our main goal is to analyze the effect of PUF metrics on the efficiency of ML attacks,
particularly in experimental domain, we need to investigate our assumptions on real
hardware implementations. Being reconfigurable and fast to market, FPGA platforms
are usually preferred to ASICs specially for studies which require several experiments
including various designs. On the other hand, FPGA implementations face difficulties
when delay-based PUFs are the target application. The challenges originate from the
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Figure 2: Details of the FPGA implementation.

fact that the routing, which affect the characteristics of delay lines, cannot be entirely
controlled. More precisely, in contrast to ASICs, it is almost impossible to achieve a similar
routing for the path delay lines of an APUF. Applying some constraints such as fixing the
placement, choosing specific LookUp Table (LUT) in each slice, hindering the synthesis
tool to optimize the LUT ports, keeping the hierarchy, etc. can mitigate such challenges.
However, the problem cannot completely be eliminated.

In our case study iPUF, we made use of the LUT-based implementation of APUFs,
that is suggested by the original authors and provided as open-source material'. We
should emphasize that another methodology to implement switch stages of APUFs, called
Programmable Delay Line (PDL), has been suggested in [MKD10]. However, due to its low
uniqueness reported in [SNCM16] and in order to stay with the original implementation,
we did not employ PDLs in our experiments.

According to [NSJT19], each switch stage of an APUF is implemented by a 5-to-2 LUT,
as presented in Figure 2a. Therefore, for an n-bit APUF n LUTs should be instantiated.
Since the placement of such LUTs (switches) affect the corresponding routing between
the consecutive switches, and hence their delay, different placement strategies have been
studied and suggested in [NSJ"19], which are all based on using vertically-consecutive
slices. The first option is to make use of only one LUT per slice. As each slice contains

Ihttps://github.com/scluconn/DA_PUF_Library
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four LUTs (called BEL A, B, C, and D), one strategy is to place all LUTs at the same
BEL, resulting in 4 different placements for the entire APUF. Figure 2b shows part of the
FPGA floorplan when only BEL B is used. Alternatively, one of the BELs can be randomly
selected for each LUT in a slice, i.e., 4™ cases. We refer to this strategy as “random
placement”. The next option considered in [NSJ*19] is to place 2 LUTSs in each slice, by
fixing the pattern of the used BELs for all slices to either ‘AB’, ‘AC’, ‘AD’, ‘BC’, ‘BD’,
or ‘CD’, i.e., 6 different placements. The final option is to occupy all LUTs in each slice,
meaning that all BELs are used. In short, the authors stated that random placement leads
to low uniformity and referred to such designs as bad implementations, and considered the
other 11 “pattern placement” strategies as good implementations.

3.1 Setup

Our experimental setup consists of 100 instances of Digilent Basys3 boards, where a Xilinx
Artix-7 XC7A35T FPGA is integrated. Figure 11 (in Appendix) shows a photo of the
employed customized FPGA cluster. During the experiments, the FPGA cluster was being
operated in a laboratory, where the temperature was kept at approximately 21°C. It is
worth to mention that the machine has a controller which enables only one board at time?,
meaning that the experiments conducted on a board is not affected by the activities of the
other boards. This helps keeping the environmental noise low and avoiding the boards to
heat up. Hence, the surface boards’ temperature is expected to be almost constant.

As the case study, we focused on 64-bit (1,5) iPUF as the target PUF primitive, i.e., a
64-bit APUF in the top layer, and a 65-bit 5-XOR-APUF in the bottom layer with the
interpose bit in the exact middle of the challenge of the bottom layer. We followed the
above-explained placement strategies and constructed 1011 implementations, i.e., FPGA
bitstreams. 1000 with random placement and 11 with the suggested pattern-based strategy.
In order to be able to study the behavior of each APUF instance, we intentionally routed
out their output. Note that no internal wires are connected to the FPGA output drivers.
The design has a state machine and communicates with a PC via UART. It means that
by sending a 64-bit challenge to the FPGA, a 7-bit response is received containing the
output of all APUFs concatenated with that of the iPUF. It is worth to highlight that the
APUFs’ output are taken from the arbiters, i.e., after being stored. In iPUF, the bottom
layer is triggered when the interpose bit is ready, i.e., after the evaluation of the top layer
is accomplished. Hence, connecting some internal wires to APUFs’ output does not affect
the functionality or characteristics of the design.

3.2 Initial Analysis

By focusing on a single device (i.e., one of those 100 FPGA boards) we examined all
aforesaid 1011 designs, collected 10k CRPs where challenges are selected uniformly at
random, and extracted the uniformity of all APUF instances as well as the iPUF’s final
response individually for each design. Apart from all other analyses conducted on 100
FPGA boards, this initial step, whose goal is to select a few designs among 1011 ones,
is done using one FPGA board. As shown later in Figure 9, the FPGA boards show a
relatively low uniqueness. Therefore, repeating this initial step on multiple FPGA boards
would not lead to significantly-different results.

Figure 3a represents a box plot of the extracted uniformities. As expected, the placement
strategies heavily affect the uniformity of each APUF, while that of the final response stays
between 33% to 47%. We also observed a relatively normal distribution for the uniformity
of each APUF. Table 1 lists the uniformity of four finalists. For each placement strategy
(random or pattern), we selected the first finalist (randl/patternl) as the one with the

2The power of inactive boards is cut.
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Figure 3: Estimated uniformities based on experimental studies.

best average uniformity over all APUF instances while keeping the uniformity of the final
response in the range of 40% to 60%, and the second finalist (rand2/pattern2) as the one
with the best uniformity for the final response. This range indeed follows the suggestions
made in [NSJT19]. However, as shown in Table 1, we have not found any design with the
uniformity of all APUF instances being in the given range.

Table 1: Uniformity of four most favorite design candidates among random and pattern
placement strategies.

Design Uniformity

Top Bottoml Bottom2 Bottom3 Bottom4 Bottomb5 iPUF
randl 43% 40% 48% 37% 31% 29% 46%
rand2 38% 18% 33% 3% 41% 27% 47%
patternl  21% 20% 18% 17% 70% 32% 60%
pattern2  18% 21% 9% 11% 61% 18% 53%

Finally, we have chosen the design identified as rand1l in the first row of Table 1.
Using the aforesaid FPGA cluster, we evaluated the chosen design on all 100 devices while
collecting 1 million CRPs from each device. Note that, during this process, we gave the
same set of challenges to all devices. In order to give an overview on the performance of
our setup, collecting each 1 million CRP sets took around 18 minutes. Figure 3b depicts
a box plot of uniformities extracted from these 100 sets of CRPs. We can again see an
almost normal distribution for the uniformity of each APUF instance being in the range of
31% to 54%. More importantly, the uniformity of the final response (iPUF) keeps its good
range of 45% to 55%. As a result, we continue most of our experimental studies, detailed
in the following sections, with the chosen design, i.e., rand1.

4 Uniformity

The most critical requirement for delay-based APUFs is an appropriate geometry, i.e., an
identical placement and routing of delay stages. As a result, the delay lines (modeled in
Equation (1)) should only be influenced by the device-level deviations originating from
process variations. In ideal implementations of an APUF-based composed architecture, the
APUF primitives should enjoy the outstanding uniformity of 50% and uniqueness of 50%
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with the highest reliability of 100%. As stated in [SNCM16, WP20], uniformity can be
affected by differences in the PUF’s architecture. Further, confirmed by our experimental
analyses, uniformity is among the parameters sensitive to the implementation variations
as well.

In this section, by focusing on our case study iPUF, we represent our practical obser-
vations regarding the effect of non-uniformity on ML attacks. Afterward, using various
simulated non-uniform data sets, we show the results of the splitting iPUF attack, which
is still the only state-of-the-art pure ML attack on iPUF. The section is continued with
a brief theoretical explanation to point out how bias affects the LR algorithm. Then,
we investigate several optimizations on this attack with the goal of maintaining the high
accuracy (above 90%) in presence of non-uniformity. After that we also examine general
cases such as considering various individual uniformity for each APUF and evaluating
another structure like XOR-APUF. Finally, we show the result of applying the pure ANN
attack as well as an ANN-adopted version of splitting iPUF attack to achieve a high
modeling accuracy.

Note that, we have taken the open-source pypuf library3, provided by the original
authors of the splitting iPUF attack. Based on the same library, we developed our ANN-
adopted variant fitting to different iPUF constructions. For the experimental analyses on
(1,5) iPUF, we used at least 1 million CRPs, while — according to [WMP*20] — a splitting
iPUF attack on such an iPUF variant should require around 500k CRPs. In order to have
an insured margin in our investigations and not focusing on the scalability of the attack
(that has already been done with ideal uniform data sets in [WMP120]), we have also
considered at least 1 million as the CRP-set size in our simulation-based analyses.

4.1 Splitting iPUF Attack

Based on the simulation results given in [WMP*20], the splitting iPUF attack should be
able to successfully (i.e., with the success rate of 1 and the prediction accuracy above
95%) break (1,5) iPUF using 500k either noise-free or noisy CRPs. We conducted this
attack on our 100 FPGA devices realizing the corresponding iPUF variant, using the
design chosen in Section 3.2. It is worthy to mention that we observed a reliability of
around 96% in our setup (explained in more detail in Section 5). In addition to those
slightly-noisy 1 million-per-device set of CRPs collected and used to estimate the uniformity
(see Section 3.2), we collected noise-free CRP sets as well. To this end, we repeatedly
gave the same challenge set 11 times to each device, and extracted more-reliable CRP sets
through majority voting. As a side note, collecting these 100 CRP sets took around two
weeks using our setup. We then performed the original splitting iPUF attack on our noisy
and noise-free CRP sets leading to the accuracy of at most 72% as shown in Figure 4.
Note that we have not observed a perceptible difference between the attack results for the
noisy and noise-free CRP sets. For each set of CRPs, we repeated the attack 10 times; the
best results are presented in Figure 4. As a reminder, the uniformity of the final response
in these CRP sets is in the range of 46% to 52%, as shown in Figure 3b, i.e., a very slight
non-uniformity, while the APUF instances individually exhibit larger deviations from 50%.
Further, we verified the uniformity (very close to 50%) of each challenge bit in our given
set of CRPs, and also made sure that the training set and the test set do not have any
overlap.

We observe that the prediction accuracy of the attack is between 55%-72%. This
range is similar to that of the classical LR attack suggested in [NSJT19] and adopted
in [WMP*20] to model an (x,y) iPUF with an =+ y-XOR-APUF, achieving the prediction
accuracy of at most 75%. This problem of linearization attack caused by the effect of
the interpose bit on the half of the bottom layer, has been claimed to be solved by the

3available at https://github.com/nils-wisiol/pypuf/tree/2020-split-ipuf
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Figure 4: Maximum prediction accuracy of different attacks on 1 million CRP sets collected
from the chosen (1, 5) iPUF design implemented on a cluster of 100 FPGAs. Each attack
has been repeated 10 times.

splitting iPUF attack. In contrast, our experimental analyses imply that this problem is
not entirely eliminated, since non-uniformity of the underlying APUF instances as well
as that of the iPUF can turn the highly-successful splitting iPUF attack into a naive LR
modeling attack not profiting from its divide-and-conquer methods or CRP filtering.

In order to verify our results in the simulation domain and finding out the reason
behind such an accuracy loss, we repeated the same attack on the same (1,5) iPUF design
using simulated CRP sets for various amount of non-uniformity in the APUF instances
of both top and down layers. To this end, we have adjusted a term so-called bias in the
aforesaid library leading to non-uniform APUF models. For each selected bias, we collected
1 million noise-free CRPs, estimated the uniformity of the APUFs and iPUF response, and
performed the splitting iPUF attack 10 times. The biased weights were simulated with
the variance of 0.1, i.e., the individual uniformity of all APUF instances involved in each
iPUF are mostly similar.

The corresponding results, shown in Figure 5a, first indicate that we cover the full range
of uniformity between the ideal case (considered in the original splitting iPUF paper) and
the worst case (which cannot fulfill the physical unclonability anymore). Second, it is shown
that even with a slight bias < 55%, the prediction accuracy falls below 80%. Naturally,
the accuracy again gets back to the roll when the non-uniformity grows strongly to a side,
but obviously such PUF constructions cannot be considered physically unclonable. We
conduced another study by adjusting the bias of certain APUF instances. More precisely,
for a specific non-uniformity of the top layer, we collected CRP sets and repeated the
same attack for various non-uniformity of the bottom layer. Figure 5b depicts the results,
illustrating that — in this case — the non-uniformity of the bottom layer is the dominant
factor influencing the prediction accuracy of the attack.

We further expended our analyses by studying other iPUF variants. The procedure
explained above has been repeated on various 64-bit (1, %) and (k, k) iPUF constructions.
We again adjusted the bias parameter in the underlying APUF simulation models and
considered the uniformity of the final response to observe the prediction accuracy of
splitting iPUF attack. The results presented by Figure 6 reflect the same vision, i.e., by a
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slight non-uniformity the prediction accuracy of the attack drops suddenly. Interestingly,
as shown by the graphics, such an accuracy drop is sharper for larger iPUF variants, i.e.,
larger k.

We would like to emphasize that the original splitting iPUF attack is based on two
instances of LR learner depending on the length of challenges (on top and bottom layers)
in an iterative way. Features of our applied top and bottom LRs (which are similar to the
original version) are summarized as: i) normal distribution of the initial weights N(0,1) in
particulate the interpose bit from the previous layer, ii) convergence decimals of 2, and iii)
no boundary on bias parameter. Note that the minimum applied iteration boundaries are
also monotonous in both 64-bit and 65-bit learners with the value of 10000. As stated
in Section 2.3, there is a threshold for the accuracy of alternating phases of the splitting
iPUF attack, which are updated at each iteration.

The results presented above are based on the original unaltered version of the attack.
Below we theoretically discuss about the effect of bias on LR.
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4.1.1 Effect of Bias on LR

We first should recall the concept of adding a regularization term to an error function
to control the over-fitting problem through minimizing the total error function as shown
in Equation (11). In the machine learning literature [Bis07, Har15], a particular choice
of regularizer is known as weight decay, because in sequential learning algorithms, it
encourages the weights to zero, unless supported by the data set.

Ep(W) + AEw(W) = —Inp(C, r[W) + X[|[W]?, (11)

where \ shows the regularization coefficient. This coefficient controls the relative importance
of the data-dependent error, shown as Ep(W), and the regularization term Ey (). As it
is also pointed out in [Bis07], the regularization provides a reasonable opportunity (but
not as a definitive solution) for complex models to be trained on limited size of data sets
to probably solve the over-fitting problem. Note that finding an optimal model, especially
in complex cases (here the iPUF model), is shifted to finding an appropriate value of A.
Nevertheless, finding an optimal value of this parameter relies on various factors such as
bias.

Below, we refer to two terms which — based on the regression literature — can affect the
performance of the LR algorithm [Bis07, Harl5]: 1) the “bias parameter” of the APUF
linear model, and 2) the “bias term” involved in LR.

Bias parameter. The first term, also called offset 3, is added to the APUF function,
f(W,C) =WT.®+ 3, where B — in contrast to weights w; — is not limited to [—1,1]. It
is an extension to the delay model mentioned in Equation (1), where the bias parameter
B has the role of determining the location of the decision boundary where f(W,C) = 0,
i.e., where equal output probabilities occur. As one of the goals of LR is to minimize
the error function (which is commonly supposed similar to cost/loss/utility function in a
wrong way [Harl5]), this bias parameter helps the sequential learning process to minimize
the total error function in an efficient way. It can be interpreted that this parameter also
places the learner on the right way of converging faster. Note that the bias of the training
data sets is mostly ignored, or let say, it is supposed to be ideal g = 0 in the LR algorithms
applied in attacks against PUFs, e.g., in splitting iPUF attack. One of the solutions to this
problem is given in [JHTW14] where it is suggested to add the following transformation
(log odds) to the bias 8 learned by the LR algorithm to tune it to reach the optimal value

B.

- p(C.r|W)  p(C,#W)
PP losT W) logl—p(C,ﬂW) (2

However, we show by our iPUF experiments in Section 4.1.2 that even if the attacker
considers the bias of the final responses (the total uniformity of the iPUF), the optimal
values of W cannot easily be found despite a slight improvement in the prediction accuracy.
Here we should emphasize the complexity of the model of iPUF compared to other
PUF architectures like single APUF or XOR-APUF when considering the effect of such
parameters.

While the error function struggles to find a minimum distance from the optimal value
in the complex models, it can also lead to severe over-fitting problems due to applying
maximum likelihood or equivalently least-squares®. It should be searched for a suitable
value of A\ to reduce the over-fitting problem as much as possible. Simultaneously, the
learner should also consider the bias to catch the most optimal value of W.

4In required constrained models, the maximum likelihood or the estimation or the Bayesian distribution
can be considered as the probability model as well. However, limiting the number of basis functions to
avoid over-fitting has the side effect of limiting the flexibility of the model to capture the exciting and
essential trends in the data set [Bis07].



Anita Aghaie and Amir Moradi 535

Bias term. During regularization and minimizing the loss function, there is an effective
parameter, so-called bias-variance of the learned weights, which should also be considered
with respect to the type of the selected logistic function and the estimation approaches
on the applied data sets [Bis07, Har1l5, KZ01]. The bias and variance of the fitting model
generally have a relation with minimizing the loss function, which is a quantified measure
to show how bad it is to get an error of a particular size or direction in the learning
process. The loss function is also affected by the negative consequences of inaccurate
prediction [OS18]. For the sake of simplicity and giving a general view, Equation (13)
shows the effect of bias in the context of a linear model for logistic function, although
it would also be applicable to more complex functions with various relation forms (more
details are given in Appendix B).

expected loss o< bias oc variance o< noise (13)

As mentioned in [Bis07], there is a trade-off between bias and variance, in which flexible
models have low bias and high variance while relatively rigid models have high bias and
low variance. Consequently, the regularization of the error functions A affects minimizing
bias and variance of the fitting model to provide the minimum error functions. As a
solution regarding regularization, we additionally apply ANNs (given in Section 4.2), which
consider the bias and the regularization in an efficient manner, while LR algorithm seems
to be more sensitive to these biases.

Note that a proper probability model and a proper function for the decision should
be chosen depending on the restriction hyperparameters and the effect of the noise and
variance. In contrast to what is mentioned in [NSJT19], there is no fixed rule implying
that modeling approaches or supervised learners like LR or CMA-ES are always more
capable or less capable of learning PUFs with different architectures since each learner has
pros and cons. As we illustrated here, it can also be dependent on the CRP data set that
gives us the related information.

4.1.2 Optimizations

In order to enhance the prediction accuracy of the attack, we have endeavored several
approaches related to either the learner’s features or the splitting iPUF attack algorithm.
One of the first parameters, that we have considered in the underlying LR learner, is the
interference of bias parameter as mentioned in Section 4.1.1. Although this term was
defined in the lower layers of the applied library, it was not employed in various studies like
splitting iPUF attack. More precisely, in the LR attack there is an opportunity to define
the bias (non-uniformity) of the underlying PUF, for example the bias in the response of
an APUF. If the attacker enters the bias of the top layer (which is supposed inaccessible)
as well as the bottom layer, then this optimization can mitigate the non-uniformity. Note
that adjusting the bias parameter can moderately improve the reduced accuracy in the
case of iPUF model as a complex architecture but is not able to entirely avoid it. Further,
the attacker does not have any chance to observe the uniformity of the top layer which
creates the most important issue in the split learning of domino architecture of iPUF.
Nevertheless, as a result of these modifications, we have observed a slight improvement in
the prediction accuracy of the attacks. As shown in Figure 4, even the biased LR is not
always able to compensate the accuracy loss except in a few data sets where the modified
learner achieves the accuracy of at most 77%.

Due to the effect of the bias-variance trade-off in LR, shortening the sample sizes
or weighting rare data can also be considered as a potential solution to the over-fitting
problem [JLS13, Bis07, KZ01]. However, small sample sizes and classifying the balanced
inputs to feed the input layer are the common ML techniques that have been used through
pre-processing as well [HMOR94].
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Figure 7: Prediction accuracy of splitting iPUF attack on (k, k) iPUF variants simulated
with various range of uniformity for each individual APUF. Each attack, repeated 10-20
times, is conducted on noise-free CRPs.

Our next option is to adjust the batch sizes and the applied number of iterations in
LR. We have tried various batch sizes with small steps; however, this again did not help
to compensate the accuracy loss. In some cases, considering the minimum batch sizes, the
gradient descent does not pass the normal converging process and sticks far from finding a
local or global minimum derivation point, in which the accuracy consequently falls to the
worst case 50%, i.e., randomly guessing the PUF’s output.

Moreover, the minimum number of required iterations for each LR has a minor impact
on our desired output. One of the trivial solutions can be enlarging the applied input data
set size, which here means an extensive CRP-set size. To cope with this, we increased the
number of CRPs to 5 million and 10 million. We further collected similar number of CRPs
from 10 devices of our FPGA cluster (the same design chosen in Section 3.2). However,
we observed the same or even lower prediction accuracy in the result of the splitting iPUF
attack.

Based on our experiments, the unique effective optimization is to deviate from uniform
random selection of the interpose bit during the first phase of the splitting iPUF attack.
Although it is recommended to keep a uniform distribution for the challenge bits and
uniformly choose the initial value of the interpose bit at random, a non-uniform guessing
of the interpose bit can relatively compensate for the accuracy loss and help to find the
authentic model in several cases. We should mention that 1) this compensation irregularly
moves the low prediction accuracy of 70% to above 80%, which is still far from a highly-
accurate prediction model, and 2) in a realistic scenario the attacker does not have a
chance to know the actual distribution of the interpose bit.

In order to have a fair comparison, we tried all above optimization options on the
simulated CRP sets with a slight non-uniformity of 52%. In short, we observed that
different iPUF variants, which are claimed to be breakable by splitting iPUF attack, still
cannot be accurately modeled when the uniformity slightly deviates from its ideal value. To
verify our experimental setup and the collected CRP sets, we successfully conduced classical
LR attacks on each non-uniform XOR-APUF of the top and bottom layers independently
(of course, knowing the output of the top layer).

4.1.3 Generalization

In this section, we extend our investigations by considering the effect of bias on two other
case studies. In the simulation-based experiments shown in Figure 7b and Figure 7a,
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bias. (a) unbiased LR, and (b) biased LR. Each attack, repeated 20 times, is conducted
on noise-free CRPs.

we considered an approximately similar added bias (with small variance) for all APUF
instances of an iPUF. Here, we first study other cases where every APUF has its individual
uniformity in a range of 50% — 95%, no necessarily the same as other APUFs in an iPUF
instance. In the second case study, we examine the effect of bias on the efficiency of LR
targeting XOR-APUFs, which are also involved in many common strong PUF constructions.

Various APUF Uniformity. In order to consider scenarios more close to real-world
conditions, we investigate the behavior of the original splitting iPUF attack when each
APUF has a different uniformity. We should highlight that this scenario is already the
case for our practical experimental; as given in Table 1 and in Figure 3b, the APUFs
have a wide range of uniformity. Here, we just examine the same scenario for different
iPUF variants in the simulation domain. For the sake of consistency with Figure 5 and
Figure 6, we present the results also based on the final uniformity (in the same range of
50% — 95%). Therefore, the individual APUF’s uniformity may strongly deviate from the
center, which is actually not far from reality, as shown in Table 1. For each given final
uniformity, we have examined more than 10000 cases to find a combination of APUFs
with different uniformity, and selected those with closest uniformity to 50%. The results
shown in Figure 7a imply the same conclusion, i.e., the prediction accuracy decreases by
non-uniformity of the final response. In order to give a more detailed view, Figure 7b

presents the range of uniformity of individual APUFs for each final uniformity considered
for (4,4) iPUF.

XOR-APUF. The latter case to generalize our observation is to investigate the effect of
non-uniformity on XOR-APUFs. As given in Section 2.1, XOR-APUFs can be modeled
easier compared to iPUFs. Therefore, the supervised learner succeeds more straightfor-
wardly to achieve a high prediction accuracy with lower costs such as running time and
the required number of CRPs. As shown in [TB15], when attacking k-XOR-APUFs, the
minimum required CRPs to achieve a high accuracy and a reasonable success rate scale
with k. Most of the pure ML attacks ignore the bias, and consider an ideal situation for
the uniformity of all APUFs, like a range of 50 — 51%. In order to fill this gap, we ran
several simulations for various k-XOR-APUFs 3 < k < 6, where each APUF encounters a
different bias, and conducted two types of LR and observed the minimum number of CRPs
and the maximum prediction accuracy. In addition to the original so-called unbiased LR
(from the employed library), where the bias is ignored, we considered the case in which
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Table 2: Simulation results for the biased and unbiased LR for uniform and noise-free
XOR-PUPFs. For each instance, the attacks have been repeated 10 times.

. . Final CRP size Prediction Accuracy
k| APUFSs Uniformity Uniformity | unbiased LR | biased LR | unbiased LR [biased LR
4 [50, 50, 50, 50] 50.00 15000 15 000 96.07 96.10

[45, 61, 64, 62] 50.09 50000 10000 82.11 96.75

[59, 45, 71, 62] 50.28 50000 7500 81.91 96.88

5 [50, 50, 50, 50, 50] 50.00 50 000 50000 92.43 92.09
[43, 41, 47, 34, 30] 50.09 50000 50000 50.91 96.54

[66, 57, 28, 32, 76] 50.31 50000 45000 52.02 96.87

the LR tries to learn the bias as well, referred to as biased LR. As shown in Figure 8a,
the required number of CRPs for the unbiased LR highly increases when the uniformity
deviates from 50%. In some cases, the prediction accuracy cannot even reach more than
75%. On the other hand, a lower number of CRPs is required in the biased LR while
maintaining the prediction accuracy above 90%, and even less CRPs are required when
observing stronger non-uniformity. The reason behind this reduction is that a biased CRP
data set gives more information to the learner to model the underlying PUF faster. Note
that the bias-variance trade-off of the learned weights should also be considered in the
learner’s decision stage.

We also investigate special cases where different XOR-APUFs exhibit almost ideal
uniformity of 50% while the individual APUFs have various uniformity. For this experiment,
we compare three different instances of 4-XOR-APUF (resp. 5-XOR-APUF), one of which
with ideally-uniform APUFs. The results, depicted in Table 2, show even if the final
uniformity is 50%, non-uniform individual APUFs can heavily decrease the prediction
accuracy. Since it is not possible for the attacker to estimate the individual uniformity of
APUF instances, the learner should be guided to consider the bias like the biased LR.

4.2 ANN and its Adoption to Splitting iPUF Attack

Since the splitting iPUF attack does not achieve an adequate prediction accuracy when
the targeted PUF is slightly biased, our attention goes to the other learners like ANN,
which is also embedded in the aforesaid pypuf library. Here, we show the result of the
ANN attacks conducted to the same real data sets applied in Section 4.1, i.e., the chosen
implementation of the (1,5) iPUF realized on 100 FPGA devices. In addition, we propose
to substitute the LR learner of the splitting iPUF attack with an MLP to achieve a higher
prediction accuracy in the presence of non-uniformity. Our proposed method can indeed
be generalized by substituting the LR with other learners like Decision Tree (DT), which
is supposed to be not as sensitive as LR to the data set’s bias. Accordingly, we refer to the
pure ANN attacks by “naive ANN” and our modified variant by “ANN-splitting attack”.

Before illustrating the results, a description of the learner’s parameters can give a
detailed picture of the conducted process. The underlying MLP applies Rectified Linear
Unit (ReLU) as the activation function and the Adaptive Moment Optimization (Adam),
which combines the RMSProp and momentum. Adam computes individual adaptive
learning rates from the first and second moments of the gradients to update the parame-
ters [KB15]. In other words, this optimizer can deal efficiently with the noisy data sets
by taking an average of the gradient distance of the learned weights. Since the learning
parameters and batch sizes can be varied depending on the size of the training data set and
the amount of the applied bias, we considered a wide range of learning rates (0.001-0.01)
to have smaller step sizes and find an optimum point in the learning process. Further, we
set the number of employed layers to be not more than 3 with (64, 64, 64) nodes. Note
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that we apply different learning rates and tolerance for the top and bottom layers in our
ANN-splitting attack, e.g., the top and bottom layers use 0.001% and 0.003% learning
rates, respectively. Regarding the effect of these parameters on the attack’s running time,
it is worth mentioning that each layer’s patience term is also different. In other words, if
there were a consecutive number of epochs that have low-change of loss compared to the
threshold defined by the tolerance term, then the attack stops.

The results of these two ANN-based attacks on our non-uniform actual data sets
are included in Figure 4 as well. As shown, the prediction accuracy of the naive ANN
attack is in a range of 83% to 93%. This difference can be interpreted by the variation
of the uniformity of APUF instances, since identical random initial weights and learning
parameters have been applied for all CRP sets. On the other hand, by substituting the
LR learner of the splitting iPUF attack with an ANN, we achieve a more stable learner’s
behavior leading to a higher and narrow prediction accuracy of 89%-93%. Note that in
our ANN-splitting attack, we have not changed any other attack settings except replacing
the learner. Although we discussed on the effect of different optimizations in Section 4.1.2,
we stayed with the original settings; we have even kept a uniform distribution for the
randomly-selected initial value of the interpose bit.

In short, in entire attacks conducted on all 100 devices, the naive ANN achieves a
higher prediction accuracy compared to the original splitting iPUF attack, while it has
less accuracy in approximately half of the devices when compared with our adopted ANN-
splitting attack. We should highlight that for the results shown in Figure 4, each attack
has been repeated 10 times with different initial weights, but the same initial weights have
been considered for each instance of the attack on all 100 devices. Finally, the highest
achieved accuracy is reported for each device.

Table 3 shows a summary of the conducted attacks. In addition to the design chosen
in Section 3.2, we repeated our entire analyses on the second best design with the random
placement strategy. In Table 3, we report the average prediction accuracy of each attack
(repeated 10 times on each device). It can be seen that our ANN-splitting attack not
only leads to a highest prediction accuracy, but also runs considerably faster compared
to the naive ANN. This short running time is due to separating the learning process of
each XOR-APUF layer, thereby giving the learner a chance to converge efficiently to the
proper model in the back-and-forth process. As a side note, in order to handle all aforesaid
extensive experiments in a reasonable time, we made use of a machine with 96 CPU cores
with maximum clock frequency of 2.3 GHz and 256 GB of memory.

We conclude that when dealing with non-uniform complex PUF constructions, the
divide-and-conquer approach of the splitting iPUF attack is a helpful technique that guides
the learner to catch the optimum point faster compared to the naive ANN and classical
LR attacks. However, referred to Section 4.1.1, in the underlying LR of the first divided-
and-conquer phase of splitting iPUF attack, the error function shows a significant distance
to the real responses, where the learner should meet a temporary accuracy threshold of
less than 90%. Compared to LR, ANN has a higher chance to achieve a minimum distance
due to the higher capability of the network and the involvement of regularization. Then,
the obtained model is improved skillfully in the next phases of such a divided-and-conquer
scheme in presence of non-uniformity. As a result, the attacks containing a precise model
of the data sets (e.g., the iPUF architecture), instead of black-box attacks, enjoy a higher
ability to more precisely learn the PUFs behavior.

5 Uniqueness and Reliability
Besides uniformity, other PUF metrics such as reliability and uniqueness play a critical

role in the robustness of PUF constructions against ML attacks. Under the settings of
this work, as mentioned in Section 2.4, the uniqueness shows the difference of outputs
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Table 3: Average of prediction accuracy of attacks on (1,5) iPUF using real data sets
collected from two designs with random placement implemented on 100 FPGA devices.
FEach attack has been repeated 10 times. The numbers written in parentheses indicate the
average run time of a single attack.

Prediction Accuracy (Time)

Desi
esistt Splitting iPUF Naive ANN ANN-Splitting
rand1 68.10% (11 min) 87.07% (42 min) 92.56% (14 min)
rand2 71.07% (11 min) 87.54% (42 min) 93.06% (15 min)

(responses) belonging to one PUF instance implemented on multiple devices. In other
words, uniqueness measures the diversity of physical characteristics, i.e., an estimation of
average dissimilarity in challenge-response behavior of PUF instances for the same given
challenge. In an ideal case, the user expects to obtain various unpredictable responses
with 0.5 or 50% uniqueness. It means that if two PUFs are totally containing unique and
random responses for similar challenges, each of them should have a half of the other’s
responses. This parameter can be closely interpreted as the inter-(Hamming) distance of
PUF architectures. Referred to our findings and as it is pointed out in [SNCM16], the
non-uniformity of CRP data sets can affect the distribution of Hamming distance of the
PUF responses. For instance, if a PUF design has a strong non-uniformity (bias) in its
output, then the second chip with the same design and similar non-uniformity encounters
with small variation in output. Therefore, PUF implementations face difficulties to achieve
an ideal Hamming distance among several instances besides having an ideal uniformity.

In this section, we present the results of the evaluation of the (1,5) iPUF design chosen
in Section 3.2 in terms of uniqueness and reliability. Using the data sets we collected
from all 100 devices, we examined the uniqueness of the chosen implementation. The
corresponding results shown in Figure 9a imply a very low uniqueness for the APUF
instances, far from an ideal situation (less than 10%). Although it is affected by non-
uniformity, the low uniqueness in FPGA implementation of delay-based PUFs is usually
due to the relatively-identical architectures of the platform. More precisely, it is due to
the fact that the difference between the delay lines (e.g., of an APUF switch stage) is not
heavily affected by the process variation, rather by the fixed routing resources. Apart from
these facts and observations, we report a considerably-higher uniqueness for the overall
iPUF architecture compared to the underlying APUF instances, i.e., 23% versus at most
8%. We expect this to be the result of the underlying composite architecture of the iPUF.

It is worth to recall the recommendations made in [NSJ*19] with respect to the
placement strategy, which we extensively discussed in Section 3.1. In addition to our
chosen design, we have taken one of the recommended pattern-based designs, indicated as
“patternl” in Table 1 showing maximum uniformity for each APUF instance among all 11
pattern-based designs. We repeated the same procedure, i.e., implementing the design on
all 100 FPGAs, collecting 1 million CRPs, and examining the uniqueness. As depicted
in Figure 9b, the recommended design shows a slight improvement in the uniqueness of
APUF instances. However, this improvement is not scaled for the uniqueness of the iPUF.
We should point out that we have examined several other designs with different placement
strategies, in none of them we observed a uniqueness higher than 24% for the iPUF.

As a result of this low uniqueness, it is expected that these constructions encounter
physical clonability issues. In order to investigate this, we have conducted another
experiment. Considering the result of our ANN-splitting attack on all 100 devices, we have
selected the best-trained model in terms of the prediction accuracy of 92.5%. Using this
model, we have tried to predict the response of other 99 devices, of course implementing
the same design. To this end, we applied a test set of 50k CRPs to the chosen model and



Anita Aghaie and Amir Moradi 541

25 25
20 20
Z A
S1s/ £ 15
g 3
& g
£ 101 510
5 5 H H H H
Top B1 B2 B3 B4 BS5 iPUF Top B1 B2 B3 B4 BS5 iPUF
(a) Uniqueness (chosen design) (b) Uniqueness (patternl, see Table 1)

100

>

£ o8

=

=

2 97 -

95 :
Top B1 B2 B3 B4 BS5 iPUF

(c) Average reliability

Figure 9: Uniqueness and average reliability of the chosen (1,5) iPUF design, based on
the CRPs collected from 100 devices.

to all 99 devices. As shown by Figure 10, this experiment leads to the prediction accuracy
of at most 83%, which is approximately in line with the observed uniqueness of 23%. In
short, due to the lower uniqueness of APUF instances, we expected to achieve a higher
prediction accuracy when we port the model of one device to the others. However, the
iPUF’s composite architecture, particularly the interpose bit given to the middle of the
bottom layer, improves but not fully compensates for the physical clonability.

Reliability

Researchers are commonly hesitant whether APUFs on FPGA can achieve a high relia-
bility [WMP+20, SNCM16]. By means of Figure 9c, which shows the average reliability
of the entire components of the underlying iPUF, we present our observations toward
a highly-reliable situation. Surprisingly, the implementation enjoys a high reliability,
relatively close to ideal. As given in Section 3.1, we tried to limit the environmental
effects/noise on our setup. Despite the high reliability of our case study, as stated in
Section 4.1, we have conducted all our attacks on more-reliable CRP sets by applying
majority voting after repeating each challenge 11 times.

6 Discussions
The primary goal of ML attacks targeting constructions involving APUFs, is to learn the

weights of the underlying model (see Equation (1)) in a way that the predicted model
is able to behave error-less compared to the actual PUF. One of the techniques, which
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Figure 10: Prediction accuracy of a selected reference model applied on 99 sets of CRPs
collected from 99 devices. The reference model has been selected as the one that achieved
the highest prediction accuracy as a result of ANN-splitting attack.

might be helpful during the learning process, is to observe the weights correlations and
the delay differences of various applied APUFs in a composite architecture, as it has
been done in [DV13, Dell7, TAB20, Becl5, WMP*20]. To be more precise, here weights
correlation refers to the correlation between the weights used to generate the simulated
CRPs and those revealed by the learning process. Of course, it is just applicable in the
simulation domain. During our simulation-based investigations, we have checked out the
weights correlation for individual APUFs in both iPUF layers. As a result, those splitting
iPUF attacks which reach the prediction accuracy of around 80%, enjoy a proper weights
correlation, i.e., 1 or -1; however, the accuracy does not improve through more iterations
of the attack. Naturally, it is of great interest if this shortcoming is addressed and that
such attacks are optimized to achieve a higher success rate. Note that choosing the initial
values of the interpose bit from a non-uniform distribution (discussed in Section 4.1.2) has
also contributed to boost this correlation, when dealing with our non-ideally uniform case
studies. This point leads us to recall the discussion given in [WMP*20] implying that a
low-prediction accuracy does not prove the PUF’s resilience against LR attacks. We would
like to expand this statement by giving another perspective that high prediction accuracy
and success rate of ML attacks in the simulation domain does not mean the absolute
breakdown of the underlying construction in the practical domain. As investigated here,
we showed that there are more parameters such as uniformity, which have a significant
impact on the ML attack’s prediction accuracy and success rate.

In order to have a practically-secure PUF design, two solutions are commonly given
by the the researchers [WMPT20, NSJ*19, RSST10]: 1) expanding the PUF challenge
size and/or 2) increasing the number of applied APUFs in the architecture. The first
solution is usually preferred, since it is assumed that increasing the number of APUF
components can cause a sharp reduction in its reliability. In our practical experiments,
each 64-bit APUF enjoys a high reliability of around 99%. This led to a stable composite
construction (1,5) iPUF as shown in Figure 9c. Based on the statements and estimations
given in [NSJT19], for a larger variant (1,12) iPUF implemented on our setup, we predict
the reliability to be in a range of 88.6%-94.1%. Of course, these results are based on our
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FPGA-based setup, and cannot be directly mapped to any other setup.

In the end, it should be mentioned that the conclusion of XOR APUF non-uniformity
should not be taken in a wrong interpretation that the iPUF structure is similar to XOR
APUF. As comprehensively discussed in [WMP20], the modeling of x+y-XOR APUF
can not be chosen for (x,y) iPUF because it is not reflecting all characteristics of iPUF.
The key point of affecting the interpose bit on the half of the bottom layer’s weights plays
a vital role in making iPUF distinguished compared to other PUF structures.

Practical View

Here, we would like to give our practice-oriented vision on ML attacks, especially splitting
iPUF and ANN. For instance, based on the analyses given in [WMP*120], the splitting
iPUF attack on the (1,9) iPUF needs 750 million ideally-uniform CRPs. Collecting such a
CRP set takes around 10 days using our setup (of course optimizations are still possible).
Since the splitting iPUF attack on noise-free uniform data sets with that size took around
8 weeks reaching a success rate of 26%, we expect that our adopted ANN-splitting attack
on such a construction takes even longer when the CRP sets are experimentally collected
from a non-uniform construction (in total 2-3 months including CRP collection). Therefore,
successfully conducting a pure ML attack on large and robust APUF-based architectures
sounds challenging from a practical perspective. In other words, we somehow confirm
the statements made in [WMPT20, NSJT19] regarding the infeasibility of the attacks
and collection of required CRP sets, i.e., the required time increases with polynomial
complexity. Therefore, such attacks are possible but not practical on large iPUF variants.
Note that side-channel information like reliability or power consumption can mitigate the
difficulties of ML attacks in practice. They usually are able to turn that difficulty to a
linear relationship between the required CRPs and the number of APUF instances involved
in a composed architecture. For the sake of repeatability, a set of 1 million CRPs collected
from an iPUF implementation in our setup is accessible through the authors’ webpage.

7 Conclusion

PUF metrics have been thoroughly studied by several researchers. In this work, we have
highlighted the crucial role of such metrics in the success of corresponding modeling attacks.
Contrary to a common assumption that implementation defects can ease the attacks, using
several practical and simulation-based analyses, we have shown that a slight non-uniformity
in the output of the PUF with a complex architecture can turn a theoretically-successful
ML attack into a model with moderate prediction accuracy.

To this end, we focused on the recently introduced splitting iPUF attack and presented
its difficulties when targeting an iPUF variant with some bias in practice. We have also
observed that by deviating from the ideal uniformity, the prediction accuracy of the attack
on large iPUF constructions drops more sharply compared to that of smaller variants.
To the best of our knowledge, this article is the first pointing out these issues supported
by extensive experiments performed on a large-scale FPGA platform. We further have
proposed some modifications on the splitting iPUF attack to tolerate the non-uniformity.
Making use of other learners like DT, SVM, and CMA-ES instead of LR and ANN (also
in the alternative form of splitting iPUF attack) may lead to better enhancements when
dealing with biased constructions.

In short, we believe that based on our results, any attack vector developed in the future
should be examined under non-ideal situations as well, e.g., facing bias originating from
implementation defects. Otherwise, an unconscious conclusion may be obtained about the
resilience/vulnerability of the underlying PUF construction against ML classifiers like LR.
To avoid the inconsistency between the simulation and real-world conditions, we should
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pay attention to the complexity of PUF architectures, when selecting proper modeling

attacks.
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A Implementation Platform
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Figure 11: Our employed FPGA cluster, containing 100 Artix-7 FPGAs, on which various
iPUF instances are implemented.

B Adopted Bias-Variance Relation

In the decision theory of regression, there are various problems like over-fitting, which leads
us to consider a regularization in the estimation of the trained value f (W, C), corresponding
to the real output r. Also, it leads us to calculate the minimum of the loss function in order
to achieve the optimal prediction on our conditional distribution of p(C,r|W) for the PUF
function as mentioned before. The proper approaches to minimize the loss function can
be chosen among different methods like minimizing least squares or maximum likelihood,
which are applied on a determined data set M.

In the following, we present the adopted version of finding the bias-variance trade-off by
minimizing the loss function regarding learning the APUF model, which is supposed to be
learned as a linear model. For the sake of simplicity, we consider linear regression and square
loss function in our example to give a general view to the reader by the aim of understanding
the bias-variance trade-off and their relation to the expected loss function [FHTO01, Bis07].
However, it is worth to mention that applying maximum likelihood estimation on the
model parameters in the error function should not be supposed the same as minimizing
the least square of the loss function in the regression area.

Here, we start with the conditional expectation of our function, f(W,C), over data set
M as

E[f(W,C)[M] = f(W,C). (14)

If we consider an independent noise term, shown by € in our function, then the function
can be shown like y(W, C) = f(W, C) 4 e. The conditional expectation of the new function
is the same as what we have in Equation (14):

Ely(W, C)] = E[f (W, C)] + E[e] = E[f(W, C)], where E[¢] =0 (15)



Anita Aghaie and Amir Moradi 551

We should then find the expected loss function considering the above equations, the
trained PUF function f(W,(C), and variance Var as applied in the following equations.
Hence, we have the loss function through minimizing square as follows [FHTO01]:

E[L] = E[(y(W,C) — f(W.C))*] = E[(f(W.C) + e~ f(W,C))’]

— E[(f(W,C) + ¢ — f(W,C) + E[f(W,C)] — E[f(W,C)])’]

= E[(f(W,C) — E[f(W,O))*] + E[¢] + E[(E[f (W, O)] - f(W, C))*]
+2E[(f(W, C) — E[f (W, O)])e + 2E[e(E[f (W, C)] — f(W.0))]
+ 2E[(E[f(W, C)] = f(W,C))(F(W.C) = E[f(W, O)))]

= (f(W.C0) = E[f(W,C)))* + E[¢*] + E[(E[f(W, C)] = f(W,C))’]
+2(f(W,C) — E[f (W, C)))El] + 2E[]E[E[f(W, C
+2]E[E[f( O) = FW,O)(f(W.C) = E[f(W,C)])

= (f(W,C) —E[f(W,C)))* + E[¢*] + E[(E[f (W, C)] — f(W,C))?]
= (f(W,C) — E[f(W,C)))? + Var[e] + Var[f (W, C)]
= Bias[f (W, O)]” + Var[e] + Var[f(W, O)]

= Bias[f(W, C)]2 + Var[f(W, C)] + noise . (16)

As shown, the expected loss is related to the bias and variance of the trained model
(resp. learned weights in our PUF application). In other words, the loss function is split
into the sum of (squared) bias, variance, and a constant noise. Note that there is a trade-off
between bias and variance as well so that the bias term represents the extent to which the
average prediction over all data sets differs from the desired regression function [Bis07].
Meanwhile, the variance measures the distance of the trained model responses to their
average value on the chosen data set. It shows how much the trained model (weights) can
be sensitive to the data set choice [Bis07].
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